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Preface

An imbalance between rich and poor is the oldest and most fatal ailment
of all republics.

Plutarch, ancient Greek biographer (c. 46–120 CE)

Why does this imbalance exist in the first place? Why are a few rich and many
poor? For centuries we have borne the effects of this inequality. We know neither the
cause nor the solution to this elusive problem. From philosophers to economists,
many have vehemently tried for ages to understand the reasons and formulate
remedies for such inequalities. No doubt, great efforts have been made to tackle
this multifaceted problem, but the situation has been analogous to fighting the
Greek mythological monster Hydra, who grows two heads in place of an injured
one. Overcoming this problem, indeed, seems to be a Herculean task!

Heraclitus1 said, ‘change is the only constant’. Putting our faith in him, one might
have expected things to change drastically, and the inequality to even disappear at
some point in time! Strangely, this has not been the case. We find that inequality has
been a universal and robust phenomenon – not bound by either time or geography.
Fortunately for scholars, it has a few statistical regularities, most of which have
been recorded in the past 115 years or so. Owing to the seminal works of Pareto
(1897) and Gibrat (1931), one can now identify certain regularities in the income
and wealth distributions over a wide range of societies and time periods. Physicists
have come up with some very elegant and intriguing kinetic exchange models in
recent times to shed some light on these observations. Our intention is to describe
these developments in this book.

Standard economic theory would like to consider that the activities of indi-
vidual agents are driven by the utility maximization principle. The alternative
picture proposed by physicists is that the agents can be simply viewed as gas par-
ticles exchanging ‘money’, in the place of energy, and trades as money (energy)

1 Ancient Greek philosopher (c. 535–475 BCE).
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viii Preface

conserving two-body scatterings, as in the entropy maximization-based kinetic the-
ory of gases. This qualitative analogy seems to be quite old, and both economists
and natural scientists had already noted it earlier in various contexts. However, this
equivalence between the two maximization principles has gained firmer ground
only recently.

When tested with empirical data from various countries, just pure kinetic
exchange models fall short of accommodating the Pareto tail. However, the intro-
duction of ‘saving propensity’ (in various forms) in such kinetic exchange models
enables one to successfully explain several of the observed features, including the
much desired Pareto tail. A direct link between the saving propensity distribu-
tion and the inequality can also be established. The subsequent developments in
the analysis of these models further established many intriguing features in the
observed data. The mathematical structures of these models and their economic
implications are now being investigated extensively. As mentioned above, the dis-
covery of the equivalence of the physical entropy and the utility or psychological
satisfaction, and their corresponding maximization principles, marks the entry of
the kinetic exchange models of market in the domain of macroeconomics.

Interestingly, the economic inequality is a natural outcome of this framework of
stochastic kinetics of trading processes in the market, independent of any exogenous
factors. Thus, the kinetic exchange models described in this book demonstrate how
inequality may arise. They also indicate how its effects may be partially reduced
by modifying the saving habits.

The book is organized as follows: the first chapter introduces the topic to the
readers. In Chapter 2, a detailed presentation of the recorded data and analyses of the
income and wealth distributions across various countries in different time periods is
given. In Chapter 3, some of the major recent attempts to set up the physics-inspired
many-body dynamical models for income or wealth exchanges, amongst the agents
in the market or network, are discussed. In Chapter 4, the details of the numerical
results for the kinetic exchange models for asset or income among the agents in
the market are presented. Then, Chapter 5 gives the detailed analytical structure of
such kinetic exchange models for the income and wealth distributions. Chapter 6
shows how, in two-person, two-commodity trading dynamics, the Cobb–Douglas
utility maximization leads to the same kinetic exchange dynamics with uniform
saving propensity, discussed in the earlier chapters. In Chapter 7, these kinetic
exchange modelling approaches for income and wealth distributions leading to the
economic inequalities are reviewed in terms of economics of income generation and
development. Finally, we present an outlook with a brief summary of the chapters,
a few discussions on new directions and open problems in the last chapter.

We are extremely grateful to all our collaborators: Urna Basu, Pratip
Bhattacharyya, Anindya Sundar Chakrabarti, Guido Germano, Asim Ghosh,
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Sanchari Goswami, Els Heinsalu, Aymen Jedidi, Kimmo Kaski, Mehdi Lallouache,
Subhrangshu Sekhar Manna, Sugata Marjit, Marco Patriarca, Srutarshi Pradhan,
Parongama Sen, Sitabhra Sinha and Robin Stinchcombe, for their contributions to
these developments. We acknowledge John Angle, J. Barkley Rosser Jr., Banasri
Basu, Arnab Das, Kishore Dash, Deepak Dhar, Mauro Gallegati, Kausik Gan-
gopadhyay, Abhijit Kargupta, Thomas Lux, Matteo Marsili, Pradeep K. Mohanty,
Peter Richmond, Dietrich Stauffer, Victor M. Yakovenko and Sudhakar Yarla-
gadda for their comments and criticisms on our work, from time to time. We
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We hope that researchers, especially the younger ones, will find the ideas
described in this book intriguing enough to inspire them to do further research
and take up the Herculean challenge of solving this chronic problem, which is one
of the pertinent sources of tragedy for human civilization.
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Châtenay-Malabry, France Anirban Chakraborti
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Introduction

Ill fares the land, to hastening ills a prey,
Where wealth accumulates, and men decay.

Oliver Goldsmith,
Anglo-Irish writer (1730–74)

It would be difficult to find any society or country where income or wealth is
equally distributed among its people. Socioeconomic inequality is not limited to
modern times; it has been a persistent fact, and a constant source of irritation to
most, since time immemorial.

The issue of inequality in terms of income and wealth is perhaps the most fiercely
debated subject in economics. Economists and philosophers have spent much time
on the normative aspects of this problem (Rawls 1971; Scruton 1985; Sen 1999;
Foucault 2003). The direct and indirect effects of inequality on society have also
been studied extensively. In particular, the effects of inequality on the growth of the
economy (Benabou 1994; Aghion et al. 1999; Barro 1999; Forbes 2000) and on the
econopolitical scenario (Blau and Blau 1982; Alesina and Rodrik 1992; Alesina
and Perotti 1996; Benabou 2000) have attracted major attention. Relatively less
emphasis has been put on the sources of the problem itself. There are several non-
trivial issues and open questions related to this observation: How are income and
wealth distributed? What are the forms of the distributions? Are they universal, or
do they depend upon specific conditions of a country? Perhaps the most important
question is: if inequality is universal (as some of its gross features indicate), then
what is the reason for such universality?

Such questions have intrigued many personalities in the past. More than a century
ago, Pareto made extensive studies in Europe and found that wealth distribution
follows a power law tail for the richer sections of society (Pareto 1897), known
now as the Pareto law. Separately, Gibrat (1931) worked on the same problem,
and he proposed a ‘law of proportionate effect’. Much later, Champernowne also

1



2 Introduction

considered this problem systematically and came up with a probabilistic theory to
justify Pareto’s claim (Champernowne 1953; Champernowne and Cowell 1998).

It was subsequently found in numerous studies that the distributions of income
and wealth indeed possess some globally stable and robust features (for a review, see
Yakovenko and Barkley Rosser 2009). In general, the bulk of the distribution of both
income and wealth seems to fit both the log-normal and the gamma distributions
reasonably well. Economists usually prefer the log-normal distribution (Gini 1921;
Montroll and Shlesinger 1982), whereas statisticians (Hogg et al. 2007) and, more
recently, physicists (Chatterjee et al. 2005b; Chatterjee and Chakrabarti 2007b;
Yakovenko and Barkley Rosser 2009) tend to rely more on alternate forms such
as the gamma distribution (for the probability density) or the Gibbs/exponential
distribution (for the cumulative distribution). The upper end of the distribution, that
is, the tail of the distribution, is agreed to be described well by a power law, as was
found by Pareto.

These observed regularities in the income distribution may thus indicate a
‘natural’ law of economics. The distribution of income P (x) is defined as fol-
lows: P (x)dx is the probability that, in the ‘equilibrium’ or ‘steady state’ of the
system,1 a randomly chosen person would be found to have income between x and
x + dx. Detailed empirical analyses of the income distribution so far indicate

P (x) ∼ xn exp(−x/T ), for x < xc, (1.1)

and

P (x) ∼ x−α−1, for x ≥ xc, (1.2)

where n and α are two exponents, and T denotes a scaling factor. The latter
exponent α is called the Pareto exponent and its value ranges between 1 and 3 (e.g.
Aoyama et al. 2000; Sinha 2006). A historical account of Pareto’s data and that
from recent sources can be found in Richmond et al. (2006). The crossover point
xc is extracted from the numerical fittings of the initial gamma distribution form
to the eventual power law tail. One often fits the region below xc to a log-normal
form: logP (x) = const − (log x)2. As mentioned before, although this form is
often preferred by economists, the statisticians and physicists think that the gamma
distribution form fits better with the data (see Salem and Mount 1974; Hogg et al.
2007; Yakovenko and Barkley Rosser 2009). Figure 1.1 shows the features of the
cumulative income or wealth distribution.

Most of the empirical analyses, especially with recent income data, have been
extensively reviewed in Chapter 2. Compared with the empirical work done on

1 We will often be using the terms ‘equilibrium’ or ‘steady state’ interchangeably in this book; strictly speaking,
for systems that are ‘non-ergodic’, one can only write ‘steady state’.
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Figure 1.1 When one plots the cumulative wealth (income) distribution against
the wealth (income), almost 90–95% of the population fits the Gibbs distribution,
or is often fitted also to the log-normal form (Gibrat law), as indicated by the
shaded region in the distribution; for the remaining (very rich) 5–10% of the pop-
ulation in any country, the number density falls off with their wealth (income)
much more slowly, following a power law (Pareto law). It is found that approxi-
mately 40–60% of the total wealth of any economy is possessed by 5–10% of the
people in the Pareto tail.

income distribution, relatively fewer studies have looked at the distribution of
wealth, which consists of the net value of assets (financial holdings and/or tangible
items) owned at a given instant. The lack of an easily available data source for
measuring wealth, analogous to income tax returns for measuring income, means
that one has to resort to indirect methods. Again, the general feature observed in the
limited empirical study of wealth distribution, as presented in Chapter 2, is that of
a power law behaviour for the wealthiest 5–10% of the population, and exponential
or log-normal distribution for the rest of the population. The Pareto exponent, as
measured from the wealth distribution, is always found to be lower than that for the
income distribution, which is consistent with the general observation that, in market
economies, wealth is much more unequally distributed than income (Samuelson
1998).

It is interesting to note that, when one shifts attention from the income of
individuals to the income of companies, one still observes the power law tail. A
study of the income distribution of Japanese firms (Aoyama et al. 2000; see also
Aoyama et al. 2011) concluded that it follows a power law (with exponent value
near unity, which is also often referred to as the Zipf law). Similar observation has
been reported for the income distribution of companies in the USA (Axtell 2001).

These strikingly robust features of the distribution P (x), in income or wealth,
seem to be well established from the analyses of the enormous amount of data
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available today. Is it plausible that this only reflects a basic natural law, with simple
physical explanation? Many econophysicists actually believe so. According to these
proponents, the regular patterns observed in the income (and wealth) distribution
are indeed indicative of a natural law for the statistical properties of a many-
body dynamical system representing the entire set of economic interactions in a
society, analogous to those previously derived for gases and liquids. By viewing the
economy as a ‘thermodynamic’ system (Chakrabarti and Marjit 1995; Drăgulescu
and Yakovenko 2000; Hayes 2002; Patriarca et al. 2010), one can liken income
distribution to the distribution of energy among the particles in a gas. Several
attempts by statisticians (e.g. Angle 1986, 2006) and economists (Bennati 1988a,b,
1993) also provide impetus to this interdisciplinary approach.

In particular, a class of kinetic exchange models (Chakraborti and Chakrabarti
2000; Chatterjee et al. 2003, 2004; Chakrabarti and Chatterjee 2004) have provided
a simple mechanism for understanding the unequal accumulation of assets. While
being simple from the perspective of economics, they have the benefit of gripping a
key factor – savings – in socioeconomic interactions, which results in very different
societies converging to similar forms of unequal distribution.

These simple microeconomic models, with a large number of ‘agents’ and the
‘asset’ transfer equations among the agents owing to ‘trading’ in such an economy,
closely resemble the process of ‘energy’ transfer owing to ‘collisions’ among
‘particles’ like those in a thermodynamic system of ideal gas. In these models, the
system is assumed to be made up ofN agents with assets {xi ≥ 0} (i = 1, 2, . . . , N ).
At every trade, an agent j exchanges a part �x with another agent k chosen
randomly. The total asset X = ∑

i xi is constant, as well as the average asset
〈x〉 = X/N . After the exchange the new values x ′

j and x ′
k are (x ′

j , x
′
k ≥ 0)

x ′
j = xj −�x,

x ′
k = xk +�x.

}
(1.3)

The form of the function �x = �x(xj , xk) defines the underlying dynamics of the
model. Figure 1.2 shows the schematic picture that captures the essence of these
models.

The steady-state distribution for a system with pure random asset exchange is
an exponential one, as was found by Gibbs 100 years ago (e.g. Chatterjee and
Chakrabarti 2007b; Yakovenko and Barkley Rosser 2009). However, the introduc-
tion of ‘saving propensity’ (Chakraborti and Chakrabarti 2000) brought forth the
gamma-like feature of the distribution P (x) and such a random exchange model
with uniform saving propensity for all agents was subsequently shown to be equiv-
alent to a commodity clearing market in which each agent maximizes his/her own
utility (Chakrabarti and Chakrabarti 2009). A further modification of the model
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j k
Δx

Figure 1.2 The kinetic exchange models prescribe a microscopic interaction
between two units analogously to a kinetic model of gas in which, during an
elastic collision, two generic particles j and k exchange an energy amount �x, as
in Eq. (1.3). Reproduced from Patriarca et al. (2010).

produces (Chatterjee et al. 2004) a power law for the upper or tail end of the
distribution of money, as has been found empirically.

Several analytical aspects of this class of models have been studied (e.g. Ispolatov
et al. 1998; Düring et al. 2008; Garibaldi and Scalas 2010; Lallouache et al.
2010b; Toscani and Brugna 2010). It is noteworthy that, at present, this is the
only known class of models which, starting from the microeconomics of utility
maximization and solving for the resultant dynamical equations in the line of
rigorously established statistical physics, can quite reliably reproduce the major
empirical features of income and wealth distributions in economies.

These developments have, of course, not gone without criticism (e.g. Hogan
2005; Lux 2005; Gallegati et al. 2006), and subsequent rebuttal (Richmond et al.
2006). In view of the embarrassing failure of mainstream economic schools to
anticipate or correctly analyse the recent economic crisis, there has been some
recent interest by the mainstream economic schools to revisit such physically moti-
vated models of the market dynamics and their solutions (e.g. Lux and Westerhoff
2009).

The successive chapters of this book will review in detail the various aspects
mentioned above. In Chapter 2, a detailed presentation of the recorded data and
analyses of the income and wealth distributions across countries at different periods
of time is given. The generic feature is, of course, as indicated in Fig. 1.1.

In Chapter 3, we discuss some of the major recent attempts to set up the physics-
inspired many-body dynamical models for income or wealth exchanges among the
agents in the market or network. Attempts are also made to compare the results
with the established economic laws for the flow of money and the empirically
observed distributions in society. In Chapter 4, we discuss in detail the numerical
results for the kinetic exchange models for assets or income among the agents in the
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market. This development follows closely the century-old kinetic theory of gases,
and models each trade as money (energy equivalent) conserving two-body collision
leading to many-body steady-state or equilibrium distributions of money. As men-
tioned above, incorporation of saving propensity in the dynamics gives gamma-like
distributions, while the dispersion in saving propensity among the agents leads to
the Pareto tail from those gamma-like distributions. Chapter 5 gives the detailed
analytical structure of such kinetic exchange models for income and wealth distri-
butions. While the kinetic exchange dynamics discussed in Chapters 4 and 5 can
essentially be viewed as ‘entropy maximization’ dynamics, it is shown to be equiv-
alent to that following a utility maximization principle, as well. Chapter 6 shows
how, in a two-person two-commodity trading dynamics, the Cobb–Douglas utility
maximization leads to the same kinetic exchange dynamics with uniform saving
propensity discussed in earlier chapters. These two maximization principles of
physics and economics lead to identical dynamical equations. In Chapter 7, these
econophysics models for income and wealth distributions leading to economic
inequalities are reviewed from the perspective of economics of income genera-
tion and development. Extensive discussions on the various economic inequality
indices, following the income and wealth distributions obtained in earlier chapters,
are given here to cast these developments in proper economic perspectives. Finally,
we present an outlook in Chapter 8, with a brief summary of the chapters and a few
discussions on new directions, challenges and open problems.



2

Income and wealth distribution data
for different countries

Investigations over more than a century and the recent availability of electronic
databases of income and wealth distribution (ranging from a national sample survey
of household assets to the income tax return data available from governmental
agencies) have revealed some remarkable features. Irrespective of many differences
in culture, history, social structure, indicators of relative prosperity (such as gross
domestic product or infant mortality) and, to some extent, the economic policies
followed in different countries, the income distribution seems to follow a particular
universal pattern, as does the wealth distribution: after an initial rise, the number
density of people rapidly decays with their income, the bulk described by a Gibbs
or log-normal distribution crossing over at the very high income range (for 5–10%
of the richest members of the population) to a power law, as shown in Fig. 1.1.
The power law in income and wealth distribution is called the Pareto law, after the
Italian sociologist and economist Vilfredo Pareto. The log-normal part is named
as the Gibrat law, after the French economist Robert Gibrat. This seems to be
a universal feature: from ancient Egyptian society (Abul-Magd 2002) through
nineteenth-century Europe (Pareto 1897; Champernowne 1953) to modern Japan
(Chatterjee et al. 2005b; Chakrabarti et al. 2006). The same is true across the globe
today: from the advanced capitalist economy of USA (Chatterjee et al. 2005b;
Kar Gupta 2006a; Richmond et al. 2006) to the developing economy of India
(Sinha 2006).

A historical account of the empirical data analyses, followed by an account of
research using recent sources, will be presented in this chapter. Country-wise stud-
ies at various time periods will be also presented. Measures of income inequality
in terms of the Gini coefficient and other indices will be briefly reviewed.

2.1 What are money, wealth and income?

Let us start by considering the basic economic quantities: money, wealth and
income. A common definition of money suggests that money is ‘a commodity

7



8 Income and wealth distribution data

accepted by general consent as a medium of economic exchange’.1 In fact, money
circulates from one economic agent (which can represent an individual, firm,
country, etc.) to another, thus facilitating trade. It is ‘something which all other
goods or services are traded for’ (for details, see Shostak 2000). Throughout
history various commodities have been used as money, for these cases termed
‘commodity money’, which include for example rare seashells or beads and cattle
(such as the cow in India). Recently, ‘commodity money’ has been replaced by
other forms referred to as ‘fiat money’, which have gradually become the most
common ones, such as metal coins and paper notes. Nowadays, other forms of
money, such as electronic money, have become the most frequent form used to
carry out transactions. In any case the most relevant points about money employed
are its basic functions, which according to standard economic theory are:

� to serve as a medium of exchange, which is universally accepted in trade for
goods and services;

� to act as a measure of value, making possible the determination of the prices and
the calculation of costs, or profit and loss;

� to serve as a standard of deferred payments, i.e. a tool for the payment of debt
or the unit in which loans are made and future transactions are fixed;

� to serve as a means of storing wealth not immediately required for use.

A related feature relevant for the present investigation is that money is the medium
in which prices or values of all commodities as well as costs, profits and transactions
can be determined or expressed. Wealth is usually understood as things that have
economic utility (monetary value or value of exchange), or material goods or
property; it also represents the abundance of objects of value (or riches) and the
state of having accumulated these objects; for our purpose, it is important to bear
in mind that wealth can be measured in terms of money. Also income, defined
in Case and Fair (2008) as ‘the sum of all the wages, salaries, profits, interests
payments, rents and other forms of earnings received . . . in a given period of time’,
is a quantity which can be measured in terms of money (per unit time).2

2.2 Empirical analyses using data from earlier periods

It was first observed by Pareto (1897) that in an economy the higher end of the
distribution of income f (x) follows a power law,

P (x) ∼ x−1−α, (2.1)

1 In Encyclopædia Britannica. Retrieved 18 June 2012 from Encyclopædia Britannica Online.
2 See Chakraborti et al. (2011).
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with α, now known as the Pareto exponent, estimated by him to be α ≈ 3/2. For
the last hundred years the value of α ∼ 3/2 seems to have changed little in time
and across the various capitalist economies (see Yakovenko and Barkley Rosser
2009, and references therein). The normalized Pareto distribution has the form

P (x) ∼
{
F (x) for x < xc,
αxαc
x1+α for x ≥ xc,

(2.2)

where F (x) is sometimes assumed to be xn exp(−x/T ) in the research commu-
nities; n and T are two constants. The above distribution has a scale xc, which
denotes a crossover from one kind of distribution to another, separating the low
and middle wealth from the large wealth regime.

Gibrat (1931) clarified that Pareto’s law is valid only for the high-income range,
whereas for the middle-income range he suggested that the income distribution is
described by a log-normal probability density

P (x) ∼ 1

x
√

2πσ 2
exp

{
− log2(x/x0)

2σ 2

}
, (2.3)

where log(x0) = 〈log(x)〉 is the mean value of the logarithmic variable and σ 2 =
〈[log(x) − log(x0)]2〉 is the corresponding variance. The factor β = 1/

√
2σ 2, also

known as the Gibrat index, measures the equality of the distribution. Empirically,
β is known to lie between 2 and 3 (Souma 2002).3

Abul-Magd (2002) studied the wealth distribution in ancient Egypt. Excavations
of the ancient Egyptian city Akhetaten, which was populated for only a brief period
during the fourteenth century BC, have yielded a distribution of the house areas.
Abul-Magd assumed that the house area is a measure of the wealth of its inhabitants,
and made a comparative study of the wealth distributions in ancient and modern
societies. According to his analysis of the wealth distribution in Akhetaten, the best-
fit value of the Pareto exponent for the resulting distribution is α = 1.59 ± 0.19,
which agrees very well with the values of the Pareto index obtained for modern
societies.

Hegyi et al. (2007) also found a power law tail for the wealth distribution of
aristocratic families in medieval Hungary. Hegyi et al. assumed that the number
of serf families belonging to a noble is a measure of the corresponding wealth.
He obtained a Pareto law for such a society with Pareto index α = 0.92, which
is smaller than the values reported for studies of the current period. The results
obtained are plotted in Fig. 2.1.

3 Historically speaking, Gibrat also analysed the firm size distribution and he proposed a ‘law of proportionate
effect’. This stated that a small change in a quantity is independent of the quantity itself. Thus, the distribution
of a quantity dz = dx/x should be Gaussian, and hence x as log-normal. A random variable is said to be
log-normally distributed if its logarithm is normally distributed, also now known as Gibrat’s law.
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Figure 2.1 The rank of the top 8% aristocratic families and institutions as a
function of their estimated total wealth on a double-logarithmic scale. Estimations
made for the Hungarian noble society in the year 1550, in which the total wealth of
a family is taken as the number of owned serf families. The power law fit suggests
a Pareto index α = 0.92. Reproduced from Hegyi et al. (2007).

Souma (2001) investigated the Japanese personal income distribution in the
high-income range over the 112 years 1887–1998, and that in the middle-income
range over the 44 years 1955–98. His data analysis revealed that the personal
income followed the log-normal distribution (Gibrat) with a power law tail (Pareto).
Since the same behaviour was observed in the analysis for the different years, it
can be considered a statistical regularity. Figures 2.2 and 2.3 show the variations of
the exponents that were obtained from the analyses of the log-normal distributions
(for Gibrat index β) and the power law tails (for Pareto index α).

2.3 Empirical analyses using data from recent periods

According to Pareto (1897), ‘the society is not homogeneous’. Hence, Pareto and
many others were of the opinion that the distribution of income in a particular
society would be an excellent indicator of non-homogeneity of any society. Thus,
it would be interesting to study the empirical data and analyse the money, wealth
and income distributions. Unfortunately, empirical data of money and wealth are
rather scarce, and more data are available for the distribution of income from tax
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Figure 2.3 The variation of the Pareto index α and the Gibrat index β over the
44 years 1955–98. Reproduced from Souma (2001).

agencies and population surveys. Several analyses and studies have been done by
economists and econometricians, and also recently by physicists. The approaches
and terminologies have often been different, as have been the models and parametric
fits of the data. In this section, we briefly present some representative empirical
studies primarily done by physicists. We will often direct the readers to the original
articles and other reviews which are more exhaustive.

For money, in principle, it should have been easy to study its distribution. Since
most people keep their money in banks, one could approximate the distribution
of money by the distribution of balances on all types of bank accounts, where
the data for a very large bank would be representative of the distribution in the
entire economy. However, such data of clients are not made available to academic
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researchers, either by the banks or by organizations such as the Federal Deposit
Insurance Corporation of the USA, which insures bank deposits of customers up to
a certain maximal balance, as already remarked by Yakovenko and Barkley Rosser
(2009).

For wealth, again it is quite difficult – in most countries, it is not something
that is officially reported by individuals to the authorities. Yakovenko and Barkley
Rosser (2009) observed that in a few countries, when a person dies, all assets are
required to be reported for the purpose of ‘inheritance tax’. Hence, ironically there
exist some good statistics of wealth distribution among ‘dead’ people, rather than
the wealth distribution among the ‘living’. For example, using certain statistical
methods and adjustment procedures based on several factors such as age, gender
and other characteristics of the dead people, the tax agency of the UK – the Inland
Revenue – was able to reconstruct the wealth distribution of the whole population of
the UK.4 These data were studied by Drăgulescu and Yakovenko (2001b), reported
later in the section.

Income distribution has been much easier to study. The empirical studies of
income distribution have a long history in the economics and econometrics literature
(Kakwani 1980; Champernowne and Cowell 1998; Atkinson and Bourguignon
2000; Piketty and Saez 2003; Atkinson and Piketty 2007). Income distributions
have been studied extensively in econophysics papers, for many different countries:
Australia (Di Matteo et al. 2004; Banerjee et al. 2006; Clementi et al. 2006, 2008),
Germany (Clementi and Gallegati 2005a; Clementi et al. 2007), India (Sinha 2006),
Italy (Clementi and Gallegati 2005b; Clementi et al. 2006, 2007), Japan (Souma
2001, 2002; Aoyama et al. 2003; Fujiwara et al. 2003; Ferrero 2004, 2005; Souma
and Nirei 2005; Nirei and Souma 2007), New Zealand (Ferrero 2004, 2005),
the UK (Ferrero 2004, 2005; Clementi and Gallegati 2005a; Richmond et al.
2006; Clementi et al. 2007) and the USA (Drăgulescu and Yakovenko 2001a,b;
Drăgulescu and Yakovenko 2003; Rawlings et al. 2004; Clementi and Gallegati
2005a; Clementi et al. 2008).

The wealth and income distributions are qualitatively very similar, and there
appears to be a statistical regularity: the upper tail follows the power law (Pareto),
and comprises a small fraction of population; the lower part of the distribution
follows one of the exponential (Gibbs) or gamma or log-normal (Gibrat) distribu-
tions. The studies (Souma 2001, 2002) were made to investigate the lower part of
the distribution: the log-normal or Gibrat law, which we mentioned earlier. A few
other studies and statistical surveys of the population, such as the Survey of Con-
sumer Finance (Diaz-Giménez and Rios-Rull 1997) and the Panel Study of Income

4 HM Revenue & Customs, 2003. Distribution of Personal Wealth. http://www.hmrc.gov.uk/stats/personal wealth/
menu.htm.

http://www.hmrc.gov.uk/stats/personal_ wealth/menu.htm.
http://www.hmrc.gov.uk/stats/personal_ wealth/menu.htm.
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Figure 2.4 The cumulative probability distribution of net wealth in the UK in
1996 shown on log-log (main panel) and log-linear (inset) scales. Points represent
the data from the Inland Revenue (tax agency), and solid lines are the fitted lines
to the exponential (Boltzmann–Gibbs) and power (Pareto) laws. Reproduced from
Drăgulescu and Yakovenko (2001b).

Dynamics (PSID), have also shed some light on the lower part of the distribution.
There have been several studies of the Pareto power law by physicists (Aoyama
et al. 2000; Drăgulescu and Yakovenko 2001a,b, 2003; Levy 2003; Levy and Levy
2003; Sinha 2006; Klass et al. 2007) for the upper-tail data.

Incidentally, the consumer expenditure distribution also indicates a mixture of
the log-normal and Pareto distributions, with the Pareto tail comprising approxi-
mately 10–20% of the population (Mizuno 2008; Mizuno et al. 2008; Ghosh et al.
2009). In this book, we restrict ourselves to the detailed discussions of wealth and
income distributions only.

Drăgulescu and Yakovenko (2001b) studied the UK wealth data for 1996.
Figure 2.4 shows the cumulative probability C(w) = ∫∞

w
P (w′) dw′ plotted as

a function of the personal net wealth w (composed of assets, such as cash, stocks,
property, household goods, and liabilities, such as mortgages and other debts). The
main panel shows a plot ofC(w) on the double-logarithmic scale, where the straight
line indicates a power law dependence:5 C(w) ∝ 1/wα with the exponent α = 1.9
for wealth greater than approximately 100 k£. The inset shows the same data on

5 Whenever the statistical data are usually reported at non-uniform intervals, it is often more practical to plot
the cumulative probability distribution rather than its derivative, the probability density. Interestingly, when the
probability density P (x) is an exponential or a power law function, the cumulative probability distribution C(x)
is also an exponential or a power law function.
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the log-linear scale, where a straight line indicates an exponential behaviour. It
was observed that, below 100 k£, the data fit well the exponential distribution
C(w) ∝ exp(−w/Tw) with the effective ‘wealth temperature’ Tw = 60 k£ (corre-
sponding to a median wealth of 41 k£). Therefore, the distribution of wealth may be
characterized by the two parts: the Pareto power law in the upper tail of the distribu-
tion, and the exponential Boltzmann–Gibbs law in the lower part of the distribution
for the great majority (approximately 90%) of the population (Drăgulescu and
Yakovenko 2001b). Yakovenko and Barkley Rosser (2009) suggested that wealth
distribution in the lower part is dominated by distribution of money, because the
corresponding people do not have other significant assets (Levy and Levy 2003),
resulting in the Boltzmann–Gibbs law; whereas the upper tail of wealth distribution
is dominated by investment assets (Levy and Levy 2003), resulting in the Pareto
law. Models and mechanisms resulting in the above distributions will be discussed
in the following chapters in more detail.

Klass et al. (2007) used in their study the list that Forbes magazine publishes
once a year: the list of the 400 richest people in the USA.6 The list includes
people from diverse backgrounds and asserts the net worth of each individual.
What is interesting is the fact that even though the people included in the Forbes
400 list have gathered their fortunes in myriad ways, there exists a striking sta-
tistical regularity in the distribution of their wealth! Analysing the Forbes 400
lists during the period 1988–2003, Klass et al. found the statistical regularity
that, at the top end of the wealth distribution, the wealth is distributed according
to a Pareto distribution. The wealths wr of the 400 richest Americans in 2003,
ordered by their ranks r , are shown on a double-logarithmic scale in Fig. 2.5.
The data on this plot, known as the Zipf plot (Newman 2005), can be fitted by a
straight line, which indicates that the wealths exhibit a power law behaviour of the
form

wr ∼ r−γ ,

where the exponent γ = 0.78 ± 0.05 is called the Zipf exponent. The above
wealth–rank relation implies a power law distribution of the wealth

P (w) ∼ w−(α+1),

which is nothing but the Pareto distribution, and α is the Pareto exponent. However,
because of the relatively small number of data points for a particular year, the
resulting distributionP (w) obtained after binning the data turns out to be somewhat
noisy, and so, for a single year, the Zipf plot provides more reliable results. For the
general connection between the Pareto and the Zipf exponents: α = 1/γ , please

6 www.forbes.com/lists.
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Figure 2.5 Zipf plot of the wealthswr of the people in the Forbes 400 list in the year
2003 vs their ranks r . The power law fit, with the Zipf exponent γ = 0.78 ± 0.05,
which was obtained in the range 10 ≤ r ≤ 300. Adapted from Klass et al. (2007).
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Figure 2.6 The Pareto exponent α(t), obtained from the Zipf analysis, using the
relation α = 1/γ , vs the year t , during 1988–2003. The power law fitting of the
Zipf data was obtained using the range 10 ≤ r ≤ 300. Adapted from Klass et al.
(2007).

see Newman (2005). Therefore, the power law distribution in Fig. 2.5 actually
corresponds to α = 1.28. To examine the temporal variations of α, repeated Zipf
analysis was performed for each year during 1988–2003. It was found that α varies
widely in the range between 1.1 and 1.7, as shown in Fig. 2.6.
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Figure 2.7 The rank-size Zipf plot of the income. The income data are shown
by dots, whereas the data from the income tax are connected by the solid line
segments. The broken line shows the fitted line. Reproduced from Aoyama et al.
(2000).

Aoyama et al. (2000) had earlier analysed the distributions of the income and
income tax of individuals in Japan. The income data were for the fiscal year 1997
and 1998, whereas the income tax data were for only 1998. For the fiscal year
1998, the income data contained all 6 224 254 workers who filed tax returns, but
they were a coarsely tabulated data; the income tax data listed the income tax of
individuals who paid tax of 10 million yen or more in the same year. They studied
the individual distribution of each data set and then combined them carefully to
obtain an overall picture of income distribution in the high-income range. The
resulting rank-size Zipf plot, which is shown in Fig. 2.7, obeys a power law with a
Pareto exponent very close to −2.

The time-evolution of the two-part structure of the empirical income distribution
was studied by Clementi and Gallegati (2005a). Figure 2.8 shows that the same
structure holds for the entire time spans studied, and for all the three countries:
the USA (1980–2001), Germany (1990–2002) and the UK (1991–2001). They had
used the income data from the US PSID, the British Household Panel Survey and
the German Socio-Economic Panel, as released in a cross-nationally comparable
format in the Cross-National Equivalent File (CNEF).7

For distributional analysis, fitting a parametric model using such functions to the
income data is a valuable and informative tool, since one can not only characterize

7 See the CNEF web site for details: http://www.human.cornell.edu/pam/research/centers-programs/german-
panel/cnef.cfm.
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Figure 2.8(a–c) Time developments of income distributions for the USA (1980–
2001), Germany (1990–2002) and the UK (1991–2001). Reproduced from
Clementi and Gallegati (2005a). BHPS, British Household Panel Survey; CNEF,
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Figure 2.9 Plot of the cumulative probability distribution of tax returns for the
USA in 1997 shown on log-log (main panel) and log-linear (inset) scales. Points
represent the Internal Revenue Service (tax agency) data, and solid lines are fitted
lines to the exponential and power law functions. Reproduced from Drăgulescu
and Yakovenko (2003).

the information contained in the numerous observations, but also draw practical
information directly from the estimated parameters. For example, one could be
interested in measuring income inequality and comparing different distributions –
these concepts may be directly derived from parameters of a fitted distribution.
Some measures of inequality and comparison of distributions of income from
different countries are discussed in the last section of this chapter.

Drăgulescu and Yakovenko (2001a,b, 2003) also made an interesting observa-
tion that the income distribution can be fitted in two parts: an exponential function
in the lower part – P (r) = c exp(−r/Tr) – characterized by the ‘income tem-
perature’ Tr , and a power law function in the upper part, as shown in Fig. 2.9.
As in the earlier case of wealth studies, the straight line on the log-linear scale
in the inset demonstrates the exponential Boltzmann–Gibbs law, and the straight
line on the double-logarithmic scale in the main panel shows the Pareto power
law. It was also suggested that the fact that income distribution consists of two
distinct parts actually reveals the ‘two-class structure’ in the society (Silva and
Yakovenko 2005; Yakovenko and Silva 2005). The similar coexistence of expo-
nential and power law distributions was known much earlier in plasma physics
and astrophysics, in which they were called the ‘thermal’ and ‘superthermal’ parts
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Figure 2.10 Plot of the cumulative probability distribution of tax returns plotted on
log-log scale versus r/Tr (the annual income r normalized by the average income
Tr in the exponential part of the distribution). The Internal Revenue Service data
points are for 1983–2001, and the columns of numbers give the values of Tr for
the corresponding years. Reproduced from Silva and Yakovenko (2005).

(Hasegawa et al. 1985; Desai et al. 2003; Collier 2004). The boundary between the
lower and upper classes can be defined as the crossover point of the exponential
(thermal) and power law (superthermal) fits, as shown in Fig. 2.9. As Drăgulescu
and Yakovenko (2003) pointed out, for 1997, the annual income separating the two
classes was approximately 120 k$, such that approximately 3% of the population
belonged to the upper class and the remaining 97% belonged to the lower class.

Later, Silva and Yakovenko (2005) studied the time evolution of income dis-
tribution in the USA during 1983–2001 using the data from the Internal Revenue
Service (IRS), the government tax agency for the USA. A remarkable regularity
was observed: the structure of income distribution was qualitatively similar for
all years, as evident in Fig. 2.10. Note that, since the average income in nominal
dollars approximately doubled during this time interval, the normalized income
r/Tr , where the ‘income temperature’ Tr was obtained by fitting the exponential
part of the distribution for each year, is plotted in the horizontal axis in Fig. 2.10.
The values of Tr are shown in Fig. 2.10. The plots for the 1980s and 1990s are
adjusted on the vertical axes for clarity. What is intriguing is the different behaviour
in the time evolution of the lower and upper parts of the income distribution. They
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observed that the data points in the lower-income part of the distribution collapsed
on the same exponential curve for all years, which suggests the fact that the shape
of the income distribution for the lower class is very robust and does not evolve
with time, despite the gradual increase in the average income in nominal dollars.
This observation leads to the analogy of a statistical ‘thermal’ equilibrium in the
lower-class income distribution. Figure 2.10 also shows that the income distribu-
tion of the upper class does not rescale at all, and instead evolves significantly
in time. Silva and Yakovenko (2005) found that the exponent α of the power law
C(r) ∝ 1/rα decreased from 1.8 in 1983 to 1.4 in 2000, which meant that the upper
tail actually became ‘fatter’.

Silva and Yakovenko (2005) also studied the behaviour of another parameter, f ,
the ratio of the total income of the upper class and the total income in the system,
which they found increased drastically from 4% in 1983 to 20% in 2000. However,
in 2001, α increased and f decreased, suggesting that the upper tail was reduced
after the stock market crash which occurred then. These results show that the upper
tail is not stationary, and might be a good indicator of the overall economy: it tends
to swell during the stock market bubble and shrink during the burst.

We now present another case study, in which Ferrero (2004) found evidence that
the income distribution for different countries followed a gamma function of the
form

P (x) ∼ xn−1 exp (x/T ),

which can be naturally associated to the Boltzmann distribution of energy in poly-
atomic molecules instead of the simple exponential of an ideal monatomic gas.
The data were obtained from the statistical information provided by the revenue
services of Japan, the UK and New Zealand.8 Since the available data were given
in different-sized bins, they were reprocessed to obtain the ‘normalized count’ –
defined as the count in the class divided by the number of observations times the
class width.9 Figure 2.11 shows the empirical income distribution for Japan, New
Zealand and the UK, where the money scale is given in thousands of New Zealand
dollars, and in order to show the distributions from the three countries in the same
graph, the data corresponding to the UK were divided by 2 and those from Japan
by 2000. The fitted values of the parameters n and T are given in Table 2.1.

Note that the available data were provided by revenue services or statistical
offices of different countries as individual income distributions, and therefore a
necessary assumption in this study was that the money actually possessed by the

8 Aoyama et al. (2000); Inland Revenue: income distribution (http://www.hmrc.gov.uk/stats/income distribution/
menu-by-year.htm); New Zealand Income Survey (http://www.stats.govt.nz/browse for stats/income-and-
work/income.aspx).

9 Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook.
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Table 2.1 Parametric values of n and T
obtained from the fits of the income data
for New Zealand (1998), the UK
(1998–99) and Japan (1996)

n T

New Zealand 1.67 12.34 kNZ$
UK 4.28 5.11 k£
Japan 3.66 2.63 MJP�

Values taken from Ferrero (2004).
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Figure 2.11 Income distribution for Japan, New Zealand and the UK. The income
values for Japan and the UK were rescaled to show in the same plot. The lines
represent the best fit to the gamma function, as indicated in the text. Adapted from
Ferrero (2004).

agents is proportional to the income (which cannot be completely true). There were
a few more theoretical assumptions that made possible the analogy between energy
exchange of gas and money exchange of agents, but we do not discuss them now.

Interestingly, some papers have also used interpolating functions with differ-
ent asymptotic behaviour for low and high incomes, such as the Tsallis function
(Ferrero 2005) or the Kaniadakis function (Clementi et al. 2007, 2008). We discuss
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Figure 2.12 The mean-rescaled US personal income distribution in 2003. Prob-
ability density histogram with superimposed fits of the κ-generalized (solid line)
and Weibull (dotted line) densities. The income axis limits have been adjusted
according to the range of data to shed light on the intermediate region between
the bulk and the upper end of the distribution. Reproduced from Clementi et al.
(2008).

another example of a parametric approach to income analysis and comparison with
real data, following Clementi et al. (2007, 2008). In these papers, they proposed a
new fitting function having its roots in the framework of the κ-generalized statistical
mechanics:

p (x) = αβxα−1 expκ (−βxα)√
1 + κ2β2x2α

. (2.4)

The model distribution has a bulk which is very close to the stretched exponential
one – which is recovered when the deformation parameter κ tends to zero – while
for high values of income, the upper tail of the distribution approaches a Pareto
distribution. Hence, it is able to fit the data over the entire range.

The performance of the distribution was checked against real data. The κ-
generalized distribution was fitted to data on personal income derived from the
2003 wave of the US PSID as released in the CNEF – a commercially available
database compiled by researchers at Cornell University.10 The 2003 PSID-CNEF

10 See the CNEF web site for details: http://www.human.cornell.edu/pam/gsoep/equivfil.cfm.
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Figure 2.13 The Australian personal income distribution in 2002–3 measured in
current year AUD. Probability density histogram with superimposed fits of the κ-
generalized (solid line) and Weibull (dotted line) densities. The income axis limits
have been adjusted according to the range of data to shed light on the intermediate
region between the bulk and the upper end of the distribution. Reproduced from
Clementi et al. (2008).

data had a sampling of 7822 households, and all calculations were based on the
household post-government income – the income recorded after taxes and gov-
ernment transfers – expressed in nominal local currency units, and normalized
to its empirical average. The best-fitting parameter values were determined using
‘constrained maximum likelihood’ estimation, resulting in the following estimates:
α = 1.9115 ± 0.0003, β = 1.0568 ± 0.0002 and κ = 0.6587 ± 0.0003. The very
small value of the errors indicates that the parameters were precisely estimated, and
the comparison between the observed and fitted probabilities in Fig. 2.12 shows
that the data are remarkably well fitted. The κ-generalized distribution was also
fitted to data on personal income distribution for Australia (Clementi et al. 2008).
The data were derived from panel surveys conducted in 2002–3. The unit of assess-
ment was the household, and income was expressed in nominal local currency units
for the 10 211 households in the 2002–3 Australian survey. Similar analysis was
conducted to yield Fig. 2.13.

It must be mentioned that, for example, for the US data shown in Figs. 2.9 and
2.10, the transition between the lower and upper classes is not always very smooth.
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Figure 2.14 The income distribution of Argentina in May 2002. Reproduced from
Ferrero (2005).

In such cases, the fitting using interpolating functions, such as above, would not be
useful.

One must also mention that many studies have found special features:

(1) Ferrero (2005) studied the income distribution in Argentina during the eco-
nomic crisis, which showed a time-dependent bimodal shape with two peaks
(Fig. 2.14).

(2) Coelho et al. (2008) examined wealth distributions and found the existence of
two distinct power law regimes: the Pareto exponents of the super-rich (identi-
fied, for example, in rich lists such as that provided by Forbes) are smaller than
the Pareto exponents obtained for top earners in income data sets. Their results
were based on the studies for income and wealth distributions around the world
(see Richmond et al. 2006, Table 5.2). Figure 2.15 displays the distribution of
the Pareto exponents, and it is evident that, while the average Pareto exponent
is approximately 2.0 for the top earners in income tax/inheritance statistics, it
is just below 1.0 for the super-rich. Their explanation was that the studies of
wealth that are based on tax/income generally do not include the wealth of very
rich people, and there were several such instances. An instance of two power
law regimes was the study of Souma (2001), who found a Pareto exponent of
2.06 in the high end. However, there is an indication of a second power law for
the top richest (higher than 3000 million yen) which has an exponent below
1.0 based on his figure, as shown in Fig. 2.16.
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Figure 2.15 Distribution of the Pareto exponents found by different authors in the
last decade. The black curve is from data sets taken from tax/income databases.
The grey curve is from super-rich lists, such as Forbes. The Pareto exponent for
the top richest is around 1, while for the ‘normal’ rich people it is around 2 (data
taken Richmond et al. 2006, Table 5.2). Reproduced from Coelho et al. (2008).
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Figure 2.16 The cumulative probability of Japanese personal income in 1998.
Reproduced from Souma (2001).

(3) Coelho et al. (2008) gave another instance of two power laws in their analysis
of UK data. Figure 2.17 shows data for the cumulative distribution of incomes
in the UK for the year 1995. In one region the Pareto exponent is ∼3.3. Then
there is a second power law with Pareto exponent ∼1.26. They think that this
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Figure 2.17 Distribution of the cumulative weekly income in the UK for 1995.
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similar Pareto exponent is achieved for the high end of these curves, ∼3.2−3.3.
The right-hand curve represents an estimation of the income, in 1995, for the
top richest in the UK. In this case the Pareto exponent is lower and around 1.3.
Reproduced from Coelho et al. (2008).

corroborates the belief of many people that the super-wealthy pay less tax as a
proportion of their income than the majority of earners in society!

Finally, one must remark that, in reality, the income distributions are more often
reported by statistical agencies for households, and so it is always very difficult
to differentiate between one-earner and two-earner income distributions. Hence,
after discussing the distribution of individual income, it is a matter of interest to
study the related distribution P2(r) of family income r = r1 + r2, where r1 and
r2 are the incomes of spouses. Note that, if the individual incomes are distributed
exponentially P (r) ∝ exp(−r/Tr), then from simple mathematics it follows that

P2(r) =
∫ r

0
dr ′P (r ′)P (r − r ′) = c r exp(−r/Tr ), (2.5)

where c is a normalization constant, assuming that that there are no correlations
in the incomes of the spouses. Drăgulescu and Yakovenko (2001a) showed that
Eq. (2.5) is in good agreement with the family income distribution data from the
US Census Bureau, as shown in Fig. 2.18. The assumption that the incomes of
spouses are uncorrelated, made in Eq. (2.5), is indeed supported by the scatter
plot of incomes of spouses (Fig. 2.19), in which each family is represented by
two points (r1, r2) and (r2, r1) for symmetry. Drăgulescu and Yakovenko (2001a)
observed that the density of points is approximately constant along the lines of
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Figure 2.18 Histogram of the family income for families with two adults
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based on data from the Panel Study of Income Dynamics, 1999, explained in the
text. Reproduced from Drăgulescu and Yakovenko (2003).
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constant family income r1 + r2 = const., which shows that the incomes of spouses
are uncorrelated, approximately. The fact that there is no significant clustering
of points along the diagonal r1 = r2 corroborates that there is no strong positive
correlation of incomes of spouses.

2.4 Measures of income inequality: Gini coefficient and Lorenz curve

The distributions of wealth or income, i.e. how such quantities are shared among
the population of a given country and among different countries, is a topic which
has been studied by economists for a long time. The relevance of the topic to
us is twofold. From the point of view of the science of complex systems, wealth
distributions represent a unique example of a quantitative outcome of a collective
behaviour which can be directly compared with the predictions of theoretical
models and numerical experiments, which shall be described in the chapters to
follow. Also, there is a basic interest in wealth distributions from the social point of
view, in particular in their degree of (in)equality. To this aim, the Gini coefficient (or
the Gini index, if expressed as a percentage), developed by the Italian statistician
Corrado Gini, represents a concept commonly employed to measure inequality of
wealth distributions or, more in general, how uneven a given distribution is (Gini
1921). For a cumulative distribution function F (y) that is piecewise differentiable,
has a finite mean μ and is zero for y < 0, the Gini coefficient is defined as

G = 1 − 1

μ

∫ ∞

0
dy (1 − F (y))2

= 1

μ

∫ ∞

0
dy F (y)(1 − F (y)). (2.6)

It can also be interpreted statistically as half the relative mean difference. Thus,
the Gini coefficient is a number between 0 and 1, where 0 corresponds with
perfect equality (where everyone has the same income) and 1 corresponds with
perfect inequality (where one person has all the income, and everyone else has zero
income).

The Gini coefficient can also be calculated from the Lorenz curve, which is
a standard way of representing income distribution in the economic literature
(Kakwani 1980). For a discussion of income inequality, one of the standard practices
is to adopt the concept of concentration of incomes as defined by Lorenz 1905.
Mathematically, the Lorenz curve is defined in terms of two coordinates x(m) and
y(m) depending on a parameter m:

x(m) =
∫ m

0
P (m′) dm′, y(m) =

∫ m

0 m′P (m′) dm′∫∞
0 m′P (m′) dm′ , (2.7)
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Figure 2.20 The Gini coefficient G gives a measure of inequality in any income
distribution and is defined as the proportional area between I , giving the cumulative
fraction of the people with the fraction of wealth, and the perfect equality curve
E, where the fraction of wealth possessed by any fraction of population would be
strictly linear: G = 1 − AI

AE
, where AI and AE are the areas under curves I and

E, respectively. G = 0 corresponds to perfect equality while G = 1 corresponds
to perfect inequality.

where the horizontal coordinate x(m) is the fraction of the population with income
below m, and the vertical coordinate y(m) is the fraction of the income which this
population accounts for. Of course, as the parameter m changes from 0 to ∞, the
coordinates x and y change from 0 to 1, and thus parametrically define a curve in
the (x, y) plane (Yakovenko and Barkley Rosser 2009). Thus, if everybody had the
same income, the Lorenz curve would be the diagonal line, because the fraction
of income would be proportional to the fraction of the population, as illustrated in
Fig. 2.20. The deviation of the Lorenz curve from the straight diagonal line in
Fig. 2.20 is thus a certain measure of income inequality. As mentioned above,
the standard measure of income inequality (Kakwani 1980) is the Gini coefficient
0 ≤ G ≤ 1, and it may also be defined as the ratio of the area between the Lorenz
curve and the diagonal line, and the area of the triangle beneath the diagonal line,
illustrated in Fig. 2.20.

Empirical studies by Drăgulescu and Yakovenko (2001a) reveal that, even though
the relative income inequality within the lower class remains stable, the overall
income inequality in the USA has increased significantly as an outcome of the
tremendous growth of the upper class income. Figure 2.21 shows the data points for
the Lorenz curves in 1983 and 2000, as computed by the IRS (Strudler et al. 2003).
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Figure 2.21 Lorenz plots for income distribution in 1983 and Internal Revenue
Service 2000. The data points are from the (IRS) (Strudler et al. 2003), and
the theoretical curves represent Eq. (2.9) with the parameter f deduced from
Fig. 2.10. Inset: The closed circles are the IRS data (Strudler et al. 2003)
for the Gini coefficient G, and the open circles show the theoretical formula
G = (1 + f )/2. Reproduced from Silva and Yakovenko (2005).

For a purely exponential distribution, the Lorenz curve is

y = x + (1 − x) ln(1 − x), (2.8)

as shown by the upper curve in Fig. 2.21, which reasonably agrees with the 1983
data. Elsewhere (Drăgulescu and Yakovenko 2003; Silva and Yakovenko 2005;
Yakovenko and Silva 2005), the authors suggested that one needs to take into
account the fraction f of income in the upper tail, and suitably modify the Lorenz
formula as

y = (1 − f )[x + (1 − x) ln(1 − x)] + f 	(x − 1), (2.9)

where the last term in Eq. (2.9) represents the vertical jump of the Lorenz curve at
x = 1. At this point, a small percentage of population in the upper class actually
accounts for a substantial fractionf of the total income. The lower curve in Fig. 2.21
shows that Eq. (2.9) fits nicely the 2000 data.

The inset of Fig. 2.21 shows the time evolution of the Gini coefficient, as
computed by the IRS (Strudler et al. 2003). The values of G shown in the inset of
Fig. 2.21 are quite close to the theoretical value G = 1/2, for a purely exponential
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Figure 2.22 Plot of the historical evolution of the parameters 〈r〉, Tr and the
fraction of income f going to the upper tail, as defined in Eq. (2.10). Reproduced
from Yakovenko and Barkley Rosser (2009).

distribution. If one takes into account the upper tail using Eq. (2.9), the modified
formula for the Gini coefficient becomes G = (1 + f )/2 (Silva and Yakovenko
2005). The inset in Fig. 2.21 shows that this new formula fits well to the IRS data
for the 1990s, using the values of f deduced from Fig. 2.10. However, the values
G < 1/2 in the 1980s could not be captured by this formula, because the Lorenz
data points were slightly above the theoretical curve for 1983. Silva and Yakovenko
(2005) observed that income inequality had been increasing for the past 20 years,
owing to swelling of the Pareto tail, but decreased in 2001 after the stock market
crash.

One can deduce that the parameter f in Eq. (2.9) and in Fig. 2.21 is given by

f = 〈r〉 − Tr

〈r〉 , (2.10)

where 〈r〉 is the average income of the whole population, and Tr is the average
income in the exponential part of the distribution. Then Eq. (2.10) suitably gives
a measure of the deviation of the actual income distribution from the exponential
one, or an indicator of the fatness of the upper tail. Figure 2.22 shows historical
evolution of the parameters 〈r〉, Tr and f given by Eq. (2.10). From the results,
Silva and Yakovenko concluded that the speculative bubbles greatly increased the
fraction of income going to the upper tail, but did not change income distribution of
the lower class; when the bubbles inevitably collapsed, income inequality reduced.

In the previous section, we mentioned work (Clementi et al. 2007, 2008) where
the authors had proposed the κ-generalized function to fit the income distribution,
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Figure 2.23 Plot of the Lorenz curve. (a) The Australian personal income dis-
tribution in 2002–3 measured in current year AUD. The US personal income
distribution in 2003, measured in current year USD. In the plots, the open circles
represent the empirical data points and the solid lines the theoretical curves. The
dashed lines correspond to the Lorenz curves of a society in which everybody
receives the same income, and thus serve as a benchmark case against which
actual income distribution may be measured. Reproduced from Clementi et al.
(2008).
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Table 2.2 Gini indices of some countries

Country Gini index (%)

Denmark 24.7
Japan 24.9
Sweden 25.0
Norway 25.8
Germany 28.3
India 32.5
France 32.7
Australia 35.2
UK 36.0
USA 40.8
Hong Kong 43.4
China 44.7
Russia 45.6
Mexico 54.6
Chile 57.1
Brazil 59.1
South Africa 59.3
Botswana 63.0
Namibia 70.7

From United Nations Development Pro-
gramme (2004, pp. 50–53; more recent data
are also available from their website).

given by Eq. (2.4):

p (x) = αβxα−1 expκ (−βxα)√
1 + κ2β2x2α

.

One can derive the Lorenz curve for the κ-generalized distribution as:

Lκ (u) = 1 − 1 + κ
α

2

(

1
α

) 
 (
1

2κ + 1
2α

)


(

1
2κ − 1

2α

)
×
{

2α (2κ)
1
α (1 − u)

[
logκ

(
1

1 − u

)] 1
α

+ BX

(
1

2κ
− 1

2α
,

1

α

)
+ BX

(
1

2κ
− 1

2α
+ 1,

1

α

)}
, (2.11)

where Bx (s, r) is the incomplete beta function given by

Bx (s, r) =
∫ x

0
t s−1 (1 − t)r−1 dt
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withX = (1 − u)2κ . Also, the Gini coefficient for the κ-generalized distribution is:

Gκ = 1 − 2α + 2κ

2α + κ



(

1
κ

− 1
2α

)


(

1
κ

+ 1
2α

) 
 (
1

2κ + 1
2α

)


(

1
2κ − 1

2α

) . (2.12)

Using the same estimation methods and analyses as before, they obtained plots
of the Lorenz curve, for the Australian personal income distribution in 2002–3
measured in current year AUD, and the US personal income distribution in 2003,
measured in current year USD, as shown in Fig. 2.23.

Finally, one should mention that there have been several studies done all over
the world that measure the Gini coefficients. The underlying household surveys
differ in methods and in the type of data collected, and hence the distribution data
are not strictly comparable across countries. However, some values of G for some
countries are listed in Table 2.2. A complete list can be retrieved from Wikipedia
(http://en.wikipedia.org/wiki/List of countries by income equality).

In this chapter, we have thus seen that the income (and wealth) distributions
have a sort of regularity: the top 5–10% of the very rich population in any country
constitute the power law regime (Pareto tail) of the income distribution, and the
rest of the population gives rise to the gamma function (or log-normal) form. In
the following chapters, we shall study the socioeconomic models which have been
used to reproduce such empirical characteristics.

http://en.wikipedia.org/wiki/List_of_countries_by_income_equality
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Major socioeconomic modelling

In this chapter, we discuss the background and motivation for various modelling
efforts carried out over the years. While some models take into account the various
details as in real economic transactions, trying to fit the detailed characteristics
of empirical data, others reproduce the empirical features qualitatively using very
simple ideas of physical origin.

3.1 Models of income distribution

Pareto’s extensive studies in Europe showed that the tail of the wealth distribution
for the richer sections of society follows a power law (Pareto 1897), now known as
the Pareto law. Gibrat (1931) separately worked on the same problem and proposed
a law of proportionate development. Much later, Champernowne also considered
this problem systematically and proposed a probabilistic theory to justify Pareto’s
claim (Champernowne 1953; Champernowne and Cowell 1998).

Gibrat (1931) observed that the power law distribution did not fit all the income
data and hence proposed a law of proportionate effect, which states that a small
change in a quantity is independent of the quantity itself. Thus the distribution
of a quantity dz = dx/x should be Gaussian, and hence x is log-normal. The
asymptotics of this can lead to the Pareto power law. Gibrat found that the small-
and middle-income ranges appear to be well described by a log-normal distribution
(see Eq. (2.3)). The details of Gibrat’s law and its derivation will be presented in
Chapter 7.

Champernowne (1953) proposed a multiplicative model, but assumed that there
is some minimum income m. For the first range, one considers incomes between m
and γm, for some γ > 1; for the second range, one considers incomes between γm
and γ 2m. A person is assumed to be in class j for j ≥ 1 if their income is between
mγ j−1 and mγ j . Champernowne assumed that over each time step, the probability
of an individual moving from class i to class j , denoted by pij , depends only on the

35
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value of |j − i|. The equilibrium distribution of individuals among classes under
this assumption gives the Pareto law. This is again presented in detail in Chapter 7.

In the context of a general multiplicative model (Mitzenmacher 2004), Cham-
pernowne’s model can be thought to be a special case. Moving from one class
to another can be thought of as either doubling or halving the income over one
time step: say, if mt is the income after time t , then mt = ftmt−1, where ft = 1/2
with probability 2/3 and ft = 2 with probability 1/3. The resultant distribution is
log-normal. As long as there is a bounded minimum that acts as a lower reflective
barrier to the multiplicative model, it will yield a power law instead of a log-normal
distribution. The theory of the above is now well established (Gabaix 1999). Chap-
ter 7 deals with more models and issues related to generation of income, inequality
and development.

3.2 Models of wealth distribution

This section will be devoted to a detailed description of various popular and impor-
tant models that address the issue of wealth distribution in a society, starting
from the chemical kinetics-inspired Lotka–Volterra models, the directed polymer-
inspired Bouchaud–Mézard models, a model of an evolving society and finally
some models that incorporate risk aversion in investment.

3.2.1 Lotka–Volterra models

The generalized Lotka-Volterra model for wealth distribution (Levy and Solomon
1997; Richmond and Solomon 2001; Solomon and Richmond 2002) is based on
the redistribution of wealth of a total numberN of agents in a society. The equation

mi,t+1 = (1 + ξt )mi,t + a

N

∑
j

mj,t − c
∑
j

mi,tmj,t (3.1)

combines a multiplicative random process with an autocatalytic process. Here,mi,t

represents the amount of money assigned to an agent i at time t . The random
numbers ξt are chosen from a positive set which has a variance V . The second term
on the right-hand side of Eq. (3.1) redistributes at each time step a fraction of the
total money to ensure that the money possessed by any agent is never zero as a result
of this random process, which is supposed to simulate the effect of a tax or some
kind of social security policy. The parameter c in the last term on the right-hand side
controls the overall growth of the system, and represents external limiting factors
such as the finite amount of resources and money in the economy, technological
inventions, wars and disasters. It also includes internal market effects: competition
between investors, adverse influence of bids on prices (e.g. when large investors
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sell assets to realize their profits and thereby cause prices/profits to fall). This term
has the effect of limiting the growth of the total amount of money mt in the system
to values sustainable for the current conditions and resources. Clearly the equation
has no stationary solution and the total money within this system can change with
time.

Here the relative value of money possessed by an agent, xi,t = mi,t/〈mt〉, is
independent of c. The distribution function for the relative value of money xi,t
depends only on a and the variance V of the random variables and, if the ratio
a/V is constant, the dynamics of the relative money are independent of time.
Consequently, even in a non-stationary system, after some time, the relative wealth
distribution will eventually converge to a time-invariant form (Levy and Solomon
1997; Richmond and Solomon 2001; Solomon and Richmond 2002).

A mean-field approximation enables one to obtain a stationary distribution func-
tion P (x) of the form:

P (x) = exp [−(ν − 1)/x]

x1+ν . (3.2)

The positive exponent, ν, is a ratio of parameters of the model that are related to
the redistribution process and volatility of the random process. For large values
of income, x, this expression indeed exhibits a Pareto-like behaviour. Numerical
simulations by Malcai et al. (2002) of the complete dynamics of this model show
this solution to be essentially exact.

A particular form of an agent exchange model was proposed by Di Matteo et al.
(2004). In this model agents exchange money according to the following rule:

mk,t+1 = mk,t + Ak,t + Bkmk,t

∑
j =k

mj,t T (j, k|t) −mk,t

∑
j =k

T (k, j |t), (3.3)

whereAk,t andBk are additive and multiplicative noises, respectively, the stochastic
terms depicting market and social fluctuations. The term with coefficient T (j, k|t)
simply denotes the wealth agent k receives from j while the other term with
T (k, j |t) denotes the wealth agent j receives from k. Numerical calculations show
that the solution of this equation yields a one-agent distribution function that agrees
qualitatively with empirical income data of Australia for both the low- and high-
income regions.

3.2.2 The Bouchaud–Mézard and related models

Bouchaud and Mézard (2000) discussed the appearance of Pareto tails on the basis
of a very general model for the growth and redistribution of wealth. They used the
physics of directed polymers and translated it to the economical framework. In this
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model the wealthwi of an agent i (i = 1, 2, . . . , N ) is assumed to have a dynamics
governed by the following set of stochastic equations:

dwi(t)

dt
= ηi(t)wi(t) +

∑
j =i

Jijwj (t) −
∑
j =i

Jjiwi(t), (3.4)

where ηi(t) are independent Gaussian variables of mean μ and variance 2σ 2, with
ηi(t)wi(t) being the Gaussian multiplicative process simulating the investment
dynamics, and Jij is the linear exchange rate between agents i and j .

The above model can be easily studied within the Fokker–Planck approach in
the mean-field limit. Under mean-field approximation, one has Jij = J/N , which
simplifies the above to

dwi(t)

dt
= ηi(t)wi(t) + J (w̄ − wi), (3.5)

where w̄ = ∑
i wi/N is the mean wealth. It can be easily shown that the average

wealth increases in time as w̄t = w̄0 exp[(η̄ + σ 2)t]. Writing everything in terms
of the relative wealth w̃i = wi/w̄t , Eq. (3.5) becomes

dw̃i

dt
= [ηi(t) − η̄ − σ 2]w̃i + J (1 − w̃i). (3.6)

The probability distribution P (w̃, t) for the stochastic differential equation (3.6) is
governed by the Fokker–Planck equation

∂P

∂t
= ∂[J (w̃ − 1) + σ 2w̃]P

∂w̃
+ σ 2 ∂

∂w̃

(
w̃
∂(w̃P )

∂w̃

)
. (3.7)

The stationary solution (∂P/∂t = 0) for the above is analytically found to be

P (w̃) = A
exp[(1 − ν)/w̃]

w̃1+ν , (3.8)

where ν = 1 + J/σ 2, and A = (ν − 1)ν/
[ν], In the large w limit, the tail of the
distribution shows a power law behaviour with Pareto exponent ν. One of the most
interesting results of such a model is the existence of a phase transition, separating
a phase in which the total wealth of a very large population is concentrated in
the hands of a few individuals (corresponding, to the case ν < 1) from a phase in
which it is shared by a finite fraction of the population. An interesting outcome is
that wealth tends to be very widely distributed with limited exchanges, either in
amplitude or topologically.

Scafetta et al. (2004) discussed a few interesting consequences of the above
elegant model. The main aspect of the mean-field model was that the agents
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exchange the same percentage of wealth they have, meaning that the poorer agent
receives an unrealistic amount of wealth from the rich. Also, in the absence of the
multiplicative process, Eq. (3.5) has a solution

wi(t) = w̄ + (wi(0) − w̄) exp[−J t], (3.9)

which implies that the wealth of all agents converges asymptotically to the mean
wealth w̄, an effect of ‘equalizing’ the society. Therefore, in this framework, there
has to be investments which will create the economic inequality. They proposed a
modification of the Bouchaud–Mézard model:

wi(t + 1) = wi(t) + riξ (t)wi(t) +
∑
j =i

Wij (t), (3.10)

where the investment term is rewritten as riξ (t)wi(t); ri , being the standard devia-
tion of the Gaussian variable riξ (t), is now called the individual investment index;
Wij is the actual amount of wealth that is exchanged between i and j , and hence
changes in each transaction. The justification for the term Wij is as follows: any
trade consists of an exchange of an asset and money, flowing in directions oppo-
site to each other. Thus, the authors define Wij = value − price, with a non-zero
transfer of wealth only if the ‘value’ and ‘price’ differ. Thus Wij = −Wji , which
also ensures the conservation of wealth in a particular trade. For simplicity, Wij are
assumed to be Gaussian random variables with probability density

p(Wij ) = 1

σ
√

2π
exp

[
− (Wij − W̄ij )2

2σ 2

]
, (3.11)

where W̄ij is the mean wealth that can be exchanged between i and j and σ = hωij
is the standard deviation of the distribution of Wij and assumed to depend on
ωij = ωji = min[wi,wj ]. 0 ≤ h ≤ 1 ensures that the fluctuation of the wealth is a
proper fraction of the wealth of the poorer trader, and could be interpreted as the
poverty index.

3.2.2.1 The Bouchaud–Mézard model on different networks

Garlaschelli and Loffredo (2008) considered various interaction topologies for the
Bouchaud–Mézard model. As in standard literature they specified the topology by
an adjacency matrix aij , whose elements are aij = 1 if there is a link from i to
j , and aij = 0 otherwise. aij = aji for undirected networks. The basic topological
characteristic of each vertex is given by its degree ki = ∑

j aij , and the statistical
distribution of the degrees of all vertices is given by �(k). Interactions take place
only between connected agents and hence Jij = (J/N )aij . In the two extreme
scenarios (1) when agents are independent, one can treat Jij = 0 for each pair
i, j , corresponding to a network with no edges, which will yield a log-normal
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distribution (2.3); (2) when all agents are connected to one another as in the
Bouchaud–Mézard model, Jij = J/N for each i, j pair, which yields a distribution
with a power law tail (3.8). Thus, it was clear that one should expect something
different between these two extreme topologies. In case of the Erdös–Renyi random
graph, no mixed form for P (w) is observed between the two extremes of p = 0
where Gibrat’s law holds and p = 1 where P (w) is a power law. However, the case
is different for a small world network. Starting from a regular d-dimensional lattice
in which each vertex is connected to the first r neighbours, one rewires the network
randomly with probability p. Thus, p = 0 is the original regular network, while
p = 1 is a fully rewired random network. For the d = 1 case, it has been seen that
the form of P (w) depends on vertex degree k = 2r . Log-normal distributions are
found for small k while Pareto tails appear for large k. However, the interesting
aspect lies in the region of intermediate p and 〈k〉 where the P (w) fits well to a
combined distribution of log-normal for smallw and power law for largew. On the
Barabasi–Albert model for scale-free networks, the Bouchaud–Mézard model has
log-normal and power law wealth distributions, respectively, for small and large
values of average degree 〈k〉, with the intermediate region showing no mixed form
(Fig. 3.1).

In order to address the scenario using simple heterogeneous graphs, the authors
consider an undirected network of N vertices, out of which M are fully connected
and the remaining N −M are isolated (ki = M − 1 for i = 1, . . . ,M and ki = 0
for i = M + 1, . . . , N ). Thus, owing to the evolution (3.4), one gets a mixed form
of the wealth distribution P (w) given by

P (w) = M

N
P1(w) +

(
1 − M

N

)
P2(w), (3.12)

where P1(w) is the power law distribution and P2(w) is a log-normal, with a single
control parameter M/N .

Inferring from previous results on the regular graph, one can replace the isolated
nodes by a regular chain of N −M nodes. Another alternative is to consider a
dense core of M nodes and each of the rest NM with one connection to the core.
All of these yield the same type of mixed distributions. The inference drawn from
such exercises is that one requires a network with structural heterogeneities, with
coexisting regions of dense cores and periphery links of low density.

3.2.3 Models for evolving society

Ideas from network science have been applied to explain non-linear growth, even
in wealth distribution (Dorogovtsev and Mendes 2003a). The growth is modelled
by assuming an input flow of capital proportional to tα, which means that α = 0
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Figure 3.1 Cumulative wealth distribution P>(w) for the Bouchaud–Mézard
model on a mixed network for different values of M/N : from top to bot-
tom, M/N = 1/2, 1/4, 1/8, 1/16. In all cases N = 5000, J = σ 2 = 0.05 and
m = 1. The wealth is rescaled to its average. (b) Same for the Bouchaud–Mézard
model on an octopus network for the same sets of values of M/N . In all cases
N = 3000, J = σ 2 = 0.05 and m = 1. The wealth is rescaled to its average.
Reproduced from Garlaschelli and Loffredo (2008).

corresponds to a stable society while positive and negative α models correspond to
evolving and degrading societies, respectively.

The model is based on the idea that money attracts money. The additional
attractiveness A is proportional to the average wealth, and may be provided at
birth, A(s) (s < t is the time of birth of the individual).

3.2.3.1 Stable society

Starting from an initial capital ms , let m extra wealth be distributed at each time
step. The total flow of wealth is thus m+ms . The additional attractiveness A
is assumed to be constant. A fraction p of the flow m is distributed among all
individuals randomly and (1 − p)m preferentially with probability proportional to
the wealth. Thus the continuum approach equation for the average wealth of an
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individual, w̄(s, t), is

∂w̄(s, t)

∂t
= pm

t
+ (1 − p)m

w̄(s, t) + A∫ t

0 du[w̄(u, t) + A]
, (3.13)

subject to initial condition w̄(0, 0) = 0 and boundary condition w̄(t, t) = ms . Inte-
grating the above equation yields:

∫ t
0 dsw̄(s, t) = (m+ms)t , and subsequent cal-

culations produce a power law distribution of wealth with Pareto exponent

ν = 1 + pm+ms + A

(1 − p)m
. (3.14)

Here, ν > 1 always. This is the case for stable societies, where the average wealth
per individual does not change in time.

3.2.3.2 Developing and degrading society

Here, the starting capital is assumed to be proportional to the average wealth of
the society at the time of the individual’s birth: ms(t) = bmtα, b being a positive
constant. Out of the wealth mtα distributed among the individuals at each time, a
fraction p is distributed equally, while (1 − p) fraction is distributed preferentially
(as in the previous case). Without loss of generality, it is assumed that A(s, t) = 0.
Then

∂w̄(s, t)

∂t
= mtα

p

t
+ (1 − p)mtα

w̄(s, t)∫ t

0 du w̄(u, t)
. (3.15)

The initial and boundary conditions are w̄(0, 0) and w̄(t, t) = bmtα. Integration
yields

∫ t

0 ds w̄(s, t) = m(1 + b)tα+1/(α + 1). Equation (3.15) at various values of
the parameters p, b and α describes different societies:

(1) When α > (1 − p)/(p + b), i.e.p > (1 − bα)/(1 + α), the wealth distribution
is exponential. This is referred to as a ‘super-fair’ society.

(2) When α < (1 − p)/(p + b), the wealth distribution is a power law with Pareto
exponent

ν = 1 + (1 + α)(p + b)

1 − p − α(p + b)
. (3.16)

Observe that ν = 1 at α = −1, and this corresponds to a wealth condensation
transition from a fair society (ν > 1 for α > −1) to an unfair one (ν < 1 for α <

−1; few individuals keep a finite fraction of the total wealth). It is also important
to note that the position of the condensation transition does not depend on the
particular values of p and b (Fig. 3.2).
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Figure 3.2 Phase diagram of the evolving society model. The wealth distribution
in the super-fair society is exponential. The wealth distribution has a power law in
the ‘fair’ society (ν > 1) as well as in the ‘unfair’ society (ν < 1).

3.2.4 Models of wealth distribution with a risk aversion factor

In a competing market, agents will always try to improve their economic situation.
The poorest agent feels the most of this pressure to rise up the economic ladder
and will try to undertake certain measures such as a change in the trade strategy
or production methods or borrow money. Since there is an uncertainty involved in
the outcome, it can be modelled as a random change in the wealth parameter of the
agent. Pianegonda et al. (2003) proposed a process in which one considers agents
to lie on a ring with wealth exchange possible only with the nearest neighbours.
Starting from an initial random distribution of wealth (between 0 and 1), the poorest
agent is allowed to change its state randomly, at the expense of the neighbours,
i.e. the neighbours equally divide the wealth gained or lost by the particular agent.
Given that there is no restriction on the amount of wealth, negative wealth (or debt)
is thus allowed in this model. The stationary wealth distribution resulting from
such an extremal dynamics is one where P (w) = 0 for w < wT while there is an
exponentially decaying P (w) following it. For 1 − d, they found wT ≈ 0.4. The
globally coupled (mean field) model also shows similar features, albeit a lower
value of wT . The computed Gini indices fall in a regime close to most economies.

In another model further developed by the group (Iglesias et al. 2004), they
introduce the concept of a risk aversion factor. Agents are endowed with a risk
aversion factor βi such that 1 − βi is the percentage of wealth that an agent is
willing to risk, meaning that βi = 0 is a radical agent risking its all assets, while
βi = 1 is a totally conservative agent not willing to risk at all. It is prescribed
that no agent can win more than what is invested, so that the amount that will
be exchanged is the minimum of the available resources of each agent dw =
min[(1 − β1)w1; (1 − β2)w2]. Finally, it is argued that a stable society requires the
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poor to have an advantage in transactions with the wealthy and are protected by
particular rights and marketing freedom. Two cases were considered: (1) the poor
are favoured with a probability p between 0.5 and 1 and (2) a random value of p
given by

p = 1

2
+ f × w1 − w2

w1 + w2
, (3.17)

w1 being the wealth of the richer partner, and f is a factor between 0 and 0.5.
Two different cases were considered: (A) when β and p are both uniform and
(B) when β and p are both random. For the case A, the typical wealth distribution
features could be broadly distinguished into regions in the β–p phase space. Wealth
distributions in region I are narrow and Gaussian-like, which the authors called
utopian socialism because almost all agents have the same income with a small
dispersion. Region II has Gaussian-like distributions but skewed to higher values
of wealth; therefore, they named it liberal socialism. Region III has mixed wealth
distribution: Gaussian-like for low wealth values and exponential for high wealth
values, and they called it moderated capitalism. In the last region (region IV) the
wealth distributions are exponentials with a tendency to power laws, so they called
this region ruthless capitalism (Fig. 3.3). Beyond this region, only one or two
agents hold all the resources, leaving the rest without anything.

In the same model with extremal dynamics, the dynamics at low p phase freezes
since the agent with minimum wealth has no asset to trade with. However, for
0.7 ≤ p ≤ 1, an exponential distribution of wealth is produced, with most agents
consisting of the middle class. For β ≥ 0.7 and p ≈ 1, the middle class is split into
two income regions separated by a gap.

For case B, that is, when both β and p are random, the risk aversion parameter
is taken to be disordered, i.e. βi is randomly drawn from a uniform distribution
in (0, 1). This is a quenched disorder, so that each agent maintains its value of βi
throughout. For the case f = 0, a trade not favouring either of the partners, the
wealth distribution steadily converges to a delta function at w = 0, most agents
having nothing while almost the entire wealth is held by one or two agents. In this
case, since each agent risks a part of its wealth at each exchange, and while there
is no restriction on the amount it can lose in successive trades, this is nothing but
a multiplicative process with an attractor at w = 0. On the other hand, when there
is asymmetry, it favours the poorer agent on average. The result is a distribution
with a region for the poor, followed by a peak and then a middle class decaying
as a power law P (w) ∼ w−α , with α depending on f , with α ≈ 2 for f = 0.5
(Fig. 3.4). It is important to note the behaviour of the risk–wealth correlation plot:
the higher values of income correspond to high risk aversion while the highest
individual wealths correspond to risk-loving agents, and it is no surprise to find
that the lowest incomes correspond to risky agents.
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Figure 3.3 Model with uniform β and p, for N = 105 with 103 transactions per
agent. Region I corresponds to a very narrow wealth distribution, utopian social-
ism; regions II and III present skewed Gaussians; and region IV corresponds to an
exponential distribution. Outside these regions there is no true wealth distribution
because in the ‘few rich land’ only a few agents have all the available resources
while the others have strictly zero wealth. Reproduced from Iglesias et al. (2004).

Performing extremal dynamics on such a model, one finds a poverty line below
which there are a few people, while the rest of the distribution follows an exponential
behaviour P (w) ∝ exp[−a(w − w0)2] with a ≈ 1.1 and w0 ≈ 0.7 for f = 0.5.

In another work, Fuentes et al. (2006) considers the case when the partners in
the transaction have previous knowledge of the winning probability and adjust their
risk aversion taking this into consideration. The results indicate that a relatively
egalitarian society is obtained when the agents’ risk is directly proportional to
their winning probabilities. However, a case contrary to this produces a wealth
distribution and Gini indices that resemble empirical data. The authors conclude
that this indicates that, at least for their very simple model, either agents have no
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Figure 3.4 (a) Wealth distribution for random β, the distribution is calculated
for N = 105 and 104 exchanges per agent on average. Results are shown for
three values of the asymmetry parameter. The Ax2 curve is also shown as a
guide. (b) Correlation between wealth and saving parameter forN = 105, f = 0.5.
Reproduced from Iglesias et al. (2004).

knowledge of their winning probabilities or they exhibit an ‘irrational’ behaviour
risking more than is reasonable.

3.2.5 Asset exchange models

There is a whole body of literature that considers mainly conservative wealth
models, in which wealth is transferred or shared from one agent to the other, and it
is appropriate to call them ‘asset exchange models’ to be consistent with the existing
literature. Ispolatov et al. (1998) wrote an interesting article that describes a very
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simple framework under which ‘asset exchange’ models can be generalized into
additive and multiplicative models, and we discuss these in detail in the following.

The basic structure of the model is as follows: there is a population of traders
who possess some ‘asset’, probably bearing the same meaning as ‘wealth’ as we
prefer to use in other places in this book. It is assumed that the asset is quantized
in some basic unit, such that individuals hold integer amount of the same, and the
wealth of individuals evolves according to some prescribed rules of interaction
between random pairs of individuals.

3.2.5.1 Additive asset exchange

Here, one considers the case in which one unit of asset is transferred between
a random pair of individuals. In the case in which an individual has no asset, it
is ‘bankrupt’ and can no longer participate in the trading process. The authors
consider three different realizations of the additive rule: the ‘random’, ‘greedy’ and
‘very greedy’ types.

In the ‘random’ additive asset exchange, the direction of the asset transfer is
independent of the assets of the traders. One unit of asset is exchanged between
trading partners, represented in the reaction scheme as (j, k) → (j ± 1, k ∓ 1). If
nk(t) is the density of individuals with capital k, under a mean-field description,
nk(t) evolves as

dnk(t)

dt
= N (t) [nk+1(t) + nk−1(t) − 2nk(t)] , (3.18)

with N (t) ≡ M0(t) = ∑∞
k=1 nk(t) as the population density. The first two terms

show the gain in nk(t) owing to the interactions (j, k + 1) → (j + 1, k) and (j, k −
1) → (j − 1, k), respectively, and the last term shows the loss in nk(t) owing to the
interactions (j, k) → (j ± 1, k ∓ 1). By suitably defining a modified time variable,

T =
∫ t

0
dt ′N (t ′), (3.19)

Eq. 3.18 is reduced to a discrete differential equation

dnk(T )

dT
= nk+1(T ) + nk−1(T ) − 2nk(T ). (3.20)

The rate equation for the poorest density looks slightly different, dn1/dT = n2 −
2n1, but could be written in the same form as Eq. (3.20) on imposing the boundary
condition n0(T ) = 0. Equation (3.20) can be solved for arbitrary initial conditions.
For example, if everyone starts with unit asset nk(0) = δk1, one eventually gets

N (t) �
(

2

3πt

)1/3

(3.21)
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and

nk(t) � k

3t
exp

[
−
( π

144

)1/3 k2

t2/3

]
. (3.22)

It is interesting to note that the last equation can be expressed as nk(t) ∝ N2x e−x2
,

with the scaling variable x ∝ kN . This scaling solution is also the basin of attraction
for almost all exact solutions. Ispolatov et al. (1998) claim that, for any initial
condition with nk(0) decaying faster than k−2, the system reaches the scaling limit
nk(t) ∝ N2x e−x2

. However, an initial condition nk(0) ∼ k−1−α, with 0 < α < 1,
converges to an alternative scaling limit which depends on α (e.g. as in Derrida et al.
1991). These solutions follow a slower decay of the total density, N ∼ t−α/(1+α),
while the scaling form of the wealth distribution is

nk(t) ∼ N2/αCα(x), x ∝ kN1/α, (3.23)

with the scaling function

Cα(x) = e−x2
∫ ∞

0
du

e−u2
sinh(2ux)

u1+α . (3.24)

A Laplace transform will produce an asymptotic distribution of x−1−α as in the
initial condition. The authors conclude that this anomalous scaling in the solution
to the diffusion equation is a direct consequence of the extended initial condition.

In another variant, called the ‘greedy’ exchange, the richer person takes one
unit of capital from the poorer person, represented by the reaction scheme (j, k) →
(j + 1, k − 1) for j ≥ k. Under the rate equation approximation, the densities nk(t)
evolve according to

dnk

dt
= nk−1

k−1∑
j=1

nj + nk+1

∞∑
j=k+1

nj − nkN − n2
k. (3.25)

The first two terms represent the gain in nk(t) owing to the interaction between
pairs of individuals of capitals (j, k − 1), with j < k and (j, k + 1) with j > k,
respectively, while the last two terms account for the corresponding losses of nk(t).
It is easy to see that the wealth density M1 ≡ ∑∞

k=1 k nk(t) is conserved and that
the population density obeys

dN

dt
= −n1N. (3.26)

Equation (3.25) are conceptually similar to the Smoluchowski equations for aggre-
gation with a constant reaction rate (Ziff 1984), but mathematically more complex,
and Eq. (3.26) is amenable to a scaling solution. It turns out that the scaled wealth
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distribution C(x) coincides with the zero-temperature Fermi distribution:

C(x) =
{C(0), x < xf,

0, x ≥ xf.
(3.27)

Thus the scaled profile has a sharp front at x = xf , with xf = 1/C(0). Thus the
unscaled wealth distribution ck(t) reads

nk(t) =
{

1/(2t), k < 2
√
t,

0, k ≥ 2
√
t,

(3.28)

and the total density is N (t) = t−1/2. Further calculations indicated that the width
of the front region behaves as W ∼ t1/4, or a relative width w = W/kf ∼ t−1/4, so
that the appropriate scaling ansatz for the front region is

nk(t) = 1

t
X(ξ ), ξ = k − 2

√
t

t1/4
. (3.29)

However, their analysis of data shows w ∼ t−α with α ≈ 1/5.
In the ‘very greedy exchange’, the events occur at a rate equal to the difference

of assets of the two traders. This implies that a person is more likely to take away
assets from a much poorer person rather than from someone of slightly less wealth.
The corresponding rate equations are

dnk

dt
= nk−1

k−1∑
j=1

(k − 1 − j )nj + nk+1

∞∑
j=k+1

(j − k − 1)nj − nk

∞∑
j=1

|k − j |nj ,

(3.30)
while the total density obeys

dN

dt
= −n1(1 −N ), (3.31)

under the assumption that the (conserved) total wealth density is set equal to 1, that
is,

∑
knk = 1. Ispolatov et al. (1998) again used the scaling argument, and found

that N � [C(0)t]−1 and

C(x) = (1 + μ)(1 + μx)−2−1/μ, (3.32)

with μ = C(0) − 1. The scaling approach finds a whole class of solutions charac-
terized by μ and additional information is required to select the kind of solutions
appropriate for the models considered. As a matter of fact, the last equation has
different solutions depending on the sign of μ. For μ > 0, there is an extended
non-universal power law distribution, while for μ = 0 the solution is the pure
exponential, C(x) = e−x ; both of these solutions can be rejected with the argument
that the wealth distribution cannot extend over an unbounded domain if the ini-
tial wealth extends over a finite range. The accessible solutions correspond to the
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range −1 < μ < 0, where the distribution is compact and finite, with C(x) ≡ 0 for
x ≥ xf = −μ−1. Eventually it can be shown that the wealth distribution is

nk(t) =
{

4/t2, k < t,

0, k ≥ t.
(3.33)

Another interesting feature arises if the interaction rate is sufficiently greedy, a finite
fraction of the total capital is possessed by a single individual – ‘gelation’ occurs.
The authors identify the regime at which this happens, in terms of a parameter
describing the feature of the kernel function.

3.2.5.2 Multiplicative asset exchange

In many economic transactions, the amount of asset transferred is a finite fraction of
the initial asset of one of the participants, a simple realization of which is given by
the reaction scheme (x, y) → (x − αx, y + αx), where 0 < α < 1 represents the
fraction of the loser’s asset that is gained by the winner. This process preserves the
non-zero nature of the asset of any individual, although it can become vanishingly
small. As in the additive processes, the authors consider the ‘random’ and ‘greedy’
variants of the multiplicative exchange process (Ispolatov et al. 1998).

The random multiplicative process is expressed as a rate equation

∂n(x)

∂t
= 1

2

∫ ∫
dy dz n(y)n(z) × [−δ(x − z) − δ(x − y)

+ δ(y(1 − α) − x) + δ(z+ αy − x)], (3.34)

where the first two terms denote the loss of n(x) owing to the interaction of an
individual of capital x, the next term denotes the gain in n(x) by the lossy interaction
(x/(1 − α), y) → (x, y + αx/(1 − α)), and the last term also denotes the gain in
n(x) by the gaining interaction (y, x − αy) → (y(1 − α), x). After integrating over
the delta functions, this becomes

∂n(x)

∂t
= −n(x) + 1

2(1 − α)
n

(
x

1 − α

)
+ 1

2α

∫ x

0
dy n(y) n

(
x − y

α

)
, (3.35)

where the total density is set to unity. This rate equation describes a diffusive-like
process on a logarithmic scale, excepting the (third) term, which describes hopping
to the right and is non-local and two-body in character.

It can be easily verified that the exponential form n(x) = Be−bx satisfies the
steady-state version of the rate equation, Eq. (3.35), if and only if α = 1

2 and
B = b, which corresponds to the case that the winner receives one-half of the
assets of the loser. The exact steady wealth distribution is purely exponential
n(x) = M−1 exp(−x/M). However, for a general 0 < α < 1, the tail is again an
exponential, n(x) � 2b(1 − α)e−bx . Further, for x � 1, the authors claim that
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n(x) ∼ xλ is the asymptotic solution, with exponent λ = −1 − ln 2/ ln(1 − α).
It can be observed that λ is positive when α < 1/2, so that the density of the
paupers is vanishingly small. The authors provide a heuristic justification for this
phenomenon: for α < 1/2 an unfavourable interaction leads to a relatively small
loss of asset, which is more than compensated for by favourable interactions so
that a poor individual could come out of its state of poverty. On the other hand,
for α > 1/2, unfavourable interactions produce a large and persistent ‘poor class’,
with its number diverging as a power law in the limit of vanishing wealth. These
features are confirmed in numerical simulations.

In the ‘greedy’ variant of the multiplicative exchange, the rate equation for
greedy multiplicative exchange is

∂n(x)

∂t
= −n(x) + 1

1 − α
n

(
x

1 − α

)
N

(
x

1 − α

)
+ 1

α

∫ x

x
1+α

dy n(y) n

(
x − y

α

)
,

(3.36)

where N (x) = ∫∞
x
dz n(z) is the population density whose wealth exceeds x.

Numerical simulations show that a continuously evolving power law wealth dis-
tribution arises, with n(x, t) ∝ 1/(xt), for wealth in the range (1 − α)t < x < t

where these cut-offs correspond to the poorest and richest individuals, respectively.
The authors also show that a vanishing fraction of people, of order ln t/t , possess
an overwhelming amount, of order t/ ln t , of the total wealth.

Hayes (2002) proposed two models of asset exchange in a closed, non-evolving
economy based on simple exchange rules: yard-sale (YS) and theft-and-fraud
(TF), as generalizations of existing models. In the YS model, the amount of wealth
exchanged is a finite fraction of that of the poorer trader, and the resultant dis-
tribution corresponds to a monopoly, where all the wealth accumulates with one
trader (Chakraborti 2002). In the TF model, the trading pair randomly chooses the
loser, and the amount of wealth exchanged is a random fraction of the donor. Thus
the rich trader has more to lose while the poor trader has more to gain. The resultant
equilibrium distribution is exponential.

Some extensions of these models (Sinha 2003, 2005) produce distributions which
are of considerable interest. In an asymmetric exchange model (Sinha 2005), the
wealth dynamics is defined by:

wi(t + 1) =
{
wi(t) + ε

(
1 − τ

[
1 − wi (t)

wj (t)

])
wj (t), if wi(t) ≤ wj (t),

wi(t) + εwj (t), otherwise,
(3.37)

ε is a random number between 0 and 1. Here, τ = 0 corresponds to the random
exchange model (Drăgulescu and Yakovenko 2000), while τ = 1 corresponds to
the minimum exchange model (Chakraborti 2002; Hayes 2002). In general, the
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relation between agents is asymmetric and the richer agent dictates the terms of
trading. τ is known as the ‘thrift’ parameter, and it measures the degree to which
the richer agent is able to use its power. If one considers a uniform distribution of
τ among agents between 0 and 1, one observes a power law distribution for larger
wealth, with Pareto exponent 1.5 (Sinha 2003).

We will devote the next chapter to a special class for these models which are
analogous to the kinetic theory of gases.

3.3 Statistical equilibrium theory of markets

It is important at this stage to provide an outline of the statistical equilibrium
theory of markets, introduced in Foley (1994) as an alternative to the conventional
competitive equilibrium theory originated by Walras (1874–7) and by Marshall
(1920). Conventionally, an auctioneer collects orders from buyers and sellers and
determines an equilibrium price that clears the market, subject to budget constraints
and utility preferences of the agents. In this new theory, all transactions occur at the
same price. However, it is not clear how the real markets would actually converge
to this price. Now there is a probability distribution of trades at different prices,
and market clearing is achieved statistically.

Foley (1994) studied an ensemble of N economic agents trading n different
types of commodities. An n-component vector xj = (x(1)

j , x
(2)
j , x

(3)
j , . . . , x

(n)
j ) rep-

resents the state of each agent j = 1, 2, . . . , N , where each component of this
vector represents a possible trade that the agent j is willing to perform with a
given commodity. An increase, a decrease and no change in the stock of a given
commodity for the agent j are represented by positive, negative and zero values of
xj . All trades in the system are subject to the global constraint∑

j
xj = 0, (3.38)

which represents the conservation of commodities during trading (only get trans-
ferred from one agent to another). An increase xi > 0 of a commodity stock for an
agent i must be compensated by a decrease xj < 0 for another agent j , keeping the
algebraic sum (3.38) of trades zero. However, Eq. (3.38) does not require a bilateral
balance of transactions between pairs of agents and allows for multilateral trades.

If the number of agents doing the trade xk is Nk, then the constraint (3.38) can
be rewritten as ∑

k
xk Nk = 0. (3.39)

For a given set of Nk , the multiplicity gives the number of different combinations
of individual agents corresponding to the trades xk , subject to Nk being fixed.
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Maximizing the entropy subject to the constraints (3.39), we have

P (xk) = Nk

N
= c e−π ·xk , (3.40)

where c is a normalization constant, and π is the n-component vector of Lagrange
multipliers introduced to satisfy the constraints (3.39). Foley (1994) interpreted π

as the vector of entropic prices. The probability of an agent performing the set of
trades x depends exponentially on the volume of the trades: P (x) ∝ exp(−π · x)
(Yakovenko 2012).

Foley (1996) applied the general theory (Foley 1994) to a simple labour market.
This model consists of two classes of agents – employers (firms) and employees
(workers), trading in two commodities (n = 2): x (1) = w is wage, supplied by the
firms and taken by the workers, and x(2) = l is labour, supplied by the workers
and taken by the firms. For each worker, the offer set includes the line x = (w >

w0,−1), where −1 is the fixed offer of labour in exchange for any wage w greater
than a minimum wage w0. The offer set also includes the point x = (0, 0), which
offers no labour and no wage, i.e. the state of unemployment. For each firm, the
offer set is the line x = (−K, l > l0), where −K is the fixed amount of capital
spent on paying wages in exchange for the amount of labour l greater than a
minimum value l0. According to Eq. (3.40), the model predicts the exponential
probability distributions for the wages w received by the workers and for the
labour l employed by the firms. In the real economy, the probability distribution
of wages can be compared with income distribution, and the distribution of labour
employed by firms can be related to the distribution of firm sizes (number of
employees). However, Foley (1996) simplifies with an artificial assumption that
each firm spends the same amount of capitalK on labour, which is unrealistic since
there is a large variation in the amount of the firms’ capitals, which includes the
capital spent on labour. One has to look at the probability distribution of wages,
unconditional on the distribution of labour. Keeping a fixed value for x(1), let us take
a summation over the values of x(2) in Eq. (3.40), as if integrating out the degree
of freedom x(2) = l. One thus obtains the unconditional probability distribution of
the remaining degree of freedom x(1) = w, still to be an exponential:

P (w) = c e−w/Tw, (3.41)

c being the normalization constant, and Tw = 1/π (1) is the wage temperature
(Yakovenko 2012).

How does one satisfy the constraint (3.39) with respect to wages? The Nf firms
supply the total capital for wages W = KNf , which enters as a negative term into
the sum (3.39). Since the constraint is a global one, we can consider W as an
input parameter of the model. Given that the unemployed workers have zero wage
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w = 0, the constraint (3.39) can be rewritten as∑
wk>w0

wk Nk = W, (3.42)

the sum being taken over the total number of employed workers Ne. The average
wage per employed worker is 〈w〉 = W/Ne. Using Eq. (3.41) and replacing the
sum over k with an integration over w in Eq. (3.42), one can easily relate 〈w〉
and Tw

〈w〉 = W

Ne

=
∫∞
w0
wP (w) dw∫∞

w0
P (w) dw

, Tw = 〈w〉 − w0. (3.43)

Thus, the wage temperature Tw is the difference in the average wage per employed
worker and the minimal wage (Yakovenko 2012).

The model also contains unemployed workers, whose number Nu depends on
the measure of statistical weight assigned to the state with w = 0. Because this
measure is an input parameter of the model, one might as well take Nu as an input
parameter. The exponential distribution of wages (3.41) actually matches with the
real empirical data on income distribution for the majority of the population.

It should be mentioned in a similar context that, contrary to the conventional
picture that the free market for labour, which determines the pay packages, cares
only about efficiency and not fairness, Venkatasubramanian (2010) proposed an
alternative picture, which shows that an ideal free market environment may also
promote fairness. Venkatasubramanian (2010) suggests that this arises as an ‘emer-
gent’ property resulting from the ‘self-organizing’ market dynamics (Bak 1996).
Although an individual employee may care only about his or her own salary,
the collective actions of all the employees, combined with the profit-maximizing
actions of each and every company, in a free market environment under budgetary
constraints, may lead towards a fair allocation of wages, as professed in Adam
Smith’s ‘invisible hand of self-organization’ theory (Smith 1776). He shows that
entropy may be considered as an appropriate measure of fairness in a free market
environment, which is maximized at equilibrium to yield the log-normal distribu-
tion of salaries in an organization under ideal conditions. Thus, the author makes
distinction between ‘inequality’ and ‘fairness’, and proposes that a fair distribution
(that maximizes entropy of the distribution) would have some inequality.

Econophysicists have also considered that maximization of entropy gives rise to
the ‘natural’ inequality in income and wealth distributions, as we shall see in the
context of kinetic exchange models, in the following chapters.



4

Market exchanges and scattering process

There has been a considerable development in a special class of asset exchange
models, in the last decade or so, which have been formulated in analogy with
the kinetic theory of gases. While the essential features are very similar to the
gas models, certain aspects modelling economic phenomena give rise to strikingly
different results. We will devote this chapter solely to the description of these
models and their numerical results.

4.1 Gas-like models

Mandelbrot (1960) wrote, ‘There is a great temptation to consider the exchanges
of money which occur in economic interaction as analogous to the exchanges of
energy which occur in physical shocks between molecules. In the loosest possible
terms, both kinds of interactions should lead to similar states of equilibrium. That
is, one should be able to explain the law of income distribution by a model similar
to that used in statistical thermodynamics: many authors have done so explicitly,
and all the others of whom we know have done so implicitly’.

In analogy to two-particle collisions with a resulting change in their individ-
ual kinetic energies (or momenta), income exchange models may be based on
two-agent interactions. Here two randomly selected agents exchange money by
some predefined mechanism. Assuming the exchange process does not depend
on previous exchanges, the dynamics follow a Markovian process, which can be
represented in general as:(

mi(t + 1)
mj (t + 1)

)
= M

(
mi(t)
mj (t)

)
, (4.1)

where mi(t) is the income of agent i at time t and the collision matrix M defines
the exchange mechanism (shown in Fig. 4.1).

55
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mi (t )

mj (t ) mj (t  + 1)

mi (t  + 1)

Trading

Figure 4.1 The trading process. Agents i and j redistribute their money in the
market: mi(t) and mj (t), their respective money before trading, changes over to
mi(t + 1) and mj (t + 1) after trading.

This class of models considers a ‘closed’ economic system, in the sense that the
total money M and total number of agents N both remain fixed. This corresponds
to a situation in which no production or migration occurs and the only economic
activity is confined to trading, or the economic growth is very slow compared with
the trading, so that the above assumptions roughly hold true. Thus, each agent i,
which could be an individual or a corporation, possesses money mi(t) at time t .
In any trading, a pair of traders i and j exchange their money (Chakrabarti and
Marjit 1995; Ispolatov et al. 1998; Chakraborti and Chakrabarti 2000; Drăgulescu
and Yakovenko 2000), such that their total money is (locally) conserved and none
ends up with negative money (mi(t) ≥ 0, i.e. debt is not allowed):

mi(t + 1) = mi(t) +�m; mj (t + 1) = mj (t) −�m, (4.2)

following local conservation:

mi(t) +mj (t) = mi(t + 1) +mj (t + 1); (4.3)

time (t) changes by one unit after each trading. The simplest model considers a
random fraction of total money to be shared (Drăgulescu and Yakovenko 2000):

�m = εij [mi(t) +mj (t)] −mi(t), (4.4)

where εij is a random fraction ( 0 ≤ εij ≤ 1) changing with time or trading. The
steady-state (t → ∞) distribution of money in this model (DY model hereafter) is
Gibbs:

P (m) = (1/T ) exp(−m/T ); T = M/N. (4.5)

Hence, no matter how uniform or justified the initial distribution is, the eventual
steady state corresponds to the Gibbs distribution where most of the people have
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got very little money. This follows from the conservation of money and additivity
of entropy:

P (m1)P (m2) = P (m1 +m2). (4.6)

This steady-state result is robust, and actually turns out to be quite realistic. In fact,
several variations of the trading, and of the ‘lattice’ (on which the agents can be
put and each agent trades with its ‘lattice neighbours’ only), whether a completely
connected regular graph, small-world or fractal like (Moss de Oliveira et al. 1999),
leaves the distribution unchanged. However, other variations such as random shar-
ing of an amount 2m2 only (not of m1 +m2) when m1 > m2 (trading at the level of
the lower economic class in a chosen pair) lead to a drastic situation: all the money
in the market drifts to one agent, leaving the rest truly pauper (Chakraborti 2002;
Hayes 2002).

4.1.1 Model with uniform savings

In any trading, savings come naturally (Samuelson 1998). A saving propensity fac-
tor λ was introduced in the random exchange model (Chakraborti and Chakrabarti
2000), in which each trader at time t saves a fraction λ of its money mi(t) and
trades randomly with the rest:

mi(t + 1) = λmi(t) + εij
[
(1 − λ)(mi(t) +mj (t))

]
, (4.7)

mj (t + 1) = λmj (t) + (1 − εij )
[
(1 − λ)(mi(t) +mj (t))

]
, (4.8)

where

�m = (1 − λ)[εij {mi(t) +mj (t)} −mi(t)], (4.9)

where εij is a random fraction. By definition, λ is a proper fraction, i.e. 0 ≤ λ ≤ 1.
This randomness reflects the stochastic nature of the trading. See Drăgulescu and
Yakovenko (2000) for the model without savings (λ = 0).

In this model (referred to hereafter as the CC model), the market (non-interacting
at λ = 0 and 1) becomes ‘interacting’ for any other non-vanishing λ: for fixed λ

(same for all agents), the steady-state distribution P (m) of money is exponentially
decaying on both sides with the most-probable money per agent shifting away from
m = 0 (for λ = 0) to M/N as λ → 1 (Fig. 4.2). This self-organizing feature of the
market, induced by sheer self-interest of saving by each agent without any global
perspective, is quite significant as the fraction of paupers decreases with saving
fraction λ and most people end up with some finite fraction of the average money in
the market: for λ → 1, the economy is ideally ‘socialist’, and this is achieved just
with people’s self-interest of saving. Interestingly, self-organization also occurs in
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Figure 4.2 Steady-state money distribution P (m) for the model with uniform
savings. The data shown are for different values of λ: 0, 0.1, 0.6, 0.9 for a system
size N = 100. All data sets shown are for average money per agent M/N = 1.
Reproduced from Chatterjee and Chakrabarti (2007b).

such market models when there is restriction in the commodity market (Chakraborti
et al. 2001), which we will discuss in the next subsection. Although this fixed
saving propensity does not yet give the Pareto-like power law distribution, the
Markovian nature of the scattering or trading processes (Eq. (4.6)) is effectively
lost. Indirectly through λ, the agents get to know (start interacting with) each other
and the system cooperatively self-organizes towards a most-probable distribution
(mp = 0) (Fig. 4.2).

There have been a few attempts to analytically formulate this problem (Das and
Yarlagadda 2003) but no analytic expression has been arrived at. The details of
the approach are given in Section 5.1. It has also been claimed through heuristic
arguments (based on numerical results) that the distribution is a close approximate
form of the gamma distribution (Patriarca et al. 2004):

P (m) = nn


(n)
mn−1 exp(−nm), (4.10)

where
(n) is the gamma function whose argument n is related to the savings factor
λ as:

n = 1 + 3λ

1 − λ
. (4.11)

The details of the formulation are given in Section 5.1.1. This result has also been
supported by numerical results in Bhattacharya et al. (2005). However, a later
study (Repetowicz et al. 2005) analysed the moments, and found that moments
up to the third order agree with those obtained from the form of Eq. (4.11),
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and discrepancies start from fourth order onwards. Hence, the actual form of the
distribution for this model still remains to be found out.

It seems that a very similar model was proposed by Angle (1986, 2006) several
years back in sociology journals. Angle’s ‘one parameter inequality process’ model
(OPIP) is described by the equations:

mi(t + 1) = mi(t) + Dtwmj (t) − (1 − Dt )wmi(t),

mj (t + 1) = mi(t) + (1 − Dt )wmi(t) − Dtwmj (t), (4.12)

where w is a fixed fraction and Dt takes value 0 or 1 randomly. The numerical
simulation results of OPIP fit well to gamma distributions.

4.1.2 Model with distributed savings

In a real society or economy, the interest of saving varies from person to person,
which implies that λ is a very inhomogeneous parameter. To reproduce this situ-
ation, we move a step closer to the real situation where saving factor λ is widely
distributed within the population (Chatterjee et al. 2003, 2004; Chakrabarti and
Chatterjee 2004). The evolution of money in such a trading can be written as:

mi(t + 1) = λimi(t) + εij
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
, (4.13)

mj (t + 1) = λjmj (t) + (1 − εij )
[
(1 − λi)mi(t) + (1 − λj )mj (t)

]
. (4.14)

The trading rules are similar to before, except that

�m = εij (1 − λj )mj (t) − (1 − λi)(1 − εij )mi(t) (4.15)

here, where λi and λj are the saving propensities of agents i and j . In this model
(referred to hereafter as the CCM model), the agents have fixed (over time) saving
propensities, distributed independently, randomly and uniformly (white) within an
interval 0 to 1: agent i saves a random fraction λi (0 ≤ λi < 1) and this λi value is
quenched for each agent, i.e. λi are independent of trading or t . Starting with an
arbitrary initial (uniform or random) distribution of money among the agents, the
market evolves with the trading. At each time, two agents are randomly selected
and the money exchange among them occurs, following the above-mentioned
scheme. We check for the steady state, by looking at the stability of the money
distribution in successive Monte Carlo steps t (we define one Monte Carlo time step
as N pairwise exchanges). Eventually, after a typical relaxation time the money
distribution becomes stationary. This relaxation time is dependent on system size
N and the distribution of λ (e.g. ∼106 for N = 1000 and uniformly distributed
λ). After this, we average the money distribution over ∼103 time steps. Finally
we take the configuration average over ∼105 realizations of the λ distribution to
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Figure 4.3 Steady-state money distribution P (m) for the distributed λ model
with 0 ≤ λ < 1 for a system of N = 1000 agents. The x−2 is a guide to
the observed power law, with 1 + ν = 2. Here, the average money per agent
M/N = 1. Reproduced from Chatterjee and Chakrabarti (2007b).

get the money distribution P (m). It is found to follow a strict power law decay.
This decay fits to Pareto law (2.2) with ν = 1.01 ± 0.02 (Fig. 4.3). Note that, for
finite size N of the market, the distribution has a narrow initial growth up to a
most-probable value mp after which it falls off with a power law tail for several
decades. This Pareto law (with ν � 1) covers almost the entire range in money m
of the distribution P (m) in the limit N → ∞. This power law is extremely robust:
apart from the uniform λ distribution used in these simulations in Fig. 4.3, this also
holds for a distribution

ρ(λ) ∼ |λ0 − λ|α, λ0 = 1, 0 < λ < 1, (4.16)

of quenched λ values among the agents. The Pareto law with ν = 1 is universal
for all α. The data in Fig. 4.3 correspond to λ0 = 0, α = 0. For negative α values,
however, we get an initial (small m) Gibbs-like decay in P (m) (Fig. 4.4).

In the case of uniformly distributed saving propensity λ (ρ(λ) = 1, 0 ≤ λ < 1),
the individual money distribution P (mk|λk) for an agent with any particular λk
value, although it differs considerably, remains non-monotonic (Fig. 4.5), similar
to that for uniform λ market with mp(λ) shifting with λ (Fig. 4.2). A few subtle
points may be noted though: while for uniform λ the mp(λ) were all less than of
the order of unity (average money per agent is fixed to M/N = 1; Fig. 4.2), for
distributed λ case mp(λ) can be considerably larger and can approach the order of
N for large λ (Fig. 4.5). There is also a marked qualitative difference in fluctuations
(Fig. 4.6): while, for fixed λ, the fluctuations in time (around the most-probable
value) in the individuals’ money mi(t) gradually decrease with increasing λ, for
quenched distribution of λ, the trend gets reversed (Fig. 4.6).



4.1 Gas-like models 61

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

101

10–2 10–1 100 10 1 102

P
(m

)

m

N = 200, M/N = 1

δ = – 0.8
δ = – 0.4
δ = +0.4
δ = +0.8
1 + ν = 2

Figure 4.4 Steady-state money distributionP (m) in the model forN = 200 agents
with λ distributed as ρ(λ) ∝ λα with different values ofα. For all cases, the average
money per agentM/N = 1. Reproduced from Chatterjee and Chakrabarti (2007b).
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Figure 4.5 Steady-state money distribution P (mk|λk) for some ‘tagged’ agents
with typical values of savings λk (= 0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,
0.80, 0.90, 0.95) in the distributed λ model. The data are collected from the
ensembles with N = 256 agents. For all cases, the average money per agent
M/N = 1. Reproduced from Chatterjee and Chakrabarti (2007b).

We investigated the range of distribution of the saving propensities in a certain
interval a < λi < b, where 0 < a < b < 1. For uniform distribution within the
range, we observed the appearance of the same power law in the distribution but
for a narrower region. As may be seen from Fig. 4.7, as a → b, the power law
behaviour is seen for values a or b approaching more and more towards unity:
for the same width of the interval |b − a|, one obtains power law (with the same
value of ν) when b → 1. This indicates that, for fixed λ, λ = 0 corresponds to the
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Figure 4.6 Time variation of the money of the ith trader: for uniform λ model,
(a–c); and for agents with specific values of λ in the distributed λmodel, (d–f). For
all cases, the average money per agent M/N = 1. Reproduced from Chatterjee
and Chakrabarti (2007b).

Gibbs distribution, and one observes a power law in P (m) when λ has got a non-
zero width of its distribution extending up to λ = 1. It must be emphasized at this
point that we are talking about the limit λ → 1, since any agent having λ = 1 will
result in condensation of money with that particular agent. The role of the agents
with high saving propensity (λ → 1) is crucial: the power law behaviour is truly
valid up to the asymptotic limit if 1 is included. Indeed, had we assumed λ0 = 1
in Eq. (4.16), the Pareto exponent ν immediately switches over to ν = 1 + α. Of
course, λ0 = 1 in Eq. (4.16) leads to the universality of the Pareto distribution with
ν = 1 (irrespective of λ0 and α). Obviously, P (m) ∼ ∫ 1

0 P (mk|λk)ρ(λk)dλk ∼m−2

for ρ(λ) given by Eq. (4.16) and P (m) ∼ m−(2+α) if λ0 = 1 in Eq. (4.16) (for large
m values).

These theoretical income distributions P (m) compare very well with the empir-
ical distributions of various countries: data suggest a Gibbs-like distribution in the
low-income range (more than 90% of the population) and a Pareto-like distribution
in the high-income range (Levy and Solomon 1997; Drăgulescu and Yakovenko
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Figure 4.7 Steady-state money distribution in cases when the saving propensity λ
is distributed uniformly within a range of values: (a) width of λ distribution is 0.3,
money distribution shows a small power law region only for 0.6 < λ < 0.9; (b) λ
distribution extends up to 1, but is of different widths: 0.5 < λ < 1.0 and 0.9 <
λ < 1.0; money distribution shows power law decay. The power law exponent is
ν � 1 in all cases. All data shown here are for N = 100, M/N = 1. Reproduced
from Chatterjee and Chakrabarti (2007b).

2001b; Aoyama et al. 2003) (less than 10% of the population) of various countries.
In fact, we compared one model simulation of the market with saving propensity of
the agents distributed following Eq. (4.16), with λ0 = 0 and α = −0.7 (Chatterjee
et al. 2004). The qualitative resemblance of the model income distribution with
the real data for Japan and the USA in recent years is quite intriguing. In fact, for
negative α values in Eq. (4.16), the density of traders with low saving propensity is
higher and, since the λ = 0 ensemble yields Gibbs-like income distribution (4.5),
we see an initial Gibbs-like distribution which crosses over to Pareto distribution
(2.2) with ν = 1.0 for large m values. The position of the crossover point depends
on the value of α. It is important to note that any distribution of λ near λ = 1,
of finite width, eventually gives Pareto law for large m limit. The same kind of
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Figure 4.8 Distribution P (m) of money m in case of annealed savings λ vary-
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produces a power law tail with Pareto exponent ν = 1. The simulation has been
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P (m) is the steady-state distribution after 4 × 104 Monte Carlo steps, and the data
are averaged over an ensemble of 105. Taken from Chatterjee and Chakrabarti
(2007a).

crossover behaviour (from Gibbs to Pareto) can also be reproduced in a model
market of mixed agents where λ = 0 for a finite fraction p of population and λ is
distributed uniformly over a finite range near λ = 1 for the rest 1 − p fraction of
the population.

4.1.3 Model with ‘annealed’ savings

In a real trading process, the concept of a ‘saving factor’ cannot be attributed to a
quantity that is invariant with time. A saving factor is most likely to change with
time or trading. The case of annealed savings in the distributed savings model,
in which the savings factor λi changes with time in the interval [0, 1), does not
produce a power law in P (m) (Chatterjee et al. 2004). But, there are some special
cases of annealed saving which can produce a power law distribution of P (m).

If one allows the saving factor λi to vary with time in [0, 1), the money distribu-
tion P (m) does not produce a power law tail (Chatterjee et al. 2004). Instead, one
can conceive a slightly different model of an annealed saving case. We assigned a
parameterμi (0 < μi < 1) to each agent i, such that the savings factor λi randomly
assumes a value in the interval [μi, 1) at each time or trading. The trading rules are
of course unaltered and governed by Eqs. (4.13) and (4.14). Now, considering a
suitable distribution ζ (μ) ofμ over the agents, one can produce money distributions
with a power law tail. The only condition that needs to be satisfied is that ζ (μ)
should be non-vanishing as μ → 1. Figure 4.8 shows the case when ζ (μ) = 1.
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Numerical simulations suggest that the behavior of the wealth distribution is sim-
ilar to the quenched savings case. In other words, only if ζ (μ) ∝ |1 − μ|α, it is
reflected in the Pareto exponent as ν = 1 + α (Chatterjee and Chakrabarti 2007a).
μi is interpreted as the lower bound of the saving distribution of the i-th agent.
Thus, while agents are allowed to randomly save any fraction of their money, the
bound ensures that there is always a non-vanishing fraction of the population that
assumes high saving fraction.

4.1.4 Further studies

Further studies have provided deeper insight into the structure of the models and
their solutions.

4.1.4.1 Correlation between savings and average money

Patriarca et al. (2005) studied the correlation between the saving factor λ and
the average money held by an agent whose savings factor is λ. This numerical
study revealed that the product of this average money and the unsaved fraction
remains constant, or, in other words, the quantity 〈m(λ)〉(1 − λ) is a constant. This
result turns out to be the key to the formulation of a mean-field analysis to the
model (Mohanty 2006), which will be discussed in detail in the following chapter.

Another numerical study (Bhattacharya et al. 2005) analysed the average money
of the agent with the maximum savings factor 〈m(λmax)〉. This study concludes on
the time evolution of the money of this agent, and finds a scaling behaviour

[〈m(λmax)〉/N ] (1 − λmax)0.725 ∼ G [t(1 − λmax)] . (4.17)

This implies that the stationary state for the agent with the maximum value of λ is
reached after a relaxation time

t× ∝ (1 − λmax)−1. (4.18)

The average money 〈m(λmax)〉 of this agent is also found to scale as

[〈m(λmax)〉/N ]N−0.15 ∼ F[(1 − λmax)N1.5]. (4.19)

The scaling function F[x] → x−β as x → 0 with β ≈ 0.76. This means
〈m(λmax)〉N−1.15 ∼ (1 − λmax)−0.76N−1.14 or 〈m(λmax)〉 ∼ (1 − λmax)−0.76N−0.01.
Since for a society of N traders (1 − λmax) ∼ 1/N this implies

〈m(λmax)〉 ∼ N0.77. (4.20)
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with λ = 0.00, 0.01, . . . , 0.99. T is the total number of trades. Reproduced from
Patriarca et al. (2007).

4.1.4.2 Relaxation studies

Relaxation process If a real economic system is characterized by a wealth dis-
tribution with a certain shape, it is of great interest to know on which time scale the
system relaxes towards this distribution from a given arbitrary initial distribution
of wealth, and how the relaxation process depends on the system parameters, in
particular on the system size and the distribution of saving propensities. Patriarca
et al. (2007) made such studies by numerical simulations.

In the simulations, all agents started from the same initial wealth xi(t = 0) =
x0 = 1, without any loss of generality. The value x0, owing to the conservation of
the total wealth X = ∑N

i=1 xi , also represented the global average value of x at
any time t , i.e. 〈x(t)〉 ≡ ∫

xf (x) dx = x0 = X/N . This set-up was used to model
a more general situation in which the initial conditions of the agents were far from
equilibrium.

Relaxation to equilibrium as a function of system size Before analysing the
dependence of the time scale on the saving propensity distribution, Patriarca et al.
(2004) considered its dependence on the number of agentsN . If time was measured
by the number of transactions T , they found that the time scale was proportional
to the number of agents N : a system A that is m times larger than a system B
(NA = mNB) relaxes m times slower than B. This is shown in Fig. 4.9, where the
average wealth 〈x(t)〉λ of the agent subset with λ = 0.99 is plotted for various
systems with different values of N versus the rescaled time t = T/N . However,
the λ-density φ(λ) is the same for all systems and uniformly partitions each system
into 100 subsets with values λ = 0.00, 0.01, . . . , 0.99.
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Time t is defined as the ratio t = T/N between the total number of trades T and
the total number of agents N , i.e. what is usually called a Monte Carlo cycle or
sweep in molecular simulation (Allen and Tildesley 1989): in a Monte Carlo cycle,
each agent performs on average the same number of trades (actually two), in the
same fashion as in molecular dynamics – each particle is moved once at every time
step. The results do not change if one of the two agents involved in an exchange
is selected sequentially, e.g. in the order of its index i = 1, . . . , N , as is common
practice in molecular simulations. This ensured that every agent performs at least
one trade per cycle and reduces the amount of random numbers to be drawn. They
introduced another time unit τ0, such that during any time interval (t, t + τ0) all
agents perform on average one trade (or the same number of trades). In this way
the dynamics and the relaxation process became independent of N . The existence
of a natural time scale independent of the system size provided a foundation for
using simulations of systems with finite N in order to infer properties of systems
with continuous saving propensity distributions and N → ∞.

Relaxation to equilibrium as a function of saving propensity Relaxation in
systems with constant λwas studied by Chakraborti and Chakrabarti (2000), where
a systematic increase of the relaxation time with λ, and eventually a divergence for
λ → 1, was found: for λ = 1, no exchanges can occur, so that the system is frozen.

Patriarca et al. (2007) considered systems with uniformly distributed λ. In this
case a similar behaviour of the relaxation times was observed, broken down to
subsystems with similar values of λ. As discussed in detail in Patriarca et al.
(2005, 2006) and Bhattacharya et al. (2005), the partial wealth distributions of
agents with a given value of λ relax towards different states with characteristic
shapes fλ(x). The generic function fλ(x) has a maximum and an exponential tail,
thus closely recalling the shape of a 
-distribution. The corresponding average
value is given by 〈x〉λ ≡ ∫

xfλ(x) dx = k/(1 − λ), where k is a suitable constant
determined through the condition

∫ 〈x〉λ φ(λ) dλ = X/N ; X is the total wealth
of the system. Even if the partial distributions decay exponentially with x, the
sum of all partial distributions results in a Pareto law at large values of x, i.e.
f (x) = ∑

λ fλ(x) ∼ 1/x1+α. Numerical simulations clearly show that agents with
different values of λ are associated to different relaxation times τλ.

Results are illustrated in Fig. 4.10 for a system of N = 104 agents uniformly
partitioned into 100 subsets with λ = 0.01, 0.02, . . . , 0.99: mean wealths of sub-
sets corresponding to a value of λ closer to 1 relax slower towards their asymptotic
average wealth 〈x〉λ ∝ 1/(1 − λ).

The average wealth x0 allowed to introduce a threshold that partitions the sys-
tem into poor agents, with an asymptotic average wealth 〈x(t → ∞)〉λ < x0, and
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Figure 4.10 Mean wealth 〈x(t)〉λ versus time for various λ. The 104 agents are
uniformly partitioned into 100 subsets with λ = 0.01, 0.02, . . . , 0.99. Higher λ
correspond to longer relaxation times. The continuous line 〈x〉 = x0 partitions
agents into poor (x < x0) and rich (x > x0) ones. Reproduced from Patriarca
et al. (2007).

rich agents with 〈x(t → ∞)〉λ > x0. The poor–rich threshold 〈x〉 = x0 = 1 is rep-
resented as a continuous line in Fig. 4.10 and corresponds to λ ≈ 0.75 for the
particular example.

The differences in the relaxation process can be related to the different relative
wealth exchange rates that, by direct inspection of Eqs. (4.14) and (4.15), appear to
be proportional to 1 − λ. Thus, in general, higher saving propensities are expected to
be associated with slower relaxation processes. A more detailed analysis was carried
out as shown in Fig. 4.11: after the rescaling of time and wealth by the factor (1 − λ),
mean wealths corresponding to agents with different values of λ (Fig. 4.11a)
appeared to relax approximately on the same time scale and towards the same
asymptotic value (Fig. 4.11b). In fact, the factor (1 − λ) was proportional to the
wealth exchange rates and, at the same time, through the condition of stationarity,
determined the equilibrium average wealth values 〈x〉λ = k/(1 − λ) (Patriarca et al.
2005). As in some earlier cases, agents started from the same initial condition
xi(t = 0) = x0 = 1. In this case, in order to study in greater detail the high saving
propensity parameter region, which corresponds to the high relaxation time region,
the system of N = 104 agents was uniformly partitioned into 200 subsets with
saving propensities λ = 0.5000, 0.5025, . . . , 0.9975. It was not strictly a uniform
distribution of λ on [0, 1), since φ(λ) = 0 for λ < 0.5; however, it did not matter
because what counted was the high saving propensity parameter interval.

Relaxation time distribution The model with distributed saving propensities
was completely specified by the trading rules of Eqs. (4.14) and the set of saving
propensities {λi} of the N agents. In the case of a continuously distributed λ, a
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continuous saving propensity density φ(λ) was used in place of the discrete λ-set,
normalized so that

∫ 1
0 φ(λ) dλ = 1.

Patriarca et al. 2007 suggested a method to obtain the wealth as well as the
relaxation distribution directly from the saving propensity density φ(λ). It follows
from probability conservation that f̃ (x̄)dx̄ = φ(λ)dλ, where x̄ is a short notation
for 〈x〉λ and f̃ (x̄) is the density of the average wealth values. In the case of
uniformly distributed saving propensities, one obtains

f̃ (x̄) = φ(λ)
dλ(x̄)

dx̄
= φ

(
1 − k

x̄

)
k

x̄2
. (4.21)

This shows that a uniform saving propensity distribution leads to a power law
f̃ (x̄) ∼ 1/x̄2 in the (average) wealth distribution. In general a λ-density going
to zero for λ → 1 as φ(λ) ∝ (1 − λ)α−1 (with α ≥ 1) leads to the Pareto law
f̃ (x̄) ∼ 1/x̄1+α with Pareto exponent α ≥ 1 as found in real distributions.

In a very similar way it was possible to obtain the associated distribution of
relaxation timesψ(τ ) for the global relaxation process through the relation between
the relaxation time τλ and the agent saving propensity: given that the time scale
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follows a relation τλ ∝ 1/(1 − λ), then

ψ(τ ) = φ(λ)
dλ(τ )

dτ
∝ φ

(
1 − τ ′

τ

)
τ ′

τ 2
, (4.22)

where τ ′ is a proportionality factor. Comparison with Eq. (4.21) shows that ψ(τ )
and f̃ (x̄) are characterized by power law tails in τ and x̄, respectively, with the
same Pareto exponent.

It is to be noted, as discussed in Patriarca et al. (2005), that in the parameter region
λ → 1, from which the main contributions to the Pareto power law tail come, the
widths of the generic equilibrium partial distributions fλ(x) increase more slowly
than the difference between the mean values 〈x〉λ′ − 〈x〉λ corresponding to two
agents with consecutive values of the saving propensity λ′ and λ. This implies that
at equilibrium and in the tail of the distribution it is possible to resolve the mixture∑

λ fλ(x) into its components fλ(x) and to approximate the current value of wealth
x(t) of a certain agent with saving propensity λ (that is actually a stochastic process)
with the corresponding average value, 〈x〉λ ≈ x, so that f̃ (x) ≈ f (x).

Finally, Patriarca et al. (2007) noted that an ensemble with a power law distribu-
tion of relaxation times undergoes a slow relaxation process if the exponent of the
relaxation time distribution is smaller than 2, so that a Pareto exponent larger than
2, as automatically generated by the model, seems to ensure a normal relaxation.

4.1.5 Dynamics of agents

In the DY and CC models, agents are homogeneous. The DY model is nothing but
a special case of the CC model where λ = 0. In these models, looking at individual
agents and the whole system are equivalent. On the contrary, the presence of the
distributed saving propensity (quenched disorder) in the CCM model gives it a rich
structure and calls for a careful look at the local scale (at the level of individuals)
besides computing global quantities.

Chatterjee and Sen (2010) reported extensive numerical simulations with a
system of N agents, with uniform distribution �(λ) = 1, bounded above by
1 − 1/N . One observes the dynamics of a tagged agent k, having a saving propen-
sity λk, in a pool ofN agents distributed according to a quenched�(λ), to try to see
how the individual distributions P (mk|λk) look (Fig. 4.5). As reported elsewhere
(Chatterjee et al. 2004; Bhattacharya et al. 2005; Patriarca et al. 2005; Chatterjee
and Chakrabarti 2007b), the agents with smaller values of savings λk barely have
money of the order of average money in the market. On the other hand, agents with
high saving propensity λk possess money comparable to the average money in the
market, and in fact, for the richest agent, the distribution extends almost up to the
total money M .
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Figure 4.12 Distribution D(�mk|λk) of money difference �mk for the tagged
agent k with a particular value of savings λk in the CCM model with uniformly
distributed savings (δ = 0). The data are shown for a system of N = 256 agents.
The inset shows that, for higher λ, the probability of losses becomes larger in the
region −0.2 < �mk < 0. Reproduced from Chatterjee and Sen (2010).

4.1.5.1 Distribution of change in wealth

Upon trading with another agent l, the money of the tagged agent k changes by an
amount

�mk = mk(t + 1) −mk(t) = − (ml(t + 1) −ml(t)) .

The distributions D(�mk|λk) were computed in the steady state, given that agent k
has a saving propensity λk (Fig. 4.12). This distribution has asymmetries for both
small and large values of saving propensities λk .

Total money remains constant in the steady state for any agent. An agent with a
relatively higher λ incurs losses which are considerably small in magnitude, imme-
diately suggesting that agents with larger savings must be having more exchanges
where losses, however small, occur. The magnified portion of the distribution shows
that it is really so (shown in the inset of Fig. 4.12).

4.1.5.2 Walk in the wealth space: definition

To investigate the dynamics at the microscopic level, one can conceive of a walk
for the agents in the so-called ‘wealth space’, in which each agent walks a step
forward when she gains and one step backwards if she incurs a loss. The walks are
correlated in the sense that when two agents interact, if one takes a step forward, the
other has to move backward. On the other hand, two agents can interact irrespective
of their positions in the wealth space unlike Brownian particles.
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Figure 4.13 Measures for the gain–loss walk: the inset shows 〈x〉 with time for
different values of savings λk , showing the drifts. The slopes a(λk) are also shown.
The estimate of λ∗

k is approximately 0.469. The data are shown for a system of
N = 256 agents. Reproduced from Chatterjee and Sen (2010).

Once the system is in the steady state, one can define x(t + 1) = x(t) + 1 if the
tagged agent gains money, and x(t + 1) = x(t) − 1 if she loses. In other words,
x(t) performs a walk in one dimension. Without loss of generality we start from
origin (x(0) = 0), and we insist t = 0 is well within the steady state. We investigate
the properties of this walk by computing the mean displacement 〈x(t)〉, and the
mean square displacement 〈x2(t)〉 − 〈x(t)〉2.

Actually, one can also consider a walk for a tagged agent in which the increments
(i.e. step lengths) are the money gained or lost at each step, but the exponential
distribution obtained for such step lengths (Fig. 4.12) indicates that it will be
simple diffusion like. This walk in gain–loss space will be referred to as GLS walk
hereafter.

For the CC model, for any value of the fixed saving propensity λ, one obtains
a conventional random walk in the sense 〈x(t)〉 is zero and 〈x2(t)〉 − 〈x(t)〉2 ∼ t .
However, for the CCM model, results are quite different. It is found that 〈x(t)〉
has a drift, 〈x(t)〉 ∼ a(λk)t . a(λk) varies continuously with λk, taking positive to
negative values as one goes from low to high values of savings λk (see inset of
Fig. 4.13), respectively. It is obvious that, for some λ∗

k , there is no drift, a(λ∗
k) = 0.

λ∗
k is estimated to be about 0.469 by the interpolation method. On the other hand

〈x2〉 − 〈x〉2 ∼ t2 for all λk, which is a case of ballistic diffusion (Fig. 4.14). The
negative or positive drifts of the walks indicate that the probabilities of gain and
loss are not equal for any agent in general. Plotting the fraction of times the tagged
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agent gains/loses in Fig. 4.15a, it is indeed found that an agent with a smaller λ
gains with more probability while the opposite happens for agents with larger λ.
Indeed, the intersection of the two curves is the point λ∗

k where the probabilities
are equal and the corresponding walk should show 〈x〉 = 0. It is difficult, however,
to detect numerically λ∗

k exactly, which lies close to 0.47, and check whether
an agent with λ∗

k behaves like a conventional random walker or shows ballistic
diffusion. Simulations using values of λ even very close to 0.47 always show
ballistic behaviour.

In order to explain the above results, one could investigate at a finer level the
walk when the tagged agent with λk interacts with another agent with saving λ.
First, one can calculate the average 〈λ〉 when the tagged agent loses or gains and
note that, for a gain, one has to interact with an agent with a higher λ in general,
as indicated in Fig. 4.15b. In fact, the average value is very weakly dependent
on λk and significantly greater/less than 0.5 for a gain/loss. This is contrary to
the expectation that gain/loss does not depend on the saving propensities of the
interacting agents.

Having obtained evidence that gain/loss depends on the interacting agents’
saving propensities, one computes the probability of gain and loss, Pg and Pl ,
respectively, as a function of λ for the agent with saving λk . The data show that
indeed an agent gains with higher probability while interacting with an agent with
λ > λk and vice versa. In fact, the data for different λk collapse when Pg − Pl are
plotted against a scaled variable y = λ−λk

1.5+λk+λ as shown in Fig. 4.16 indicating a
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linear variation with y, i.e.

Pg − Pl = const
λ− λk

1.5 + λk + λ
. (4.23)

It is also observed that there is hardly any finite size effect on the collapse in
the sense that the similarly scaled data for N = 100 collapse exactly on those for
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N = 256. An agent with a high value of λ will interact with a higher probability
with agents whose saving propensities are lesser, causing a loss of money. Therefore
in the wealth space it will have tendency to take more steps in the negative direction.
This explains the negative drift for large λ.

It is possible to estimate the value of λ∗
k using Eq. (4.23), utilizing the fact that

the integrated value of Pg − Pl over all λ should be zero for λk = λ∗
k . This gives

1 − (1.5 + 2λ∗
k)
[
log(2.5 + λ∗

k) − log(1.5 + λ∗
k)
] = 0, (4.24)

solving which one can get λ∗
k � 0.4658, which is consistent with the earlier obser-

vations.
It may be added here that in principle the probability of gain or of loss while

two agents interact can be calculated from the money distribution. In the CCM
model, when two agents with money m1 and m2 and saving propensities λ1 and λ2,
respectively, interact, the difference in money before and after the transaction for,
say, the second agent is given by [(1 − λ1)m1 − (1 − λ2)m2] /2. Therefore, for the
second agent to lose,m2 must be greater thanm′ = m1(1−λ1)

(1−λ2) , and the corresponding
probability is given by∫ M

0
P (m1|λ1)dm1

∫ M

m′
P (m2|λ2)dm2. (4.25)

However, the exact form of the money distribution is not known (Basu and Mohanty
2008) for the CCM case. For the CC model, λ = λ1 = λ2 and, letting M → ∞,
the above integral becomes∫ ∞

0
P (m1|λ)dm1

∫ ∞

m1

P (m2|λ)dm2 =
∫ ∞

0
P (m1|λ)[1 − P̃ (m1|λ)]dm1, (4.26)

where P̃ (m) = ∫ m

0 P (m)dm is the cumulative distribution of money. SinceP = ∂P̃
∂m

,
the right-hand side of Eq. (4.26) is equal to 1/2 independent of the form of P (m|λ).
Thus, in the CC case, the probability of gain or loss is equal, leading to a simple
random walk. In the CCM, however, the results are expected to be dependent on
λ1, λ2, as Eq. (4.25) indicates.

The above results naı̈vely suggest that the walk in the GLS is like a biased random
walk (BRW) (except perhaps at λ∗) for the CCM model, while it is like a random
walk (RW) for the CC model. In fact, in the CCM model, associated with each
value of λ, there seems to be a unique value of the parameter p characterizing the
corresponding biased random walk, where p is the probability of moving towards
a particular direction. This makes it convenient to compare the CCM walk with
a BRW, which we discuss in the next subsection by considering some additional
features of the walk.
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Figure 4.17 Plot of pslope as a function of λ obtained from the slopes of 〈x〉 versus
t plot for the CCM model for N = 256 and the simulated walker (SW). Inset
shows that the variation of 〈x〉 against t for λ = 0.0, 0.46 and 0.8 for the CCM
model and the SW are almost indistinguishable. Reproduced from Goswami et al.
(2011).

4.1.5.3 CCM walk in the GLS: comparison with BRW

In which aspects do the walk in GLS in the CCM model differ from the BRW? In a
BRW, a walker moves towards a particular direction with probability p = 1/2 such
that the total distance 〈x〉 travelled is linear in time t , precisely 〈x〉 = (2p − 1)t in
the preferred direction. To compare the CCM walk with the BRW, Goswami et al.
(2011) uses the following scheme.

First, one extracts effective values of p for the walk in the GLS using the slopes
of the 〈x〉 versus t plots assuming it is a BRW. Next, from the distribution of
distances travelled without a change in direction in the CCM walk, effective p

values are extracted assuming it is a BRW. Then, it is possible to compare the
direction reversal probability of the CCM walk with that of the BRW. If these
effective values of p and direction reversal probability of the CCM walk and the
BRW turn out to be identical, one can conclude that the walks in the GLS for
the CCM model are ordinary biased random walks.

p using slopes of 〈x〉 versus t curves As already seen, for the CCM model,
〈x〉, the distance travelled in time t varies linearly with t . Thus, 〈x〉 = s0t and
an effective p ≡ pslope can be calculated using the relation pslope = s0+1

2 . (By our
convention, if pslope >

1
2 , the walker has a bias towards the right (gain).) The results

obtained for this (Fig. 4.17) indicated that pslope approaches 1
2 as λ → λ∗.

Distribution of distances travelled without change in direction It is possible
to study the distribution of the walk lengths X through which the walker travels
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Figure 4.18 Variation of peff (X) against X for λ = 0.2, 0.46, 0.8 for the CCM
model.peff values are not independent ofX in general. Reproduced from Goswami
et al. (2011).

without any change in direction. For the BRW, this is easy to calculate: in our
convention let the probability to move towards the right be p, then the probability
Ws(X) that a walker goes through a length X at a stretch along the right direction is
proportional to pX(1 − p)2. The corresponding probability along the left is written
as Ws(−X) ∝ p2(1 − p)X. Therefore, in a BRW,

Ws(X)

Ws(−X)
=
(

p

1 − p

)X−2

. (4.27)

For the walk in the GLS, Ws(X)/Ws(−X) was calculated numerically for any
value of λ, and a value of peff (X, λ) for different values of X is obtained using
Eq. 4.27. If the CCM walkers are really simple biased random walkers, one would
get a peff (X, λ) independent of X for a given λ and close to the value pslope

obtained using the slope method. Figure 4.18 shows the plot of peff (X). It should
be noted that, in this method, peff (X = 2) cannot be obtained as the right-hand
side of Eq. 4.27 becomes unity, i.e. p independent. We notice immediately that the
effective p values are in no way independent of X (except perhaps when λ is close
to unity). This strongly indicates that the walks are not simple BRWs. We will get
back to this issue in Section 4.1.5 again.

Probability of direction reversal Another quantity closely related to the measure
discussed in the previous subsection is the probability of direction reversals made
by the walker, which is defined as f = nd/n, where nd is the number of times the
walker changes direction and n is the total number of steps (duration of the walk).
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f can be identified as 1/〈X〉, where

〈X〉 =
∑
X

[
XWs(X) +XWs(−X)

]
(4.28)

is the average distance travelled at a stretch. Note that we have normalized the
probabilities Ws(X) such that

∑
X[Ws(X) +Ws(−X)] = 1.

The probability of direction reversal for the BRW is 2p(1 − p) and has a maxi-
mum value of f = 1/2 at p = 1/2, which corresponds to a random walk. However,
we get the result that, for the CCM model, f is always greater than 1/2. The data
are shown in Fig. 4.19. Thus, there is no way one can extract an equivalent value
of p and make comparisons. This again shows that the agents in the CCM model
do not perform a biased random walk in the gain loss space.

One can also define a quantity

〈X〉− =
∑
X

[
XWs(X) −XWs(−X)

]
(4.29)

to obtain an effective p value for each λ using the fact that, for the BRW, 〈X〉− =
(2p − 1)/(2p(1 − p)). 〈X〉− is shown as a function of λ in Fig. 4.20. Interestingly,
here it is possible to extract effective values of p that are quite close to pslope, the
values obtained using the slope method (data shown in Fig. 4.20 to be compared
with the data in Fig. 4.17).
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Thus, it is found that the results for f (which is related to 〈X〉) indicate that
the CCM walk on the GLS cannot be regarded as a BRW while the measure 〈X〉−
is fairly consistent with it. In the following subsections we resolve this intriguing
issue.

It is important to make a few comments about the quantities 〈X〉 and 〈X〉−, the
first of which is directly related to the direction reversal probability f . If the left
and right moves of a walker are regarded as the states of an Ising spin and the
temporal sequence of the moves are viewed as spin states of the consecutive sites
of a one-dimensional lattice, then 〈X〉 is equivalent to the average domain size and
〈X〉− can be interpreted as the magnetization. Also, it should be noted that 〈X〉− is
a quantity which will be zero if the Ws(X) distribution is symmetric.

4.1.5.4 Correlations

Earlier, it had been mentioned that, for the CC model, the walkers apparently
behave as ordinary random walkers. Since the probability of direction reversal
in the CCM model shows drastic difference when compared with the BRW, the
question whether f is exactly equal to 1/2 in the CC model (as in a random walk)
can also be raised. Interestingly, the CC model shows little difference from the
CCM when f is compared (Fig. 4.19), while previous studies had shown that
the scaling of 〈x2〉 is quite different for the two models. We are therefore led to
investigate more into the details of the walks for both the CC and CCM walks in the
context of direction changes. In the CCM model, f > 1/2 while a bias depending
on λ is simultaneously maintained. It may seem a little difficult to conceive such a
walk, but it is possible to construct some deterministic toy walk models which have
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these properties. For example, a walk which goes along right (R) and left (L) as
RRLRRL, etc. has these features. Here there is an overall bias towards right while
f = 2/3 > 1/2. Adding some noise may still maintain the bias and f > 1/2. The
CC walkers on the other hand also show a deviation from a simple random walk as
f > 1/2 is obtained here.

Since a large value of probability of direction changes implies that there is a
higher probability of taking two successive steps in directions opposite to each
other, it immediately suggests that there is a correlation between successive steps.
Let the step taken at time t be written as s(t) = ±1 (+1 for a right step and −1 for
a left step). The time correlation function C(t) is then defined as

C(t) = 〈s(t0)s(t0 + t)〉 − 〈s(t0)〉〈s(t0 + t)〉, (4.30)

where t0 is an arbitrary time after equilibrium is reached. The average over different
initial times t0 was taken to calculate the above correlation in a single realization of
a walk for both the CC and CCM models. The second term on the right-hand side of
Eq. 4.30 can be replaced by s0

2, as 〈s(t0)〉, the average step length, is independent
of time at equilibrium and equivalent to s0, the slope of the 〈x〉 versus t plot. For the
CC walk, therefore, 〈s(t0)〉 = 0, while for the CCM walk it has a non-zero value.
We notice that for both CC and CCM walks, there is a strong correlation when
t = 1, which decays quite fast for both models. For the CC walk, the correlations
become zero at later times (Fig. 4.21). For the CCM model, however, the correlation
saturates to a very small non-zero value which is λ dependent. The saturation value
C̄ = C(t → ∞) is estimated by averaging C(t) over the last few hundred steps.
The average saturation values C̄ are shown in the inset of Fig. 4.21 as a function of
λ. C̄ has a minimum value ∼ O(10−5) close to λ∗ and a small positive value which
increases as λ deviates from λ∗.

The short time correlation in both models is indeed negative, which is consistent
with the fact that direction reversal occurs with a probability greater than 1/2. It
may be mentioned that, for a RW as well as a BRW, all time correlations are simply
zero.

In a one-dimensional walk, two successive steps give rise to four possible paths:
LR, LL, RL, RR. The probabilities of these moves were investigated in detail to
gain further insight into the walks in the GLS as the correlations for successive
time steps are strongest. This correlation, C(1), is related to the probabilities W of
these moves; precisely, C(1) = W (RR) +W (LL) −W (LR) −W (RL) − s2

0 .
The results for both CC and CCM models are shown in Fig. 4.22. It can be noted

that, irrespective of the value of λ, W (RL) = W (LR), i.e. the tendency to change
direction does not depend on the sequence of the steps taken. At the same time, we
note that while, for the CC walkers, there is also a symmetry W (RR) = W (LL),
for the CCM walkers, which have a bias, these two measures are unequal in general
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Figure 4.21 (a) The correlation of steps taken at time intervals of t is calculated
using Eq. 4.30 for a single walk configuration for the CC model, averaging over
all possible initial times t0. (b) Same for the CCM model. Inset shows that the
saturation value of the correlation, C̄, at long times has a dependence on λ; it is ≈ 0
at λ∗ and increases as λ deviates from λ∗. (c) Saturation value of the correlation
C̄, at long times for the CCM model shows a dependence on λ; it is ≈ 0 at λ∗ and
increases as λ deviates from λ∗. In (d), the correlation for two consecutive time
steps, C(1), is shown for both the CC and CCM models also as a function of λ.
Reproduced from Goswami et al. (2011).

and become equal only at the ‘bias-less’ point λ∗. From these detailed measures, it
is now entirely clear how the CC walk differs from the RW and the CCM from the
BRW as illustrated in Fig. 4.23.

Understanding why direction change is preferred At this point it is apparent
that, in general in these kinetic exchange models, the tendency to make a gain and
a loss in successive steps (in either order) is independent of the saving feature of
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(a) the CC and (b) the CCM models. Reproduced from Goswami et al. (2011).

the CC and CCM models. In fact, it is present with maximum probability in the
CC model with λ = 0 (i.e. the DY model) when agents do not save at all.

One can therefore try to understand this feature from the point of view of the
DY model, which has a simple, exactly known form for the money distribution by
considering the transactions made in two successive steps. It could be shown that
indeed, for the DY case, it can be proved that the probability of direction changes
is greater than 1

2 .
In the DY model (and in fact in the CC model for any λ), in general, an agent

gains/loses while interacting with a richer/poorer agent. This is because if agent 1
with moneym1 interacts with agent 2 with moneym2, after interaction, agent 1 will
have moneym′ = ε(m1 +m2). On an average, if agent 1 gains, (m1 +m2)/2 > m1,
or m2 > m1. To prove that the probability of direction changes is greater than 1

2 ,
we show that individually W (RL) and W (LR) are greater than 1/4. Suppose an
agent had a gain in the first step and ended up with money mg. Let W ′(LR) be
the conditional probability that the agent loses in the next step while interacting
with another agent with money m, given that she/he gained in the first step. This
probability has to take care of two factors:

(1) condition that m ≤ mg;
(2) averaging over all possible mg.
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(2011).

Using the money distribution function P (m) = exp(−m) for the DY model
(taking T = M/N = 1), one gets

W ′(LR) =
∫ ∞
m0
g
P (mg)dmg

∫ mg

0 P (m)dm∫ ∞
m0
g
P (mg)dmg

= 1 − 1

2
exp

( −m0
g

)
. (4.31)

The lower limit of the integral over mg is taken as m0
g and not zero since, after

a gain in the first step, the agent must have money greater than zero. m0
g may be

considered to be an arbitrary lower bound.
Now W (LR) = W ′(LR)/2 simply as we know that probability of R or L at the

first step is just 1/2 (Chatterjee and Sen 2010). Therefore one would get W (LR) =
[1 − 1

2 exp(−m0
g)]/2 ≥ 1/4 independent of the value of m0

g.
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In a similar manner, for the move RL, one has an arbitrary upper bound m0
l for

the money ml the agent ends up with after a loss in the first step such that

W (RL) = 1

2

∫ m0
l

0 P (ml)dml

∫∞
ml
P (m)dm∫ m0

l

0 P (ml)dml

= 1

4

[
1 + exp

( −m0
l

)]
. (4.32)

Obviously, W (RL) is also greater than or equal to 1/4 for all values of m0
l and

therefore the sum W (LR) +W (RL) ≥ 1
2 . Since W (RL) and W (LR) equal 1/4

for extremely improbable cases, one can conclude that W (LR) +W (RL) > 1
2 in

general.
Now, what happens for the CC and CCM models? In the CC model, the condi-

tional probability that an agent loses after gaining depends on λ through the money
distribution function. Since its form is not exactly known, it is not possible to get
exact results. However, for the CC model, there is a growing region for the money
distribution curve for small m values and therefore the probability that agent 1
meets a poorer agent in the next step is less probable than in the DY model and
hence qualitatively it is understandable thatW (RL) or (W (LR)) will decrease with
λ. At the same time it is true in the CC model also that the conditional proba-
bility W ′ is twice the probability W of a LR or a RL move as in the DY model,
independent of λ (Chatterjee and Sen 2010).

In the CCM model, matters become more complicated as the condition for
gain/loss depends on the interacting agents’ saving propensities. It was found in
Chatterjee and Sen (2010) that the probability of a gain is higher when one interacts
with an agent with larger λ. Since the average money of an agent increases with
λ (Mohanty 2006) (in a non-linear manner), this condition implies, once again,
that a gain is more likely while interacting with a richer agent. Consequently, the
same kind of logic holds good here: for a direction change to occur, an agent who
got richer (poorer) in one step should interact with a poorer (richer) agent in the
next. However, like the CC model, the exact form of the money distribution is not
known here. Moreover, the probabilities W ′ and W for the LR and RL moves are
not simply related in the CCM model.

4.1.5.5 Comparisons with a simulated walk of a single agent

In the previous section it was concluded that the form of the money distribution is
responsible for the preference of direction change in the gain–loss space, although
the actual amount of money lost/gained is ignored in the walk picture. In fact, in
these types of kinetic exchange models, whether there is saving or not, the choice
of the second agent becomes an important factor, giving rise to f > 1/2 in all
cases. Hence one is led to believe that, if a CCM/CC kind of walk is generated
which does not take into account the above choice, the result f > 1/2 will not be
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observed. Such a walk for the CC is trivial, one only has to generate a walk which
has probability 1/2 of going either way making it completely identical to a RW.

For the CCM, however, it is possible to generate a non-trivial single-agent walk
in which the choice of the second agent is arbitrary. It was found in Chatterjee
and Sen (2010) that the probability of gain over loss on an average for an agent
with given saving propensity λ1, while interacting with another agent whose saving
propensity is λ2, has the following form (4.23):

Pg − Pl = const.
λ2 − λ1

1.5 + λ1 + λ2
.

The constant turns out to be very close to 0.345. This equation suggests that, at
each step, a tagged walker with saving λ1 will move left/right with a probability
which depends on λ2 as well. This probability at each step can be calculated easily
from the above equation once λ1 and λ2 values are known and using the fact that
Pg + Pl = 1. It is therefore possible to generate a walk for a single agent with
given λ1, assuming that at each step it interacts with another agent of randomly
chosen λ2 to give the probability of movement to right/left at that instant. Thus, in
this walk, the choice of λ2 is completely random; the money distribution function
does not enter the picture at all and at the same time the probability of a move
towards any direction is not fixed.

It is interesting to compare the results of this simulated walk with the original
multiagent CCM walk. We find that in fact the effective p values are almost
identical. For the simulated walk (SW), we can extract an effective p in two ways:
first is as usual by calculating the slope (section IIA), and secondly by taking the
average value of the probability Pg (to move right) generated for all times – these
two values are very close. Only the value obtained using the slopes have been
shown in Fig 4.17 along with the results for the CCM walk.

However, when one calculates Ws(X) for the simulated walks, it turns out that
these are not at all comparable to the CCM (Fig 4.24). There are two interesting
features to be noted here: the probabilities for small X are larger for the CCM
model and the magnitude of differences decrease with λ. Both these results can
be explained from the anti-persistence effect present in the CCM model. Here the
increased number of direction changes results in a larger value of Ws(X) for small
X and the fact that the anti-persistence effect decreases with λmakes the CCM and
SW models more similar as λ increases. It was also noted that thep values extracted
from the ratio Ws(X)/Ws(−X) are indeed independent of λ (Fig. 4.25), which is
expected for a BRW. So the simulated single agent walk is like a conventional
BRW, compared with the CCM, in which the p values have a dependence on λ as
well as on the number of steps X (Fig. 4.18).
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When f , the fraction of direction changes, is calculated for the simulated walk,
we find that it is less than 1

2 for all values of λ, and very close to 1
2 at λ∗ � 0.469

(Fig. 4.19).
The simulated walk of a single agent once again shows the presence of a λ∗ ≈

0.47 where the walk becomes bias-less, but otherwise shows features which are
identical to those of BRW. This is consistent with the conjecture that the choice of
the second agent is crucial when the money distribution form plays a significant
role.
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4.2 Models with commodity

4.2.1 Ideal-gas trading market in the presence of
a non-consumable commodity

In the above markets, modifications owing to exchange of a consumable commodity
hardy affects the distribution, as the commodity once bought or sold need not be
accounted for. Consumable commodities effectively have no ‘price’, because of
their short lifetime to contribute to the total wealth of an individual. It is interesting,
however, to study the role of non-consumable commodities in such market models,
and this we do here.

In a simplified version of a market with a single non-consumable commod-
ity, Chatterjee and Chakrabarti (2006) considered a fixed number of traders or
agents N who trade in a market involving total money

∑
i mi(t) = M and total

commodity
∑

i ci(t) = C, mi(t) and ci(t) being the money and commodity of the
i-th agent at time t and both are non-negative. Needless to mention, both mi(t)
and ci(t) change with time or trading t . The market, as seen before, is closed,
which means that N , M and C are constants. The wealth wi of an individual i is
thus the sum of the money and commodity it possesses, i.e. wi = mi + p0ci ; p0

is the ‘global’ price. In the course of trading, money and commodity are locally
conserved, and hence the total wealth. In such a market, one can define a global aver-
age price parameter p0 = M/C, which is set here to unity, giving wi = mi + ci . It
may be noted that, in order to avoid the complication of restricting the commodity–
money exchange and their reversal between the same agents, the Fisher velocity of
money circulation (e.g. Wang et al. 2006) is renormalized to unity here. In order to
accommodate the lack of proper information and the ability of the agents to bargain
etc., one can allow of course fluctuations δ in the price of the commodities at any
trading (time): p(t) = p0 ± δ = 1 ± δ. It is found that the nature of steady state is
unchanged and independent of δ, once it becomes non-vanishing.

4.2.1.1 Dynamics

In general, the dynamics of money in this market looks the same as Eq. (4.2),
with �m given by Eqs. (4.4), (4.9) or (4.15) depending on whether λi = 0 for
all, λi = 0 but uniform for all i or λi = λj , respectively. However, all �m are
not allowed here; only those for which �mi ≡ mi(t + 1) −mi(t) or �mj are
allowed by the corresponding changes �ci or �cj in their respective commodities
(�m > 0,�c > 0):

ci(t + 1) = ci(t) + mi(t + 1) −mi(t)

p(t)
, (4.33)

cj (t + 1) = cj (t) − mj (t + 1) −mj (t)

p(t)
, (4.34)
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Figure 4.26 Steady-state distributions of money (P (m) vs. m) and commodity
(P (c) vs. c) in a market with no savings (saving factor λ = 0) for no price fluc-
tuations i.e. δ = 0. The graphs show simulation results for a system of N = 100
agents, M/N = 1, C/N = 1; mi = 1 = ci at t = 0 for all agents i. The inset
shows the distribution P (w) of total wealth w = m+ c. As p = 1, for δ = 0,
although m and c can change with tradings within the limit (0 − 2) the sum is
always maintained at 2. Reproduced from Chatterjee and Chakrabarti (2006).

where p(t) is the local-time ‘price’ parameter, a stochastic variable:

p(t) =
{

1 + δ with probability 0.5,

1 − δ with probability 0.5.
(4.35)

The role of the stochasticity in p(t) is to imitate the effect of bargaining in a trading
process, δ parametrizes the amount of stochasticity. The role of δ is significant
in the sense that it determines the (relaxation) time the whole system takes to
reach a steady state; the system reaches equilibrium sooner for larger δ, while its
magnitude does not affect the steady-state distribution. It may be noted that, in the
course of the trading process, certain exchanges are not allowed (e.g. in cases when
a particular pair of traders do not have enough commodity to exchange in favour
of an agreed exchange of money). One then skips these steps and chooses a new
pair of agents for trading.

4.2.1.2 Results

For δ = 0, of course, the wealth of each agent remains invariant with time; only
the proportion of money and commodity interchange within themselves, since the
‘price’ factor remains constant. This of course happens irrespective of the savings
factor being zero, uniform or distributed. For δ = 0, the steady-state distribution
of money or commodity can take non-trivial forms (Fig. 4.26), but has strictly a
δ-function behaviour for the total wealth distribution; it gets frozen at the value of
wealth one starts with (see inset of Fig. 4.26 for the case mi = 1 = ci for all i).
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Figure 4.27 Steady-state distribution P (m) of money m in the uni-
form savings commodity market for different values of saving factor λ
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 from left to right near the origin) for
δ = 0.05. The inset shows the distribution P (c) of commodity c in the uniform
savings commodity market for different values of saving factor λ. The plots show
simulation results for a system of N = 100 agents, M/N = 1, C/N = 1. Repro-
duced from Chatterjee and Chakrabarti (2006).
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Figure 4.28 Steady-state distribution P (w) of total wealth w = m+ c in the
uniform savings commodity market for different values of saving factor λ
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 from left to right) for δ = 0.05. The
plots show simulation results for a system of N = 100 agents, M/N = 1,
C/N = 1. Reproduced from Chatterjee and Chakrabarti (2006).

As mentioned already for δ = 0, the steady-state results are not dependent on
the value of δ (the relaxation time of course decreases with increasing δ). In such a
market with uniform savings, money distribution P (m) has a form similar to a set
(for λ = 0) of gamma functions (Fig. 4.27): a set of curves with a most-probable
value shifting towards 1 from below, as the saving factor λ changes from 0 to 1 (as in
the case without any commodity). The commodity distribution P (c) has an initial
peak and an exponential fall-off, without much systematics with varying λ (see
inset of Fig. 4.27). The distribution P (w) of total wealthw = m+ c behaves much
like P (m) (Fig. 4.28). It is to be noted that, since there is no precise correspondence
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Figure 4.29 Steady-state distribution P (m) of money m in the commodity market
with distributed savings 0 ≤ λ < 1. P (m) has a power law tail with Pareto index
ν = 1.00 ± 0.02 (a power law function x−2 is given for comparison). The inset
shows the distribution P (c) of commodity c in the same commodity market.
The plots show simulation results for a system of N = 1000 agents, M/N = 1,
C/N = 1. Reproduced from Chatterjee and Chakrabarti (2006).

with commodity and money for δ = 0 (unlike when δ = 0, when the sum is fixed),
P (w) cannot be derived directly from P (m) and P (c). However, there are further
interesting features. Although they closely resemble gamma distributions, the set of
curves for different values of saving factor λ seem to intersect at a common point,
near w = 1, which might reveal a deeper meaning on further investigation. All the
reported data are for a system of N = 100 agents, with M/N = 1 and C/N = 1
and for a case when the noise level δ equals 10%.

For λ distributed uniformly within the interval 0 ≤ λ < 1, the tails of both money
and wealth distributions P (m) and P (w) have Pareto law behaviour with a fitting
exponent value ν = 1.00 ± 0.02 and ν = 1.00 ± 0.05, respectively (Figs. 4.29
and 4.30, respectively), whereas the commodity distribution is still exponentially
decaying (see inset of Fig. 4.29).

Hence, the presence of a non-consumable commodity can affect the nature of
money and wealth distributions. However, under a kinetic exchange dynamics of
the CCM form, the resultant distribution of money and wealth shows the self-
organizing effects and retains the power law forms (Chatterjee and Chakrabarti
2006).

4.2.2 Self-organizing model with single commodity

Adam Smith in 1776 first considered the self-organizing aspect of a market consist-
ing of selfish agents, which he called the ‘invisible hand’ effect (Smith 1776). The
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Figure 4.30 Steady-state distribution P (w) of total wealth w = m+ c in the
commodity market with distributed savings 0 ≤ λ < 1. P (w) has a power law
tail with Pareto index ν = 1.00 ± 0.05 (a power law function x−1 is given for
comparison). The inset shows the cumulative distribution Q(w) ≡ ∫∞
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P (w)dw.

The plots show simulation results for a system of N = 1000 agents, M/N = 1,
C/N = 1. Reproduced from Chatterjee and Chakrabarti (2006).

mainstream economists seem to consider it to be true in principle (as a matter of
faith?) (Samuelson 1998). In various statistical physics models of interacting sys-
tems or networks, such self-organization has indeed been demonstrated to emerge
in the global aspects of the system which consists of a large number of simple
dynamical elements having local (in time and space) interactions and dynamics
(Bak 1996).

Chakraborti et al. (2001) studied the self-organizing features of the dynamics of
a model market, where the agents ‘trade’ for a single commodity with their money.
They demonstrated that the model, apart from having a self-organizing behaviour,
has got a crucial role for the money supply in the market and that its self-organizing
behaviour is significantly affected when the money supply becomes less than the
optimum. They also observed that this optimal money supply level of the market
depends on the amount of ‘frustration’ or scarcity in the commodity market. In
their model, each agent having commodity less than the ‘subsistence’ level traded
with any other having more than the ‘subsistence’ level in exchange of its money.

Specifically, they considered a closed economic system consisting of N eco-
nomic agents, where each economic agent i has at any time money mi and com-
modity qi , such that (

∑N
i=1 mi = M and

∑N
i=1 qi = Q), where N , M and Q are

fixed. The ‘subsistence’ commodity level for each agent is q0. Hence at any time an
agent having qi < q0 will attempt to trade, utilizing its money mi at that time, with
agents having commodity more than q0, and will purchase to make its commodity
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level q0 (and no further), if its money permits. The agents with qi > q0 will sell
off the excess amount to such ‘hungry’ agents having qi < q0, and will attempt
to maximize their wealth (money). This dynamics is local in time (‘daily’) and it
stops eventually when no further trade is possible satisfying the above criteria.

They introduced an ‘annual’ or long-time dynamics when some random fluctu-
ations in all the agents’ money and commodity occur. Annually, each agent would
get a minor reshuffle of the money and its commodity (e.g. perhaps owing to the
noise in the stock market and in the harvest because of the changes in the weather
respectively). This (short- and long-time) combined dynamics is similar to that of
the ‘sand-pile’ models (Bak 1996). In this model, the price of the commodity does
not change with the money supply M in the market; it remains fixed (at unity). The
aim was to find the steady-state features of this market; in particular, the distribu-
tions P (m) and P (q) of the money and commodity, respectively, among the agents.
They investigated how many agents P (q0) can satisfy their basic needs through this
dynamics, i.e. can reach the subsistence level q0, as a function of the money supply
M for both the unfrustrated (g < 1) (where g = q0/ < q > and < q > = Q/N

is the average commodity in the market) and the frustrated (g > 1) cases of the
commodity market. Interestingly, they observed that an optimum amount M0 of
money supply is required for evolving the market towards the maximum possible
value of P (q0), and this optimum value of money M0 was observed to decrease
with an increase in g in the market. This corroborates the view of the economists
that: (1) this sort of dynamics, which takes the system to equilibrium, is greatly
facilitated by ‘paper money’, which does not have any value of its own, but can be
considered rather as a good ‘lubricant’ in the economic system (Samuelson 1998)
and (2) when the (paper) money supply gets changed, it does not just scale up
(for increased money supply) or down (for decreased money supply) the commod-
ity prices, the (self-organizing) dynamics towards equilibrium also gets seriously
affected (Keynes 1937).

4.2.2.1 Unlimited money supply and limited supply of commodity

First, they considered the money supply M in the market to be infinitely large, so
that it dropped out from any consideration. The dynamics is then entirely governed
by the commodity distribution among agents: for agents with qi < q0, the attempt
will be to find another trade partner having qi > q0; and having found such partners,
through a random search in the market, trades occur for mutual benefit (for the
selling agent one still considers the extra money from trade to be important).
The system thus evolves towards its steady state, as the fixed-point feature of
the short-time or daily dynamics gets affected by the random noise reshuffling
in the commodity of each agent. This reshuffling essentially induces Gibbs-like
distribution (Chakraborti and Chakrabarti 2000). The trade dynamics is clearly
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Figure 4.31 (a) The distributions of commodity P (q) for different values of g for
N = 1000,Q = 1,M = 100 (M > M0(g)), for the unfrustrated case (g < 1). The
steady-state distribution of commodity P (q) is Gibbs-like: P (q) = A exp(−q/ <
q >) with A = 1 − g, for q > q0. The inset shows the linear variation of P (q0)
with g (P (q0) = g). (b) The distributions of commodity P (q) for different values
of g for N = 1000, Q = 1, M = 100 (M > M0(g)), for the frustrated case (g >
1). The variation of P (q0) with g is shown in the inset where the theoretical
estimate (P (q) = g exp(−g)/(g − 1 + exp(−g))) is also indicated by the solid
line. Reproduced from Chakraborti et al. (2001).

motivated or ‘directed’. They looked for the combined effect on the steady-state
distribution of commodity P (q), which is independent of the initial commodity
distribution among the agents.

For the unfrustrated case (g < 1), where all the agents can be satisfied, the typi-
cal distributions P (q) are shown in Fig. 4.31 for different values of g. It is seen that
the P (q) is Gibbs-like (P (q) = A exp(−q/ < q >) and A = 1 − g), for q > q0,
while P (q0) = g (as shown in the inset). One can easily explain these observations
using the fact that the cumulative effect of the long-time randomization gives Gibbs
distribution (exp(−q/ < q >) for all q). They then estimated the final steady-state
distributionP (q) from the additional effect of the short-time dynamics on this (long-
time dynamics induced) Gibbs distribution. All the agents with q < q0 manage to
acquire a q0 level of commodity (as g < 1 and everybody has enough money to pur-
chase the required amount). Their number is then given by N− = ∫ q0

0 exp(−q)dq.
They require the total amount of commodity q0N−. The amount of commodity
already available to them is given by Q− = ∫ q0

0 q exp(−q)dq. The excess amount
required Qdemand = q0N− −Q− has to come from the agents having q > q0. The
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average of the excess amount of commodity of the agents who are above the q0

line is given by < qexcess >= (1 −Q− − (1 −N−)q0)/(1 −N−). The number of
agents who supply the Qdemand amount is given by N+ = Qdemand/ < qexcess >.
This gives P (q0) = N− +N+= g. One can easily determine the prefactor of the
final steady-state distribution P (q) for q > q0, A = 1 − g from the conservation
of the total number of agents and total commodity.

For the frustrated case (g > 1), the results are shown in Fig. 4.31. A simi-
lar calculation for P (q0) is done as follows: N+ = ∫∞

q0
exp(−q)dq is the num-

ber of people above the q0 line who will sell off their excess amount of com-
modity to come to the q0 level, Q+ = ∫ ∞

q0
q exp(−q)dq is the commodity of the

agents above the q0 level. Then the supplied amount of commodity to the agents
below the q0 line is Qsupply = Q+ − q0N+. The average of the deficit commod-
ity, < qdeficit >= ((1 −N+)q0 − 1 +Q+)/(1 −N+). Hence, the number of agents
who would reach the q0 level from below is N− = Qsupply/ < qdeficit >, so that
P (q0) = N+ +N− =g exp(−g)/(g − 1 + exp(−g)). A comparison of this esti-
mate for P (q0) with g is also shown in the inset of Fig. 4.31. It may be mentioned
that, in absence of the strict Gibbs distribution for P (q) ( q < q0), the above
expression for P (q0) is somewhat approximate.

4.2.2.2 Limited money supply and limited supply of commodity

When the money supply is limited, the self-organizing behaviour is significantly
affected and the fraction of agents who can secure q0 amount of commodity for
themselves P (q0) does not always reach its maximum possible value (as suggested
by the amount of commodity available in the market). For all values of g, as one
increases the money supply in the marketM ,P (q0) increases and then after a certain
amount M0, it saturates. In Fig. 4.32, it has been shown how the quantity P (q0)
varies with M for different values of g (for g > 1 only, as one is more interested in
the frustrated case). One defines M0 to be the optimum amount of money supply
needed for the smooth functioning of the market. They also observed that this
optimal money supply level of the market depends on the amount of frustration g
in the commodity market. In the inset, the variation of M0 with g is shown for the
frustrated case (g > 1) only.

4.2.3 Another model with commodity

In another attempt to realize an economy which could be more ‘realistic’, Ausloos
and Pȩkalski (2007) proposed another model that included exchangeable com-
modities. Similar to the models discussed in the previous subsections, it is a fully
conservative model. The model consists of N trading agents with M discrete com-
modities and money amountM (integer) per agent (although money is continuous).
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Figure 4.32 The variation of quantity P (q0) withM for different values of g in the
frustrated cases (g > 1). The inset shows the variation of M0 with g. Reproduced
from Chakraborti et al. (2001).

In the model anyone is allowed to trade with anyone else provided they possess
enough money or commodity to carry out an exchange. The model dynamics is
defined as follows: a random agent j is chosen, and, if she has money, she chooses
to buy with probability 1/2. A random fraction of the total money is considered
and the maximum amount of commodities she can buy is also calculated, which
is predecided not to exceed some Mm. A second agent k is randomly chosen, and
checked if she has enough commodities to sell to j . If this is satisfied, the decision
to sell is taken with probability 1/2. Next, the exchange takes place – money passes
from j to k and commodities from k to j . N choices of agent j completes one
Monte Carlo time step.

The first quantity of interest to the authors is the time evolution of the amount of
money for the richest trader and the amount of commodity held by the trader with the
maximum number of them. The curves look asymptotically flat, but the richest agent
attains the maximum long before the agent with maximum number of commodities
(Fig. 4.33). The authors attribute this to the fact that they restricted the upper limit
of the number of commodities exchanged in a single transaction to some Mm. On
the other hand, there was no a priori constraint on the price and was restricted by the
amount of money of the buying agent. Despite the fact that the price is randomly
determined by the seller, and the buyer also accepts or rejects it randomly, the
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Figure 4.33 The time evolution of the maximum money possessed by the richest
agent, and also the agent with maximum number of commodities, in the specific
example withN = 60,M = 50,Mm = 5. Reproduced from Ausloos and Pȩkalski
(2007).

number of transactions, number of exchange commodities and amount of money
exchanged show little fluctuation, maintaining approximately constant throughout.
The distribution of money spreads quickly and in the long time there is a very
broad distribution with some agents with large amounts of money. In comparison,
the distribution of commodities is not that broad, which the authors attribute to the
‘socialist’ restriction on the maximum number of commodities exchanged in each
transaction. In their specific example (with apples as commodities) with N = 60,
M = 50, Mm = 5 in Fig. 4.34, the authors claim two power law regions in the
money distribution, the distinct regions which have been produced owing to the
nature of the model and its constraints. The authors also considered the effect of
taxes on their model. They defined a taxation process in which a certain fraction of
money that is exchanged in each transaction goes to the ‘state’ and thus disappears,
leaving the system ‘open’ with respect to money. The money evolution is thus non-
monotonic for the richest agent (Fig. 4.35), while commodities remain unaffected.
The overall effect on the ‘society’ is felt by the fact that there is a considerable
change in the distribution of money in the system – the dispersion between the
richest and the poorest agents is less for a society with tax, than one which has
no tax (Fig. 4.36), while the distribution of commodity remains fairly unchanged.
The average price per commodity goes down considerably (Fig. 4.35), while the
number of poor agents increases (Fig. 4.36).
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Figure 4.34 The time evolution of the distribution of money (a), and also the
distribution of commodities (b), in the specific example with N = 60, M = 50,
Mm = 5. Reproduced from Ausloos and Pȩkalski (2007).

4.3 Models on networks

4.3.1 Models on directed networks

The topology of exchange space in a real society is quite complicated. There is
not only a strong sense of directionality but often a hierarchy in the underlying
network – money is preferentially transferred in one direction, which results in the
irreversible flow of money. A mean-field scenario (Section 4.1) does not include
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Figure 4.35 (a) The time evolution of the money and commodities with 1% tax
and without tax. (b) Time evolution of the average price per unit commodity
without and with tax. The specific example is with N = 60, M = 50, Mm = 5.
Reproduced from Ausloos and Pȩkalski 2007.

the constraints on the flow of money or wealth. A way to imitate this is to consider
wealth exchange models on a directed network (Wasserman and Faust 1994; Albert
and Barabási 2002; Dorogovtsev and Mendes 2003b). There have been previous
attempts to obtain the same using the physics of networks (Hu et al. 2006, 2007;
Garlaschelli and Loffredo 2008).
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Figure 4.36 The distribution of money with 1% tax and without tax. The spe-
cific example is with N = 60, M = 50, Mm = 5. Reproduced from Ausloos and
Pȩkalski (2007). MCS, Monte Carlo time step.

We consider that there are N agents, each represented by a node and connected
to the rest N − 1 by directed links. The directionality of the links denote the
direction of flow of wealth in this fully connected network. The directed network
parametrized by p is constructed in the following way (Chatterjee 2009, 2010):

(1) There are no self-links, so that the adjacency matrix A (Albert and Barabási
2002; Dorogovtsev and Mendes 2003b) has diagonal elements aii = 0 for all
sites i.

(2) For each matrix element aij , i = j , we call a random number r ∈ [0, 1].
aij = +1 if r < p and aij = −1 otherwise. Also aji = −aij . Thus, we have
N (N − 1)/2 such calls of r . aij = +1 denotes a directed link from i to j and
aij = −1 denotes a directed link from j to i.

The link disorder at site i is ρi = 1
N−1

∑
j aij .

∑
j denotes the sum over all

N − 1 sites j linked to i. Thus, ρi = 1 is a node which has all links outgoing
and ρi = −1 is a node for which all links are incoming. The parameter p has a
symmetry about 0.5 and the distributionR(ρi) is also symmetric about 0, which
is, in fact, a consequence of the conservation of the number of incoming and
outgoing links. A network withp = 0.5 has the lowest degree of disorder, given
by a narrow distribution R(ρ) of ρ, around ρ = 0 (Fig. 4.37). This means that
almost all nodes have a more or less equal number of incoming and outgoing
links. On the other extreme, p = 0.01 is a network which has a small but finite
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Figure 4.37 The distribution R(ρi) of the link disorder ρi for a directed network
with different values of p = 0.50, 0.30, 0.10, 0.05, 0.01 for a system of N =
100 nodes, obtained by numerical simulation, averaged over 104 realizations.
Reproduced from Chatterjee (2009).

number of nodes where most links are incoming/outgoing, thus giving rise to
a very wide distribution of link disorder R(ρ).

The rules of exchange are: if aij = −1,

mi(t + 1) = mi(t) + μjmj (t),

mj (t + 1) = mj (t) − μjmj (t),

else, aij = +1,

mi(t + 1) = mi(t) − μimi(t),

mj (t + 1) = mj (t) + μimi(t).

0 < μi < 1 is the ‘transfer fraction’ associated with agent i, andmi(t) is the money
of agent i (or, money at node i) at time t . The total money in the system is conserved,
no money is created or destroyed, defined by the above equations. If there is a link
from j to i, the node i gains μj fraction of j th agent’s money. Otherwise, if there is
a link from i to j , the node j gains μi fraction of i-th agent’s money. In the Monte
Carlo simulations, one assigns a random amount of money to agents to start with,
such that the average money M/N = 1. A pair of agents (nodes) are chosen at
random, and, depending on the directionality of the link between them (the sign of
aij ), the relevant rule from the above is chosen. This is repeated until a steady state
is reached and the money distribution does not change in time. The distribution of
money P (m) is obtained by averaging over several ensembles (different random
initial distribution of money).
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Figure 4.38 The steady-state distribution P (m) of moneym for directed networks
characterized by different values of p. (a) For μ = 0.1, the inset shows P (m) for
p = 0.01 for N = 100, 500, 1000, and the power law m−1.5 is also indicated. (b)
For μ = 0.5 and (c) for μ = 0.9. (d) The plots for uniform, random distributed
μ, D(μ) = 1, and also a guide to the power law m−2. The data are obtained
by numerical simulation, for a system of N = 100 nodes, averaged over 103

realizations in the steady state and over 104 initial configurations. The average
money M/N is 1. Reproduced from Chatterjee (2009).

This model is different from the CC and CCM models, but one can relate the
transfer fraction μ analogous to λ in the CC and CCM models.

4.3.1.1 Model with uniform μ

We first discuss the case of homogeneous agents, i.e. when all agents i have
μi = μ. The μ = 0 limit is trivial, as the system does not have any dynamics.
Figure 4.38a shows the steady-state distribution P (m) of money m for μ = 0.1 for
different values of network disorder p. In general, the distribution of money has
a most probable value, which shifts monotonically from about 0.85 for p = 0.5
to 0 as p → 0. P (m) has an exponential tail, but a power law region develops
as p → 0 below the exponential cut-off, which fits approximately to m−1.5. At
p → 0, the condensation of wealth at the node(s) with strong disorder (ρ → 1)
is apparent from the single, isolated datum point at the mmax = M end (see inset
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of Fig. 4.38a, for p = 0.01). There is a strong finite size effect involved in this
behaviour. To emphasize this, we plot P (m) for p = 0.01 for N = 100, 500 and
1000 (inset of Fig. 4.38a). While N = 100 and N = 500 show the isolated datum
point, it is absent for N = 1000. This also indicates that this behaviour is absent
for infinite systems for p → 0. For larger values of p, the distribution resembles
gamma distributions, as in the CC model. At μ = 0.5, the most-probable value
of P (m) is always at 0 (Fig. 4.38b). For weak disorder (p = 0.5), P (m) is expo-
nential, but it shows a wider distribution as one goes to higher disorder (p → 0).
The condensation of wealth at node(s) with high value of ρ (ρ → 1) is again
apparent from the single, isolated datum point at the mmax = M end (Fig. 4.38b,
for p = 0.05). For μ = 0.9, P (m) is always decaying, with a wide distribution
up to mmax = M (Fig. 4.38c). As in previous plots, the condensation of wealth
at node(s) with high value of ρ is visible: see plot for p = 0.05 in Fig. 4.38c. A
common feature for the curves for all values of p is that P (m) exhibits log-periodic
oscillations, while resembling roughly a power law decay. Another important fea-
ture is that P (m) → N for m → 0, which indicates that money is distributed in a
very small fraction of nodes, while most nodes have almost no money at a given
instance.

For a particular value of the network disorder p, the wealth distribution P (m)
becomes more and more ‘fat tailed’ as μ is increased. This is in contrast to what
is observed in the CC model (Chakraborti and Chakrabarti 2000) where P (m)
organizes to a narrower distribution as λ increases.

4.3.1.2 Model with distributed μ

We now consider the case in which each agent i has a different value of μi ,
which does not change in time. This is a case of heterogeneous agents where
the heterogeneity can be viewed as a ‘quenched disorder’. We consider a random
uniform distribution of μ, i.e. D(μ) = 1 in 0 < μ < 1. This is the case analogous
to the CCM model (Chatterjee et al. 2004). Figure 4.38d shows the plots of the
money distributionP (m) for different values of network disorderp. All curves have
a power law tail (Chatterjee 2009), resembling am−2 variation. However, the effects
of the topology of the underlying network are visible: for strong disorder in topology
p = 0.05, condensation of wealth at node(s) with a high value of ρ (ρ → 1) is
also apparent from the single, isolated datum point at the mmax = M end. Further
investigations also indicate that the power law exponent is similarly related to the
distribution of ‘transfer fraction’ μ, as one observes in the CCM model (Chatterjee
et al. 2004; Mohanty 2006), i.e. P (m) ∼ m−2 for most distributions, while one can
obtain P (m) ∼ m−(2+δ) if D(μ) ∝ (1 − μ)δ.

For a particular value of the network disorder p, the wealth distribution P (m)
becomes more and more ‘fat tailed’ as μ is increased. Again, this is in contrast to
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Figure 4.39 The phase diagram in the (α, β) plane. The origin corresponds to the
CCM model, while, at corners (0,∞) and (∞, 0), the richest trader participates in
every transaction, hence the network is star-like. At the (∞,∞) corner only the
richest and the second richest traders trade, and the network essentially is a dimer.

what is observed in the CC model (Chakraborti and Chakrabarti 2000), in which
P (m) organizes to a narrower distribution as λ increases.

4.3.2 Preferential transactions and weighted trade network

Very recently, Chakraborty and Manna (2010) proposed models for preferential
transactions. The main idea being the fact that rich traders invest much more in
trade and hence take part more frequently in the trading process. In the model, a pair
of traders i and j are selected for trading with probabilities directly proportional to
mi(t)α andmj (t)β , respectively. The trading rules are the same as in Eqs. (4.13) and
(4.14). The α = β = 0 case corresponds to the CCM model, the trading topology
is a random graph. But when they are non-zero positive, rich traders have higher
probability of getting selected in a trading process. However, in this case it takes a
long time for all of the traders to take part in the exchange process.

When α = β and finite, the resultant wealth distribution exhibits a power law tail
with ν = 1.00 apart from slight variations. This shows that the wealth distribution
is robust with respect to the parameter values in the region, and the non-zero values
of α and β only control the frequency at which different traders take part in the
trading process. When either of α or β is infinity and the other is zero, the richest
trader is always selected while all others are selected with uniform probability. This
corresponds to a star-like topology in the trade graph. It is observed that Pareto law
still holds good. Now, when both (α, β) assume large values, the situation looks
very different. In its limiting case, (∞,∞), only the richest and the next richest
trader take part in the trading process, i.e. the trade graph is merely a dimer. Thus,
qualitatively, one can summarize the results in a schematic diagram (Fig. 4.39).
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4.3.2.1 The trade network

One can associate a network in this trading system: each trader being a node and
a link appears between a pair when they trade for the first time. No further link is
added between a pair even if they trade again. As more and more traders take part
in the trading process, the number of links grows in the system. When α = β = 0
this growth is exactly the same as a random graph, but it looks much different for
α > 0, β > 0, because rich nodes preferentially enter into trading and get linked
more often than the poor ones. The degree ki of a node i is the number of distinct
traders with whom it traded.

The dynamics is found to have two distinct time scales: T1, at which the network
is a single component connected graph, and T2, at which the graph is an N -clique
(each node is connected to all others). This study reports the growth of the giant
component 〈sM (ρ,N )〉, which is the order parameter of this percolation problem
with respect to the link density ρ = n/[N (N − 1)] in the network. A finite size
scaling collapses the order parameter for different sizes: scaling ρ axis by a factor
of Nθ . The critical density of percolation transition ρc(N ) is defined to be that
value of ρ for which 〈sM(ρ,N )〉 = 1/2. The paper reports that ρc(N ) varies with
N−θ . In general, the exponent θ (α) depends on α: for α ≤ 1/2, θ (α) = 1, while
for α > 1/2, θ (α) decreases. For Erdős–Renyi random graphs, θ = 1, and hence it
indicates that this trade network is different from random graphs for α > 1/2.

4.3.2.2 Degree distribution

The degree distribution shows interesting observations. This paper (Chakraborty
and Manna 2010) studies the average degree distribution P (k,N ) as a function of k
at different system sizesN for different values of α, β. It is observed that almost the
entire degree distribution obeys the usual finite-size scaling analysis and confirms
the validity of the following scaling form:

P (k,N ) ∝ N−ηk(α)G[k/Nζk(α)], (4.36)

where the scaling function G(y) has its usual forms G(y) ∼ y−γ (α) as y → 0 and
G(y) approaches 0 very fast for y � 1. This is satisfied only when γk(α) =
ζk(α)/ηk(α), and exponents ηk(α) and ζk(α) fully characterize the scaling of
P (k,N ). γk(α) is observed to decrease with α.

4.3.2.3 The weighted network

Between an arbitrary pair of traders, a large number of bipartite trading takes place
within a certain time T . The sum of the amounts δij invested in all trades between
traders I and j within time T is defined as the total volume of trade wij = ∑

T δij .
Here wij is known as the weight of the link (i, j ). The probability distribution
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P (w,N ) of the link weights is calculated when the average degree 〈k〉 reaches
a specific preassigned value. When the trade networks is an N -clique graph, i.e.
when each trader has traded with all other traders at least once, each node has same
degree, i.e. P (k) = δ(k − (N − 1)) and 〈k〉 = N − 1. The distribution has a very
long tail, and P (w,N ) ∝ w−γw with γw � 2.52.

The strength of a node si = ∑
j wij , where j are all neighbours ki of i, is a

measure of the total volume of trade handled by the i-th node. Nodal strengths
vary widely over different nodes. The strength distribution also follows a power
law decay P (s,N ) ∼ s−γs for N → ∞; similarly as in Eq. (4.36).

Often, weighted networks have non-linear strength degree relations indicating
the presence of non-trivial correlations, as in the airport networks and the interna-
tional trade network. For a network where the link weights are randomly distributed,
the 〈s(k)〉 grows linearly with k. However, a non-linear growth like 〈s(k)〉 ∼ kφ ,
with φ > 1, exhibits the presence of non-trivial correlations. For this case, φ(α)
increases with α. The paper also reports the variation of the mean wealth of a trader
with its degree, and gets: 〈x(k)〉 ∼ kμ(α), where μ(α) decreases with α.

4.4 Models with debt

What happens when debt is permitted? This is a very important question when
it comes to individual economic activity, and debt may be simply considered as
negative money. For instance, a bank can be considered as a huge reservoir of
money. When an agent borrows money from it, its cash balance increases, at the
cost of a debt obligation to the bank, which is actually negative money. Thus,
a general conservation law is still maintained for the total money, which is the
algebraic sum of the cash M and the debt D, i.e. M −D = Mb (Yakovenko and
Barkley Rosser 2009). Thus, relaxing the condition of negative money allows for
a different ground state for the agents, other than mi = 0. A detailed discussion of
the above and book-keeping accounting under an econophysics framework can be
found in Braun (2001) and Fischer and Braun (2003a,b).

Now, if one considers the DY model (Drăgulescu and Yakovenko 2000) and
relaxes the non-negativity of money by allowing agents to go for debt, any agent
who loses an amount �m at an instant when its instantaneous money mi is less
than �m goes into the state of negative money or debt. The probability distri-
bution of money P (m) never stabilizes, and the system never reaches a steady
state – P (m) keeps spreading to m = +∞ and m = −∞, but respecting the con-
servation of the average money per agent. What does this signify in the economics
sense? The conservation tells us that some agents become very rich at the expense
of some agents going into greater and greater debt. Any economic system with
unlimited debt is not stable, as is learnt from the recent financial crisis. It is
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(2000).

commonly believed that the crisis was a result of accumulation of huge amounts
of debt.

What happens if the boundary conditions for debt are slightly modified? For
example, if there is a limitation on the amount of debt any agent can incur, i.e.
instead of the original mi ≥ 0, we have a mi ≥ −md for all agents i (Drăgulescu
and Yakovenko 2000). The resultant stationary distribution of money is still expo-
nential, with respect to the new boundary m = −md , while the money temperature
is now Td = md +Mb/N (Fig. 4.40). This allows each agent to havemd amount of
money at the cost of this debt feature. Another study considers a bit more realistic
boundary condition, where, instead of putting a constraint on the individual debt,
the constraint is put on the collective debt of the agents in the system (Xi et al.
2005). Usually there exists a quantity called the required reserve ratio R, which is
a fraction of money deposited into bank accounts that a bank sets aside, so that the
remaining 1 − R fraction can be given away as loans. If initially there is moneyMb

in the system, then repeated loans and borrowing can increase the money available
for loans to M = Mb/R. This extra money comes from the increase of total debt
in the system. It is easily seen that that maximal total debt is D = Mb/R −M .
When the debt is maximal,Mb/R positive andMb(1 − R)/R negative money circu-
lates within the agents, which means that the distributions of positive and negative
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Figure 4.41 Stationary distributions of money for R = 0.8, with different ‘money
temperatures’ T+ and T−. Reproduced from Xi et al. (2005).

monies will be characterized by different ‘money temperatures’ T+ = Mb/RN and
T− = Mb(1 − R)/RN , as confirmed by simulations of Xi et al. (2005) (Fig. 4.41).
Similar distributions were also noted elsewhere (Fischer and Braun 2003b). The
above framework of the reserve ratio hold for individuals and corporations is not
under consideration in reality. In addition, there are other different sources in which
debt is accumulated, and sometimes in huge proportions. So far, there has been
no consideration of interest rates. Drăgulescu and Yakovenko (2000) considered
a model with different fixed interest rates for deposits and loans. Computer sim-
ulations revealed that the money distributions are still exponential, but the money
temperature varies slowly in time. Another sophisticated model (Keen 1995, 2000)
found a regime of debt-induced breakdown, which stops all economic activity due
to heavy debt, and requires a ‘debt moratorium’ or a delay in the payments of debts
or obligations, in order to resume any further economic activity. One can go from
fixed interest rates, as in the above models, to a scenerio where they are adjusted
self-consistently, say, where the interest rates are set according to probabilistic
withdrawals of deposits (Cockshott and Cottrell 2008). This study revealed that
the money supply first increases up to a certain limit, and then the accumulated
debt induces a ‘crash’ in the economy. These are probably very interesting areas
for future studies (Yakovenko and Barkley Rosser 2009).

4.5 Models with tax

Guala (2009) provided a simple framework under which the effect of taxes can
be realized in simple wealth exchange models. The basic idea is that there is a
process of taxation involved in any trading interaction. The simple model describes
a taxation process for all binary interactions, where a fraction of the total money
involved is lost as a tax, which could be redistributed according to some prescribed
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rule. Formally, if f is the tax parameter, the amount f (wi(t) + wj (t)) is given away
as taxes, wi(t) being the wealth of agent i at an instant (trading time step) t . The
available wealth (1 − f )(wi(t) + wj (t)) is split up randomly between the trading
agents i and j , similar to Eq. (4.4), as

w′
i(t + 1) = εt (1 − f )(wi(t) + wj (t)),

w′
j (t + 1) = (1 − εt )(1 − f )(wi(t) + wj (t)),

with εt being random with time t . The tax part is redistributed to a subset r , which
could be either some poorest fraction of the population or could also be all of them.
Guala discusses the simple case when the tax is redistributed within the whole
population. For f = 0, it is easily seen that the model is nothing but the case of the
random sharing of wealth (Drăgulescu and Yakovenko 2000), which gives a purely
exponential decay for the steady-state distribution of wealth P (w) with modal
value wm = 0. However, for the cases f = 0, P (w) is asymmetric unimodal with
wm = 0, but wm shifts away from 0 for f = 0 until it goes to a maximum before
decreasing again until it becomes 0 for f = 1. The most egalitarian distribution is
found for an optimal value of the taxation f � 0.325.

4.6 Other related models

4.6.1 Inelastic scattering in an open economy

Slanina (2004) introduced a generalized model of kinetic exchanges, but incorpo-
rating a non-conservation term. The basic assumption is that the system is open and
the interaction can produce an increase of the total wealth of the two interacting
agents. The external energy is utilized only through a human activity and the prob-
lem is simplified by assuming that the net increase of wealth happens at the very
moment of the agents’ interaction. Also, the interactions occur pairwise. In each
time step t a pair of agents (i, j ) is chosen randomly. They interact and exchange
wealth (4.1) according to the symmetric rule

M =
(

1 + ε − β β

β 1 + ε − β

)
. (4.37)

All other agents leave their wealth unchanged,mk(t + 1) = mk(t) for all k different
from both i and j . β ∈ (0, 1) quantifies the wealth exchanged, while ε > 0 is the
measure of the flow of wealth from the outside. The process is shown in Fig. 4.42.
The parameter ε takes care of all sources of non-conservation.
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4.6.2 A threshold-induced phase transition in the kinetic exchange models

In the context of wealth exchange processes, Pianegonda et al. (2003) and Iglesias
(2010) had considered a model for the economy in which the poorest in the society
(atom with least energy in the gas) at any stage takes the initiative to go for a trade
(random wealth/energy exchange) with anyone else. Interestingly, in the steady
state, one obtained a self-organized poverty line, below which none could be found
and above which a standard exponential decay of the distribution (Gibbs) was
obtained.

Along the same lines, Ghosh et al. (2011) studied a model in which N particles
interact among themselves through two-body energy (x) conserving stochastic
scatterings with at least one of the particles having energy below a threshold θ

(same as the poverty line in the equivalent economic model). The states of particles
are characterized by the energy {xi}, i = 1, 2, . . . , N , such that xi > 0, ∀i and
the total energy E = ∑

i xi is conserved (= N , such that the average energy of
the system Ē = E/N = 1, without any loss of generality). The evolution of the
system is carried out according to the following dynamics:

x<i
′ = ε(x<i + xj ),

x ′
j = (1 − ε)(x<i + xj ),

}
(4.38)

where x<i < θ (threshold energy or ‘poverty line’) and ε (0 ≤ ε ≤ 1) is a stochastic
variable, changing with time (scattering). The quantity x is conserved during each
collision: x<i

′ + x ′
j = x<i + xj . The question of interest is: what is the steady-state

distribution p(x) of energy x in such systems?
They simulated a system of N particles (agents). At any time t , a particle i

is selected randomly. If its energy is below a prescribed threshold energy θ , it
collides with any other random particle j (in the mean-field model), and the two
particles will exchange energy according to Eq. (4.38). After each such successful
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collision, the time is incremented by unity. The dynamics continues for an indefinite
period, unless there is no particle left below the threshold energy, in which case the
dynamics freezes. After sufficiently large time t > τ , a steady state is reached when
the energy distribution p(x) (and also other average quantities) does not change
with time. One may start with different initial random configurations, where the
states of particles are characterized by the energies {xi}, i = 1, 2, . . . , N , which
are drawn randomly from a uniform distribution such that xi > 0, ∀i and the
average energy Ē = ∑

i xi/N is set to unity. One finds the system to be ergodic
(the steady-state distribution p(x) is independent of the initial conditions {xi}),
and steady-state averages over all such independent initial conditions is taken to
evaluate the quantities of interest.

Ghosh et al. (2011) observed that, for finite values of the energy threshold
θ , the steady-state energy distribution is no longer the simple Gibbs–Boltzmann
distribution. They also found thatO (≡ ∫ θ

0 p(x)dx), the average number of particles
below the threshold energy in the steady state, is zero for θ values below or at a
critical threshold energy θc, and, for θ > θc, O is non-zero. The steady-state value
of O, the average number of particles below the threshold energy θ , is the ‘order
parameter’ of the system. They studied the relaxation dynamics in the system:
the relaxation of O(t) to the steady-state value of O (= O(θ ) for t > τ (θ ), the
‘relaxation time’). They found τ (θ ) grows as θ approaches θc, and eventually
diverges at θc. They studied mainly three cases: (1) the mean-field (or infinite
range) case where i and j in Eq. (4.38) can represent any two particles/agents
in the system; (2) the one-dimensional case where j = i ± 1 along a chain; and
(3) the two-dimensional case in which j = i ± δ, where δ represents neighbors of
i; they considered a two-dimensional square lattice.

In the mean-field (infinite range) model, the order parameter O ≡ ∫ θ
0 p(x)dx

(Fig. 4.43) shows a ‘phase transition’ at θc � 0.607 ± 0.001. A power law fit
O ∼ (θ − θc)β gives β � 0.97 ± 0.01.

They also studied the relaxation behaviour of O. At θ = θc, the O(t) variation
fits well with t−δ; δ � 0.93 ± 0.01. The relaxation time τ was also estimated
numerically and found a diverging growth of τ near θ = θc (Fig. 4.44), indicating
‘critical slowing down’ at the critical value θc. The values of exponent z for
the divergence in τ ∼ |θ − θc|−z were estimated (for both θ > θc and θ < θc).
For the mean-field model, the fitting value for exponent z � 0.83 ± 0.01. They
also studied the universality of this behaviour by generalizing the dynamics in
Eq. (4.38) to

x<i
′ = ε1x

<
i + ε2xj ,

x ′
j = (1 − ε1)x<i + (1 − ε2)xj ,

}
(4.39)
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Figure 4.44 Variation of τ versus θ . (Inset) Scaling fit τ ∼ |θ − θc|−z, with expo-
nent z � 0.83. Simulations are shown for the mean-field case with N = 105.
Reproduced from Ghosh et al. (2011).

where ε1 and ε2 are random stochastic variables within the range [0, 1]. The critical
point θc shifted to θc � 0.69 (θc � 0.61 for ε1 = ε2 = ε). The transition behaviour
was seen to be universal near the critical point θc, but the critical point depended
specifically on the model.

In the one-dimensional version, they found that β � 0.41 ± 0.02 and θc �
0.810 ± 0.001, while z turned out to be around 1.9 ± 0.05 and δ � 0.19 ± 0.01.
For the two-dimensional lattice version, β � 0.67 ± 0.01 and θc � 0.675 ± 0.005.
In addition, they found z � 1.2 ± 0.01 and δ � 0.43 ± 0.02. All these estimated
values of the critical exponents β, z and δ are summarized in Table 4.1.
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Table 4.1 Comparison of critical exponents of the
Ghosh et al. model with those of the Manna model
(Lübeck 2004)

Ghosh et al. Manna

β 1D 0.41 ± 0.02 0.382 ± 0.019
2D 0.67 ± 0.01 0.639 ± 0.009
MF 0.97 ± 0.01 1

z 1D 1.9 ± 0.05 1.876 ± 0.135
2D 1.2 ± 0.01 1.22 ± 0.029
MF 0.83 ± 0.01 1

δ 1D 0.19 ± 0.01 0.141 ± 0.024
2D 0.43 ± 0.02 0.419 ± 0.015
MF 0.93 ± 0.01 1

1D, one-dimensional; 2D, two-dimensional; MF, mean field.

In summary, when the energy threshold θ was introduced in the kinetic theory of
an ideal gas, the stochastic energy-conserving scatterings between any two particles
could take place only when one has energy less than θ . The system showed a ‘phase
transition’ at θ = θc, with exponent values given in Table 4.1.

Chakraborty et al. (2011) considered a similar version of the model by Piane-
gonda et al. (2003), which is driven by the idea of extremal dynamics. In their
model, the agent with globally minimal wealth wmin is selected, and its neighbour
for bipartite transaction can be selected randomly and uniformly using various rules,
under various definitions of the interaction topology in terms of 1d and 2d with
periodic boundary conditions, infinite range (mean field/N -clique) and Barabasi–
Albert scale-free networks. Initially the agents are given random amounts of wealth
wi (i = 1, 2, . . . , N ) such that the average wealth is unity, 〈w〉 = 1. A pair of agents
selected in the above manner pool their wealth and randomly share it. This process
continues forever. After some relaxation time, the system reaches a stationary state
when the wealth distribution assumes a time-independent form. It is observed that
none of the agents have wealth below a certain value for an infinite system (suing
finite-size scaling arguments). Thus a ‘forbidden’ region of wealth is formed and
agents, owing to the dynamics, cannot end up with wealth below a certain cut-off
which is generated in a self-organized manner. Similarly, the dynamics can be
redefined such that the agent with the maximum wealth is chosen for trading, and
this produces a cut-off in the wealth owing to a self-organized dynamics such that
no agent has wealth above it. The details of the critical behaviour of these models
are reported in Chakraborty et al. (2011). Although the wealth distributions pro-
duced in these models hardly resemble any known form seen in empirical data, the
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model dynamics gives us a new insight into the possible processes that lead to such
distributions.

Very recently, Iglesias and de Almeida (2012) have presented a study of a family
of wealth exchange models and shown that, when the exchange rule is not time-
reversible and does not allow the poorer agent in the interaction to win more than
its own endowments, the system converges to a state of minimum entropy, with
full condensation of the wealth in a few hands, and the termination of trade. They
also calculated the Lorenz curves and the Theil and Gini coefficients. Finally, they
proposed that only a rule where the poorer agent is favoured in a very significant
way produces a wealth distribution with less inequality and a Gini coefficient lower
than 1.

In this chapter we have considered the market exchanges and scattering models,
and their numerical studies. The details of the analytical solutions of the kinetic
exchange models will be presented in the following chapter.



5

Analytic structure of the kinetic exchange
market models

The kinetic exchange models of markets provide a simplified – perhaps over-
simplified – picture of the exchange mechanism that takes place in a real market.
However, the simple, ‘toy model’ paradigm also offers interesting grounds for
possible analytic formulation, compared with real markets where the dynamics
involve plenty of parameters and involve complex evolution that render them
intractable and incomprehensible.

In this chapter we will discuss in detail some of the simple and intuitive frame-
works developed to understand the qualitative, and sometimes even the quantitative,
aspects of simple kinetic exchange models discussed in the previous chapters. Most
of our discussions will include the CC (Chakraborti and Chakrabarti 2000) and the
CCM (Chatterjee et al. 2004) models, and some of their important variants, which
are easy to handle analytically, or in cases where their solutions can be argued
intuitively.

5.1 Analytic results for the CC model

The earliest attempt to understand the CC model analytically (Das and Yarla-
gadda 2003) assumes that, independent of the initial conditions, the system evolves
to an equilibrium distribution after a sufficiently long time. Thus, in the steady
state, the joint probability that, before interaction, money of i lies between x

and x + dx and that of j lies between z and z+ dz is f (x)dxf (z)dz. Since
each interaction conserves total money, let L = x + z. Then the joint probability
becomes f (x)dxf (L− x)dL. The probability that L is distributed to give money
of i between y and y + dy is

dy

(1 − λ)L
f (x)dxf (L− x)dL, (5.1)

with xλ ≤ y ≤ xλ+ (1 − λ)L. It is evident that x ≤ y/λ and x ≥ [y − (1 −
λ)L]/λ. x satisfies the constraint 0 ≤ x ≤ L because the agents cannot have
negative money. Thus the upper limit on x is min{L, y/λ} (i.e. minimum of L

114
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and y/λ) and the lower limit is max{0, [y − (1 − λ)L]/λ}. Now, the total money L
has to be greater than y so that the agents have non-negative money. Thus we have
the following distribution function for the money of i to lie between y and y + dy

f (y)dy = dy

∫ ∞

y

dL

(1 − λ)L

∫ min[L,y/λ]

max[0,{y−(1−λ)L}/λ]
dxf (x)f (L− x). (5.2)

It is interesting to observe that, when λ = 0, the lower and upper limits of the x
integration become 0 and L, respectively, giving

f (y)dy = dy

∫ ∞

y

dL

L

∫ L

0
dxf (x)f (L− x). (5.3)

For the zero savings case, note that the double derivative with respect to y of the
above Eq. (5.3) yields

f ′(y) + yf ′′(y) = −f (y)f (0) −
∫ y

0
f (x)f ′(y − x)dx. (5.4)

For small y one assumes that the function f (y) and its first and second derivatives
are well behaved. Then as y → 0, f ′(y) ≈ −f (y)f (0). Then the solution for small
y, after using the constraint

∫∞
0 f (y)dy = 1, is given by

f (y) ≈ f (0) exp [−yf (0)]. (5.5)

One can see that the above function (Eq. (5.5)) is also a solution of the parent
Eq. (5.3).

This work (Das and Yarlagadda 2003) also draws an important conclusion
from Eq. (5.2): assuming f (y) → 0 as y → ∞ and that f (y) is well behaved as
y → 0, it is clear that limy→0 f (y) → 0. Physically this is plausible because if
everyone saves, then, owing to interactions, a person with zero money will tend
to finite money faster than returning to zero money. A person with zero money
after a single interaction has unit probability of having non-zero money. And,
once a person has non-zero money it takes an infinite number of interactions to
lose and end up with zero money. Thus the λ = 0 case and λ > 0 case belong to
different ‘universality classes’. Moreover λ = 1 is different because it is a static
situation. The authors also argued that for 0 < λ < 1 as y → ∞ the function
decays exponentially. They solved the integral equation given by Eq. (5.2) for the
non-trivial case of f (y) = δ(y), and obtained the series of curves very similar to
Fig. 4.2.
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5.1.1 Does the CC model produce gamma distribution?

In a very interesting paper by Matthes and Toscani (2008b), an argument was put
forward whether the series of curves for the density of money distribution for the
CC model resemble gamma distributions. It all started with an observation that the
equilibrium distribution for a given λ (0 ≤ λ < 1) fits extremely well to the data
from numerical simulations. The function is conveniently expressed in terms of the
parameter

n(λ) = 1 + 3λ

1 − λ
. (5.6)

This particular form of n(λ) was also suggested by a mechanical analogy
(Chakraborti and Patriarca 2008), between the closed economy model with N

agents and the dynamics of a gas of N interacting particles. Then the money
distributions, for arbitrary values of λ, were well fitted by the function

fn(x) = anx
n−1 exp {−nx/〈x〉} ,

an = 1


(n)

(
n

〈x〉
)n

,

⎫⎬⎭ (5.7)

where n is defined in Eq. (5.6) and the prefactor an, where 
(n) is the gamma
function, is fixed by the normalization

∫∞
0 dxfn(x) = 1. Using a rescaled variable

ξ = nx/〈x〉, (5.8)

the probability distribution (5.7) can be rewritten as

〈x〉
n

fn(x) = 1


(n)
ξn−1 exp {−ξ} ≡ γn(ξ ), (5.9)

where γn(ξ ) is the standard gamma distribution (Ross 1970). The cumulative dis-
tribution for γn(ξ ) is the incomplete gamma function 
(ξ, n) = ∫∞

ξ
dξ ′ γn(ξ ′),

γn(ξ ) ≡ − d

dξ


(ξ, n)


(n)
. (5.10)

The Gibbs distribution

f1(x) = 1

〈x〉 exp

{
− x

〈x〉
}

(5.11)

is a special case for n = 1. The term 〈x〉/n, on the left-hand side of Eq. (5.9),
is just the scaling factor appearing when the change of variable, from ξ to x, is
made in the last equation above in order to obtain the distribution fn(x) for the
variable x.

The distribution defined by Eqs. (5.7) has the following characteristics, compared
with the Gibbs distribution:
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� The power xn−1 and the factor n in the exponential, which qualitatively change
the distribution shape; xm, the mode, which is different from zero, goes well with
the theoretical prediction that the mode xm = 3λ/ {1 + 2λ} is obtainable from
Eq. (5.7).

� The presence of the factor n is relevant for a mechanical analogy.
� As λ → 1 (i. e. n → ∞), the distribution fn(x) tends to a Dirac δ-function,

peaked around the average value 〈x〉.
Moreover, the curves fn(x)’s, for different values of λ going from zero to unity,

are extremely close to those obtained by numerical simulations.
A more rigorous derivation of the asymptotic distribution for λ → 1 can

be made by studying the characteristic function φ(q). The gamma distribution
γ1(ξ ) for the dimensionless variable ξ has a characteristic function φ1(q) =∫ +∞

0 dξ exp(iqξ )γ1(ξ ) = 1/(1 − iq). The characteristic function of the Gibbs dis-
tribution (5.11) f1(x) is obtained by rescaling q by the constant factor x/ξ = 〈x〉,

φ1(q) = {1 − iq〈x〉}−1 . (5.12)

The characteristic function of the generic gamma distribution γn(ξ ) is simply given
by the n-th power of φ1(q) (Ross 1970), φn(q) = 1/(1 − iq)n. Analogously, the
corresponding characteristic function of fn(x) (Eq. (5.7)) is obtained by scaling q
by x/ξ = 〈x〉/n,

φn(q) = {1 − iq〈x〉/n}−n . (5.13)

Thus, in the limit n → ∞ (λ → 1), one gets

φn(q) → exp{iq〈x〉}. (5.14)

The corresponding distribution is obtained by transforming back the characteristic
function, i. e.

fn(x) = (2π )−1
∫ +∞

−∞
dq exp(−iqx)φn(q) → δ(x − 〈x〉). (5.15)

This limit shows that a large saving criterion leads to a final state in which economic
agents tend to have the same amount of money and, in the limit of λ → 1, they all
have the same amount 〈x〉.

5.1.1.1 Fixed-point distribution

Lallouache et al. (2010b) obtained some interesting analytical results, in the ther-
modynamic limit (N → ∞). When the number of agents is very large, a particular
agent interacts with another agent very rarely (because agents are chosen randomly
with the same probability). Thus, the agents can be considered independent; so, at
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equilibrium, while the agents’ wealth follows the dynamics of Eqs. (4.7)–(4.8), the
global distribution does not change, and one can write:

X
d= λX1 + ε(1 − λ)(X1 +X2), (5.16)

where
d= means identity in distribution and one assumes that the random variables

X1, X2 and X have the same probability law, while the variables X1, X2 and ε are
stochastically independent. It is difficult to find the distribution of X; however, one
can compute the moments of f . Indeed with Eq. (5.16), one can write immediately

∀m ∈ N,
〈
Xm

〉 = 〈
(λX1 + ε(1 − λ)(X1 +X2))m

〉
, (5.17)

and by developing Eq. (5.17) one can find the recursive relation

〈
Xm

〉 = m∑
k=0

(
m

k

)
λm−k(1 − λ)k

k + 1

k∑
p=0

(
k

p

) 〈
Xm−p〉 〈Xp

〉
. (5.18)

Using Eq. (5.18) with initial conditions
〈
X0

〉 = 1 (normalization) and
〈
X1

〉 = 1
(without loss of generality), one obtains〈

X2〉 = λ+ 2

1 + 2λ
, (5.19)

〈
X3

〉 = 3(λ+ 2)

(1 + 2λ)2
, (5.20)

〈
X4

〉 = 72 + 12λ− 2λ2 + 9λ3 − λ5

(1 + 2λ)2(3 + 6λ− λ2 + 2λ3)
. (5.21)

As mentioned earlier, Patriarca et al. (2004) conjectured that the steady-state dis-
tribution for the CC model is the gamma distribution. Now one can compare the
moments calculated from Eq. (5.18) with the moments of conjecture Eq. (5.9).
Setting 〈x〉 = 1 in Eq. (5.9), one can show〈

xk
〉 = (n+ k − 1)(n+ k − 2) · · · (n+ 1)

nk−1
. (5.22)

Writing (5.22) for k = 2, 3, 4 and choosing n as in Eq. (5.6) we find〈
x2
〉 = n+ 1

n
= λ+ 2

1 + 2λ
, (5.23)

〈
x3
〉 = (n+ 2)(n+ 1)

n2
= 3(λ+ 2)

(1 + 2λ)2
, (5.24)

〈
x4
〉 = (n+ 3)(n+ 2)(n+ 1)

n3
= 3(λ+ 2)(4 − λ)

(1 + 2λ)3
. (5.25)
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Figure 5.1 Exact fourth moment (Eq. (5.21)) and gamma distribution fourth
moment (Eq. (5.25)) against λ. The inset shows the relative difference between
the exact fourth moment (Eq. (5.21)) and the gamma distribution fourth moment
(Eq. (5.25)) against λ. Reproduced from Lallouache et al. (2010b).

One immediately finds that the fourth moments (Eq. (5.21) and Eq. (5.25)) are
different, so the conjecture that the gamma distribution is an equilibrium solution
of this model is wrong! Nevertheless the first three moments coincide exactly,
which shows that the gamma distribution is strangely a very good approximation.
Moreover the deviation in the fourth moment is very small (see Fig. 5.1, which
shows that the two curves can hardly be distinguished by the naked eye). Finding
a function that would coincide to higher moments is still an open challenge. These
results were found to be consistent with those found by Repetowicz et al. (2005),
which are presented below.

5.1.1.2 Laplace transform analysis

Lallouache et al. (2010b) confirmed the previous result with a different approach
based on the Boltzmann equation and along the work of the Toscani group (Matthes
and Toscani 2008b; Bassetti and Toscani 2010). Given a fixed number of N agents
in a system, which are allowed to trade, the interaction rules describe a stochastic
process of the vector variable (x1(τ ), . . . , xN (τ )) in discrete time τ . Processes of
this type have been thoroughly studied, e.g. in the context of the kinetic theory of
ideal gases. Indeed, if the variables xi are interpreted as energies corresponding to
the i-th particle, one can map the process to the mean-field limit of the Maxwell
model of particles undergoing random elastic collisions. The full information about
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the process in time τ is contained in the N -particle joint probability distribution
PN (τ, x1, x2, . . . , xN ). However, one can write a kinetic equation for the one-
marginal distribution function

P1(τ, x) =
∫
PN (τ, x, x2, . . . , xN )dx2 · · · dxN,

involving only one- and two-particle distribution functions

P1(τ + 1, x) − P1(τ, x)

=
〈

1

N

[ ∫
P2(τ, xi, xj )

(
δ(x − λx − (1 − λ)ε(xi + xj ))

+ δ(x − λx − (1 − λ)(1 − ε)(xi + xj ))
)
dxidxj − 2P1(τ, x)

]〉
,

which may be continued to give eventually an infinite hierarchy of equations of
BBGKY (Born–Bogoliubov–Green–Kirkwood–Yvon) type (Plischke and Berg-
ersen 2006). In the thermodynamic limit, the agents become independent, as
explained earlier. Thus, one can write

P2(τ, xi, xj ) = P1(τ, xi)P1(τ, xj ),

which implies a closure of the hierarchy at the lowest level. Therefore, the one-
particle distribution function bears all information. Rescaling the time as t = 2τ

N

in the thermodynamic limit N → ∞, one obtains for the one-particle distribution
function f (t, x) the Boltzmann-type kinetic equation

∂f (t, x)

∂t
= 1

2

〈 ∫
f (t, xi)f (t, xj )

(
δ(x − λx − (1 − λ)ε(xi + xj ))

+ δ(x − λx − (1 − λ)(1 − ε)(xi + xj ))
)
dxi dxj

〉
− f (t, x). (5.26)

This equation can be written (Matthes and Toscani 2008b; Bassetti and Toscani
2010) as

∂f (t, x)

∂t
= Q(f, f ) ,

where Q is a collision operator. A collision operator is bilinear and satisfies, for
all smooth functions φ(x),∫ ∞

0
Q(f, f )φ(x)dx

= 1

2

〈 ∫ ∞

0

∫ ∞

0
(φ(x ′

i) + φ(x ′
j ) − φ(xi) − φ(xj ))f (xi)f (xj )dxidxj

〉
, (5.27)
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where x ′
i and x ′

j are the post-trade wealth. With this property, Eq. (5.26) can be
written in the weak form, for all smooth functions φ(x),

d

dt

∫ ∞

0
f (t, x)φ(x)dx

= 1

2

〈 ∫ ∞

0

∫ ∞

0
(φ(x ′

i) + φ(x ′
j ) − φ(xi) − φ(xj ))f (xi)f (xj )dxidxj

〉
. (5.28)

It is very useful because the choice φ(x) = e−sx gives (after some calculations) the
Boltzmann equation for the Laplace transform f̂ of f

∂f̂ (t, s)

∂t
+ f̂ (t, s) = 1

2
〈f̂ (t, (λ+ (1 − λ)ε)s)f̂ (t, (1 − λ)εs)

+ f̂ (t, (1 − λ)(1 − ε)s)f̂ (t, 1 − (1 − λ)εs)〉. (5.29)

For the steady state, and if ε is drawn randomly from a uniform distribution, the
previous equation reduces to

sf̂ (s) = 1

1 − λ

∫ (1−λ)s

0
f̂ (λs + y)f̂ (y)dy, (5.30)

which coincides with the results of Repetowicz et al. (2005). The Taylor expansion
of f̂ (s) can be derived by substituting the expansion f̂ (s) = ∑∞

p=0(−1)pmps
p in

Eq. (5.30). Since f̂ (−s) is the moment-generating function, we have 〈xk〉 = mk · k!.
With this method Repetowicz et al. (2005) obtained the recursive formula

mp =
p∑

q=0

mqmp−qC̃(p)
q (λ) (5.31)

with

C̃(p)
q (λ) =

∫ (1−λ)
0 (λ+ η)q ηp−qdη

1 − λ
,

C̃
(p)
q+1 = (1 − λ)p−q−1 − (q + 1)C̃(p)

q

p − q
,

C̃
(p)
0 = (1 − λ)p

p + 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.32)

With the above formula one can obtain the first four moments and they match
those found in the previous Eqs. (5.19)–(5.21), which confirms that the gamma
distribution is not the stationary distribution.
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5.1.2 Upper bound form at low wealth range

Lallouache et al. (2010b) also presented a calculation for the upper bound at low
wealth range. From Eq. (5.16)

X
d= λXi + ε(1 − λ)(Xi +Xj ),

one has for all x ≥ 0

P[X ≤ x] = P[λXi + ε(1 − λ)(Xi +Xj ) ≤ x], (5.33)

where P[.] denotes the probability of the event inside the brackets. Again, one
considers that the agents are independent, which is true when N → ∞. Then∫ x

0
dxf (x) =

∫ ∞

0
dxif (xi)

∫ ∞

0
dxjf (xj )

×
∫ 1

0
dε	[x − λxi + ε(1 − λ)(xi + xj )], (5.34)

where 	 is the Heaviside step function. Taking the derivative with respect to x in
both sides, one has

f (x) =
∫ ∞

0
dxif (xi)

∫ ∞

0
dxjf (xj )

∫ 1

0
dεδ[x − λxi − ε(1 − λ)(xi + xj )].

(5.35)

This equation is an integral equation for f (x), which has no solution in closed
form. However, one can simplify the equation, by doing the integral over ε. The
δ-function contributes only for the following constraints:

0 ≤ xi ≤ x/λ, (5.36)

x − xi

1 − λ
≤ xj , (5.37)

0 ≤ xj . (5.38)

The range defined by these constraints is shown in Fig. 5.2. In this range, the
derivative of the argument of the delta function with respect to ε is (xi + xj )(1 − λ).
Hence, one gets

f (x) = 1

1 − λ

∫ x/λ

0
dxif (xi)

∫ ∞

max
(
x−xi
1−λ ,0

) dxjf (xj )
1

xi + xj
. (5.39)
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Figure 5.2 Region of integration. Reproduced from Lallouache et al. (2010b).

This immediately gives

f (x) ≤ C

∫ x/λ

0
f (xi)dxi, (5.40)

where

C = 1

1 − λ

∫ ∞

0
dxjf (xj )

1

xj
. (5.41)

One assumes that f decays fast enough near 0, so that the integral in Eq. (5.41) is
well defined. Then Eq. (5.40) may be rewritten by rescaling the variable, as

f (λx) ≤ C

∫ x

0
dxif (xi). (5.42)

If one uses the observation that for λ > 0 the numerically determined f (x) is a
continuous function with a single maximum, say at x0, then, for all x ≤ x0, the
integrand (Eq. (5.42)) takes its maximum value at the right extreme point, i.e. when
xi = x. This then yields

f (λx) ≤ Cxf (x), for x ≤ x0. (5.43)

Iterating this equation, we get

f (λrx) ≤ Crλr(r−1)/2xrf (x). (5.44)

We can set x = x0 in the above equation, giving

f (λrx0) ≤ Crλr(r−1)/2xr0f (x0). (5.45)

Then taking r ≈ − log x and rescaling the variables, we get

f (x) = O(xα exp[−β (log x)2]), (5.46)

as x → 0, where α and β(> 0) are two constants dependent on λ. The gamma
distribution decays slower than the right-hand side in Eq. (5.46) when x → 0.
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Thus the expression (5.46) gives an upper bound form at low wealth range and
confirms again that the distribution of the global saving propensity model is not a
gamma distribution.

5.1.3 The gas model analogy

The equilibrium distributions (5.11) can also be interpreted as the Gibbs distribution
of the energy x, for a gas at temperature T = 〈x〉/kB , which establishes a corre-
spondence between the above models of closed economy and statistical systems,
suggesting an interpretation of the economy model in terms of a mechanical system
of interacting particles. Introducing a saving parameter λ > 0 changes the shape
of the Gibbs distribution into that of a gamma distribution, but the correspondence
with a mechanical system is lost only apparently. In fact, the Gibbs distribution
(5.11) can represent the distribution of kinetic energy x only in D = 2 dimensions,
when its average value is given by 〈x〉2 = 2(kBT /2). In all other cases (D = 2), it
is easy to show, starting from the Maxwell–Boltzmann distribution for the velocity
in D dimensions, that the equilibrium kinetic energy distribution f (x) coincides,
except for a normalization factor, with the gamma distribution γn(ξ ) with n = D/2
for a reduced variable ξ = Dx/2〈x〉D,

f (x) =
(

D
2〈x〉D

)D/2



(
D
2

) xD/2−1 exp

(
− Dx

2〈x〉D

)
,

〈x〉D = D〈x〉1 = DkBT

2
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.47)

where 〈x〉D is the average value of kinetic energy in D dimensions. The analogy
between the factor D in the argument of the exponential function in Eq. (5.47) and
the analogous factor n in Eq. (5.7) is important. The main difference is that, while
D is an integer number by hypothesis, the parameter n(λ) can assume in general
any real values larger than or equal to 1.

In Eq. (5.47) temperature appears implicitly as T = 2〈x〉D/kBD. This suggests
that also in the closed economy model considered above the effective temperature
of the system should be defined as 〈x〉/n, rather than 〈x〉. This is a natural con-
sequence of the fact that the average value of kinetic energy in D dimensions is
proportional to D, owing to the equipartition theorem, and that an estimate of the
amplitude of thermal fluctuations, which is independent of its effective dimension,
can be obtained from the ratio 〈x〉D/D. Direct comparison between Eq. (5.47) and
Eq. (5.7) leads to a formal but exact analogy between money in the closed economy
model considered above, with N agents, saving propensity 0 ≤ λ ≤ 1 and given
average money 〈x〉, on one hand, and kinetic energy in an ensemble of N particles
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Table 5.1 Analogy between the kinetic theory of gases and
the kinetic exchange model of wealth

Kinetic model Economy model

Variable K (kinetic energy) x (wealth)
Units N particles N agents
Interaction Collisions Trades
Dimension Integer D Real number Dλ

Temperature definition kBT = 2〈K〉/D Tλ = 2〈x〉/Dλ

Reduced variable ξ = K/kBT ξ = x/Tλ
Equilibrium distribution f (ξ ) = γD/2(ξ ) f (ξ ) = γDλ/2(ξ )

in D dimensions at temperature T , on the other, if the effective dimension and
temperature are defined as

D(λ) = 2 n(λ) = 2(1 + 2λ)

1 − λ
,

T (λ) = 〈x〉
n(λ)

= 〈x〉 1 − λ

1 + 2λ
,

⎫⎪⎪⎬⎪⎪⎭ (5.48)

respectively. This equivalence can be qualitatively understood in terms of the under-
lying microscopic dynamics by considering the example of a fluid of interacting
particles. In one dimension, particles undergo head-on collisions, in which they
can exchange the total amount of energy they have. In an arbitrary (large) num-
ber of dimensions, however, this is not possible for purely kinematic reasons and
only a fraction of the total energy is actually released or gained on average in a
collision. Since the equipartition theorem implies that on average kinetic energy is
equally shared among the D dimensions, one can expect that, during a collision,
only a fraction ∼ 1/D of the total energy is exchanged (and that a corresponding
fraction λ ∼ 1 − 1/D is ‘saved’). This estimate of the exchanged energy ∼1/D is
to be compared with the expression for the fraction of exchanged money obtained
from Eq. (5.6) using n = D/2, namely 1 − λ = 3/(D/2 + 2), which was in fact
found starting the fitting of the numerical data from a function prototype of a
form similar to 1/D. Thus, the ubiquitous presence of 
-functions in the solutions
of kinetic models (see also below, heterogeneous models) suggests a close anal-
ogy with the kinetic theory of gases. In fact, interpreting Dλ = 2n as an effective
dimension, the variable x as kinetic energy, and introducing the effective tem-
perature β−1 ≡ Tλ = 〈x〉/2Dλ according to the equipartition theorem, Eqs. (5.7)
and (5.6) define the canonical distribution βγn(βx) for the kinetic energy of a
gas in Dλ = 2n dimensions (see Patriarca et al. (2004) for details). The anal-
ogy is illustrated in Table 5.1 and the dependences of Dλ = 2n and of β−1 = Tλ
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Figure 5.3 (a, b) Effective dimension Dλ and temperature T as a function of the
saving parameter λ. Reproduced from Chakraborti and Patriarca (2008).

on the saving parameter λ are shown in Fig. 5.3. It can be shown that dur-
ing a binary elastic collision in D dimensions only a fraction 1/D of the total
kinetic energy is exchanged on average for kinematic reasons (see Chakraborti
and Patriarca (2008) for details). The same 1/D dependence is in fact obtained
inverting Eq. (5.6), which provides for the fraction of exchanged wealth 1 − λ =
6/(Dλ + 4).
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Figure 5.4 Steady-state money distributionP (m) againstm in a numerical simula-
tion of a market withN = 200, following Eq. (4.13) and Eq. (4.14) with εij = 1/2.
The dotted lines correspond to m−(1+ν); ν = 1. Here, the average money per agent
M/N = 1. Reproduced from Chatterjee et al. (2005c).

5.2 Analytic results for the CCM model

The steady-state distribution of money, resulting from Eqs. (4.13) and (4.14) repre-
senting the money dynamics and trading, is investigated. The dynamics of money
distribution are also analysed for two aspects. First, one studies the evolution of the
mutual money difference among the agents and looks for a self-consistent equation
for its steady-state distribution. Next, one can develop a master equation for the
money distribution function (Chatterjee et al. 2005a,c).

5.2.1 Distribution of money difference

Clearly in the process as considered (dynamics defined by Eqs. (4.13) and (4.14)),
the total money (mi +mj ) of the pair of agents i and j remains constant, while the
difference �mij evolves as

(�mij )t+1 ≡ (mi −mj )t+1 =
(
λi + λj

2

)
(�mij )t +

(
λi − λj

2

)
(mi +mj )t

+ (2εij − 1)[(1 − λi)mi(t) + (1 − λj )mj (t)].

(5.49)

Numerically, as shown in Fig. 4.3, the steady-state money distribution in the market
becomes a power law, following such tradings when the saving factor λi of the
agents remains constant over time but varies from agent to agent widely. As shown
in the numerical simulation results for P (m) in Fig. 5.4, the law, as well as the
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exponent, remains unchanged even when εij = 1/2 for every trading. This can be
justified by the earlier numerical observation (Chakraborti and Chakrabarti 2000;
Chatterjee et al. 2004) for uniform λ market (λi = λ for all i) that, in the steady
state, criticality occurs as λ → 1 where of course the dynamics become extremely
slow. In other words, after the steady state is realized, the third term in Eq. (5.49)
becomes unimportant for the critical behaviour. We therefore concentrate on this
case, where the above evolution equation for �mij can be written in a more
simplified form as

(�mij )t+1 = αij (�mij )t + βij (mi +mj )t , (5.50)

where αij = 1
2 (λi + λj ) and βij = 1

2 (λi − λj ). As such, 0 ≤ α < 1 and − 1
2 <

β < 1
2 .

The steady-state probability distribution D for the modulus � = |�m| of the
mutual money difference between any two agents in the market can be obtained
from Eq. (5.50) in the following way provided � is very much larger than the
average money per agent = M/N . This is because of the following reason: using
Eq. (5.50), large � can appear at t + 1, say, from ‘scattering’ from any situation
at t for which the right-hand side of Eq. (5.50) is large. The possibilities are (at t)
mi large (rare) and mj not large, where the right-hand side of Eq. (5.50) becomes
∼ (αij + βij )(�ij )t ; or mj large (rare) and mi not large (making the right-hand side
of Eq. (5.50) become ∼ (αij − βij )(�ij )t ); or whenmi andmj are both large, which
is a much rarer situation than the first two and hence is negligible. Then if, say, mi

is large andmj is not, the right-hand side of Eq. (5.50) becomes ∼ (αij + βij )(�ij )t
and so on. Consequently, for large �, the distribution D satisfies

D(�) =
∫
d�′ D(�′) 〈δ(�− (α + β)�′) + δ(�− (α − β)�′)〉

= 2

〈(
1

λ

)
D

(
�

λ

)〉
, (5.51)

where we have used the symmetry of the β distribution and the relation αij + βij =
λi , and have suppressed labels i, j . Here 〈. . .〉 denotes average over λ distribution
in the market. Taking now a uniform random distribution of the saving factor λ,
ρ(λ) = 1 for 0 ≤ λ < 1, and assuming D(�) ∼ �−(1+γ ) for large �, we get

1 = 2
∫
dλ λγ = 2(1 + γ )−1, (5.52)

giving γ = 1. No other value fits the above equation. This also indicates that the
money distribution P (m) in the market follows a similar power law variation,
P (m) ∼ m−(1+ν) and ν = γ . The distribution of � from numerical simulations
also agrees with this result.
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We will now show in a more rigorous way that indeed the only stable solution
corresponds to ν = 1, as observed numerically (Chakrabarti and Chatterjee 2004;
Chatterjee et al. 2003, 2004).

5.2.2 Master equation and its analysis

We now proceed to develop a Boltzmann-like master equation (Chatterjee et al.
2005a,c) for the time development ofP (m, t), the probability distribution of money
in the market. We again consider the case εij = 1

2 in Eq. (4.13) and Eq. (4.14) and
rewrite them as (

mi

mj

)
t+1

= A
(
mi

mj

)
t

, (5.53)

where

A =
(
μ+
i μ−

j

μ−
i μ+

j

)
; μ± = 1

2
(1 ± λ). (5.54)

Collecting the contributions from terms scattering in and subtracting those scatter-
ing out, we can write the master equation for P (m, t) as (see Slanina 2004)

P (m, t +�t) − P (m, t) =
〈 ∫

dmi

∫
dmj P (mi, t)P (mj, t)

× {[δ({A m}i −m) + δ({A m}j −m)]

− [δ(mi −m) + δ(mj −m)]}
〉

=
〈 ∫

dmi

∫
dmj P (mi, t)P (mj, t)

× [δ(μ+
i mi + μ−

j mj −m) + δ(μ−
i mi + μ+

j mj −m)

− δ(mi −m) + δ(mj −m)]

〉
. (5.55)

Here also, 〈. . .〉 denotes the average over the distribution of λ.
The above equation can be rewritten as

∂P (m, t)

∂t
+ P (m, t)

=
〈∫

dmi

∫
dmj P (mi, t)P (mj, t) δ(μ+

i mi + μ−
j mj −m)

〉
, (5.56)
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which in the steady state gives

P (m) =
〈∫

dmi

∫
dmj P (mi)P (mj ) δ(μ+

i mi + μ−
j mj −m)

〉
. (5.57)

Writing miμ
+
i = xm, we can decompose the range [0, 1] of x into three regions:

[0, κ], [κ, 1 − κ ′] and [1 − κ ′, 1]. Collecting the relevant terms in the three regions,
we can rewrite the equation for P (m) above as

P (m) =
〈

m

μ+μ−

∫ 1

0
dxP

(
xm

μ+

)
P

(
m(1 − x)

μ−

)〉

=
〈

m

μ+μ−

{
P

(
m

μ−

)
μ+

m

∫ κm

μ+

0
dyP (y) +P

(
m

μ+

)
μ−

m

∫ κ′m
μ−

0
dyP (y)

+
∫ 1−κ ′

κ

dxP

(
xm

μ+

)
P

(
m(1 − x)

μ−

)}〉
, (5.58)

where the result applies for κ and κ ′ sufficiently small. If we take m � 1/κ ,
m � 1/κ ′ and κ, κ ′ → 0 (m → ∞), then

P (m) =
〈

m

μ+μ−

{
P

(
m

μ−

)
μ+

m
+ P

(
m

μ+

)
μ−

m

+
∫ 1−κ ′

κ

dxP

(
xm

μ+

)
P

(
m(1 − x)

μ−

)}〉
. (5.59)

Assuming now as before, P (m) = A/m1+ν for m → ∞, we get

1 = 〈(μ+)ν + (μ−)ν〉 ≡
∫ ∫

dμ+dμ−p(μ+)q(μ−)[(μ+)ν + (μ−)ν], (5.60)

as the ratio of the third term in Eq. (5.59) to the other terms vanishes like (mκ)−ν ,
(mκ ′)−ν in this limit and p(μ+) and q(μ−) are the distributions of the variables
μ+ and μ−, which vary uniformly in the ranges [ 1

2 , 1] and [0, 1
2 ], respectively

(cf. Eq. (5.54)). The i, j indices, for μ+ and μ−, are again suppressed here in
Eq. (5.60), and we utilize the fact that μ+

i and μ−
j are independent for i = j . An

alternative way of deriving Eq. (5.60) from Eq. (5.57) is to consider the dominant
terms (∝ x−r for r > 0, or ∝ ln(1/x) for r = 0) in the x → 0 limit of the inte-
gral

∫∞
0 m(ν+r)P (m) exp(−mx)dm (see next subsection). We therefore get from

Eq. (5.60), after integrations, 1 = 2/(ν + 1), giving ν = 1.
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5.2.2.1 Alternative solution of the steady-state master equation

Let Sr (x) = ∫∞
0 dmP (m)mν+r exp(−mx); r ≥ 0, x > 0. If P (m) = A/m1+ν , then

Sr (x) = A

∫ ∞

0
dm mr−1 exp(−mx)

∼ A
x−r

r
if r > 0

∼ A ln

(
1

x

)
if r = 0. (5.61)

From Eq. (5.57), we can write

Sr (x) =
〈∫ ∞

0
dmi

∫ ∞

0
dmj P (mi)P (mj )(miμ

+
i +mjμ

−
j )ν+r

× exp[−(miμ
+
i +mjμ

−
j )x]

〉
�
∫ ∞

0
dmi Am

r−1
i 〈exp(−miμ

+
i x)(μ+

i )ν+r〉

×
[∫ ∞

0
dmj P (mj )〈exp(−mjμ

−
j x)〉

]
+
∫ ∞

0
dmj Am

r−1
j 〈exp(−mjμ

−
j x)(μ−

j )ν+r〉

×
[∫ ∞

0
dmi P (mi)〈exp(−miμ

+
i x)〉

]
, (5.62)

or

Sr (x) =
∫ 1

1
2

dμ+
i p(μ+

i )

(∫ ∞

0
dmi Am

r−1
i exp(−miμ

+
i x)

)
(μ+

i )ν+r

+
∫ 1

2

0
dμ−

j q(μ−
j )

(∫ ∞

0
dmj Am

r−1
j exp(−mjμ

−
j x)

)
(μ−

j )ν+r , (5.63)

since, for small x, the terms in the square brackets in Eq. (5.62) approach unity.
We can therefore rewrite Eq. (5.63) as

Sr (x) = 2

[∫ 1

1
2

dμ+(μ+)ν+rSr (xμ+) +
∫ 1

2

0
dμ−(μ−)ν+rSr (xμ−)

]
. (5.64)
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Using now the forms of Sr (x) as in Eq. (5.61), and collecting terms of order x−r

(for r > 0) or of order ln(1/x) (for r = 0) from both sides of Eq. (5.64), we get
Eq. (5.60).

Employing a mean-field approach, Mohanty (2006) calculated the distribution
for the ensemble average of money for the model with distributed savings. It is
assumed that the distribution of money of a single agent over time is station-
ary, which means that the time-averaged value of money of any agent remains
unchanged independent of the initial value of money. Taking the ensemble average
of all terms on both sides of Eq. 4.13, one can write

〈mi〉 = λi〈mi〉 + 〈ε〉
⎡⎣(1 − λi)〈mi〉 +

〈
1

N

N∑
j=1

(1 − λj )mj

〉⎤⎦ . (5.65)

The last term on the right is replaced by the average over the agents, where it is
assumed that any agent (i-th agent here), on the average, interacts with all others
in the system, which is the mean-field approach.

Writing

〈(1 − λ)m〉 ≡
〈

1

N

N∑
j=1

(1 − λj )mj

〉
(5.66)

and since ε is assumed to be distributed randomly and uniformly in [0, 1], so that
〈ε〉 = 1/2, Eq. 5.65 reduces to

(1 − λi)〈mi〉 = 〈(1 − λ)m〉. (5.67)

Since the right-hand side is free of any agent index, it seems that this relation is true
for any arbitrary agent, i.e. 〈mi〉(1 − λ) = constant, where λ is the saving factor
of the i-th agent. What follows is dλ = const. dm

m2 . An agent with a (characteristic)
saving propensity factor (λ) ends up with wealth (m) such that one can in general
relate the distributions of the two:

P (m) dm = ρ(λ) dλ. (5.68)

Therefore, the distribution in m is bound to be of the form:

P (m) ∝ 1

m2

for uniform distribution of savings factor λ, i.e. ν = 1. This analysis can also
explain the non-universal behaviour of the Pareto exponent ν, i.e. ν = 1 + α for
ρ(λ) = (1 − λ)α. Thus, this mean-field study explains the origin of the universal
(ν = 1) and the non-universal (ν = 1) Pareto exponents in the distributed savings
model (Kar Gupta 2006a; Mohanty 2006).
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5.2.3 A transition matrix formalism

To understand the qualitative differences in the various types of exchange pro-
cesses in the above models, one can also look at the matrix M (Eq. 4.1) and its
properties (Kar Gupta 2006a,b). For example, in the case of the pure gambling
process (Drăgulescu and Yakovenko 2000)

M =
(

α α

1 − α 1 − α

)
. (5.69)

The above matrix is singular (determinant, |M| = 0), which means that the inverse
of this matrix does not exist. This indicates that an evolution through such transition
matrices is bound to be irreversible. This property is connected to the emergence of
an exponential (Boltzmann–Gibbs) wealth distribution. The same may be perceived
in a different way too. When a product of such matrices (for successive interactions)
is taken, the left-most matrix (of the product) itself returns:(

α α

1 − α 1 − α

)(
α1 α1

1 − α1 1 − α1

)
=
(

α α

1 − α 1 − α

)
. (5.70)

The above indicates the fact that, during the repeated interactions of the same pair
of agents (through this kind of transition matrices), the last of the interactions is
what matters (the last matrix of the product survives)

M(n).M(n−1) . . .M(2).M(1) = M(n).

This ‘loss of memory’ (random history of collisions in the case of molecules) may
be attributed here to the path to irreversibility in time.

One can consider the following general form:

M1 =
(

α1 α2

1 − α1 1 − α2

)
, (5.71)

where α1 and α2 are two different random numbers drawn uniformly from [0, 1].
This ensures that the transition matrix is non-singular. The significance of this
can be seen through the wealth exchange equations in the following manner: α1

fraction of wealth of the first agent i added with α2 fraction of wealth of the second
agent j is retained by the first agent after the transaction. The rest of their total
wealth is shared by the second agent. This may happen in several ways which can
be attributed to the details of a model. The general matrix M1 is non-singular as
long as α1 = α2 and then the two-agent interaction process remains reversible in
time. Hence, it is expected to have a steady-state equilibrium distribution of wealth,
which could have a form different from the exponential distribution (as in the pure
gambling model); α1 = α2 gives back the pure exponential distribution (Kar Gupta
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2006a,b). One can check with a trivial case for α1 = 1 and α2 = 0. The transition

matrix reduces to the identity matrix I =
(

1 0
0 1

)
, which trivially corresponds to

no evolution.

It was emphasized that any transition matrix

(
t11 t12

t21 t22

)
for such conserved

models is bound to be of the form such that the sum of two elements of either of
the columns has to be unity by design: t11 + t21 = 1, t12 + t22 = 1. It is important
to note that, whatever extra parameter one incorporates within the framework of
the conserved model, the transition matrix has to retain this property.

One can easily play around with a combination of different parameters, and see
that one can produce a wide range of distributions. An easy check with the CC
model (Chakraborti and Chakrabarti 2000) can demonstrate the usefulness of the
formulation. The matrix M looks like(

λ+ ε(1 − λ) ε(1 − λ)
(1 − ε)(1 − λ) λ+ (1 − ε)(1 − λ)

)
. (5.72)

One can do a rescaling α̃1 = λ+ ε(1 − λ) and α̃2 = ε(1 − λ), which reduces the
above transition matrix to

M2 =
(

α̃1 α̃2

1 − α̃1 1 − α̃2

)
, (5.73)

which has the same form as M∞. The distributions due to the above two matrices
can be compared if one correctly identifies the ranges of the rescaled elements. In
the model of uniform saving: λ < α̃1 < 1 and 0 < α̃2 < (1 − λ) as the stochasticity
parameter ε is drawn from a uniform and random distribution in [0, 1]. As long
as α̃1 and α̃2 are different, the determinant of the matrix is non-zero (|M2| =
α̃1 − α̃2 = λ). Thus, the incorporation of the saving propensity factor λ makes:
(1) the transition matrix non-singular and (2) the matrix elements t11(= α̃1) and t12

(= α̃2) are now drawn from truncated domains (somewhere in [0, 1]).
The above makes it clear that the wealth distribution with uniform saving is likely

to be qualitatively similar to what can be produced with general transition matrices,
but having different elements, α1 = α2. The distributions obtained with different λ
may correspond to those with appropriately chosen α1 and α2 in M1 (Kar Gupta
2006a,b).

For the CCM model (Chatterjee et al. 2004), the matrix looks like(
λ1 + ε(1 − λ1) ε(1 − λ2)
(1 − ε)(1 − λ1) λ2 + (1 − ε)(1 − λ2)

)
, (5.74)

where the elements can be rescaled by putting α̃′
1 = λ1 + ε(1 − λ1) and α̃′

2 =
ε(1 − λ2). Hence the transition matrix can again be reduced to the same form as
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that of M1 or M2:

M3 =
(

α̃′
1 α̃′

2

1 − α̃′
1 1 − α̃′

2

)
. (5.75)

The determinant here is |M3| = α̃′
1 − α̃′

2 = λ1(1 − ε) + ελ2. Here also the deter-
minant is ensured to be non-zero as all the parameters ε, λ1 and λ2 are drawn from
the same positive domain: [0, 1]. This means that each transition matrix for two-
agent wealth exchange remains non-singular, which ensures that the interaction
process is reversible in time. Thus, one can expect qualitatively different distribu-
tions by appropriately tuning two independent elements in the transition matrices
(Eqs. (5.71), (5.73) or (5.75)). It is also known that, in the framework of the CCM
model, the saving propensity has to have a broad, quenched distribution to produce
a power law in money distribution, and this is equivalent to a reduced situation
modelled with a single parameter η (Kar Gupta 2006a). The matrix looks like

M4 =
(

1 η

0 1 − η

)
, (5.76)

and it has a non-zero determinant (|M4| = 1 − η = 0).
Thus, one can reformulate the above cases with a general form of the matrix(

α1 α2

1 − α1 1 − α2

)
, (5.77)

and one can generate all sorts of distributions by controlling α1 and α2.
As long as α1 = α2, the matrix remains non-singular and it results in gamma-

type distributions. When α1 = α2, the transition matrix becomes singular and it
produces a Boltzmann–Gibbs-type exponential distribution. The power law with
exponent ν = 1 is obtained with the general matrix when the elements α1 and α2 are
of the same set of quenched random numbers drawn uniformly in [0, 1]. The matrix
corresponding to the reduced situation as discussed (5.76) is a special case with
α1 = 1 and α2 = η, drawn from a uniform and (quenched) random distribution.
Incorporation of any parameter in an actual model (say, saving propensity) results
in an adjustment or truncation of the full domain [0, 1] from which the element
α1 or α2 is drawn. Incorporating distributed λ’s is equivalent to considering the
following domains: λ1 < α1 < 1 and 0 < α2 < (1 − λ2).

5.2.4 Entropy maximization in a heterogeneous system

First, we review the results for a dimensionally homogeneous system (Patriarca
et al. 2004). For a quadratic energy function x(q) = (q2

1 + · · · + q2
N )/2, where the

qi’s are the N variables, for example, of a polymer, the equilibrium density is the
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functional Sn[fn], obtained from the Boltzmann entropy (Patriarca et al. 2004),

Sn[fn] =
∫ +∞

0
dx fn(x)

{
ln

[
f (x)

σ2n xn−1

]
+ μ+ βx

}
, (5.78)

where one introduced the dimension variable

n = N/2 , (5.79)

σN is the hypersurface of a unitary N -dimensional sphere, and μ, β are Lagrange
multipliers determined by the constraints on the conservation of the total number
of subsystems and energy, respectively. The result is a 
-distribution of order n,

fn(x) = β γn(βx) ≡ β


(n)
(βx)n−1 exp(−βx) , (5.80)

where β−1 = 2〈x〉/N = 〈x〉/n, according to the equipartition theorem, is the tem-
perature (Patriarca et al. 2004).

Chakraborti and Patriarca (2009) suggested that a heterogeneous system com-
posed of agents with different λi (CCM model) is analogous to a dimensionally
heterogeneous system. In the case of a uniform distribution for the saving parame-
ters,φ(λ) = 1 ifλ ∈ (0, 1) andφ(λ) = 0 otherwise, settingn = N/2, the dimension
density has a power law ∼ 1/n2, P (n) = φ(λ)dλ/dn = 3/(n+ 2)2 (n≥1). Thus,
the heterogeneous system is characterized according to a distribution P (n), with∫
dnP (n) = 1. At equilibrium, each subsystem with dimension variable n will

have its probability density fn(x). One is interested in the shape of the aggregate
equilibrium energy distribution, i.e. the relative probability of finding a subsystem
with energy x independently of its dimension n. The equilibrium problem for the
heterogeneous system is solved analogously, from the functional S[{fn}] obtained
summing the homogeneous functionals with different n,

S[{fn}] =
∫
dnP (n)

∫ +∞

0
dx fn(x)

{
ln

[
fn(x)

σ2n xn−1

]
+ μn + βx

}
. (5.81)

Notice that there is a different Lagrange multiplierμn for each n, since the fractions
P (n) are conserved separately, but a single β is related to the total conserved
energy. The equilibrium probability density fn(x) for the subsystem n is obtained
by varying S[{fn}] with respect to fn(x) and is again given by Eq. (5.80), with β
determined by the total energy,

〈x〉 =
∫
dn

∫ ∞

0
dx fn(x) x = 〈N〉

2β
, (5.82)

where we have introduced the average dimension

〈N〉 = 2〈n〉 = 2
∫
dnP (n) n . (5.83)
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Figure 5.5 Aggregate distribution f (x), Eq. (5.84), with P (n) = α/n1+α (n ≥ 1),
P (n) = 0 otherwise, for α = 1 (dark grey), α = 2 (light grey). Continuous lines:
numerical integration of Eq. (5.84). Triangles: saddle point approximation f2(x),
Eq. (5.91). Circles: small-x limit, f1(x), Eq. (5.92). Reproduced from Chakraborti
and Patriarca (2009).

Equation (5.82) represents a generalized equipartition theorem for dimension-
ally heterogeneous systems. To ensure a finite 〈N〉 (and therefore a finite aver-
age energy 〈x〉) the dimension density P (n) has to have a finite cut-off or
decrease faster than 1/n2 for n�1. Using Eq. (5.80), the aggregate distribution is
finally

f (x) =
∫
dnP (n)fn(x) =

∫
dn

P (n)β


(n)
(βx)n−1 exp(−βx). (5.84)

While the distributions fn(x) have an exponential tail, the function f (x) may
exhibit a slower decay and possibly a power law tail, if the dimension density P (n)
decreases slowly enough. In the example of the power law density Pα(n) = α/n1+α

(n ≥ 1, α > 0), Pα(n) = 0 otherwise, a power law tail appears in f (x); see the
continuous curves in Fig. 5.5 obtained by numerical integration.

In fact, a general result holds, namely an actual equivalence between the asymp-
totic form of the aggregate distribution f (x) and the dimension densityP (n), when-
everP (n) decreases at largen faster than 1/n, expressed byf (x�β−1) = βP (βx).
This asymptotic relation can be compared with the equality between the the average
load and the degree distribution, f (x) = g(x/x̄)/x̄, obtained for the example of
free diffusion on a network with degree distribution g(k).

To demonstrate this relation, we start by considering a value βx � 1 in
Eq. (5.84). The main contributions to the integral come from values n ≈ βx � 1,
since γn(βx) has its maximum at x ≈ n/β, while it goes to zero for small as well
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as larger x. Introducing the variable m = n− 1, Eq. (5.84) can be rewritten as

f (x)=β exp(−βx)
∫
dm exp[−φ(m)] , (5.85)

φ(m)=−ln[P (m+1)] −m ln(βx) + ln[
(m+1)] . (5.86)

This integral can be estimated through the saddle-point approximation expanding
φ(m) to the second order in ε = m−m0, where m0 = m0(x) locates the maximum
of φ(m), defined by φ′(m0) = 0 and φ′′(m0) > 0, and integrating over the whole
range of m,

f (x) ≈ β exp[−βx − φ(m0)]
∫ +∞

−∞
dε exp[−φ′′(m0)ε2/2]

= β

√
2π

φ′′(m0)
exp[−βx − φ(m0)] . (5.87)

In order to find m0 we use the Stirling approximation (Abramowitz and Stegun
1970) in Eq. (5.86), 
(m+ 1) ≈ √

2πm (m/e)m, so that

φ(m) ≈ − ln[P (m+1)] −m ln(βx)

+ ln(
√

2π ) +
(
m+ 1

2

)
ln(m) −m, (5.88)

φ′(n) ≈ −P ′(m+1)

P (m+1)
− ln(βx) + 1

2m
+ ln(m) , (5.89)

φ′′(n) ≈ P ′2(m+1)

P 2(m+1)
− P ′′(m+1)

P (m+1)
− 1

2m2
+ 1

m
. (5.90)

From Eq. (5.90) the conditionφ′′(m) > 0 for the existence of a maximum is fulfilled
for large m, if one can neglect the terms containing P with respect to 1/m; this can
be done for general shapes of P (n) which decrease fast enough.

From Eq. (5.89) in the same limit one can neglect P ′/P and 1/mwith respect to
ln(m) and the approximate solution of φ′(m0) = 0 ism0(x) ≈ βx. It can be checked
that even keeping higher orders in 1/m in Eq. (5.89) the asymptotic solution reduces
tom0(x) = βx for βx � 1. Finally, settingm = m0(x) = βx and using Eqs. (5.88)
and (5.90) in Eq. (5.87), one finds

f (x�β−1) ≡ f2(x) = βP (1 + βx) . (5.91)

This relation provides the asymptotic form of the density f (x) directly in terms of
the dimension density P (n), in the hypothesis that P (n) decreases with n at least
as 1/n.
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The approximate form of f (x) at x�β−1 depends on the details of P (n) at
small n. For the same form P (n) = Pα(n) considered above and setting φ(n)≈
φ(1) + φ ′(1)(n− 1) in Eq. (5.85) and Eq. (5.86), one has

f (x � β−1) ≡ f1(x) = β

∫ +∞

0
dm exp[−φ(0) − φ′(0)m− βx]

= βP (1) exp(−βx)

− ln(βx) − γ − P ′(1)/P (1)
. (5.92)

Here, from Eq. (5.86), we set φ(0) = ln[P (1)] and φ′(0) = −γ − ln(βx) −
P ′(1)/P (1), with γ = ψ(1) ≡ (d ln[
(m)]/dm)m=1 ≈ 0.57721 the Euler γ -
constant (Abramowitz and Stegun 1970).

In Fig. 5.5 the function f2(x) (triangles), given by Eq. (5.91), is compared at large
x with the exact distribution f (x) obtained by numerical integration of Eq. (5.84)
(continuous lines) for the values α = 1, 2 for the power law density Pα(n). Also
the corresponding density f1(x) (circles), given by Eq. (5.92), is shown at small
βx.

Thus, Chakraborti and Patriarca (2009) showed that in a conservative mechanical
system composed of subsystems with different numbers of degrees of freedom a
robust power law tail can appear in the equilibrium distribution of energy as
a result of certain superpositions of the canonical equilibrium energy densities
of the subsystems. The derivation only used the variational principle based on
the Boltzmann entropy, without assumptions outside the framework of canonical
equilibrium statistical mechanics.

5.3 Analytic results for other models

5.3.1 Autoregressive models and non-conservative form

Basu and Mohanty (2008) had put forward an interesting formalism to treat models
of similar kind, and even loosening the conservation constraint to go beyond the
microcanonical picture. They consider N independent agents i = 1 . . . N , whose
wealth at a given time t is xi(t). As before, each agent i invests a definite fraction
of wealth μixi(t) in the market, which stochastically returns a net gain ξ (t). Thus,
the wealth of agent i at time t is

xi(t) = (1 − μi)xi(t − 1) + ξ (t), (5.93)

where ξ (t) is an uncorrelated positive stochastic variable with probability distribu-
tion function (PDF) h(ξ ) and does not depend on {xi}. Thus, agents may gain or
lose from the market. The autoregressive nature of the model that x(t) depends on
x(t − 1) is clear from Eq. (5.93).
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To look for the steady state of Eq. (5.93), one can define an operator B which
takes the variables one step backward in time, i.e. x(t − 1) = Bx(t). For conve-
nience let λi ≡ 1 − μi , similar to the savings propensity defined in kinetic models
(Chakraborti and Chakrabarti 2000). Now, Eq. (5.93) becomes

x(t) = 1

1 − λB ξ (t) =
∞∑
n=0

λnξ (t − n) =
t∑

n=0

λnξ (n), (5.94)

where the index i is dropped because the agents are independent. One also uses
the fact that ξ (t) is an uncorrelated random variable and that ξ (n < 0) = 0. Thus,
the steady-state distribution P (x) which is reached as t → ∞ is the PDF of the
stochastic variable

x =
∞∑
n=0

λnξ (n), (5.95)

which is the weighted sum of {ξ (n)} having weights{λn}. Let xm = ∑m
n=0 λ

nξ (n)
be the first m terms of (5.95) and their distribution be Pm(x). From Eq. (5.94) and
Eq. (5.95) it follows that xm = x(t = m). First, it means that the true steady state
gets contributions from all orders of λn. Second, Pm(x) can be considered as the
distribution at t = m.

Since xm = λmξ (m) + xm−1, Pm(x) satisfies a recursion relation,

Pm(x) = 1

λm

∫ x

0
Pm−1(y)h

(
x − y

λm

)
dy. (5.96)

The steady-state distribution becomes P (x) ≡ lim
m→∞Pm(x). Clearly, from

Eq. (5.96), it follows that

Pm(0) = 0 for all m > 0. (5.97)

Thus, in the steady state one must have P (x = 0) = 0. Equation (5.97), being
independent of the choice of h(ξ ), can be used as the general boundary condition
for Eq. (5.96). Additionally, it indicates that the steady-state distribution is neither
Gibbs nor pure power law like, where P (x = 0) is finite.

At this stage one requires the information about the specific form of the function
h(ξ ). For static markets, where the average wealth of the market is fixed, a ≡ 〈ξ〉.
Basu and Mohanty (2008) finally discuss the conditions under which the different
types of distributions arise, and also under different conditions of markets.

(1) Normal distribution of ξ . When the fluctuation of the market is normal, i.e.
h(ξ ) is a Gaussian distribution denoted by G(α0, σ0) with mean α0 and standard
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deviation σ0, the steady-state distribution P (x) is G(α, σ ), where

α = α0

1 − λ
and σ = σ0√

1 − λ2
. (5.98)

G(α, σ ) satisfies Eq. (5.93) in the steady state; i.e. if the PDFs of x and ξ are
G(μ0, σ0) and G(μ, σ ), respectively, then the PDF of λx + ξ is the same as
that of x. Note that agents in this case can have negative wealth even though
〈x〉 > 0. The negative wealth can be interpreted as debt.

(2) Exponential distribution of ξ . Let h(ξ ) = exp(−ξ ). For λ = 0 it gives the same
steady-state distribution as that of the CC model (Chakraborti and Chakrabarti
2000), i.e.P (x) ∝ exp(−x). For λ = 0, one needs to solve the integral equation
(5.96). Instead it can be rewritten as a differential equation

d

dx
Pm(x) = 1

λm
[Pm−1(x) − Pm(x)] , (5.99)

wherem > 0, and the boundary conditions are given by Eq. (5.97). Form = 0,
P0(x) ≡ h(x). In terms of Gm(s), which is the Laplace transform of Pm(x),
Eq. (5.99) becomes a difference equation

Gm(s) = 1

1 + λms
Gm−1(s), (5.100)

whose formal solution is

Gm(s) =
m−1∏
k=0

(1 + λks)−1G0(s).

Again, remembering that G0(s) is the Laplace transform of P0(x) = h(x).
Finally, P (x) is the inverse Laplace transform of

G(s) =
∞∏
k=1

1

1 + λks
G0(s), (5.101)

which can be written as the following series:

P (x) =
∞∑
m=1

Cm exp(−x/λm),

where C−1
m = λm

∞∏
0<n =m

(1 − λn−m).

⎫⎪⎪⎬⎪⎪⎭ (5.102)

Equation (5.102) is an infinite series, but the first few terms are good enough
for numerical evaluation of the distribution. Terms up to m = n give Pn(x),
which can be interpreted either as an approximation of the true steady-state
distribution P (x) to n-th order in λ or as the distribution at finite time t = n.
Numerically, it is found that P (x) is a gamma-like distribution similar to what
has been obtained in Ispolatov et al. (1998), Chakraborti and Chakrabarti
(2000) and Bhattacharya et al. (2005).
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(3) Pareto-law. In the above consideration, the wealth distributions of individual
agents are not simple and depend on their investment capacities μi . Their
averages, however, follow a power law. To prove this one has to define 〈xi〉 =
wi . In steady state 〈x(t)〉 = 〈x(t − 1)〉. Thus, Eq. (5.93) gives

wi = 〈ξ〉
μi

, (5.103)

with agents differing in their investment capacities. The average number of
agents having investment capacity μ is Ng(μ), where g(μ) is the distribution
of μ. Thus, one can write w(μ) = 〈ξ〉/μ. Distribution of w is then

P (w) = g(μ)|dμ
dw

| = 〈ξ〉g(〈ξ〉/w)

w2
, (5.104)

similar to the argument used in Mohanty (2006) for deriving the wealth dis-
tribution of the CCM model. Although distribution for the rich (large w) is
generically P (w) ∼ w−2, one can obtain γ > 2 in typical cases. For exam-
ple, if the PDF of μ is g(μ) = μα/(α − 1) with 0 ≤ α < 1, the asymptotic
distribution of Eq. (5.104) results in P (w) ∼ w−γ , where γ = 2 + α.

(4) Growing markets. One can incorporate the growth feature of the market by
introducing explicit time dependence in the distribution of ξ . For instance, the
mean 〈ξ〉 ≡ a(t) may vary in time. The distribution of wealth P (x, t) will then
depend explicitly on t . However, in the adiabatic limit, when a(t) varies slowly
(such that a(t − 1) ≈ a(t)), we have P (x, t − 1) ≈ P (x, t). In this limit, thus,
P (x, τ ) is identical to the steady-state distribution of the time-independent
model, where ξ has an average 〈ξ〉 = a(τ ).

To demonstrate, let h(ξ ) be an exponential distribution with varying average
a(t) = t/T . In other words, h(ξ, t) = exp[−x/a(t)]/a(t). From the numerical
simulations, calculate the distribution P (x, T ) at t = T for different values
of T . Since a(T ) = 1, P (x, T ) is compared with the steady-state distribution
Eq. (5.102). Numerical investigations suggest that in the quasistatic limit T →
∞ the instantaneous distribution depends only on the instantaneous distribution
of ξ .

(5) Annealed λ. When the savings propensity of agents changes in time, it is
modelled by taking λ as a stochastic variable distributed, say, uniformly in
(0, 1). Let h(ξ ) = exp(−ξ ). The steady-state distribution of wealth is then
P (x) = 
2(x) = x exp(−x), which can be proved as follows. If P (x) = 
2(x),
thenP (u = λx) = exp(−u).1 Thus, the PDF of the right-hand side of Eq. (5.93)
is 
2(x), which is same as the PDF of the left-hand side.

1 If the PDFs of x and y are 
2(x) and U (y), respectively, then the PDF of u = xy is exp(−u).
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This generalized view by Basu and Mohanty (2008) provides a further important
insight into the universality of certain features of the basic dynamics of the kinetic
exchange models, especially pointing out the cases where conservation is not a
necessary criterion. In fact, one can relax the global and even the local conservation
rules under specific conditions and still retain the same functional form for the
wealth distribution.

5.3.2 Analytic structure of Slanina’s model

Equation (4.37) describes a matrix multiplicative stochastic process of vector vari-
able m(t) in discrete time t . Processes of this type are thoroughly studied, e.g. in
the context of granular gases. Indeed, if the variables mi are interpreted as energies
corresponding to the i-th granular particle, one can map the process to the mean-
field limit of the Maxwell model of inelastic particles. In contrast to assumption
ε > 0 of the restitution coefficient which models the energy dissipation, now the
negative values ε < 0 are relevant. This apparently small variation makes a big
difference in the analytical treatment of the process, as seen in the treatment of the
model in Slanina (2004), which we outline in the following.

The N -particle joint probability distribution PN (t ; v1, v2, . . . , vN ) provides the
full information about the process in time t . One can write a kinetic equation using
only one- and two-particle distribution functions

P1(t + 1;m) − P1(t ;m)

= 2

N

[
−P1(t ;m) +

∫
P2(t ;mi,mj ) δ((1 − β + ε)mi + βmj −m) dmidmj

]
,

(5.105)

which can be continued to give eventually an infinite hierarchy of equations of the
BBGKY type. A standard approximation is factorizing

P2(t ;mi,mj ) = P1(t ;mi)P1(t ;mj ), (5.106)

breaking the hierarchy on the lowest level by neglecting the correlations between
the wealth of the agents, which is induced by the scattering. This approximation,
however, becomes exact in N → ∞, which implies that in the thermodynamic
limit the one-particle distribution function bears all the necessary information.

One rescales the time as τ = 2t/N in the thermodynamic limitN → ∞, making
the one-particle distribution function P (τ ;m) = P1(t, m) satisfy a Boltzmann-like
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kinetic equation

∂P (m)

∂τ
+ P (m) =

∫
P (mi)P (mj ) δ((1 − β + ε)mi + βmj −m) dmidmj,

(5.107)

which describes exactly the process (4.37) in the limit N → ∞. This equation
has the same form as the mean-field version for the well-studied Maxwell model
of inelastically scattering particles (Ernst and Brito 2002; Krapivsky and Ben-
Naim 2002; ben Avraham et al. 2003). However, the difference being that here the
wealth increases, while in an inelastic gas the energy decreases. This seemingly
small difference has deep consequences for the solution of Eq. (5.107). While
these dynamical variables correspond rather to energies of the particle, within
the framework of the Maxwell model the distributions are expressed in terms of
velocities.

The first thing to note is that the average wealth m̄ = ∫
mP (m) dm in the process

(5.107) grows exponentially and hence Eq. (5.107) has no stationary solution.
However, one can look for a quasistationary self-similar solution. A special exactly
solvable case ε = −2

√
β + 2β provides a hint about possible solutions. Using

some standard mathematical tricks, it was shown that the corresponding wealth
distribution is of the form �1(w) = 1√

2π
w−5/2 exp(− 1

2w ), which is similar to that
obtained in some previous studies (Marsili et al. 1998; Bouchaud and Mézard 2000;
Solomon and Richmond 2001); see Slanina (2004) for details. In the limit ε, β → 0,
which indicates infinitesimally small amount of wealth increase and exchange in a
single trade event, one can interpret the latter as the limit of continuous trading.

An important feature inferred (Slanina 2004) from the observation was that
the system behaves differently for positive and negative ε. Indeed, it suggests a
singularity at the point of precise conservation of wealth, ε = 0.

5.3.2.1 Power law tails

The main concern in empirical studies of wealth distribution is about the shape of
tails, which assumes power law forms. Under some specialized assumptions with
α ∈ (1, 2), singularity in some intermediate functions results in the power law tail
as �(w) ∼ w−α−1 for w → ∞, and additionally a transcendental equation for the
exponent α, given by

(1 + ε − β)α + βα − 1 − εα = 0. (5.108)

While a trivial solution α = 1 exists, the power law tail comes from another non-
trivial solution, which falls into the desired interval (1, 2) only for certain values of
the parameters β and ε. There exists an allowed region for the solution. The limits
ε → 0, β → 0 can be approached, keeping α constant, interpreted as continuous
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trading, as the amount of wealth exchange and increase in a single trading step
is infinitesimally small. From here, one can expect to obtain ordinary differential
equations, soluble by standard techniques.

5.3.2.2 Continuous trading limit

Indeed, expanding Eq. (5.108) one obtains the formula relating β and ε for fixed α
in the continuous trading limit β → 0, ε → 0:

β = α − 1

2
ε2 +O(ε3) +O(ε2α) . (5.109)

The leading correction term to Eq. (5.109) depends on the value of α: for 1 < α <

3/2 it is of order O(ε2α); for 3/2 < α < 2 it is of order O(ε3); while in the special
point α = 3/2 we should include both correction terms, as they are of the same
order O(ε3). See Slanina (2004) for details.

Taking the same limit with fixed α in the non-local case one finally obtains the
wealth distribution as

�(w) = C w−α−1 exp

(
−α − 1

w

)
(5.110)

with C = (α − 1)α/
(α).
It can be observed that the distribution obtained exhibits the desired power

law behaviour for large wealth. Moreover, it has a maximum at a finite value of
w = wmax ≡ (α − 1)/(α + 1) and depression for low wealth values. The size of
the depletion is determined by the exponential term in Eq. (5.110), i.e. by the same
value of α which determines the power in the power law. The idea is that it is the
value of the lower bound for the allowed wealth which determines the value of
the exponent. Here, however, this result comes purely formally as a result of the
analytic computation. In this approach, it is the interplay between wealth increase
(taken care of by ε) and wealth exchange (taken care of by β) that dictates the value
of the exponent α.

5.3.3 Another generalized approach to the kinetic exchange models

While the previous section deals with the essential idea of the physics of dissipative
granular gases, it can be extended to further general considerations to include a
variety of models under the economic framework of kinetic exchange models
(Toscani 2010). Since substantial differences exist between the collision mechanism
of classic gas molecules and the trading entities, the interactions can lack the usual
microscopic conservation laws for (the equivalents of) energy and momentum.
What plays an essential role is the noise in the system. Thus, the rules of ‘exchange’
are important, but, in contrast to the usual Boltzmann equation, they are defined
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in an ad hoc manner. As in the classic Boltzmann equation, the relaxation of the
system to the Maxwellian equilibrium is shown to be a universal behaviour of
the solution, and corresponds to the models as the macroscopic statistics of the
wealth distribution in the society, to which the solution relaxes. Importantly, while
relaxation to equilibrium in the Boltzmann equation is achieved by observing the
monotonicity of the entropy functional, the relaxation to the steady-state wealth can
be achieved in this case by observing the monotonicity of new convex functionals.

Toscani (2010) points out that there is a remarkable difference between the
kinetic exchange models of wealth distribution and the theory of Maxwell
molecules (Bobylev 1988): the Maxwell distribution is the universal steady profile
for the velocity distribution of molecular gases, while the stationary profiles for
wealth can be of various types, and are in general not explicitly known analytically,
because they depend heavily on the precise form of the microscopic modelling of
trade interactions. Thus, the investigations of the large-time behaviour of the wealth
distribution are rather difficult and limited to describe a few analytically accessible
quantities. The related body of work done by Giuseppe Toscani and his colleagues
mainly considers two types of models – the first type in which the binary trade
is microscopically conservative, and the second type in which the binary trade is
conservative in the statistical mean. In both of these situations, the mean wealth
in the model Boltzmann equation is preserved, and the formation of a stationary
profile is expected.

In the class of point-wise conservative trades, they consider the CC model
(Chakraborti and Chakrabarti 2000) and its variants. For the class of conservative
in the statistical mean, models with risky investments (Cordier et al. 2005) are worth
mentioning. These analytical techniques easily generalize to a broader class of con-
servative economic models (Cordier et al. 2005; Düring et al. 2005, 2008; Pareschi
and Toscani 2006; Düring and Toscani 2007; Matthes and Toscani 2008a,b), where
trading agents have been treated in the framework of Maxwell-type molecules, and
are discussed below.

5.3.3.1 Boltzmann models for wealth

To begin with, it is assumed that agents are indistinguishable, as in other models
discussed earlier. Then, an agent’s ‘state’ at any instant of time t ≥ 0 is completely
characterized by his current wealthw ≥ 0. Agents meeting in a trade, their wealths
before trading v, w change into v∗, w∗ according to the rule

v∗ = p1v + q1w, w∗ = q2v + p2w, (5.111)

where the interaction coefficients pi and qi are non-negative random variables.
While q1 denotes the fraction of the second agent’s wealth transferred to the first
agent, the difference p1 − q2 is the relative gain (or loss) of wealth of the first
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agent, attributed to market risks. It is assumed that pi and qi have fixed laws, which
are independent of v and w, and of time.

In one-dimensional models, the wealth distribution f (t ;w) of the ensemble
coincides with agent density and satisfies the associated spatially homogeneous
Boltzmann equation of Maxwell type

∂tf + f = Q+(f, f ), (5.112)

on the real half-line,w ≥ 0. The collisional gain operatorQ+(t ; v), which quantifies
the gain of wealth v at time t owing to binary trades, acts on test functions ϕ(w) as

Q+(f, f )[ϕ] : =
∫

R+
ϕ(w)Q+

(
f, f

)
(w) dw

= 1

2

∫
R

2+
〈ϕ(v∗) + ϕ(w∗)〉f (v)f (w) dv dw, (5.113)

with 〈·〉 denoting the expectation with respect to the random coefficients pi and qi
in Eq. (5.111). The large-time behaviour of the density is heavily dependent on the
evolution of the average wealth

M(t) := M1(t) =
∫

R+
wf (t ;w) dw. (5.114)

These conservative models are such that the average wealth of the society remains
unchanged with time, M(t) = M , where the value of M is finite. In terms of the
interaction coefficients, this means 〈p1 + q2〉 = 〈p2 + q1〉 = 1 .

The Boltzmann equation (5.112) belongs to the Maxwell type. In the Boltzmann
equation for Maxwell molecules the collision frequency is independent of the
relative velocity (Bobylev 1988), and the loss term in the collision operator is
simply linear, introducing a great simplification which allows the use of most
of the well-established techniques developed for the three-dimensional spatially
homogeneous Boltzmann equation for Maxwell molecules in the field of wealth
redistribution.

Point-wise conservative models Drăgulescu and Yakovenko (2000) and
Chakraborti and Chakrabarti (2000) developed the class of strictly conservative
exchange models, which preserve the total wealth in each individual trade,

v∗ + w∗ = v + w. (5.115)

In the deterministic variant of the CC model (Chakraborti and Chakrabarti 2000),
the microscopic interaction is determined by one single parameter λ ∈ (0, 1), which
is the global saving propensity. Thus, in the interactions, each agent keeps the
corresponding λ fraction of his pretrade wealth, while the rest (1 − λ)(v + w) is
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equally shared among the two trade partners,

v∗ = λv + 1

2
(1 − λ)(v + w), w∗ = λw + 1

2
(1 − λ)(v + w). (5.116)

Here, all agents become equally rich eventually (Chatterjee et al. 2005c). In the orig-
inal, non-deterministic variant, the amount (1 − λ)(v + w) is not equally shared,
but in a stochastic way:

v∗ = λv + ε(1 − λ)(v + w), w∗ = λw + (1 − ε)(1 − λ)(v + w), (5.117)

with a random variable ε ∈ (0, 1).

5.3.3.2 Conservative in the mean models

Cordier et al. (2005) have introduced the CPT model, which loosens the rule of
strict conservation. The idea is that wealth changes hands for a specific reason: one
agent intends to invest his wealth in some asset, property, etc. in the possession of
his trade partner. Typically, such investments bear some risk, and either provide
the buyer with some additional wealth or lead to the loss of wealth in a non-
deterministic way. An easy realization of this idea (Matthes and Toscani 2008b)
couples the previously discussed rules (5.116) with some risky investment that
yields an immediate gain or loss proportional to the current wealth of the investing
agent,

v∗ = (λ+ η1) v + (1 − λ)w, w∗ = (λ+ η2)w + (1 − λ)v. (5.118)

The coefficients η1, η2 are random parameters, which are independent of v and w,
and distributed so that always v∗, w∗ ≥ 0, i.e. η1, η2 ≥ −λ. For centred ηi ,

〈v∗ + w∗〉 = (1 + 〈η1〉)v + (1 + 〈η2〉)w = v + w, (5.119)

implying conservation of the average wealth. Various specific choices for the ηi can
be considered (Matthes and Toscani 2008b). The easiest one leading to interesting
results is ηi = ±μ, where each sign comes with probability 1/2. The factor μ ∈
(0, λ) should be understood as the intrinsic risk of the market: it quantifies the
fraction of wealth agents are willing to gamble on.

5.3.3.3 Boltzmann equilibria

In conservative markets, whereM(t) = M , the details of the binary trade determine
the profile of the steady-state distribution of wealth. The characteristic function

S(s) = 1

2

(
2∑
i=1

〈psi + qsi 〉
)

− 1, (5.120)
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which is convex in s > 0, with S(0) = 1. Also, S(1) = 0 because of the conservation
property (5.119). The results from Düring et al. (2005) and Matthes and Toscani
(2008b) imply that, unless S(s) ≥ 0 for all s > 0, any solution f (t ;w) tends to a
steady wealth distribution P∞(w) = f∞(w), which depends on the initial wealth
distribution only through the conserved mean wealth M > 0. Moreover, exactly
one of the following is true:

(A) if S(α) = 0 for some α > 1, then P∞(w) has a Pareto tail of index α;
(B) if S(s) < 0 for all s > 1, then P∞(w) has a slim tail;
(C) if S(α) = 0 for some 0 < α < 1, thenP∞(w) = δ0(w), a Dirac delta atw = 0.

In case (A), exactly the moments Ms(t) with s > α blow up as t → ∞, giving rise
to a Pareto tail of index α. It has to be emphasized that f (t ;w) possesses finite
moments of all orders at any finite time. The Pareto tail forms in the limit t → ∞.

In case (B), all moments converge to limits Ms(t) → M∗
s , so the tail is slim.

In case (C), all moments Ms(t) with s > 1 blow up. The underlying process
is a separation of wealth as time increases: while more and more agents become
extremely poor, fewer and fewer agents possess essentially the entire wealth of the
society.

One study used Fourier transformations extensively to derive these results, and
this works very effectively to treat collision kernels of Maxwellian type (Bobylev
1988). Particularly, the Fourier representation is specially adapted to the use of
various Fourier metrics.

According to the collision rule (5.111), the transformed gain term reads

Q̂+
(
f̂ , f̂

)
(ξ ) = 1

2

〈
f̂ (p1ξ )f̂ (q1ξ ) + f̂ (p2ξ )f̂ (q2ξ )

〉
. (5.121)

The initial conditions turn into

f̂0(0) = 1 and f̂0
′
(0) = iM.

Hence, the Boltzmann equation (5.112) can be rewritten as

∂f̂ (t ; ξ )

∂t
+ f̂ (t ; ξ ) = 1

2

〈
f̂ (p1ξ )f̂ (q1ξ ) + f̂ (p2ξ )f̂ (q2ξ )

〉
. (5.122)

Equation (5.122) can be easily treated from a mathematical point of view owing to
the well-known techniques introduced so far to study the Boltzmann equation for
Maxwell molecules and its caricatures, mainly the Kac equation (Kac 1959).

In this chapter, we have dealt with the analytical studies of the kinetic exchange
models. In particular, we have shown that the entropy maximization process gives
rise to the inequality of the quantity exchanged. In the following chapter, we will
give the microeconomic formulation of such models.



6

Microeconomic foundation of the kinetic
exchange models

In the earlier chapters, we introduced kinetic exchange models and discussed
the mathematics behind them. However, one major point that is missing in the
earlier discussions is the choice behaviour of the agents. The outcomes of
the stochastic process do not reflect any optimization mechanism on the part of the
agents. In this chapter, we will provide a simple economic model which intends
to capture the basic features of the kinetic exchange models. We start with some
usual assumptions regarding the preference pattern of the agents and the market
mechanism. Eventually, it will be shown that the outcomes are exactly the same
as those obtained in the kinetic exchange models, thus providing an elementary
(but non-unique) way of interpreting the stochastic money evolution equations in
economic terms. After that, we will discuss the dynamic features of the asset dis-
tribution in the economy if it has time-varying macroeconomic variables. To be
precise, we will discuss a possibility of inequality reversal (as has been postulated
and discussed in Kuznets (1955, 1965) and Angle (2010)) in the same framework.

6.1 Derivation of the basic kinetic exchange model

Following Chakrabarti and Chakrabarti (2009), we consider an N -agent exchange
economy in discrete time. At every point of time, exactly two agents are randomly
chosen from the pool of N agents, i.e. each agent has equal probability of being
chosen for trade. The exact trading mechanism is described below. After they trade,
the agents part and leave the market. In the next period again two agents are chosen
for trade and the same process is repeated until the distribution of their assets
reaches a steady state. More specifically, at each point in time, each of the chosen
agents produces a single perishable commodity. These commodities are different
from each other, and therefore the agents will have an incentive to trade with each
other. We assume that money exists in this economy to facilitate transactions. These
agents care for their future consumptions and hence they care about their savings in
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the current period as well. Each of these agents is endowed with an initial amount
of money (the only type of non-perishable asset considered), which is assumed
to be unity for every agent for simplicity. The initial amount of money could be
varied of course. But that does not change the qualitative behaviour of the model.
At each time step, two agents meet randomly to carry out transactions according to
the utility maximization principle. The agents are endowed with a time-dependent
preference structure, i.e. the parameters of the utility function can vary over time
(Silver et al. 2002).

Let us discuss what happens at any point of time t . Suppose two agents from
the pool of N agents have been chosen randomly to trade among themselves.
For notational simplicity we denote them as agents 1 and 2. Assume that agent 1
produces Q1 amount of commodity 1 only and agent 2 produces Q2 amount of
commodity 2 only and the amounts of money they possess at time t are m1(t) and
m2(t), respectively (clearly, mi(1) = 1 for all i). Both of them will be willing to
trade and buy the other’s good by selling a fraction of their own productions and
also with the money that they have. In general, at each time step there would be a
net transfer of money from one agent to the other. This is where our final interest
lies. Below, we define the trading process. To keep notations simple, we get rid of
the time index t and define mi(t) = Mi and mi(t + 1) = mi in this subsection.
The utility functions are defined (without the time indices) as follows: for agents 1
and 2, respectively,

U1(x1, x2,m1) = x
α1
1 x

α2
2 mλ

1 and U2(y1, y2,m2) = y
β1
1 y

β2
2 mλ

2, (6.1)

where the arguments in both of the utility functions are consumption of the first
(i.e. x1 and y1) and second (i.e. x2 and y2) good and the amount of money they
possess, respectively. See Mas-Colell et al. (1995) for an excellent introduction
to the theory of choices and the usage of utility functions to represent them. For
simplicity, we assume that the utility functions are of the Cobb–Douglas form with
the sum of the powers normalized to 1, i.e.

α1 + α2 + λ = 1 and β1 + β2 + λ = 1. (6.2)

Clearly, we are interpreting λ as the power of money in the utility function. Later on
we will find that the same term will stand for the savings propensity in the money
evolution equations. We have already described the objective functions which are
to be maximized. But, of course, these are not unbounded optimization exercises.
The agents’ consumption decisions are bounded by their respective purchasing
powers. Let p1 and p2 be the commodity prices to be determined in the market.
The budget constraints are defined as follows: for agents 1 and 2, respectively, the
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budget constraints are

p1x1 + p2x2 +m1 ≤ M1 + p1Q1 and p1y1 + p2y2 +m2 ≤ M2 + p2Q2.

(6.3)

This means that the amount that agent 1 can spend for consuming x1 and x2 added
to the amount of money that he holds after trading at time (t + 1) (i.e. m1) cannot
exceed the amount of money that he has at time t (i.e. M1) added to what he earns
by selling the good he produces (i.e. Q1), and the same is true for agent 2. Note
that money acts as the numéraire good as usual and, hence, its price is 1. Subject
to their respective budget constraints, the agents maximize their respective utility
functions and the pricing mechanism (invisible hand) works to clear the market for
both goods (i.e. total demand equals total supply for both goods at the equilibrium
prices), i.e. agent 1’s problem is to maximize his utility U1(x1, x2,m1) subject to
p1.x1 + p2.x2 +m1 = M1 + p1.Q1, and for agent 2, to maximize U2(y1, y2,m2)
subject to p1.y1 + p2.y2 +m2 = M2 + p2.Q2. Let us solve the problem for the
first agent using the Lagrange multiplier technique,

L1 = x
α1
1 x

α2
2 mλ

1 − μ1(p1x1 + p2x2 +m1 −M1 − p1Q1).

Equating the first derivatives (with respect to x1, x2, m1 and the Lagrange multi-
plier μ1) with zero, one can derive the demand functions of the first agent as the
following:

x∗
1 = α1

(M1 + p1Q1)

p1
, x∗

2 = α2
(M1 + p1Q1)

p2
,

m∗
1 = λ(M1 + p1Q1).

By solving the problem for the second agent via

L2 = y
β1
1 y

β2
2 mλ

2 − μ2(p1y1 + p2y2 +m2 −M2 − p2Q2),

we derive the second agent’s demand functions, which are

y∗
1 = β1

(M2 + p2Q2)

p1
, y∗

2 = β2
(M2 + p2Q2)

p2
,

m∗
2 = λ(M2 + p2Q2).

The market clearing conditions are x∗
1 + y∗

1 = Q1 and x∗
2 + y∗

2 = Q2 (i.e. demand
matches supply in both the markets at equilibrium prices). One noteworthy feature
is that it was not necessary to choose these two particular markets. We could have
chosen any two markets to clear, e.g. we could have chosen the money market and
the market for commodity 1 to clear. However, Walras’ law says that if all but one
market clears then the rest also has to be cleared at the same price vector, i.e. we do
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not worry about the third market. It is automatically cleared (see point (1) below).
By substituting the values of x∗

1 , x∗
2 , y∗

1 and y∗
2 and by solving these two equations

we get market clearing prices (p̂1, p̂2), where

p̂1 = (λα1 + β1(1 − λ))M1 + β1M2

λQ1(1 − α1 + β1)

and

p̂2 = α2M1 + ((1 − λ)α2 + λβ2)M2

λQ1(1 − α1 + β1)
.

By substituting (p̂1, p̂2) in the money demand equations, we get

m∗
1 = λM1 + λα1 + (1 − λ)β1

1 − α1 + β1
M1 + β1

1 − α1 + β1
M2,

m∗
2 = λM2 + α2

1 − α1 + β1
M1 + λβ2 + (1 − λ)α2

1 − α1 + β1
M2.

⎫⎪⎪⎬⎪⎪⎭ (6.4)

Now, we denote m∗
i as mi(t + 1) and Mi as mi(t) (for i = 1, 2). The above set of

equations can be rewritten as

m1(t + 1) = λm1(t) + θ11m1(t) + θ12m2(t),
m2(t + 1) = λm2(t) + θ21m1(t) + θ22m2(t),

}
(6.5)

by appropriately defining θij ’s (for i, j=1, 2). We are now in a position to discuss
the outcomes of such a trading process.

(1) At optimal prices (p̂1, p̂2), m1(t) +m2(t) = m1(t + 1) +m2(t + 1), i.e.
demand matches supply in all markets at the market-determined prices in
equilibrium. Since money is also treated as a commodity in this framework, its
demand (i.e. the total amount of money held by the two persons after trade)
must equal what was supplied (i.e. the total amount of money held by them
before trade). Recall that we did not allow money to be created or destroyed in
this economy just as is the case in the ‘conservative’ kinetic exchange market
models.

(2) We now make a very restrictive assumption that αi = βi for i = 1, 2. This
assumption drastically simplifies the money evolution equations:

m1(t + 1) = λm1(t) + α1(m1(t) +m2(t)),
m2(t + 1) = λm2(t) + α2(m1(t) +m2(t)).

}
(6.6)

Next, to introduce randomness in the choice behaviour we assume that α1 in
the utility function can vary randomly over time with λ remaining constant.
This in turn implies that α2 also varies randomly over time with the restriction
that the sum of α1 and α2 is a constant (1 − λ) because of the normalization
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α1 + α2 + λ = 1. Now, in the money demand equations derived above, if
α1/(α1 + α2) is substituted by ε, the money evolution equations become:

m1(t + 1) = λm1(t) + ε(1 − λ)[m1(t) +m2(t)],
m2(t + 1) = λm2(t) + (1 − ε)(1 − λ)[m1(t) +m2(t)].

}
(6.7)

This is exactly the CC model (Chakraborti and Chakrabarti 2000) with λ (i.e.
the power of money in the utility function) as the savings propensity. For a fixed
value of λ, if α1 (or α2) is a random variable with uniform distribution over the
domain [0, 1 − λ], then ε is also uniformly distributed over the domain [0, 1].

(3) For the limiting value of λ in the utility function (i.e. λ → 0), the money
evolution equation describing the random sharing of money without savings is
retrieved, as used in the model of Drăgulescu and Yakovenko (2000).

(4) If αi = βi for i = 1, 2, then evidently the θij terms in equation 6.5 are corre-
lated, which gives rise to a new possibility of having a generalization of the
earlier framework in the direction of having correlated returns. We will have
more to say on this point later.

(5) An important property of the above-mentioned model is that there are non-
trivial interactions among the agents and hence the asset evolution equations
are coupled. This is the crucial aspect in which the current model is different
from a previous known work that has a similar line of thinking (Silver et al.
2002) in which the asset evolution equation for the i-th agent depends on its
own assets.

Let us now discuss the moments generated by the above-mentioned stochastic
difference equations as they will give us a qualitative picture of the distributions of
money.

6.1.1 Random exchange

For completely random sharing of assets, there is no savings, i.e. λ = 0. Hence,
the exchange equations look like:

mi(t + 1) = ε(mi(t) +mj (t)),
mi(t + 1) = (1 − ε)(mi(t) +mj (t)),

}
(6.8)

where ε ∈ [0, 1] and uniform (one can also consider ε ∈ [δ, 1 − δ] with 0 ≤ δ <

0.5, and the qualitative features still hold good). Evidently 〈m〉 = 1 since there
is no creation or destruction of money and we assumed that all agents (iden-
tical in all aspects) start with exactly one unit of money. Also, in the steady
state �mi = �[ε(mi +mj )] = 〈x2〉 − 〈x〉2, where x = [ε(mi +mj )]. Note that



6.1 Derivation of the basic kinetic exchange model 155

〈x〉 = 1. Hence,

�m = 〈ε2〉〈m2
i +m2

j + 2mimj 〉 − 1. (6.9)

Using the fact that mi and mj are uncorrelated (in a very large system, i.e. where
N → ∞) and �ε = 〈ε2〉 − 1/4, we get

�m =
(
�ε + 1

4

)
(2�m+ 4) − 1. (6.10)

Simplifying, we get �m = 4�ε
1
2 −2�ε

.

6.1.2 Exchange with savings

Here also, 〈m〉 =1. In this context, the variance of the distribution will be given by
the following equation (apply variance operator on both sides of equation 6.7):

�m = λ2(�m+ 1) + 2(1 − λ)2

(
�ε + 1

4

)
(�m+ 2) + λ(1 − λ)(�m+ 2) − 1.

Here, � stands for the second central moment (variance). Since ε ∈ [0, 1] and
uniformly distributed, �ε = 1/12. Thus one gets

�m = (1 − λ)2

(1 − λ)(1 + 2λ)
. (6.11)

Hence, if λ = 1,�m = (1 − λ)/(1 + 2λ), as in Patriarca et al. (2004). Thus,�m =
1 for λ = 0, which is the case for an exponential distribution, and for 0 ≤ λ < 1
the distribution is well approximated by

p(m) = mκ1−1e−κ2m


(κ1)κ−κ1
2

,

with κ1 = (1 + 2λ)/(1 − λ) and κ2 = κ1 as is conjectured in Patriarca et al. (2004)
(see Section 5.1.1). For λ → 1, by applying l’Hôpital’s rule one gets �m = 0,
explaining why the steady-state distribution tends to a delta function as the rate of
savings, i.e. λ → 1 as widely observed in simulations (Chakraborti and Chakrabarti
2000; Patriarca et al. 2004). So far, while deriving the above model, we have
assumed that the agents are producing only one commodity at every time point.
However, we can present the same model by incorporating the idea of risk aver-
sion explicitly when each agent produces a vector of commodities. Below we
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discuss the notion of correlation in the returns from trading of several commodities
simultaneously.

6.2 Production of a vector of commodities

We begin with a simple calculation. Suppose an agent invests a certain amount of
money inK number of assets in which the returns are stochastic. More precisely, let
us assume that the returns (εk) are independent and identically distributed variables
with finite mean (μ) and variance (σ 2). The problem for the agent is to decide
what fractions (fk) of his money holding he would invest in each asset k for
k = 1, 2, . . . , K . Assuming risk aversion, the problem is to minimize the variance
of his portfolio (

∑
k εkfk) or, formally, the problem is to minimize

σ 2(ε)
(
f 2

1 + f 2
2 + · · · + f 2

K

)
subject to the condition that

f1 + f2 + · · · + fK = 1.

Clearly, the solution would be f ∗
k = 1/K for all k. Now, consider the following

set of stochastic difference equations representing how the money holding changes
among the (without savings) agents over time:

mi(t + 1) = ε[mi(t) +mj (t)],
mj (t + 1) = (1 − ε)[mi(t) +mj (t)].

}
(6.12)

While deriving this set of equations, it had been assumed that each of the agents
produced a single non-storable commodity and money acted as an asset that helps
to make transactions. However, we can generalize the situation by assuming that
each of the agents produces a vector of commodities and engages in trading with
the other, then it is perfectly possible for a risk-averse agent to diversify his money
holding at time t following the above calculation, instead of putting all his money
in trading of a single commodity. The market has the following structure. Each
agent produces K (K ≥ 1) number of commodities and each of these commodities
is different from the other. Hence, the agents would be willing to trade with each
other. Above in Section 6.1, we have dealt with the case where K = 1, i.e. each
agent produces a single commodity and it shows that Eq. 6.12 captures the basic
process of money exchange in such an economy with zero savings propensity. Here,
we consider the case where K ≥ 1. Clearly, the risk-averse agents would diversify
their money holding in order to minimize the risk from trading. The mode of
trading is such that, at each instant, two randomly chosen agents engage in trading,
each producing K number of different goods so that, in total, 2K number of goods
are traded at each instant. For trading the k-th pair of goods (k = 1, 2, . . . , K),
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the i-th and the j -th agent use mi/K and mj/K amounts of money, respectively,
because we have already shown that the variance (risk) minimizing choice is to
diversify equally among all assets. So the money evolution equations become the
generalization of Eq. 6.12, namely

mi(t + 1) =
∑

k εk

K
[mi(t) +mj (t)],

mj (t + 1) =
(

1 −
∑

k εk

K

)
[mi(t) +mj (t)],

⎫⎪⎪⎬⎪⎪⎭ (6.13)

for all possible integer values of K . If K is 1, then we get back Eq. 6.12, which
implies that the steady-state distribution of money would be exponential. In the
other extreme for lim K → ∞, by applying the Lindeberg–Levy central limit
theorem, we have (

�kεk√
K

)
∼ N (μ, σ 2),

whereμ and σ 2 are finite for uniformly distributed variables εk. This in turn implies
that

�kεk

K
∼ N

(
μ,

σ 2

K

)
.

Hence, the distribution is a � function at μ for large K . The resulting distribution
of money would also be a � function, i.e. perfect equality will be achieved.
For finite values of K greater than unity, the distribution of money would have
positive skewness (see Chakrabarti and Chakrabarti 2010a). It may be noted that
the assumption of the returns having the same mean and variance along with
independence among themselves is not very realistic. Further generalizations are
possible. However, our aim was to show that, even if we do not consider savings
propensity, it is possible to generate positively skewed distributions in money
holding from the very basic random exchange equations (Eq. 6.8) if we consider
multisectoral trade. But, of course, the shifts in the distributions are discrete (for
K = 1, 2, 3, . . .) and not continuous as in the CC model.

6.3 A generalized version of the CC model

Recall that we derived a set of stochastic money evolution equations as (Eq. 6.5)

m1(t + 1) = λm1(t) + θ11m1(t) + θ12m2(t),
m2(t + 1) = λm2(t) + θ21m1(t) + θ22m2(t).

}
(6.14)

The presence of a positive savings propensity is evident in the above equation.
Assuming that αi and βi (for i = 1, 2) are random variables (because of the time
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dependence of preference), we see that the θij ’s are correlated (for i, j = 1, 2).
Hence, the money evolution equations consists of two correlated random terms. We
intend to use this model to shed light on the dynamic behaviour of the steady-state
distribution of money holding in an economy which has time-dependent savings
behaviour and riskiness. For simplicity and tractability, we assume the θij ’s to be
correlated in the following form:

mi(t + 1) = λmi(t) + ω1(1 − λ)mi(t)

+ [αω1 + (1 − α)ω2] (1 − λ)mj (t),

mj (t + 1) = λmj (t) + (1 − ω1)(1 − λ)mi(t)

+ [1 − αω1 − (1 − α)ω2] (1 − λ)mj (t),

whereω1,ω2 ∼ uniform[0, 1] and independent. That is, instead of having non-linear
terms involving two random variables, we consider linear combinations of them
while keeping the rule of conservation of money intact. We closely follow the for-
mulation given in Chakrabarti and Chakrabarti (2010a), which studied this model
in detail. Note that in the above set of equations ω1 and (αω1 + (1 − α)ω2) are the
two correlated random terms. Later, we will see that the distributional assumptions
of ω1 and ω2 will help us to calculate the moments of the resultant steady-state
distributions of money very easily. The savings propensity and the degree of corre-
lation between the stochastic terms are denoted by λ and α, respectively, and both
can vary between 0 and 1, leading to different steady-state distributions as shown in
Fig. 6.1. Technically, α is not the correlation coefficient. It is a parameter that will
be helpful to tune the correlation between the two random terms. Several points
are to be noted.

(1) If λ = 0 and α = 1, then we have the very basic framework of an ideal
gas, which gives rise to a purely exponential distribution (Gibbs distribution:
p(m) ∼ e−m/T with T = 1 in this case); see Yakovenko and Barkley Rosser
(2009) and Drăgulescu and Yakovenko (2000).

(2) If λ = 0 and α = 0, then we have a model with two uncorrelated stochastic
terms. This model has been studied and solved in Majumdar et al. (2000).
This model gives rise to a probability distribution characterized by a gamma
probability density function of the form p(m) ∼ 4me−2m.

(3) If lim λ → 1, then the distribution would be a delta function.
(4) If only α = 1, the above model reduces to the so-called CC model (Chakraborti

and Chakrabarti 2000), which gives rise to gamma function-like behaviour.
(5) If only α = 0, then we have a new model which has savings propensity

(CC model) and two uncorrelated random terms (see point (2) above).
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Figure 6.1 Steady-state distributions of money for different values of the parame-
ters. A, λ = 0 and α = 0. B, λ = 0 and α = 0.7. C, λ = 0 and α = 1. D, λ = 0.5
and α = 1. As the correlation goes up the distribution becomes more skewed to
the left (from A to B to C; see the arrow). Then as the savings propensity goes up,
it moves in the opposite direction (from C to D; see the arrow). All simulations
are done for O(106) time steps with 100 agents and averaged over O(103) time
steps. Reproduced from Chakrabarti and Chakrabarti (2010a).

6.4 Inequality reversal

We can measure inequality by a number in indices. See the next chapter for a
short discussion on this topic. However, the most useful one (and the easiest one
to implement as will be seen shortly) in this case is simply the coefficient of
variation, which is basically the standard deviation of the distribution normalized
by the mathematical expectation. The economy is modelled in such a way that the
expectation is always set equal to unity (recall that all agents are initially endowed
with unit amount of money and the economy under study is a conserved one, i.e.
money is neither created nor annihilated in this economy). We can calculate the
moments recursively as we did in the earlier section (see Repetowicz et al. (2005)
for more on finding the moments). We consider the i-th agent’s money evolution
equation only

mi(t + 1) = [λ+ ω1(1 − λ)]mi(t) + [αω1 + (1 − α)ω2](1 − λ)mj (t). (6.15)

It is easy to show that 〈m〉 = 1. Formally, by taking expectation over both sides of
Eq. 6.15, we get

〈mi(t + 1)〉 =
[
λ+ 1

2
(1 − λ)

]
〈mi(t)〉 + 1

2
(1 − λ)〈mj (t)〉.
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Note that 〈mj (t)〉 = ∑N
j=1 mj (t)/N = 1. Since the expected money holding is free

of the time index, the result readily follows. The next result is

�m = 2(1 − λ)
[
α(1−λ)

3 + λ
2 + (1−λ)(1−α)

4

]
1 − z

− 1,

where z = (1 − λ)2
(

1
3 + λ

(1−λ)2 + α2+(1−α)2

3 + α(1−α)
2

)
. The proof involves a little

bit of algebra. It follows from the definition of variance that

�mi = 〈m2
i 〉 − (〈mi〉)2,

where mi is given by Eq. 6.15. By substituting mi in the left-hand side of the
expression of variance and noting that 〈m〉 = 1, we get

�mi(t + 1) = 〈[(λ+ ω1(1 − λ))mi(t) + (αω1 + (1 − α)ω2)(1 − λ)mj (t)]2〉 − 1.

Here, we use the fact that, in the steady state, the variance of the distribution
should be free of the time and the agent indices. Also, since ωi ∼ uniform [0,1],
〈ωi〉 = 1/2 and �ωi = 1/12 (for i =1, 2). On simplification, we get

�m = z(�m+ 1) + 2(1 − λ)〈(λ+ ω1(1 − λ)) (αω1 + (1 − α)ω2)〉 − 1,

where z = (1 − λ)2
(

1
3 + λ

(1−λ)2 + α2+(1−α)2

3 + α(1−α)
2

)
. On further simplification,

we get

�m = 2(1 − λ)
[
α(1−λ)

3 + λ
2 + (1−λ)(1−α)

4

]
1 − z

− 1, (6.16)

where z is defined as above. Clearly the variance is a function of λ and α only.
Now, we make use of two observations. First, for a sustainable growth the savings
propensity cannot be too low (see Barrow and Sala-i Martin (2004) for more on this
topic). If an economy starts from a subsistence-level consumption (where the whole
income is consumed with nothing left as savings), it has to increase the savings
propensity over time to achieve prosperity. The second observation is that the
modern markets are characterized by correlated returns with fluctuations (Sornette
2004) in the most efficient state (Bak 1996). The implication is that both λ and α
may increase over time unidirectionally. By plugging different values of λ and α
in the expression of variance, one can find how the inequality index changes over
time with increases in the parameters. Note that, since the parameters are ranging
between 0 and 1, the parameter space is a square with unit length (Fig. 6.2 shows
the relevant region). For simplicity consider the following scenario. Assume that
the economy starts from a situation where there is no savings and also the returns
are completely uncorrelated. Over time the savings propensity increases. So does
the correlation in the asset returns. At the end the economy has very high savings
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Figure 6.2 The (λ, α) parameter space. If the economy moves through the shaded
region (the region above the curve α = λ1/5) then it shows inequality reversal.
Reproduced from Chakrabarti and Chakrabarti (2010a).

propensity and very high correlation. In short, the path followed by the economy
starts from the origin (λ = 0, α = 0) and ends at (λ = 1, α = 1). The simplest
functional relationship between λ and α satisfying the above assumption is of the
form

α = λ
1
τ , (6.17)

where τ is a positive number. It is numerically seen that, for τ ≥ 5, the economy
shows a very prominent inequality reversal (Fig. 6.3). It should be noted, however,
that if the economy follows some other paths in the parameter space, then it may
show other types of behaviour as well. For the sake of completeness, we also provide
Monte Carlo simulation results of the Kuznets curves, in which the inequality is
measured in terms of the Gini concentration ratio. The definition of the measure G
is the following (Kleiber and Kotz 2003),

G ≡
∑N

i=1

∑N
j=1 | mi −mj |

2μN(N − 1)
, (6.18)

where N is the number of agents (which is set to 100), μ is the money per agent
(which is set to unity) and mi is the money holding of the i-th agent. Figure 6.4
shows the rise and the subsequent fall in the Gini concentration ratio. In the original
formulation, the Kuznets curve depicted the changes of income distribution with
the changes in per capita income. However, that possibility is lost in the current
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Figure 6.3 (a) The changes in the variance of the distribution (�m) are shown
with changes in the savings propensity (λ) (from below, τ = 5, 7, 10 and 13).
The Monte Carlo simulation results agree with the theoretical curves (dotted
lines) obtained from Eqs. 6.16 and 6.17. (b) The Kuznets curve in terms of the
coefficient of variation, i.e.
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Figure 6.4 The Kuznets curve in terms of the Gini concentration ratio (from
below, τ = 5, 7, 10 and 13): inequality increases and then falls. All Monte Carlo
simulations are done for O(105) time steps with 100 agents and averaged over
O(102) time steps. Reproduced from Chakrabarti and Chakrabarti (2010a).

framework because the trading process that we have considered is a conservative
one, implying that the average money holding in this model remains fixed over time.
There is no growth in the economy. Hence, instead of average income, we consider
the changes in the savings propensity and the correlation among the markets and we
trace the corresponding effects on the inequality in money holding. In such cases,
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it is clearly seen that the economy shows Kuznets-type, i.e. inverted U-shaped,
behaviour. From what we have shown above, it is clear that the kinetic exchange
models can accommodate the idea of time-varying inequality very easily. Almost
all the economies show differences in inequalities over time. However, the validity
of the claim of an exact inverted U-shaped inequality path is not beyond doubt.

6.5 Global market

Another interesting possibility would be to consider a global market. The main
problem with the earlier formulation is that we cannot derive an explicit formula
to describe the steady-state probability distributions generated by Eq. 6.7 except at
λ = 0. Recall that, the way we had formulated, the price mechanism could work
only locally (matching the bipartite supply and demand) and the markets were also
cleared locally. Now we focus on global market clearance via the price mechanism.
It will be shown that the money evolution equations would be non-coupled and
hence solvable under mild distributional conditions. Below we consider a highly
simplified model to capture the idea with a minimal number of parameters. We
assume that, subject to the individual budget constraints, each agent maximizes its
utility and allocates income accordingly between present and future consumptions.
Both the present and future consumptions are represented by the amount of money
spent on the present and future consumptions. We ignore any discount factor
between current and future consumptions. On the production side, they can invest
in production and get their returns accordingly. Formally there are N agents in
the economy each taking part in production and consumption. A typical agent’s
behaviour at any time step t is analysed as follows:

(1) Each agent has to maximize utility subject to his budget constraint. For sim-
plicity, the utility function is assumed to be of Cobb–Douglas type. Briefly, at
time t the i-th agent’s problem is to maximize u(f, c) = f λc(1−λ) subject to
f + c = m(t), where f is the amount of money kept for future consumption,
c is the amount of money to be used for current consumption and m(t) is the
amount of money holding at time t . This is a standard utility maximization
problem and, solving it by Lagrange multiplier, one gets the optimal allocation
as c∗ = (1 − λ)m(t) and f ∗ = λm(t). Note the difference between the utility
functions considered in Section 6.1 and the one we are considering now. Here,
we assume that the agents derive utility from holding assets, which is not really
a particularly compelling assumption. But it simplifies the model a lot.

2 The i-th agent invests (1 − λi)mi(t) in the market and produces an output
vector yi(t), which he sells in the market at market-determined price vector pt ,
being the same for everybody. Here we ignore the exact trading process and the
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derivation of the price vector. Instead, we assume that the market is perfectly
competitive and, therefore,

(1 − λi)mi(t) = p(t)yi(t).

Roughly the argument is as follows: if the left-hand side ≥ the right-hand side,
then it is not optimal to produce because cost is higher than revenue. Again, if
the right-hand side ≥ the left-hand side, then there exists a supernormal profit
which attracts more agents to produce more. But that leads to a fall in price and
hence the economy comes to the equilibrium only when the left-hand side =
the right-hand side. Summing up the above equation over all agents, one gets∑

i(1 − λi)mi(t) = p(t)
∑

i yi(t). One can rewrite this as

M(t)V (t) = p(t)Y (t), (6.19)

where M(t) is the total money in the system and V (t) is equivalent to the
velocity of money at time t . It is evident that V (t) depends on the parameter
of the utility functions λi for all agents. It may be noted that the derived
equation is analogous to the Fisher equation of ‘quantity theory of money’. For
an alternative interpretation of the Fisher equation in the context of CC-type
exchange models, see Wang and Ding (2005).

(3) In this closed economy, no money is either created or destroyed during the
exchange process. After all trading is done, each agent has whatever he saved
for future consumption and the interest income earned from it added to some
fraction αi(t) of the total amount of money invested in production of the current
consumption, i.e.

mi(t + 1) = λimi(t) + αi(t)
∑
i

(1 − λi)mi(t),

or, from Eq. (6.19),

mi(t + 1) = λimi(t) + αi(t)p(t)Y (t). (6.20)

Assume that αi(t)p(t)Y (t) = ε(t) to get the following reduced equation:

mi(t + 1) = λimi(t) + ε(t). (6.21)

6.6 Steady-state distribution of money and price

Each agent’s money follows the dynamics defined by Eq. (6.21), in which ε(t) can
be assumed to be a white noise. It can be easily shown that this process produces a
gamma function–like part (we have discussed it in detail in Chapter 5) with a power
law tail (Basu and Mohanty 2008). Equation (6.20) is its more general version.
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This is an autoregressive process of order 1 with λi < 1, assuming that the last
term is a white noise. Taking expectation for the whole expression

[1 − λi]〈mi〉 = 〈αi(t)〉〈p(t)〉〈Y (t)〉.
Denoting 〈αi(t)〉〈p(t)〉〈Y (t)〉 by a finite constant C, we rewrite the equation (with-
out the agent index) in terms of average money holding

λ =
(

1 − C

m

)
,

which immediately shows that dλ ∝ dm/m2. Since P (m)dm = ρ(λ)dλ, where
P (m) is the distribution of money and ρ(λ) is the distribution of λ, it follows that

P (m) = ρ

[(
1 − C

m

)]
1

m2
. (6.22)

Such autoregressive-type equations have been proven to be very useful for mim-
icking the data-generating processes of the kinetic exchange models. In particular,
Basu and Mohanty (2008) provide examples of the emergence of gamma function–
like behaviour in money distribution for a variety of noise terms with the assumption
of λi = λj for all i and j . Also, as has been shown above, if λ is distributed uni-
formly the distribution of money has a power law feature with the exponent 2
(see also Chatterjee and Chakrabarti 2007b; Basu and Mohanty 2008). Writing
Eq. (6.19) without the time index, we get

p = V

Y/M
.

One observes that M is of the order of N , the number of agents, and Y is their total
production. If we assume that both V and Y/M are distributed uniformly, one can
show that the distribution of price is a power law:

f (p) ∼ p−2. (6.23)

So, in the above model, price may also have power law fluctuations. However,
there is no clear evidence supporting the existence of a power law in commodity
price fluctuation, although it has been verified in stock price fluctuations (Sornette
2004).

6.7 Discussion

It is still an open problem to interpret the kinetic exchange model within the frame-
work of the standard utility maximization used in neoclassical economics. What
we have presented above is a simple general equilibrium framework. However, it
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is perfectly possible that it can be interpreted better by some other models. In our
model, it is assumed that all agents are characterized by Cobb–Douglas-type pref-
erences with stochastic parameters (Eq. 6.1), which they maximize subject to their
respective budget constraints (Eq. 6.3). Assuming binary trades between randomly
chosen agents, we have shown that the money evolution equations are just the same
as in the kinetic exchange models. An important part of the result is that the money
evolution equations are independent of other endogenous variables such as prices
and also of the exogenous variables such as the production level. The equivalence
of the money evolution equations derived in this framework with those developed
earlier employing the entropy maximization principle is certainly noteworthy.

But there are a number of problematic issues associated with the theory devel-
oped so far. We treated money as a commodity which has no storage cost. The
important roles of money in our model are that it is an asset which transfers pur-
chasing power to the future. However, money has some other features as well which
we ignored. For example, money in a real economy acts as a medium of exchange
and also serves as a unit of accounting. But in our model we did not consider those
issues. Another major point is that we did not consider debt in the model. Also,
for the sake of clarity, it may be mentioned that the distributions derived so far are
concerned with money only. Strictly speaking, there is no income (no wage earned
from labour supply or no rental income) in these models and neither is there any
wealth accumulation (no capital stock). The simple reason is that the production
side is completely ignored in this model. This may be considered as a future direc-
tion of research to consider a model of production and to derive income/wealth
distribution directly from that framework. From a technical point of view, the usage
of only one type of utility function, namely Cobb–Douglas, is also questionable.
However, even though there are many other types of utility functions in the liter-
ature, we used it because it directly translates the money evolution equation into
those obtained in the kinetic exchange models.

However, the essential nature of both income and wealth and their distributions
are captured very well by this class of models. In short, in this class of models
money (asset) works as a proxy for income/wealth. Since the distributions derived
for money compare extremely well with the empirical data of income/wealth,
we believe that these models provide important insights for income/wealth dis-
tributions. Critics Gallegati et al. (2006) noted that ‘in industrialized capitalist
economies, income is most definitely not conserved’, which is certainly true. But
while this observation is correct that income and wealth in an economy grows over
time, it does not contradict the models presented above. The growth of income and
wealth over time is, by definition, a time-series phenomenon, whereas the mod-
els presented here try to explain cross-section data, i.e. the data taken at a single
instance or within a very short period of time. The main argument in favour of
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the kinetic exchange models is that millions of small transactions that take place
in a very short span of time can generate the essential stochastic features of the
kinetic exchange models and the corresponding distributions. The crucial differ-
ence between the above-mentioned model and the usual modelling exercises in
macroeconomics is that we did not consider the foresight of the buyers and hence
there is no rational expectation about the future. However, an interesting point
captured in the model is that it leaves room for contingency in the decision-making
process, which is almost always ignored in the standard macroeconomic models.
Also, the non-trivial interactions between the agents in the kinetic exchange model
are not present in the usual representative agent-based macroeconomic models. It
would be interesting to see whether these features can be meaningfully incorporated
in the mainstream macroeconomic models.



7

Dynamics: generation of income, inequality
and development

In some of the earlier chapters, we have presented in detail the models which
have been inspired from physical theories. In the last chapter, we presented a
simple economic model which intends to capture the basic features of the kinetic
exchange models. The objective of this chapter is to present analytical discussions
on stochastic and related economic models of the distribution of income and wealth.

7.1 The economic significance

In order to get an idea about the distributional effects of a particular economic policy
it often becomes necessary to have information on the distribution of income. Also
inequality based on distribution of income has important effects on development,
social outcomes and public finance. The shape of the income distribution in a
country enables the policy-makers to get an idea about the amount of tax collection.
For instance, in Germany 50.6% (19.7%) of the entire income tax is paid by the
top 10% (1%) of the taxpayers (see Merz et al. 2005).

There are economic and non-economic reasons for separate study of the distri-
bution of wealth that cannot be interpreted as human capital, such as educational
background. Examples of wealth of this type are financial assets and real proper-
ties. Unlike human capital they can be traded in appropriate markets at the time of
necessity; for instance, when the flow of regular income reduces (after retirement)
and when consumption is likely to increase with an increase in family size. Precau-
tionary motive for saving is also regarded as a major reason for accumulation of
wealth. Wealth accumulation is often taken as an indicator of social status. Wealth
may be retained as well for the purpose of bequests.

A variety of size distributions, including income, wealth, employment and firms
ranked in terms of assets have been observed to demonstrate many similar charac-
teristics. These common features have led to speculation about the processes that
generate such distributions. A number of possibilities have been explored in this

168
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context. One of the most popular approaches relies on the theory of probability and
the models considered along this line become stochastic. There is randomness in
the changes in size, but the underlying process that gives rise to the random jumps
fulfils the condition that it is possible to derive the probability distribution of future
size. Prediction of the size distribution of the variable under consideration (say,
income or wealth) becomes possible when the same process applies to a sufficiently
large number of individuals.

Of particular interest in this context are ergodic processes which are character-
ized by a steady-state or stationary distribution, and over time every distribution
converges to this distribution. The steady-state distribution is referred to as the
equilibrium distribution. If the observed frequencies can be closely approximated
by steady-state frequencies, then the underlying stochastic formulation can be
assumed to provide an explanation of the observed frequency distribution. In other
words, the observed system is in a small neighbourhood of the equilibrium so that
the observed distribution can be regarded as equilibrium distribution. In fact, it
has been found in various studies that the distributions of income and wealth are
characterized by some globally stable and robust features (Yakovenko and Barkley
Rosser 2009). There is now a huge literature in which an economy can be viewed
as a thermodynamic system and the distribution of income among economic agents
is identified with the distribution of energy among particles in a gas (see Chatterjee
et al. 2005b; Chakrabarti et al. 2006).

7.2 Analysis of income distributions

Two well-known features of an empirical distribution of income are that it is
positively skewed and its top tail can be approximated by a Pareto distribution,
which, when the logarithm of the number of persons possessing income level more
than x is plotted against the logarithm of x, produces a straight line, as we have
seen in most of the figures in Chapter 2.

In his pioneering contribution, Gibrat (1931) first advanced the idea that the
income growth might be explained by a stochastic process. He suggested the
‘law of proportionate effect’, which generates a positively skewed distribution.
According to the law of proportionate effect, the change in income at any time
point is a random proportion of the income at the previous time point. Thus, if xt
denotes the income of a representative individual at time t , then

xt − xt−1 = εtxt−1, (7.1)

where εt is a stochastic component. By repeated use of (7.1) we get

ln (xt ) = ln (x0) +
t∑

j=1

ln
(
1 + εj

)
, (7.2)
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where x0 is the initial income. Now, if ln (x0) and the sequence {ln(1 + εj )} are
assumed to be independent and identically distributed with mean μ and variance
σ 2, then by the central limit theorem for large t , xt follows a log-normal distribution
with parameters (t + 1)μ and (t + 1)σ 2, that is, ln (xt ) follows a normal distribution
with mean (t + 1)μ and variance (t + 1)σ 2 (see Aitchison and Brown 1957).

The density function of ln(xt ) is then given by

f
(
xt , (t + 1)μ, (t + 1)σ 2) = 1

xt
√

2πσ 2(t + 1)
exp

[
− [ln xt − (t + 1)μ]

2σ 2(t + 1)

2]
.

(7.3)

For the log-normal distribution σ
√
t + 1 is a sensible measure of income inequality

(see Chakravarty 1990). Thus, as a model of income distribution the formulation
given by (7.1) has a major technical disadvantage: it predicts that income inequal-
ity, as measured by the standard deviation of the logarithm of income, increases
over time unboundedly. This implication of the law of proportionate effect is not
supported by evidence.

Kalecki (1945) argued that income inequality is determined by economic factors
to a large extent, and there is no tendency for an increase in inequality of the type
described above. He studied the case where the variance of ln(xj ) is kept constant
over time by economic factors. From Eq. (7.1) it then follows that there is a negative
correlation between ln(xj−1) and ln(1 + εj ). He assumed further that the correlation
is described by an equation of the type

ln(1 + εj ) = −αj ln(xj−1) + ε∗
j , (7.4)

where αj is a constant and ε∗
j is independent of ln(xj−1). This equation (7.4) may be

regarded as an instrument that influences stabilization of the variance. The resulting
generating equation then becomes

xj = x
1−αj
j−1 exp(ε∗

j ). (7.5)

Under certain conditions the distribution of xt can be approximated by a log-normal
distribution. In the same paper, Kalecki (1945) also investigated the cases where
the variance changes over time and changes can be subdivided into systematic and
random components.

A variant of the law of proportionate effect was considered by Champernowne
(1953). The Champernowne approach is an application of the Markov model, which
states that there exist probability distributions for individual incomes in the current
period, given incomes in the earlier period. Incomes are measured in intervals and
there is a set of transition probabilities, each of which indicates that an income in
interval i in the current period will be in interval j in the next period. This assump-
tion is a replacement of the equal growth assumption in the law of proportionate



7.2 Analysis of income distributions 171

effect. Given these transition probabilities, under certain fairly general conditions
the income distribution will converge to an equilibrium distribution, which is
independent of the original distribution. In different models of this type, the equi-
librium distributions have been found to be some variants of the Pareto distribution
(e.g. Wold and Whittle 1957).

To discuss the Champernowne model more explicitly, let us suppose that income
as a size measure above a certain minimum levelx0 is divided into an infinite number
of non-overlapping intervals/classes. The i-th class given by (xi−1, xi) satisfies the
assumption that xi = c xi−1, where c > 1 is a constant. Since ln(xi) − ln(xi−1) =
In(c), it follows that on a logarithmic scale the end points of the size classes are
equidistant. We regard the development of income over time through these intervals
as a stochastic process.

Let pi,j (t) be the probability that an income in class i at time t will be in class
(i + j ) at time (t + 1). Then

∞∑
j=−(i−1)

pi,j (t) = 1. (7.6)

This ensures that an income in size class i at time t will be in one of the classes
1, 2, . . . ,∞ with probability 1. The probability that at time t an income will be
in size class i is denoted by pi(t). The size distribution of income pi(t + 1) is
generated by

pi(t + 1) =
i−1∑

l=−∞
pi−l(t)pi−l, l(t) . (7.7)

Since Eq. (7.7) relates the size distribution of income at time (t + 1) with the
distribution at time t through transition probabilities pi,j (t), it is referred to as the
transition equation.

The Champernowne model is based on the assumptions C1–C3 stated below.
Assumption C1: the number of incomes is constant over time.
Assumption C2: for each i and t , and for a fixed positive integer n,

pij (t) = 0 if j > 1 or j < −n, (7.8)

and

pij (t) = aj > 0 if j > i and −n ≤ j ≤ 1. (7.9)

Assumption C3:

1∑
j=−n

jaj < 0. (7.10)



172 Generation of income, inequality and development

Assumption C1 is self-explanatory. In order to ensure validity of this assumption,
it is supposed that, in the event of an income recipient’s death between two time
periods, there will be an heir to her income in the next period. According to Eq. (7.8)
of assumption C2, no income can move up by more than one interval or move down
by more than n intervals during a particular period. Equation (7.9) of assumption
C2 demands that the transition probabilities are independent of time and the initial
size interval i. They depend only on the number of intervals j an income can move
in a single period. Assumption C3 is a stability condition. It says that there will be a
tendency for incomes to shrink in the long run, that is, that incomes cannot increase
unlimitedly. There will be no equilibrium distribution without such a condition.

Let us denote the equilibrium distribution by pi (e). Then by (7.7) and (7.9) we
have

pi (e) =
1∑

l=−n
pi−l (e) al (7.11)

for i > 1 and p1(e) =
0∑

l=−n
p1−l (e)hl , where hl =

l∑
v=−n

av. Determination of pi(e)

will require determination of a solution of (7.11). For this purpose, if we substitute
pi(e) = c̄bi into (7.11), we get the following polynomial equation of degree (n+ 1),
where c̄ > 0 is a constant:

� (b) =
1∑

j=−n
b1−j aj − b = 0. (7.12)

Thus, pi (e) = c̄bi will solve (7.11), whenever b is a positive real root, other than
unity, of Eq. (7.12).

Descartes’ rule of sign changes indicates that � (b) = 0 has two positive real
roots. One root is unity. For determining the other root, we note that �′ (1) =
−

1∑
j=−n

jaj , where � ′ stands for the derivative of �. In view of the stability

condition,� ′ (1) > 0. Since� (0) = a1 > 0,� (1) = 0 and� ′ (1) > 0, the second
root d, say, will satisfy the inequality 0 < d < 1. Then

pi(e) = ĉdi, (7.13)

where ĉ > 0 is a constant such that the sum of the probabilities becomes 1.
It is now necessary to establish a connection between the probabilities in (7.13)

and the underlying distribution of income. LetF : [x0,∞) → [0, 1] be the cumula-
tive distribution function of income (F (y) is the proportion of persons with income
less than or equal to y). If F is assumed to be continuously differentiable, then the
continuous function f , the derivative of F , is called the income density function.
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Thus,

F (y) =
∫ y

x0

f (v) dv. (7.14)

Then

1 − F (xk) =
∞∑
i=k

pi (e)

= ĉ

∞∑
i=k

di

= ĉdk

(1 − d)
. (7.15)

This gives

ln (1 − F (xk)) = ln

(
ĉ

1 − d

)
+ k ln (d) . (7.16)

Since xi = c xi−1 for all i, it follows that xk = c kx0, where x0 is the minimum
income. This gives −k ln (c) = ln( x0

xk
). Let α = − ln(d)

ln(c) . Since 0 < d < 1 and c > 1,
α > 0. Then we can rewrite (7.16) as

ln (1 − F (xk)) = ln

(
ĉ

1 − d

)
+ α ln

(
x0

xk

)
. (7.17)

Equation (7.17) is the logarithmic form of the Pareto law under the assumption
that ln

(
ĉ

1−d
) = 0. If Nx is the number of incomes exceeding the income level

x , then Pareto’s law says that Nx = (1 − F (x))Nx0 = Ax−α , where A > 0 is a
constant. The slope of the cumulative frequency distribution, when drawn on a
double log scale, is −α. This is in fact the strong form of the Pareto law. This form
has been sometimes found to be unjustified empirically. The weak form of the law
says that the curve (ln(Nx), ln (x)) should be asymptotic to the straight line which
represents the strong form of the law (Mandelbrot 1960). It is often referred to as
the ‘power law of income’. However, the strong form has established itself as a
popular income distribution model through its long usage (e.g., Rutherford 1955;
Simon 1955; Reed 2001).

The Pareto density is then given by

f (xk) = αxα0 x
−α−1
k . (7.18)

The mean of this distribution is μ (F ) = αx0
(α−1) . Thus, for the distribution to have a

finite mean we need the restriction that α > 1. The parameter α is nothing but the
Pareto exponent, which can be interpreted as an inequity parameter. To see this,
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note that the Gini index – the most popular index of income inequality – for the
Pareto distribution is

G (F ) = 1 −
x0 +

∞∫
x0

(1 − F (y))2 dy

μ (F )
= 1

2α − 1
. (7.19)

As mentioned in Chapter 2, the Gini index has a natural geometric interpretation
as twice the area enclosed between the diagonal line of equality and the Lorenz
curve of the income distribution, where the Lorenz curve of an income distribution
represents the share of the total income enjoyed by the bottom z (0 ≤ z ≤ 1) pro-
portion of the population and the curve coincides with the line of equality when
the income distribution is perfectly equal. Thus, the greater the divergence of the
curve from the line of equality, the higher the Gini index.

An income distribution-based welfare function is defined as an increasing func-
tion of the mean income and a decreasing function of inequality (see Shorrocks
1988; Amiel and Cowell 2003; Chakravarty 2009). The most popular form of the
Gini welfare function is

QG (F ) = μ (F ) (1 −G (F )) = 2αx0

(2α − 1)
(7.20)

(see Blackorby and Donaldson 1978; Foster and Sen 1997). Since an increase
in the value of α decreases the Gini welfare function for the Pareto distribution,
interpretation of α as an inequity parameter is quite reasonable.

The distinct pattern of the income distribution in the middle and in the upper
tail has been noted by many researchers, including Singh and Maddala (1976).
They have derived a functional form for income density based on the concept of
hazard or failure rate, which is used extensively in reliability theory. For an income
distribution function with density function f and distribution functionF , the failure
rate is defined as

Z (x) = f (x)

(1 − F (x))
. (7.21)

When time is taken as the random variable, we do not expect in most of the
situations a particular benefit to accrue with time to reduce the failure rate. When
the random variable is changed from time to income, a decreasing failure rate after
a certain point is obvious. While more income may help in earning more, ageing is
unlikely to confer any advantage unambiguously for survival or decreasing failure
rate.

Often it might be convenient to consider the failure rate of a transformation of the
random variable. Consider the transformation ln (x). The failure rate with respect
to this transformation is then defined as Z∗ (ln (x)) = dF/d ln(x)

1−F . The measure Z∗ is
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called the proportionate failure rate. It can be shown that for the Pareto distribution
Z∗ is a constant and it is increasing for the log-normal distribution.

Singh and Maddala (1976) assumed that Z∗ first increases at an increasing rate,
then with a decreasing rate and then asymptotically reaches constancy. Building
on this idea they developed the following form of the distribution function:

F (x) = 1 − 1

(1 + c1xc2 )c3
, (7.22)

where c1, c2 and c3 are positive constants. F is increasing, for x = 0, F = 0 and as
x → ∞, F → 1. For c3 = 1, F becomes the distribution suggested by Fisk (1961).

Montroll and Shlesinger (1982) indicated that the upper tail of an income distri-
bution is well described by the Pareto (power) law and the rest follows a log-normal
distribution. As already presented in detail in Chapter 2, Drăgulescu and Yakovenko
(2001a) parameterized the income distribution by exponential distribution for the
middle part and by the Pareto distribution for the upper tail (see also Nirei and
Souma 2007). In fact, numerous studies during the last 10 years or so demon-
strated that the upper tail is clearly described by the Pareto law, but the remaining
part follows either a log-normal or a gamma distribution (Chakrabarti and Marjit
1995; Levy and Solomon 1997; Ispolatov et al. 1998; Moss de Oliveira et al. 1999;
Aoyama et al. 2003; Di Matteo et al. 2004; Clementi and Gallegati 2005a,b; Coelho
et al. 2005; Sinha 2006; Chakrabarti and Chakrabarti 2010b).

The density function of a random variable following the gamma distribution
with parameters c̃ and η is given by

f (x) = 1


 (η)
(c̃x)η−1 c̃ exp (−c̃x) , x ≥ 0, (7.23)

where c̃ > 0 is a scale parameter, η > 0 is the skewness parameter and
 represents
the gamma function defined as


 (η) =
∞∫

0

exp (−v) vη−1dv. (7.24)

Salem and Mount (1974) fitted the gamma distribution to personal income data in
the USA for the years 1960–9. It was found that the gamma distribution fits better
than the log-normal.

As discussed in Chapter 6, Chakrabarti and Chakrabarti (2010b) considered
a simple microeconomic model with a large number of agents and analysed the
corresponding asset transfer equations arising from trading among the agents. It is
shown that this type of asset transfer has close similarity with the process of energy
transfer resulting from collisions among particles in a thermodynamic system like
an ideal gas. As found by Gibbs, the steady-state distribution for such a system
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turns out to be exponential (see Yakovenko and Barkley Rosser 2009). Under certain
modifications the model produces a gamma-type distribution as the distribution of
money among the agents. A characterization of the power law for the upper tail of
the distribution is also developed.

McDonald (1984) considered a general framework which facilitates a compar-
ison of alternative models. The generalized gamma (GG) and generalized beta of
the first and second kind (GB1, GB2) considered by McDonald are defined as

g1 (y;ϕ, ρ, ϑ) =
ϕ yϕϑ−1 exp

(
− y

ρ

)ϕ
ρϕ ϑ
 (ϑ)

, y ≥ 0,

g2 (y;ϕ, ζ, ϑ, q) = ϕ yϕϑ−1 (1 − (y/ζ )ϕ)q−1

ζ ϕ ϑB (ϑ, q)
, 0 ≤ y ≤ ζ,

g3 (y;ϕ , ζ, ϑ, q) = ϕ yϕϑ−1

ζ aϑB (ϑ, q) (1 + (y/ζ )ϕ)ϑ+q , 0 ≤ y,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.25)

where B (ϑ, q) =
1∫

0
vϑ−1 (1 − v)q−1 dυ is the beta function.

For ϕ = 1, g2 (y;ϕ, ζ, ϑ, q) , that is, GB1 becomes the beta distribution of the
first kind (B1) with three parameters, considered by Thurow (1970). GB1 coincides
with GG in the limiting case q → ∞, under the assumption that ζ = ρ (ϑ + q)1/ϕ .

The beta distribution of the second kind (B2) drops out as a special case of GB2, that
is, g3 (y;ϕ, ζ, ϑ, q) , when ϕ = 1. B1 and B2 approach the gamma distribution in
the limiting case q → ∞ under the respective assumptions that ζ = ρ (ϑ + q) and
ζ = qρ. The GG distribution also coincides with the gamma distribution if ϕ = 1.
If we assume that ρϕ = σ 2ϕ2andϑ = ϕμ+1

ρϕ
, then GG coincides with the log-normal

distribution. For ϑ = 1, GB2 becomes the Singh–Maddala distribution, which for
ζ = ρq1/ϕ produces the Weibull distribution as q → ∞. Both Weibull and gamma
distributions become the exponential distribution for ϕ = ϑ = 1.

McDonald (1984) used US family nominal income for 1970–80 for the purpose
of estimation and comparison of alternative distributions. The generalized beta of
the second kind was found to provide the best fit. The Singh–Maddala distribution,
which facilitates estimation and analysis of results, provided a better fit than the
generalized beta distribution of the first kind and all of the two- and three-parameter
models.

Esteban (1986) introduced the concept of income share elasticity as a useful
tool for describing the size distribution of income. Let M (x, x + v) be the share of
total income enjoyed by individuals with incomes in the interval [x, x + v] . The
income share elasticity at x,� (x) , of a given distribution is the limit when v → 0
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of the proportional change of M (x, x + v) with respect to x, that is,

� (x) = lim
v→0

d ln (M (x, x + v))

d ln (x)
. (7.26)

In other words, income share elasticity represents the proportionate change of
income share of individuals from a certain income position as a fraction of the
proportionate change of income when the change in income is infinitesimally small.
Esteban showed that there exists a one-to-one correspondence between income
share elasticity and density function. He developed a characterization of the GG
distribution using the hypotheses that income share elasticities have a constant rate
of decline and a weaker form of the weak Pareto law. This weaker version of the
weak Pareto law demands that the total income at each income level falls at a
constant rate. As Esteban noted for many well-known income density functions,
including Pareto, log-normal, gamma and Weibull, income share elasticities have
constant declining rates (see also Chakravarty and Majumder 1990).

The stochastic nature of a Champernowne-type model is subject to much crit-
icism because of its lack of economic content. In such a model economic theory
has been replaced by the element of chance. As Lydall (1968) stated, ‘. . . too much
reliance is placed on the laws of chance and too little on specific factors which are
known to influence the distribution’. However, some authors, including Chipman
(1974), believe that economic factors have no significant role in the analysis of the
distribution of income.

Chakravarty and Ghosh (2010) considered an economic approach to derive the
size distribution of income. Given that the aggregate demand x in the economy con-
sists of consumer demandC (x) and investment demand S (x) (saving), they looked
for the distribution of income that maximizes aggregate saving when the economy
meets the following restrictions: (1) the mean income and (2) social welfare are
given a priori. The second restriction provides information on distributional equity.
Thus, the resulting distribution is the distribution of income of a given total, on a
specific indifference surface, that maximizes total saving. Here (forced) saving can
be regarded as an instrument available in the hands of a social planner.

The welfare function considered by Chakravarty and Ghosh (2010) is the
Donaldson and Weymark (1980, 1983) S-Gini social welfare function Qδ (F ),
given by

Qδ (F ) =
∫ ∞

0
δ x (1 − F (x))δ−1 f (x) dx, (7.27)

whereF is the cumulative distribution function, f (x) = F ′(x) is the income density
function and where δ > 1 is a flexibility parameter. The welfare function Qδ

coincides with the Gini welfare function when δ = 2. It is assumed that the marginal
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propensity to consume C ′ (x) ∈ (0, 1) and the average propensity to consume
C(x)/x is decreasing in x. Since income is either consumed or saved,S ′ (x) ∈ (0, 1)
and S(x)/x is increasing in x. The aggregate saving can then be written as

S (F ) =
∫ ∞

0
S (x) f (x) dx. (7.28)

Denoting the given level of welfare by" and the mean income byμ, the restrictions
imposed by the economy can be written as∫ ∞

0
xf (x) dx = μ (7.29)

and ∫ ∞

0
δ x (1 − F (x))δ−1 f (x) dx = ". (7.30)

Then, given these restrictions, the income distribution that maximizes aggregate
saving has the following density function:

f (x) = âδ− 1
δ−1S ′′ (x)

[
â
(
b̂ − S′ (x)

)] 2−δ
δ−1 , (7.31)

where S′′ (x) < 0 and â < 0 and b̂ are constants.
If we assume that the saving function is of the form

S (x) = A+ Bx + (1 − B) xα0
x1−α

1 − α
, 0 < x0 ≤ x, (7.32)

whereA < 0 andB , 1
2 < B < 1 are constants. For this saving function, the income

density function in Eq. (7.31) for δ = 2 becomes

f (x) = αxα0 x
−α−1, x ≥ x0 > 0, (7.33)

which is the Pareto density function (same form as in Eq. (2.2)). We thus have
an economic theoretic characterization of the Pareto distribution. Given A,B and
x0, an increase in α reduces the level of aggregate saving. The reason behind this
is that, given concavity of the saving function, for every increment in income a
smaller amount will be saved the higher is the value of α. An increase in the value
of α makes the saving function more concave. There is thus a trade-off between
the size of maximal aggregate saving and concavity of the saving function.

Lydall (1959) argued that there are different types of income that are distributed
in different manners, particularly; difference between the distributions may arise
from different sources. The Champernowne model is quite plausible in the context
of income from ownership of capital. He developed a model that explains the
distribution of employment income.
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There are a finite number of income grades arranged in increasing order. Let ni
be the number of employees in grade i. It is assumed that ni

ni+1
= k, where k > 0 is

a constant. This assumption says that there is a fixed ratio between the number of
employees in each grade and the number of employees in the grade immediately
above. The income of an employee grade i is denoted by xi . It is further assumed
that

[
xi+1

kxi

] = q∗, where q∗ > 0 is a constant. We can rewrite this assumption as[
ni+1xi+1

nixi

] = q∗. That is, the ratio between total incomes in two consecutive grades
is a constant.

Let wi denote the slope of a line connecting two adjacent points (ln (ni) , ln (xi))
and (ln (ni+1) , ln (xi+1)). Then

wi = ln (ni+1) − ln (ni)

ln (xi+1) − ln (xi)
= − ln(k)

ln(kq∗)
. (7.34)

Since both k and q∗ are constants, wi is a constant. Thus, the curve connecting the
successive points will be a straight line. From the estimate of Allen (1957) for the
distribution of higher income salaries using the UK income salary data for the year
1954–5, the plot of cumulative income frequencies on a double-logarithmic scale
was close to a straight line with a slope of approximately −2.5.

Given that − ln(k)
ln(kq∗) is a constant, we have λ = ln(k)

ln(kq∗) , a constant, from which it

follows that ln (kq∗) = ln (k)
1
λ . This in turn implies that

kq∗ = (k)
1
λ . (7.35)

Thus, kq∗ varies inversely with λ. This implies that proportionate salary differen-
tials between two adjacent groups will decrease as λ increases and vice versa. As
Lydall (1959, p. 114) pointed out, this finding is consistent with the interpretation
that λ can be regarded ‘as a measure of the degree of inequality of distribution’.

In order to specify the relation between an individual’s income, her age and tran-
sition proportions, Hartog (1976) considered a Markov-chain approach to income
distribution. The central idea underlying the Hartog model is that individuals are
endowed with specific capabilities of which a price per unit is determined through
supply and demand conditions in the labour market. Individual income is derived
from capability endowment and price per unit. His formulation also indicates how
these variables relate to an individual’s age.

To discuss the Hartog model analytically, assume that the relation between
an individual’s age a and her income y ≥ 0 is given by y = J (a), where J is
increasing in its argument. That is, income is assumed to be an increasing function
of age. We can write the inverse of this relation as a = J−1 (y) = a (y), say. Here
a (y) represents the age at which income level y is reached. We denote the stable
age density function by h (a). It is assumed that the age–income relationship holds
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for all individuals. Then the income density function � can be obtained from the
age density function through the following transformation:

� (y) = h (a (y))

∣∣∣∣dady
∣∣∣∣ . (7.36)

Assume that there are K income intervals [vi−1, vi), i = 1, 2, . . . , K. Thus, the
length of interval i is vi − vi−1. It is assumed further that movement of income
takes place once a year. An individual with income y ∈ [vi−1, vi) will leave interval
i if the increase in y during the year is sufficient to ensure that the increased income
is above vi . We define a variable zi as the increase in income during the year such
that at the end of the year income becomes vi , where vi − zi ≥ vi−1. All incomes
y ∈ [vi−1, vi) satisfying the inequality y > vi − zi will be in the interval [vi, vi+1)
next year.

The proportion of individuals with incomes in interval [vi−1, vi) who can reach
interval [vi, vi+1) next year is

ri =

vi∫
vi−zi

� (y) dy

vi∫
v
i−1

� (y) dy
. (7.37)

Given that there is a monotonic relationship between income and age, we can also
express Eq. (7.37) using the age density function as follows:

ri =

a(vi )∫
a(vi−zi )

h (a) da

a(vi )∫
a(vi−1)

h (a) da

. (7.38)

Thus, while Eq. (7.37) represents the proportion of individuals whose incomes
move from an interval to the next higher interval at the end of the year, Eq. (7.38)
gives the proportion of individuals whose ages are such that their incomes grow
into the next higher interval in 1 year.

By our assumption the age difference required for an annual income difference
zi is 1 year. This implies that a (vi − zi) = a (vi) − 1. Consequently, we can rewrite
Eq. (7.38) as

ri =

a(vi )∫
a(vi )−1

h (a) da

a(vi )∫
a(vi−1)

h (a) da

. (7.39)
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The formulation we have considered so far did not take into account mortality –
more generally, the withdrawal of individuals from the labour force. Let m > 0 be
the constant mortality rate per unit of time. That is, m is assumed to be independent
of age. This then corresponds to a probability p (a) of surviving up to age a,

p (a) = exp (−ma) , (7.40)

and the rate of departure within a year of 1 − exp (−m). This probability and rate
of departure are independent of income intervals. Upward mobility of individuals
in interval [vi−1, vi) then equals [1 − (1 − exp(−m))]ri = exp(−m)ri .

Since the age density has been assumed to be stable, we can restrict it to the form
h (a) = υ exp (−g∗a)p(a),υ ≥ 0 being the birth rate and g∗ the rate of growth of
the labour force. Letting υ = (m+ g∗) we can write the age density function as

h (a) = υ exp(−υa). (7.41)

In order to illustrate the age–income profile, we denote an individual’s stock of
labour at age a by l. Let l̄ be the maximum number of units of labour the individual
can supply. Then,

l = l̄
[
1 − exp (−γ a)

]
, γ > 0. (7.42)

Thus, the process of accumulation of experience is an increasing function of age.
In the limit it converges to l̄, the rate of convergence of being γ. Support for this
type of specification of accumulation of experience can be found in the literature
on learning curves (Corlett and Morecombe 1970). The two parameters l̄ and γ

may vary across occupations.
The individual labour supply function is defined as L = sl, where 0 ≤ s ≤ 1

is the proportion of stock of labour that the individual decides to supply. This
proportion depends on the wage rate per unit of capability, ω. A similar analysis
holds for the demand side of the labour market. We denote the equilibrium wage
rate by ω∗. The age–income profile then becomes

y = ȳ[1 − exp (−γ a)], (7.43)

where ȳ = ω∗s (ω∗) l̄. Thus, given the equilibrium wage rate, ȳ = ω∗s (ω∗) l̄ gives
the total amount of income that the individual can earn when he has the maximum
level of experience. The rate at which income converges to its maximum level
equals that of experience.

To determine the income distribution, note from (7.43) that we can write the
inverse age–income profile as

a = − 1

γ
ln

[
1 − y

ȳ

]
. (7.44)
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Differentiation of Eq. (7.44) and substitution of the result and Eq. (7.44) into the
age density function in Eq. (7.36) yields the following form of the income density
function

� (y) = υ

γ
(ȳ)

−υ
γ [ȳ − y]

υ
γ
−1 . (7.45)

The shape of the income distribution is fully determined by the parameters υ
and γ, where υ is the birth rate of the population and at the same time represents
the decay of the age density. On the other hand, γ is the rate of convergence of
individual income towards its maximum attainable value ȳ. The slope of the income
density is negative or positive, corresponding to υ > γ or υ < γ . If υ = γ , the
income density function is a constant.

We solve Eq. (7.39) using Eqs. (7.41) and (7.44), and obtain the transition
proportion as follows:

ri = (exp (υ) − 1)

[(
ȳ − vi−1

ȳ − vi

) υ
γ

− 1

]−1

. (7.46)

The Hartog model clearly establishes a relationship between age–income pro-
files, income distribution and the Markov-chain approach. Given the age–income
profile, the distribution of personal income is derived under the assumptions that
there are individuals at different points on the same age–income profile. The model
also discusses mobility of individuals through the income distribution.

7.3 Analysis of wealth distributions

The Champernowne model analysed in the earlier section can also be regarded
as a model of wealth distribution. A number of authors, including Steindl (1972),
Shorrocks (1975) and Vaughan (1979), have also suggested alternative types of
stochastic models that give rise to distributions of wealth with a Pareto-type asymp-
totic upper tail. Fiaschi and Marsili (2010) considered a general equilibrium model
with a large number of firms and dynasties interacting through the capital and
labour markets and characterized the equilibrium distribution of wealth. It has
been shown that the upper tail of the distribution can be well represented by a
Pareto distribution, where the underlying parameter depends on the rate of return
on capital, rate of savings, population growth rate, tax on capital and portfolio
diversification. On the other hand, the lower part of the distribution depends on the
labour market functioning (see also Atkinson and Harrison 1978).

As an illustrative example of a stochastic model, we briefly analyse the Shorrocks
model, which relies on queuing theory. Consider an individual with a non-negative
stock of wealth at any time point. Assume that within the time interval (t, t +�t] of
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length �t an individual with j units of wealth has the probability (d1j + d2)�t +
O (�t) of receiving one more unit and a very small probability of possessing more
than one unit, where O (�t) represents the terms that tend to zero faster than �t .
Likewise, the probability of reduction of wealth by one unit over the same time
interval of length�t is given by d3j�t + O (�t) and the probability of losing more
than one unit is negligible. From the assumptions about these probabilities, it is
clear that the changes in current wealth holding at a rate proportional to the holding
level itself are influenced by parameters d1 and d3, which may be identified with
capital gains and losses, unearned income, etc. On the other hand, the parameter
d2 might be influenced by earned income.

The three basic assumptions of the model are that: (1) the law of proportionate
effect holds, (2) the process is a Markov process and (3) the parameters of the
process are constant. According to assumption (2), the probability of a change in
the size depends on the current size and is independent of past history. Assumption
(3) is a time homogeneity assumption.

Let pj (t) denote the probability of an individual possessing j units of wealth at
time t . The set of Kolmogorov forward equations that describe the process is given
by

dpj (t)

dt
= − [(d3 + d1) j + d2]pj (t) + [d1 (j − 1) + d2]pj−1 (t)

+ d3 (j + 1)pj+1 (t) , j ≥ 1,
dp0 (t)

dt
= −d2p0 (t) + d3p1 (t) .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.47)

If an individual starts with i units at the initial period (time 0), then the initial

conditions are pi (0) = 1, pj (0) = 0, j = i. We write π (v, t) =
∞∑
j=0

pj (t) vj for

the probability-generating function. Then

∂π (v, t)

∂t
=

∞∑
j=0

dpj (t)

dt
vj ,

∂π (v, t)

∂v
=

∞∑
j=0

jpj (t) vj−1.

⎫⎪⎪⎬⎪⎪⎭ (7.48)

Substituting the equations from Eq. (7.47) into Eq. (7.48) we get

∂π (v, t)

∂t
− (d3 − d1v) (1 − v)

∂π (v, t)

∂v
= −d2 (1 − v)π (v, t) . (7.49)

The general solution of this partial differential equation is given by

π (v, t) = (d3 − d1v)−
d2
d1 ψ

(
(1 − v) e(d1−d3) t

d3 − d1v

)
, (7.50)
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where the arbitrary function ψ is determined from the initial conditions. For
instance, if an individual starts with i units at the initial period, then π (v, 0) = vi

and

ψ (y) =
(
d3y − 1

d1y − 1

)i (
d1 − d3

d1y − 1

) d2
d1

. (7.51)

It is also true that

1 =
∞∑
j=0

pj (t) = π (1, t) = (d3 − d1)−
d2
d1 ψ (0) . (7.52)

Consequently, if d3 > d1

Ltt→∞π (v, t) = (d3 − d1v)−
d2
d1 ψ (0) =

(
d3 − d1

d3 − d1v

) d2
d1 = π∗ (v) . (7.53)

This is the probability-generating function at the equilibrium or stationary-state
distribution. Therefore, in this ergodic process, irrespective of initial wealth hold-
ing, the probability distribution of individual wealth holding will converge over
time to π∗ (v) .

If the same process is assumed to hold for a large number of individuals, then
pj (t) can be interpreted as the proportion of individuals owning j units of wealth at
time t.The original wealth distribution is then represented by the initial probability-
generating function π (v, 0), and, under the assumption d3 > d1, π∗ emerges as
the equilibrium distribution in the sense that over time the distribution converges
to π∗. Expanding π∗ (v) as a power series of v and determining the coefficients of
the terms, equilibrium frequencies of the proportion of individuals owning j units
of wealth are given by

p∗
j =

(
1 − d1

d3

) d2
d1


(
d2
d1

+ j
)



(
d2
d1

)

 (j + 1)

(
d1

d3

)j

j = 0, 1, . . . . (7.54)

This is a negative binomial distribution and, as j → ∞,

p∗
j → A1j

d2
d1

−1
(
d1

d3

)j

, (7.55)

where A1 > 0 is a constant. Under the assumption that
(
d1
d3

)
can be approximated

by unity and
(
d2
d1

)
< 1, Simon (1955) suggested this as a form representing the

upper tail of size distributions. This shows some similarity of the stationary state
to empirically observed distributions.
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However, the model has certain limitations. For instance, in order to harmonize
it with the dynamic features of empirical distributions one possibility is to allow
the states of the system to change over time. But an equilibrium system defined
on variable units may give rise to some growth features and a suitable adjustment
may be unsatisfactory. If a timeless state is assumed, then we have to allow the
parameters of process to vary. As Shorrocks (1975) demonstrated, if the parameters
are subject to variation and the equilibrium distribution changes, there may not be
eventual convergence of the variance and the coefficient of variation at time t to
their corresponding stationary-state values. The mean at time t converges to its
equilibrium value monotonically at a very low speed.

It is clear that the argument of Lydall (1968) regarding the lack of economic
content in stochastic models applies here as well. If the process parameters are
taken to be functions of economic variables, then the time homogeneity assumption
becomes incompatible. Shorrocks (1975) also considered a variant of this model
by dropping the time homogeneity assumption. Under certain mild conditions, the
probability-generating function of the equilibrium corresponding to the parameter
values at time t becomes

π∗ (v, t) =
(
d3 (t) − d1 (t) v

d3 (t) − d1 (t)

)−d2(t)
d1(t)

. (7.56)

Note that this distribution can vary over time. The sequence of actual distributions
π (v, t) may not approach the equilibrium distribution π∗ (v, t) and there is no
a-priori reason to expect convergence. The absolute deviation between means at
time t and at equilibrium and also the absolute deviation between corresponding
variances may increase monotonically over the lifetime of the process. By relat-
ing the parameters to economic variables, the system gives us an opportunity to
incorporate economic theory into stochastic models.

We now present some economic theoretic approaches to the analysis of size
distribution of wealth. Parts of our presentation are based on Davies and Shorrocks
(2000). We begin by analysing the simple framework advocated by Meade (1964,
1975), which is based on the following accounting identity for Wi , wealth in
period i:

Wi = Wi−1 + Ei + τiWi−1 − Ci + Ii, (7.57)

where Ci and Ei are, respectively, consumption and earned income in period i, net
of taxes and transfers, τi is the (average) net rate of return on investment and Ii
stands for net inheritances (gifts and bequests) received in period i. If inheritances
are assumed to be incorporated into the initial wealthW0 and consumption depends
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on both income and wealth, then

Wi = Wi−1 + ςi (Ei + τiWi−1) − ξiWi−1

= (1 + ςiτi − ξi)Wi−1 + ςiEi

= (1 −$i)Wi−1 + ςiE, (7.58)

where ςi represents the average rate of saving from current income and ξi is the
fraction of wealth accumulated in period (i − 1) spent on consumption in period i
and $i = ξi − ςiτi denotes the ‘internal rate of deaccumulation out of wealth’. If
the average rate of return increases with the level of wealth, then it is likely that the
differences in individual rates of return will have a disequalizing influence (Meade
1964). Clearly, this equation can be interpreted in an intergenerational framework,
where Wi stands for the lifetime wealth of generation i and $ can be assumed to
capture the impact of wealth taxation and bequest splitting (Atkinson and Harrison
1978). In a sense, the Meade framework also absorbs the insights of the life cycle
behaviour, which we analyse below.

Modigliani and Brumberg (1954) pioneered the life cycle saving model of inter-
generational wealth accumulation, which is closely related to the permanent income
hypothesis of Friedman (1957). There are now several variations of the model. But
all of them retain the following basic assumptions: (1) the consumers are assumed
to be forward looking and their preferences are defined over present and future
consumptions, and possibly leisure period; and (2) it is expected that life will end
with a period of retirement. The simplest form of the model assumes that every-
body faces the same rate of interest χ , which is taken to be constant. It is assumed
further that there is no uncertainty and no bequest motive, and everyone has the
same length of life T .Denote a representative consumer’s consumption and income
earned in period i by Ci and Ei , respectively. The consumer then maximizes the
intertemporal utility function

U (C1, C2, · · ·CT ) (7.59)

subject to the constraints

CL =
T∑
i=1

Ci

(1 + χ)i−1 ≤
R∑
i=1

Ei

(1 + χ )i−1 = EL, (7.60)

where R is the date of retirement, and CL and EL denote, respectively, lifetime
consumption and lifetime earnings. If it is necessary to ensure that saving should be
undertaken for the purpose of financing consumption in retirement, then appropriate
restrictions can be incorporated into the functional form of U .
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Now assume that the intertemporal utility function is additively separable,

U =
T∑
i=1

u (Ci)

(1 + φ)i−1 , (7.61)

where φ is the rate of time preference. Although a more general formulation is
to allow variability of the function u over time, constant time preference ensures
consistent consumption planning over time (Strotz 1956). Various functional forms
can be assumed for u. For instance, we may make a specific assumption about the
risk aversion measure of the individual with utility function u, where a risk aversion
measure enables us to judge to what extent a person is risk averse. If u displays
a constant absolute risk aversion − u′′

u′ , then u (Ci) = e−κ̃Ci , where κ̃ > 0 is the
constant absolute risk aversion level. On the other hand, if u has a constant relative
risk aversion −Ciu

′′(Ci )
u′(Ci )

, then

u (Ci) =
⎧⎨⎩
C1−κ
i

1 − κ
, κ > 0 , κ = 1,

ln(Ci), κ = 1,
(7.62)

where κ > 0 is the coefficient of constant relative aversion. If we incorporate the
forms given by Eq. (7.61) and Eq. (7.62) into Eq. (7.60), then optimal consumption
of the individual satisfies

Ci+1 =
(

1 + χ

1 + φ

) 1
κ

Ci = (1 + g)Ci, (7.63)

where g ∼= χ−φ
κ

is the constant rate of growth of planned consumption. The
intertemporal elasticity of substitution here is given by 1

κ
. See also Wang (2007) for

an analysis of wealth distribution using constant relative risk averse utility-based
precautionary savings demand. For an earlier treatment, see Carroll (1997).

Several implications of the prediction of constant growth rate of consumption
can be examined. If it is assumed that earnings are constant up to retirement
and zero after that, and interest rate and planned consumption growth rate are
zero, then the consumer will save a fixed amount annually before retirement and
dissave a constant amount annually after retirement, with accumulated saving
being zero at the time of death. This gives rise to a hump-shaped age profile
of wealth which increases linearly with age until retirement and then decreases
linearly to zero. Clearly, the pick of the profile occurs in a close neighbourhood of
the age of retirement. There can be high wealth inequality between the richest (in
the neighbourhood of the retirement age) and the poorest (those who have just
begun working lives and those who are not far from death).
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More general implications of the consumption path (7.63) can be studied if
we assume that g ∼= χ−φ

κ
> 0 , that is, planned consumption grows at a positive

constant rate. For a typical hump-shaped age profile individuals dissave at young
age, save fairly in the middle age and dissave in old age (in retirement). However, it
has also been argued that at young age most individuals are net savers and if family
size remains constant on retirement consumption decreases at an increasing rate,
producing less dissaving than that suggested by the model (Attanasio 1998). If we
incorporate labour–leisure choice in the model and goods and leisure are assumed
to be substitutes, then it is highly likely that on retirement goods will be substituted
by leisure, which in turn leads to a downward jump in consumption (Davies 1988).

In order to look at more implications of the model considered above we assume
that χ = φ = 0, where consumption in period i equals wealth plus expected future
earnings as a proportion of the length of the remaining lifetime,

Ci =
Wi−1 + E

(∑R
j=1 Ej

)
T − i + 1

, (7.64)

where E stands for the expectation operator. The two components of earnings
are permanent and transitory: Et = E

p
t + ε∗

t , where the transitory component ε∗
t

is a disturbance term with zero mean and finite variance. It has been observed
that the earnings process in the USA can be approximated by a combination of
white noise and a random walk (Hubbard et al. 1994; Carroll 1997). This gives

E

(
E
p
j

)
= E

p
i , j = i, . . . , R . Consequently,

Ci = Wi−1 + (R − i + 1)Ep
i + ε∗

i

T − i + 1
. (7.65)

It follows that the propensity to consume out of permanent earnings is higher than
that out of current wealth or transitory component. There is a tendency for earnings
inequality to grow over the working lifetime. The wealth built up by saving out of
past permanent incomes will be more unequal. If transitory earnings are not simply
measurement errors, then high propensity to save out of transitory income along
with the condition that everybody starts life with zero wealth will imply that the
transitory income as a source of wealth inequality decreases over time (Davies and
Shorrocks 2000).

It is possible to incorporate uncertain lifetime into the life cycle model. Under
the constant relative risk aversion assumption the objective function becomes

E (Ui) =
T∑
j=i

(
1 − qj

)
C1−κ
j

(1 − κ) (1 + φ)j−i
, (7.66)
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where T now stands for the maximum length of life and qj denotes the probability
of death before period j . If the nature of insurance markets is such that there exist
fair annuities, then there will be complete annuitization of wealth by all individuals,
where a fair annuity is a promise to pay a fixed amount of money each year for a
certain period. In this case the objective function in Eq. (7.66) will be maximized
subject to the constraint

T∑
j=i

Cj

(
1 − qj

)
(1 + χ )j−i

≤ Wi−1 +
R∑
j=i

Ej

(
1 − qj

)
(1 + χ)j−i

. (7.67)

Yaari (1965) demonstrated that in this case also planned consumption follows the
constant growth path given by Eq. (7.63).

In practice the annuity market may be imperfect (Friedman and Warshawsky
1988). In this case the objective function in (7.66) is to be maximized subject to the
constraint (7.60) and a non-negative wealth constraint. This solution then produces
a non-constant growth rate of consumption given by χ−φ−mi

κ
, where mi = qi+1−qi

1−qi
is the probability of death of an individual in period (i + 1) given that he has
survived up to period i. The predicted age profile of wealth in this case turns out
to be different from that which emerged in the case certainty. If preferences are
assumed to display constant relative risk aversion, then for sufficiently small χ − φ

the constant growth pattern can give rise to a realistic hump-shaped age profile of
consumption or a profile with a predominant hump shape and an increasing trend
in later years of retirement.

Models of wealth distributions dealing with intergenerational issues generally
incorporate demographic factors such as marriage and fertility, and economic fac-
tors. In several models of intergenerational transfers, there has been explicit spec-
ification of parental preferences. In the Becker and Nigel (1976) altruistic model
the parental preferences are represented by

V = V
(
cp; c1, c2, . . . , cN

)
, (7.68)

where cp is parental lifetime consumption, ci is the lifetime consumption of child
i and N is the number of children. Parents provide a bequest bi to child i and
their human capital investment on this child i is li . Child i’s earning ei is the
product of her human capitalHi , which is a function of li , and human capital rental
rate w:

ei = wHi(li), i = 1, 2, . . . , N. (7.69)
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Let yp be the parental lifetime income. Then assuming that the interest rate is
zero, the consumptions of parents and the children are given by

cp = yp −
N∑
i=1

(li + bi),

ci = ei + bi, i = 1, 2, . . . , N .

⎫⎬⎭ (7.70)

The parent’s objective is then to maximize the utility function

V = V

(
yp −

N∑
i=1

(li + bi); e1 + b1, . . . , eN + bN

)
, (7.71)

with respect to bi’s and li’s subject to the constraints bi ≥ 0 and li ≥ 0, i =
1, 2, . . . , N.

If capital market is assumed to be perfect, then it is possible for parents to borrow
against their children’s earnings. The latter is a relaxation of the condition bi ≥ 0.
The optimization problem can then be decomposed into two parts. The first part
requires the choice of an efficient level of investment in each child, l∗i . This will
generate a corresponding level of earning for child i, e∗

i . In the next part of the
problem, Eq. (7.71) is maximized with respect to bi’s, assuming that e∗

i ’s are given.
Under the assumption that all parents treat the children symmetrically, it follows
that

e∗
1 + b1 = · · · = e∗

N + bN. (7.72)

This is perfect equalization of children’s incomes net of transfers. Thus, in this
altruistic model bequests play an important role in reducing equilibrium inequality.
It is possible to avoid this conclusion if we do not drop the assumption bi ≥ 0
(Atkinson 1988; Wilhelm 1996).

Bequests may be zero if parental income is low. If parental income and children’s
ability to repay for investments in their human capital were perfectly correlated,
then it is likely that bequests would be zero up to the threshold income of par-
ents and then there would be an increasing relationship. This possibly provides
an explanation of the finding that income elasticity of bequests is less than 1
for a large bottom part of the population and greater than 1 for the remaining
part (Menchik and Martin 1983). The model also explains how the behaviour
of parents may lead to a reduction in the degree of intergenerational income
mobility.

Benhabib and Bisin (2006) studied the dynamics of the distribution of wealth
in an overlapping generations economy with bequests and different forms of redis-
tributive taxation. The economy is assumed to be populated by a continuum of
individuals with a constant probability of death. A dead individual is substituted
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by her child, which means that the population is stationary. A fraction of the indi-
viduals has a ‘joy of giving’ bequest motive towards its children. Individuals are
born with an initial wealth which consists of the bequests of their parents and
welfare subsidy from the government, if any. The interest rate is constant. At any
time an individual allocates her wealth between an asset and an annuity. The main
qualitative characteristics of the stationary wealth distribution are skewedness and
fat tails. In particular, it is shown that the stationary wealth distribution is a Pareto
law. Levy (2003) formulated a general stochastic process of wealth accumula-
tion in terms of capital investment and investigated the conditions under which
convergence to the empirically observed Pareto distribution is ensured. De Nardi
(2004) used the ‘joy of giving’ bequest motive and death rate to increase the wealth
concentration. Benhabib and Zhu (2008) made use of two kinds of uncertainty –
investment risk and death risk – to produce the wealth distribution with Pareto
tails.

The ‘joy of giving’ bequest motive along with portfolio selection was also
assumed in a continuous time overlapping generations economy considered by Zhu
(2010). It is shown that idiosyncratic investment risk gives rise to a Pareto tail in
the wealth distribution. Simulation results demonstrate that the wealth distribution
has a fat tail and produces a Gini index and Lorenz curve close to the US wealth
distribution, where the period of investigation was 2001–7. Quadrini (2000) and
Cagetti and De Nardi (2009) introduced entrepreneurships into the heterogeneous
agent model and matched the fat tail of wealth distribution.

Benhabib et al. (2011) investigated the impact of the inheritance of the invest-
ment ability on wealth inequality. It is shown that the wealth distribution has a fat
tail and the tail index was used to characterize the fatness of the tail. They con-
sidered an economy composed of households that live for T periods. At each time
point t , households of any age in the interval [0, T ] are alive. A household born at
time 	 has a child entering the economy at time (T +	) after her parents’ death.
Household generations are overlapping with the link from dynasties. A household
taking birth at time 	 belongs to the i = (

	
T

)
-th generation of its dynasty. In this

economy post-tax ‘joy of giving’ bequests of parents are initial wealth of children.
Thus, if Wi+1 denotes the initial wealth of an i-th generation household, then it is
shown that Wi+1 follows the process

Wi+1 = Xi+1Wi + Yi+1, (7.73)

where Xi+1 and Yi+1 are stochastic processes that represent, respectively, the rate
of return on wealth across generations and the permanent income of a generation.
If Xi+1 and Yi+1 are independent and identically distributed, then this dynamics
of wealth converges to a stationary distribution satisfying the strong Pareto law.
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Even in the case whereXi+1 and Yi+1 are correlated, it is shown that the stationary
wealth distribution has a Pareto tail.

Thus in this chapter, we have considered many economic models and interpreta-
tions of the inequality in income and wealth distributions, and the different forms
of the Pareto law.
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Outlook

Any city, however small, is in fact divided into two, one the city of the
poor, the other of the rich; these are at war with one another.

Plato, ancient Greek philosopher (427–347 BC)

Throughout the recorded history of human civilization, we have witnessed the bitter
outcomes of economic inequality – social tensions, conflicts, etc. This incessant
problem has been addressed by some of the greatest thinkers, philosophers and
social scientists, including economists. Questions on the nature of the distributions
of wealth and income have been raised repeatedly. More so, during or just after
periods of crisis, wars and social calamities. In this book, we have tried to present a
new interdisciplinary approach in analysing and dealing with the age-old problem
of economic inequality in the societies. This paradigmatic shift has been possi-
ble owing to the combined efforts of economists, mathematicians and physicists
(Cockshott et al. 2009; Sinha et al. 2010).

Noting that this inequality has a very robust and universal statistical form (dis-
cussed extensively in the first two chapters of this book), and the fact that some
core human ability factors, such as the intelligence quotient or health factors, are
distributed according to the normal (or Poisson, at times) distribution, a natural
question to ask is why are the distributions in wealth and income so different from
the normal? Why do they have such broad distributions, and with ubiquitous power
law tails? The very fact that these distributions have such different characteristics
(and are universally observed) indicates that there must be a deeper cause (and a
common underlying mechanism).

Physicists have come up with a purely physical reason for the origin of these
questions: they identified the role of entropy maximization in the stochastic dynam-
ics of the economic markets. In essence, these econophysics attempts (described
in detail in this book) indicate that the origin of inequality may be more intrinsic
to the market dynamics than previously envisaged.

193



194 Outlook

8.1 Chapters in a nutshell

The income or wealth distribution among the population has a generic feature,
as shown in Fig. 1.1. Chapter 2 gave extensive data from various time periods
and across the countries, confirming the same. In this book, we have taken the
position that apart from the top 5–10% of the very rich population in any country,
whose numbers decay with a power law in the Pareto tail, the probability density
of income for the rest of the population follows a gamma function form (and
not in a numerically equivalent log-normal way, as traditionally favoured by the
economists; see Eq. (1.1)).

In the next two chapters (Chapters 3 and 4), we discussed various agent-based
models, which proved to be quite successful in capturing the essential empiri-
cal features of markets. As could be seen there, these efforts captured the vari-
ous observed features of income or wealth distribution in societies discussed in
Chapter 2. These models captured well both the initial gamma-like feature in the
steady-state distributions for the income distributions of poor and middle-income
group agents (below income or wealth xc in Eq. (1.1)) and the Pareto tail of the
distribution for the super-rich (with income or wealth beyond xc in Eq. (1.2)). A
noteworthy transition behaviour, discussed in Section 4.6.2, could be observed in
the kinetic exchange markets, when one of the two agents involved in any exchange
had to be below a preassigned threshold or ‘poverty-line’. Apart from interesting
social consequences, this model poses intriguing questions regarding the existence
of statistical physics of phase transitions in such simple (non-interacting and ideal
gas-like) kinetic exchange models.

In Chapters 4 and 5, we gave detailed numerical and analytical results for
the CC (Chakraborti and Chakrabarti 2000) and CCM (Chatterjee et al. 2004)
kinetic exchange models, which successfully captured the observed features of the
income or wealth distribution in societies. As we showed in the earlier chapters,
the socialist norm of equal income distribution (P (x) = δ(x − x0); x0 = X/N)
was quite unstable with respect to any conceivable dynamics of income or wealth
exchange among the agents. In particular, as shown in Chapters 4 and 5, the entropy
maximizing kinetic exchange dynamics lead to:

(1) the exponentially decaying Gibbs distribution, when the agents did not save in
any trade or exchange (DY model);

(2) the gamma-like distribution Eq. (1.1), when each agent saved a (uniform) fixed
fraction of its instantaneous money or wealth (CC model);

(3) Pareto power law distribution Eq. (1.2), when each agent saved but the saving
fractions differed from agent to agent (CCM model).

In Chapter 6, we showed that a Cobb–Douglas-type utility maximizing dynam-
ics readily gives the same dynamics as in the CC model, when agents have the



8.2 Beyond income and wealth 195

same saving propensity (the generalization to non-uniform saving propensity case,
as in CCM model, is straightforward). The equivalence of the money evolution
equations derived in this framework with those developed employing the entropy
maximization principle is certainly noteworthy.

The general observation, following the CCM model, is that, in spite of dis-
persions in income or wealth, the average income or wealth of the agents in the
Pareto tail increases with their saving propensity. Some might propose that there
is an apparent contradiction: the rich people in society are also those who usually
take maximum risk, whereas increased value of saving propensity usually means
increasing risk aversion tendency! However, in the context of the CCM model,
this contradiction is resolved: in a population with mixed saving propensities, the
trade-to-trade income fluctuation increases with the saving propensity value (see
Fig. 4.6); the sustainability of this increased income fluctuation by the richer agents
can be interpreted as the result of the attitude towards increased risk.

The dynamics of inequality were discussed in Chapter 6, as well as in Chapter 7,
and a more formal economic treatise was given. However, it must be mentioned
that this is not by any means a complete description and some general criticisms
remain to be addressed.

8.2 Beyond income and wealth

The analyses of the income and wealth distributions and the kinetic exchange mod-
els of markets developed in this connection, and discussed in this book, have already
been extended to various other social distribution and interaction phenomena.

8.2.1 Probability distribution of energy consumption

A rapid technological development of human society since the industrial revolution
has been based on consumption of fossil fuel, such as coal, oil and natural gas,
accumulated inside the Earth for billions of years. The physical standards of living
in modern society are primarily determined by the level of per capita energy
consumption. Now we understand that these fuel reserves will be exhausted in the
not too distant future. In addition, the consumption of fossil fuel releases carbon
dioxide into the atmosphere, which is a major greenhouse gas, affecting global
climate – a global problem posing great technological and social challenges (Rezai
et al. 2012).

There is a huge variation in the per capita energy consumption around the globe.
This heterogeneity is a challenge and complicates the situation for arriving at a
global consensus on how to deal with the energy issues. It has become neces-
sary to understand the origin of this global inequality in energy consumption and
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Figure 8.1 World distribution of energy consumption. Cumulative distribution
functions C(ε) for the per capita energy consumption around the world for 1990,
2000 and 2005. The solid curve is the exponential function (8.1) with the parameter
Tε = 〈ε〉 = 2.2 kW. Reproduced from Banerjee and Yakovenko (2010).

characterize it quantitatively (Banerjee and Yakovenko 2010; Yakovenko 2012).
Banerjee and Yakovenko (2010) approach this problem using the method of entropy
maximization.

Banerjee and Yakovenko (2010) and Yakovenko (2012) consider an ensemble
of economic agents j , each characterized by the energy consumption εj per unit
time. It is important to note that εj denotes not energy but power, measured in
kilowatts (kW). They introduce the probability density P (ε), so that P (ε) dε gives
the probability of having energy consumption in the interval (ε, ε + dε). The
energy production is based on the extraction of fossil fuel from the Earth, which
is a physically limited resource, and is divided for consumption among the global
population, and it is quite improbable to equally divide this resource. More likely,
this resource is divided according to the entropy maximization principle, subject
to the constraint of the global energy production. Following simple calculations
(Banerjee and Yakovenko 2010; Yakovenko 2012) it was shown that P (ε) follows
the exponential law

P (ε) = c e−ε/Tε , (8.1)

where c is a normalization constant, and the temperature Tε = 〈ε〉 is the average
energy consumption per capita. From the data of the World Resources Institute,
Banerjee and Yakovenko (2010) constructed the probability distribution of per
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Figure 8.2 Inequality in the global energy consumption Lorenz curves for the per
capita energy consumption around the world in 1990, 2000 and 2005, compared
with the Lorenz curve (2.8) for the exponential distribution. Reproduced from
Banerjee and Yakovenko (2010).

capita energy consumption around the world and found that it follows the exponen-
tial law approximately (Fig. 8.1). The world average energy consumption per capita
is 〈ε〉 = 2.2 kW, compared with 10 kW in the USA and 0.6 kW in India (Banerjee
and Yakovenko 2010). This means that, if India and other developing countries use
the same level of per capita energy consumption as the USA, the energy resources
in the world would not be sufficient to provide it. Yakovenko (2012) argues that
the global energy consumption inequality is a result of the constraint on energy
resources, and the global monetary inequality adjusts accordingly to implement
this constraint. Owing to the fact that money is used to purchase energy, a fraction
of the world population ends up being poor, and their energy consumption stays
limited.

Figure 8.2 shows the Lorenz curves for the global energy consumption per
capita in 1990, 2000 and 2005 from Banerjee and Yakovenko (2010). The black
solid line is the theoretical Lorenz curve (2.8) for the exponential distribution
(8.1). The empirical curves are reasonably close to the theoretical curve, but with
some deviations. On the Lorenz curve for 1990, the arrow denotes the point where
the slope of the curve changes appreciably, separating developed and developing
countries. Clearly Mexico, Brazil, China and India are below, whereas the UK,
France, Japan, Australia, Russia and the USA are above. The gap in the per capita
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energy consumption between these two groups of countries is reflected in the slope
change of the Lorenz curve – the developed and developing countries differ in the
degree of energy consumption and utilization, rather than in more sophisticated
monetary measures. Interestingly, it is observed that the Lorenz curve for 2005 is
closer to the exponential curve with a less prominent kink, indicating a reduction
in the energy consumption inequality and a reduced gap between developed and
developing countries, also reflected in the decrease in the Gini coefficient G listed
in Fig. 8.2. Yakovenko (2012) thinks that this result can be attributed to the rapid
globalization and stronger mixing of the world economy in the last 20 years.
However, the distribution of energy consumption in a well-mixed globalized world
economy approaches an exponential distribution, and not an equal distribution.
The inherent inequality of the global energy consumption makes it difficult for the
countries widely apart in the distribution to agree on consistent measures to address
the energy and climate challenges. Yakovenko (2012) concludes that a transition
from fossil fuel to renewable energy gives hope for achieving a global society with
more equality.

8.2.2 Kinetic models of opinion formation

Some kinetic models of opinion dynamics have been proposed (Lallouache et al.
2010a), taking inspiration from the kinetic exchange models of wealth distributions
(Chakraborti and Chakrabarti 2000; Chatterjee and Chakrabarti 2007b). The model
incorporates the two-body exchange of ‘opinions’ between a pair of agents during
a ‘discussion’. The question of interest is whether, through such successive two-
body discussions across the population, a consensus can be reached or not. As in
many other well-known opinion models (see Castellano et al. 2009), they consider
oi(t) ∈ [−1,+1] to be the opinion of an individual i at time t . In a system of N
individuals, opinions evolve through binary interactions (Lallouache et al. 2010a;
Biswas et al. 2011):

oi(t + 1) = λ[oi(t) + εtoj (t)],
oj (t + 1) = λ[oj (t) + ε ′

t oi(t)],

}
(8.2)

where εt , ε′
t are drawn randomly from uniform distributions in [0, 1]. Here, λ ∈

[0, 1] is a parameter, which is interpreted as conviction of an individual, or how
strongly the individual retains her old opinion. Here, the influence factor of the
counterpart in the discussion is taken to be identical to the respective conviction
factor. The simple case above (Lallouache et al. 2010a) considers a society in
which everyone has the same value of conviction and influence factors λ, which
can be generalized. It is important to note that there are no conservation laws here,
unlike the wealth exchange models of Chakraborti and Chakrabarti (2000) and
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Figure 8.3 Spontaneous social consensus formation: Numerical results for the
variation of the order parameter O = |∑i oi |/N (steady-state value) against λ,
following the dynamics of Eq. (8.2).

Chatterjee and Chakrabarti (2007b). The constraint that the opinions are bounded,
i.e. −1 ≤ oi(t) ≤ 1, introduces the non-linearity in the dynamics. The system
undergoes a phase transition. The ordering in the system may be measured by
a quantity (order parameter) O = |∑i oi|/N . The multiagent system (dynamics
given by Eq. (8.2)) goes into either of the two possible phases: for any λ ≤ λc,
oi = 0 ∀i, while for λ > λc, O > 0 and O → 1 as λ → 1 (Fig. 8.3). Here the
critical point of the phase transition λc � 0.667, also supported by mean-field
theory (λc = 2/3). The details of the studies are given in Lallouache et al. (2010a)
and Biswas et al. (2011). A few variants of the model have also been proposed
(Sen 2010; Biswas et al. 2011) and a mean-field theory gives good estimates of the
critical points.

8.3 Open problems and challenges

As any careful reader will realize, our attempts here have perhaps raised more open
questions than we set out to answer! However, this only reinforces the statement
we made in the Preface: our endeavour has been similar to fighting the monster
Hydra, who grows two heads in place of an injured one! This only reflects the
grandeur of the problem addressed in the book, and the versatility of our (kinetic
exchange modelling) approach.

Several challenges and interesting directions have been thrust. On the science
and physics side, one still seeks the closed form solutions for the distribution func-
tions emerging out of the kinetic exchange equations (in particular for the uniform
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saving propensity of the agents). Also, the intriguing threshold-induced phase tran-
sition behaviour in kinetic exchanges remains to be understood. On the economics
side, it would be necessary to incorporate the kinetic exchange model within the
framework of the standard utility maximization used in neoclassical economics. On
the policy side, the theoretical observation that increased average saving propensity
of the agents in the market can decrease the dispersion in the distributions is very
intriguing, and it corresponds to some indirect market observations.

We believe that the econophysics modelling of income and wealth distributions,
discussed in this book, will inspire further and more intense developments in both
physics and economics. This will not only help in exploring the ‘natural origin’
of the ubiquitous ‘economic inequality’, one of the most annoying and debated
(philosophically as well as scientifically) issues of human history, but may also
help us in identifying the potential (scientific) steps in reducing the inequality in
the near future!
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Derrida, B., Godréche, C., and Yekutieli, I. 1991. Scale invariant regime in the one dimen-
sional models of growing and coalescing droplets. Physical Review A, 44, 6241–
6251.

Desai, M.I., Mason, G.M., Dwyer, J.R., et al. 2003. Evidence for a suprathermal seed popu-
lation of heavy ions accelerated by interplanetary shocks near 1 AU. The Astrophysical
Journal, 588, 1149–1162.
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