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Preface

While R is the software of choice and the undisputed leader in many fields of statistics, this is
not so in econometrics; yet, its popularity is rising both among researchers and in university
classes and among practitioners. From user feedback and from citation information, we gather
that the adoption rate of panel-specific packages is even higher in other research fields outside
economics where econometric methods are used: finance, political science, regional science,
ecology, epidemiology, forestry, agriculture, and fishing.

This is the first book entirely dedicated to the subject of doing panel data econometrics in
R, written by the very people who wrote most of the software considered, so it should be nat-
urally adopted by R users wanting to do panel data analysis within their preferred software
environment. According to the best practices of the R community, every example is meant to
be replicable (in the style of package vignettes); all code is available from the standard online
sources, as are all datasets. Most of the latter are contained in a dedicated companion package,
pder. The book is supposed to be both a reasonably comprehensive reference on R function-
ality in the field of panel data econometrics, illustrated by way of examples, and a primer on
econometric methods for panel data in general.

While we have tried to cover the vast majority of basic methods and much of the more
advanced ones (corresponding roughly to graduate and doctoral level university courses), the
book is still less exhaustive than main reference textbooks (one for all, Baltagi, 2013) the a pri-
ori being that the reader should be able to apply all the methods presented in the book through
available R code from p/m and related, more specialized packages.

One should note from the beginning that, from a computational viewpoint, the average R user
tends to be more advanced than users of commercial statistical packages. R users will generally
be interested in interactive statistical programming whereby they can be in full control of the
procedures they use and eventually be looking forward to write their own code or adapt the
existing one to their own purposes. All that said, despite its reputation, R lends itself nicely to
standard statistical practice: issuing a command, reading output. Hence the potential readership
spans an unusually broad spectrum and will be best identified by subject rather than by level of
technical difficulty.

Examples are usually written without employing advanced features but still using a fair
amount of syntax beyond what would be the plain vanilla “estimate, print summary” procedure
sketched above; the reader replicating them will therefore be exposed to a number of simple
but useful constructs—ranging from general purpose visualization to compact presentation of
results—stemming from the fact that she is using a full-featured programming language rather
than a canned package.

The general level is introductory and aimed at both students and practitioners. Chapters 1-2,
and to some extent 45, cover the basics of panel data econometrics as taught in undergradu-
ate econometrics classes, if at all. With some overlapping, the main body of the book (Ch. 3-6)

xiii
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covers the typical subjects of an advanced panel data econometrics course at graduate level.
Nevertheless, the coverage of the later chapters (especially 7-10) spans fields typical of current
applied research; therefore it should appeal particularly to graduate students and researchers.
For all this, the book might play two main roles: companion to advanced textbooks for grad-
uate students taking a panel data course, with Chapters 1-7 covering the course syllabus and
8-10 providing more cutting-edge material for extensions; and reference text for practition-
ers or applied researchers in the field, covering most of the methods they are ever likely to
use, with applied examples from recent literature. Nevertheless, its first half can be used in an
undergraduate course as well, especially considering the wealth of examples and the possibility
to replicate all material. Symmetrically, the last chapters can appeal to researchers wanting to
employ cutting-edge methods—for which there is usually around only quite unfriendly code
written in matrix language by methodologists—with the relative user-friendliness of R. As an
example, Ch. 10 is based on the R tutorials one of the authors gives at the Spatial Econometrics
Advanced Institute in Rome, the world-leading graduate school in applied spatial econometrics.

Econometrics is a late comer to the world of R, although of course much of basic econometrics
employs standard statistical tools, which were present in base R. Typical functionality, address-
ing the emphasis on model assumptions and testing, which is characteristic of the discipline,
started to appear with the Imtest package and the accompanying paper of Zeileis & Hothorn
(2002); a review paper on the use of R in econometrics, focused on teaching, was published at
about the same time (Racine & Hyndman, 2002). This was followed by further dedicated pack-
ages extending the scope of specialized methods to structural equation modeling, time series,
stability testing, and robust covariance estimation, to name a few; while despite the availability
of some online tutorials, no dedicated book would appear in print until Kleiber & Zeileis (2008).

In the wake of any organized and comprehensive R package for panel data econometrics,
Yves Croissant started developing plm in 2006, presenting one early version of the software at
the 2006 useR! Conference in Vienna. Giovanni Millo joined the project as coauthor shortly
thereafter. Two years later, an accompanying paper to plm (Croissant & Millo, 2008) featured
prominently in the econometrics special issue of the Journal of Statistical Software testifying
the improved availability of econometric methods in R and the increased relevance of the R
project for the profession.

More recently, Kevin Tappe has become the third author. Liviu Andronic, Arne Henningsen,
Christian Kleiber, Ott Toomet, and Achim Zeileis importantly contributed to the package at
various times. Countless users provided feedback, smart questions, bug reports, and, often,
solutions.

Estimating the user base is no simple task, but the available evidence points at large and
growing numbers. The 2008 paper describing an earlier version of the package has since been
downloaded almost 100,000 times and peaked on Goggle Scholar’s list as the 25th most cited
paper in the Journal of Statistical Software, the leading outlet in the field, before hitting the
five-year reporting limit. At the time of writing, it counts over 400 citations on Google Scholar,
despite the widespread bad habit of not citing software papers. The monthly number of package
downloads from a leading mirror site has been recently estimated at 6,000.

Chapters 2, 3, 6, 7, and 8 have been written by Yves Croissant; 1, 5, 9 (except the first genera-
tion unit root testing section), and 10 by Giovanni Millo, chapter 4 being co-written.

The book has been produced through Emacs+ESS (Rossini et al., 2004) and typeset in LaTeX
using Sweave (Leisch, 2002) and later knitr (Xie, 2015). Plots have been made using ggplot2
(Wickham, 2009) and tikz (Tantau, 2013).

The companion package to this book is pder (Croissant & Millo, 2017); the methods
described are mainly in the plm package (Croissant & Millo, 2008) but also in pglm (Croissant,
2017) and splm (Millo & Piras, 2012). General purpose tests and diagnostics tools of packages
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car (Fox & Weisberg, 2011), Imtest (Zeileis & Hothorn, 2002), sandwich (Zeileis, 2006b), and
AER (Kleiber & Zeileis, 2008) have been used in the code, as have some more specialized tools
available in MASS (Venables & Ripley, 2002), censReg (Henningsen, 2017), nlme (Pinheiro
etal, 2017), survival (Therneau & Grambsch, 2000), truncreg (Croissant & Zeileis, 2016), pcse
(Bailey & Katz, 2011), and msm (Jackson, 2011). dplyr (Wickham & Francois, 2016) has been
used to work with data.frames and Formula with general formulas. stargazer (Hlavac, 2013)
and texreg (Leifeld, 2013) were used to produce fancy tables, the fiftystater package (Murphy,
2016) to plot a United States map. The packages presented and the example code are entirely
cross-platform as being part of the R project.
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Introduction

This book is about doing panel data econometrics with the R software. As such, it is aimed at
both panel data analysts who want to use R and R users who endeavor in panel data analysis.
In this introductory chapter, we will motivate panel data methods through a simple example,
performing calculations in base R, to introduce panel data issues to the R user; then we will
give an overview of econometric computing in R for the analyst coming from different software
packages or environments.

1.1 Panel Data Econometrics: A Gentle Introduction

In this section we will introduce the broad subject of panel data econometrics through its
features and advantages over pure cross-sectional or time-series methods. According to Baltagi
(2013), panel data allow to control for individual heterogeneity, exploit greater variability for
more efficient estimation, study adjustment dynamics, identify effects one could not detect
from cross-section data, improve measurement accuracy (micro-data instead of aggregated),
use one dimension to infer about the other (as in panel time series).

From a statistical modeling viewpoint, first and foremost, panel data techniques address one
broad issue: unobserved heterogeneity, aiming at controlling for unobserved variables possibly
biasing estimation.

Consider the regression model

y=a,+ f,x+7v,z+¢,
where x is an observable regressor and z is unobservable. The feasible model on observables
y=a+px+e

suffers from an omitted variables problem; the oLs estimate of / is consistent if z is uncorrelated
with either y or x: otherwise it will be biased and inconsistent.

One of the best-known examples of unobserved individual heterogenetiy is the agricul-
tural production function by Mundlak (1961) (see also Arellano, 2003, p. 9) where output y
depends on x (labor), z (soil quality) and a stochastic disturbance term (rainfall) so that the
data-generating process can be represented by the above model; if soil quality z is known to
the farmer, although unobservable to the econometrician, it will be correlated with the effort x
and hence f,, ; will be an inconsistent estimator for f.

This is usually modeled with the general form:

Y =0+ ﬂTxm +(n,+v,,) (1.1)

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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where 7, is a time-invariant, generally unobservable characteristic. In the following we will
motivate the use of panel data in the light of the need to control for unobserved heterogeneity.
We will eliminate the individual effects through some simple techniques. As will be clear from
the following chapters, subject to further assumptions on the nature of the heterogeneity there
are more sophisticated ways to control for it; but for now we will stay on the safe side, depending
only on the assumption of time invariance.

1.1.1 Eliminating Unobserved Components

Panel data turn out especially useful if the unobserved heterogeneity z is (can be assumed)
time-invariant. Leveraging the information on time variation for each unit in the cross section,
it is possible to rewrite the model (1.1) in terms of observables only, in a form that is equivalent
as far as estimating f§ is concerned. The simplest one is by subtracting one cross section from
the other.

1.1.1.1 Differencing Methods

Time-invariant individual components can be removed by first-differencing the data: lagging
the model and subtracting, the time-invariant components (the intercept and the individual
error component) are eliminated, and the model

Ay, =p Ax, + Av,, (1.2)

(where Ay,, = y,; — ¥,,1, &%, = %, — %,,_, and, from (1.1), Ae,, = €,, — €, fort =2,...,T)
can be consistently estimated by pooled oLs. This is called the first-difference, or FD estimator.

1.1.1.2 LSDV Methods

Another possibility to account for time-invariant individual components is to explicitly
introduce them into the model specification, in the form of individual intercepts. The second
dimension of panel data (here: time) allows in fact to estimate the #,s as further parameters,
together with the parameters of interest f. This estimator is referred to as least squares dummy
variables, or LsDV. It must be noted that the degrees of freedom for the estimation do now
reduce to NT — N — K because of the extra parameters. Moreover, while the ﬁ vector is
estimated using the variability of the full sample and therefore the estimator is NT-consistent,
the estimates of the individual intercepts 7, are T-consistent, as relying only on the time
dimension. Nevertheless, it is seldom of interest to estimate the individual intercepts.

1.1.1.3 Fixed Effects Methods

The LsDV estimator is adding a potentially large number of covariates to the basic specification
of interest and can be numerically very inefficient. A more compact and statistically equivalent
way of obtaining the same estimator entails transforming the data by subtracting the average
over time (individual) to every variable. This, which has become the standard way of estimating

fixed effects models with individual (time) effects, is usually termed time-demeaning and is
defined as:

Yt — 5/;1 = (xnt - in)ﬁ + (Vnt - ‘7n.) (13)

where ¥, and %, denote individual means of y and X.
This is equivalent to estimating the model

Yt = Oy + X8+ V,yp,
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i.e., leaving the individual intercepts free to vary, and considering them as parameters to
be estimated. The estimates &, can subsequently be recovered from the oLs estimation of
time-demeaned data.

Example 1.1 individual heterogeneity — Fatalities data set
The Fatalities dataset from Stock and Watson (2007) is a good example of the importance of
individual heterogeneity and time effects in a panel setting.

The research question is whether taxing alcoholics can reduce the road’s death toll. The basic
specification relates the road fatality rate to the tax rate on beer in a classical regression setting:

frate, = a + fbeertax; + €,.

Data are 1982 to 1988 for each of the continental US states.

The basic elements of any estimation command in R are a formula specifying the model
design and a dataset, usually in the form of a data . frame. Pre-packaged example datasets are
the most hassle-free way of importing data, as needing only to be called by name for retrieval.
In the following, the model is specified in its simplest form, a bivariate relation between the
death rate and the beer tax.

data ("Fatalities", package="AER")
FatalitiesS$frate <- with(Fatalities, fatal / pop * 10000)
fm <- frate 7 beertax

The most basic step is a cross-sectional analysis for one single year (here, 1982). One pro-
ceeds first creating a model object through a call to 1m, then displaying a summary . 1m of it.
Printing to screen occurs when interactively calling an object by name. Notice that subsetting
can be done inside the call to 1m by feeding an expression that solves into a logical vector to the
subset argument: data points corresponding to TRUEs will be selected, FALSEs discarded.

mod82 <- 1lm(fm, Fatalities, subset = year == 1982)
summary (mod82)

Call:
Im(formula = fm, data = Fatalities, subset = year == 1982)
Residuals:

Min 1Q Median 30 Max

-0.936 -0.448 -0.107 0.230 2.172

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.010 0.139 14.46 <2e-16 ***
beertax 0.148 0.188 0.79 0.43
Signif. codes:
@ vewsl @001 "=w0 @.L "%V 0,05 "," @A Y U 4

Residual standard error: 0.67 on 46 degrees of freedom
Multiple R-squared: 0.0133, Adjusted R-squared: -0.00813
F-statistic: 0.621 on 1 and 46 DF, p-value: 0.435
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The beer tax turns out statistically insignificant. Turning to the last year in the sample (and
employing coeftest for compactness):

mod88 <- update (mod82, subset = year == 1988)
library ("lmtest")

coeftest (mods88)
t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.859 0.106 17.54 <2@=1E ==
beertax 0.439 0.164 2.67 0.011 *

Signif. codes:
@ "=eel @ eel "EEY .01 "0 ©.05 .9 ©@. i 7 v odl

the coefficient is significant and positive! Similar results appear for any single year in the
sample.

Pooling all cross sections together, without considering any form of individual effect, can be
done using the regular 1m function or, equivalently, p1m; in this second case, for reasons which
will be clearer in the following, this is not the default behavior, so the optional model argument
has to be specified, setting it to ' pooling’.

Drawing on this much enlarged dataset does not change the qualitative result:

library ("plm")
poolmod <- plm(fm, Fatalities, model="pooling")
coeftest (poolmod)

t test of coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.8533 0.0436 42.54 < 2e-16 ***
beertax 0.3646 0.0622 5.686 I1,le=08 =%

Signif. codes:
@ "weel Q,00l "wwl @.01L " .05 ".U @.d T Uil

Taxing beer would seem to increase the number of deaths from road accidents so that, extend-
ing this line of reasoning far beyond what the given evidence supports, i.e., far outside the given
sample, one could even argue that free beer might lead to safer driving. Similar results, contra-
dicting the most basic intuition, appear for any single year in the sample.

Panel data analysis will provide a solution to the puzzle. In fact, we suspect the presence of
unobserved heterogeneity: in specification terms, we suspect the restriction @, = «V# in the
more general model

frate,, = a, + Pbeertax,, + €,

to be invalid. If omitted from the specification, the individual intercepts — but for a general
mean — will end up in the error term; if they are not independent of the regressor (here,
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if unobserved state-level characteristics are related to how the local beer tax is set) the
OLSs estimate will be biased and inconsistent.

As outlined above, the simplest way to get rid of the individual intercepts is to estimate the
model in differences. In this case, we consider differences between the first and last years in
the sample. A limited amount of work on the dataset would be sufficient to define a new vari-
able Ayy,; = ,; — ¥,,_5 but, as it turns out, for reasons that will become clear in the following
chapters, the diff method well-known from time series does work in the correct way when
applied to panel data through the plm package, i.e., diff (y, s) is correctly calculated as

Yt = Vue—s

dmod <- plm(diff (frate, 5) ~ diff (beertax, 5), Fatalities, model="pooling")
coef (dmod)
(Intercept) diff (beertax, 5)
-0.02524 -0.95554

Estimation on five-year differences finally yields a sensible result: after controlling for state
heterogeneity, higher taxation on beer is associated with a lower number of fatalities.

As discussed, another way to control for time-invariant unobservables is to estimate them
out explicitly. Separate intercepts could be easily added in plain R using the formula syntax:

lsdv.fm <- update(fm, . ~ . + state - 1)
lsdvmod <- lm(lsdv.fm, Fatalities)

coef (1sdvmod) [1]

beertax

-0.6559

The estimate is numerically different but supports the same qualitative conclusions.

Fixed effects (within) estimation yields an equivalent result in a more compact and efficient
way. Specifyingmodel='"within’ in the call to p1lmis not necessary because this estimation
method is the default one.

library ("plm")
femod <- plm(fm, Fatalities)
coeftest (femod)

t test of coefficients:

Estimate Std. Error t value Pr(>|t])
beertax -0.656 0.188 -3.49 0.00056 **=*

Signif. codes:
@ U=wel .01l "=l Q.01 "7 @.03 "." @.id Y U i

The fixed effects model, requiring only minimal assumptions on the nature of heterogeneity,
is one of the simplest and most robust specifications in panel data econometrics and often
the benchmark against which more sophisticated, and possibly efficient, ones are compared
and judged in applied practice. Therefore it is also the default choice in the basic estimating
function p1lm.

5
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Example 1.2 no heterogeneity — Tileries data set

There are cases when unobserved heterogeneity is not an issue. The Tileries dataset con-
tains data on output and labor and capital inputs for 25 tileries in two regions of Egypt, observed
over 12 to 22 years. We estimate a production function. The individual units are rather homo-
geneous, and the technology is standard; hence, most of the variation in output is explained
by the observed inputs. Here, a pooling specification and a fixed effects one give very similar
results, especially if restricting the sample to one of the two regions considered:

data("Tileries", package = "pder")

coef (summary (plm(log (output) log(labor) + machine, data = Tileries,
subset = area == "fayoum")))
Estimate Std. Error t-value Pr(>|t])

log(labor) 0.9174031 0.04661 19.681312 2.933e-45

machine 0.0001074 0.01244 0.008638 9.931e-01

coef (summary (plm(log (output) log(labor) + machine, data = Tileries,
model = "pooling", subset = area == "fayoum")))

Estimate Std. Error t-value Pr(>|t])

(Intercept) 0.173423 0.07054 2.4584 1.493e-02
log(labor) 0.964845 0.03818 25.2705 3.992e-60
machine 0.002243 0.01000 0.2242 8.228e-01

Notice that we have employed yet another way of compactly looking at the coefficients’ table
only, instead of printing the whole model summary: the coef . plm extractor method, applied
to a summary.plm object.

By the object orientation of R, applying coef to a model or to the summary of a model — in
object terms, to a plm or to a summary . plm — will yield different results. The curious reader
might want to try it himself.

In the following chapters we will see how to test formally for the absence of significant indi-
vidual effects. For now let us concentrate on how to get things done in R, and the relation to
how you would in some other environments.

1.2 Rfor Econometric Computing

R is widely considered a powerful tool with a relatively steep learning curve. This is true only up
toa pointas far as econometric computing with R is considered. In fact, rather than complicated,
Ris scalable: it can adapt to the level of difficulty/proficiency adequate for the current user. One
might say that Ris a “complicated” statistical tool in the same way as a drill is a more complicated
tool than a hammer, or a screwdriver. Just like a drill, nevertheless, R can actually turn screws:
although it can also do so much more.!

In a sense, R encompasses most other econometric software, with the exception of that based
exclusively on a graphical user interface. While the effective way to use R for econometric com-
puting is to take advantage from its peculiarities, e.g., leveraging the power of object orientation,

1 A drill can be used in place of a hammer for driving nails too, although with limited efficiency. So can R; but this is
another story.
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it is in fact possible to mimic in R both the modus operandi of procedural statistical packages
and of course the functionality of other matrix languages.

In the following we will briefly hint at effective ways to perform econometric computing in
R, referring the reader to Kleiber and Zeileis (2008) for a more complete treatment; then, in
order to provide a friendly introduction to users of different software, we will show how R can
be employed the way one would use a “canned” statistical package, or a “hard-boiled” matrix
language.

1.2.1 The Modus Operandi of R

R can be used interactively, issuing one command at a time and reading the results from the
session log; or it can be operated in batch mode, writing and then executing an R script. The
two modes usually mix up, in that even if one writes commands in an editor, it is customary to
execute them one by one, or possibly in small groups.

An edited .R file has a number of advantages, first of all that the whole session will be com-
pletely reproducible as long as the original data are available. There are nevertheless ways to
recover all statements used from a session log, which can be turned into an executable .R script
with a reasonable amount of editing, or even more easily from the command history, so that if
one starts loosely performing some exploratory calculation and then changes his or her mind,
perhaps because of some interesting result, nothing is lost. In short, after an interactive session,
one can save:

e the session log in a text file (. txt)

o the command history in a text file (. Rhistory)

o the whole workspace, or a selection of objects, in a binary file (.Rdata or, respectively,
.rda)

From a structured session’s approach, there are two competing approaches to the preserva-
tion of a reproducible statistical analysis, like one that led to writing a scientific paper: either “the
data are real,’; or “the commands are real.” In the first case, one saves all the objects that have
been created during the work session: perhaps the original data, as read from the original source
into a data . frame but most importantly the model, and possibly test, objects produced by
the statistical procedures so that each one can be later (re)loaded, inspected, and printed out,
yielding the needed scientific results. In the second case, the original data are kept untrans-
formed, next to plain text files containing all the R statements necessary for full reproduction of
the given analysis. This can be done by simply conserving the data file and one or more .R files
containing the procedures; or in more structured formats like the popular Sweave framework
and utility (Leisch, 2002), whereby the whole scientific paper is dynamically reproducible.

The “commands are real” approach has the advantage of being entirely based on human-
readable files (supposing the original data are also, as is always advisable, kept in
human-readable format), and its clarity is hard to surpass. Any analysis is reproducible
on every platform where R can be compiled, and any file is open to easy inspection in a text
editor, should anything go wrong, while binary files, even from Open Source software like R,
are always potentially prone to compatibility problems, however unlikely. But considerations
on computational and storage demands also play a role.

Computations are performed just once in the first case — but for the (usually inexpensive)
extraction of results from already estimated model objects — and at each reproduction in the
second; so that the “real data” approach can be preferable, or even the only practical alternative,
for computationally heavy analyses. By contrast, the “real commands” approach is much more
parsimonious from the viewpoint of storage space, as besides the original data one only needs
to archive some small text files.

7
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1.2.2 Data Management

1.2.2.1 Outsourcing to Other Software

In the same spirit, although R is one of the best available tools for managing data, users with
only a casual knowledge of it can easily preprocess the data in the software of their choice and
then load them into R. The foreign package (R Core Team, 2017) provides easy one-step import
from a number of popular formats. Gretl (Cottrell and Lucchetti, 2007) took it one step further,
providing the ability to call R from inside Gretl and to send to it the current dataset. In general,
passing through a conversion into tab- (or space-, or comma-) delimited text and a call to the
read. table function will solve most import problems and provide an interface between R
and anything else, including spreadsheets.

1.2.2.2 Data Management Through Formulae
Even at this level one should notice, however, that R formulae are very powerful tools, accepting
anumber of transformations that can be done “on the fly” eliminating most of the need for data
pre-processing. An obvious example are logs, lags, and differences or, as seen above, the inclu-
sion of dummy variables. Power transformations and interaction terms can also be specified
inside formulae in a very compact way. A limited investment of time can let even the casual
user discover that most of his usual pre-processing can be disposed of, leaving a clean process
from the original raw dataset to the final estimates.

Perhaps the use of formulae in R is the first investment an occasional user might want to do,
for all the time and errors it saves by streamlining the flow between the original data and the
final result.

1.3 plm for the Casual R User

This book is best for readers with familiarity with the basics of R. Nevertheless, using R inter-
actively — the way econometric software is usually employed — to perform most of the analyses
presented here requires very few language-related concepts and only three basic abilities:

e how to import data,

e which commands to issue to obtain estimates,

e optionally, how to save the output to a text file or render it toward ETEX (but one could as
well copy results from the active session).

This corresponds to the typical work flow of a statistician using specialized packages, where one
issues one single high-level command, possibly of a very rich nature and with lots of switches,
performing some complicated statistical procedure in batch mode, and gets the standard output
printed out on screen.

Distinctions are of course sharper than this, and the boundaries between specialized
packages, where macro commands perform batch procedures, and matrix languages, where in
principle estimators have to be written down by the user, are blurred. In fact, and with time,
packages have grown proprietary programming features and sometimes matrix languages of
their own, so that much development on the computational frontier of econometric methods
can be done by the users in interpreted language, just as happens in the R environment, rather
than provided in compiled form by the software house. A notable example of this convergence
is Gretl (Cottrell and Lucchetti, 2007), a Gui-based open-source econometric package with
full-featured scripting capabilities, entirely programmable and extensible. Some well-known
commercial offerings have also taken similar paths.
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From the other end of the spectrum, matrix languages have built up huge libraries of
ready-made, high-level functions performing complex procedures in one go.

In the following, for the sake of exposition, we will stick to cliché and assume that users of
procedural languages expect to run a regression issuing one single command, although per-
haps with a lot of arguments, and obtain a lengthy and very comprehensive output containing
all the estimation results and diagnostics they might ever need, while matrix language users
seek to perform regressions from scratch as § = (X"X)'XTy, and obtain any post-estimation
diagnostics in the same fashion.

1.3.1 Rfor the Matrix Language User

The latter viewpoint in our stylized world is that of die-hard econometricians-programmers,
who do anything by coding estimators in matrix language. Understandably, the transition
toward R is easier done in this case, as it too is a matrix language in its own right. Armed with
some cheat sheet providing the translation of basic operators, users of matrix languages can
be up and running in no time, learning the important differences in syntax and the language
idiosyncrasies of R along the way. As for the moment, here is how linear regression “from
scratch” is done in R:

Example 1.3 linear regressions — Fatalities data set

In order to perform linear regression “by hand” (i.e., without resorting to a higher level function
than simple matrix operators), we have to prepare the y vector and the X matrix, intercept
included and then use them in the R translation of the least squares formula:

y <- Fatalitiess$Sfrate
X <- cbind (1, FatalitiesSbeertax)
beta.hat <- solve(crossprod(X), crossprod(X,y))

Notice the use of the numerically efficient operators solve and crossprod instead of
the plain syntax solve (t (X) %*% X) %*% t(X) %*% y, which — up to the numerically
worst conditioned cases — would produce identical results. (Notice also that we do not need
to explicitly make a vector of ones: binding by column (cbind-ing) the scalar 1 to a vector of
length N, the former is recycled as needed.)

Next, we check that our hand-made calculation produces the same coefficients as the
higher-level function 1m:

beta.hat
[,1]

[1,] 1.8533
[2,] 0.3646
mod <- lm(frate ~ beertax, Fatalities)
coef (mod)
(Intercept) beertax

1.8533 0.3646

2 Notice that although the coefficients produced by the two methods are numerically the same, from a software
viewpoint they are two different object types: the former a 2 X 1 matrix, the latter a (named) numeric vector.

9
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It is less straightforward to perform an LSDV or a fixed effects analysis. In the former case,
one must create a matrix of state dummy variables: this is cuambersome to do in plain matrix
language but is much easier if leveraging the features of R’s formulae: in the latter case, it is
enough to add the individual index under form of a factor: ie., the R type for qualitative
variables.?

LSDVmod <- 1lm(frate ~ beertax + state - 1, Fatalities)
coef (LSDVmod) ["beertax"]

beertax

=0,655%

Estimation is also relatively easy in the fixed effects case, provided that a peculiar feature of R
without an obvious counterpart in other matrix languages steps in: ragged arrays. In the follow-
ing snippet, the mean function is applied along the individual index to obtain the time means for
each individual, which are then replicated along the length of the time dimension. The vectors
of time averages are then subtracted from the original vectors to obtain the time-demeaned
data, on which plain oLs can be applied (attach and detach are used to bring the con-
tents of the data . frame to user level, to avoid having to point at each variable through the
Fatalitiess... prefix).

attach(Fatalities)
frate.tilde <- frate - rep(tapply(frate, state, mean),
each = length (unique (year)))
beertax.tilde <- beertax - rep(tapply(beertax, state, mean),
each = length(unique (year)))
Im(frate.tilde ~ beertax.tilde - 1)

Call:
Im(formula = frate.tilde ~ beertax.tilde - 1)

Coefficients:

beertax.tilde
-0.656

detach (Fatalities)

This simple example already gives an idea of the small computational complications arising
from LsDV or fixed effects estimation. For example, it would not work for unbalanced panels
as is. The simple modification required to generalize the above snippet to the unbalanced case
is left as an exercise for the willing reader.

1.3.2 Rfor the User of Econometric Packages

The opposite vision is to resort to macro commands. At a bare minimum, users who are familiar
with procedural languages can obtain the same result with R:

e issue estimation command,
e get printed output

3 Text labels like state names would be automatically converted, while numerical codes would not. In the latter case,
one would use as . factor (state) within the formula
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despite the logical separation between the steps of creating a model object, summarizing it, and
printing the summary, which can a) be executed separately but can also b) be nested inside the
same statement, exploiting the functional logic of R, by which “inner” arguments are evaluated
first, (implicitly) printing the summary of a model object which is estimated on the fly inside
the same statement.* Easier done than said:

summary (plm(fm, Fatalities))
Oneway (individual) effect Within Model

Call:
plm(formula = fm, data = Fatalities)

Balanced Panel: n = 48, T = 7, N = 336

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.58696 -0.08284 -0.00127 0.07955 0.89780

Coefficients:
Estimate Std. Error t-value Pr(>|t])
beertax -0.656 0.188 -3.49 0.00056 ***

Signif. codes:
@ vewel @001 "=w0 @.L "=V 0,05 "," @i Y U A

Total Sum of Squares: 10.8

Residual Sum of Squares: 10.3

R-Squared: 0.0407

Adj. R-Squared: -0.12

F-statistic: 12.1904 on 1 and 287 DF, p-value: 0.000556

The construct summary (myestimator (myformula, mydata, ...)) will generally
work, displaying estimation results to screen, for most estimators. Diagnostics will often have
a formula method so that a statement along the lines of mytest (myformula, mydata,

.) will produce the desired output, or, at most, they will require the trivial task of making
a “model” object before applying the desired test to it: which can as well happen in one single
statement, like mytest (myestimator (myformula, mydata, ...)).In thissense, R
is a good substitute of procedural languages, at least those that require text input from the
command line; despite the fact of also being so much more.

If one is not scared of typing, we might even say that inputting the above statement is not far
from the level of difficulty of using a point-and-click GuI. Sure it is not any more difficult to
read output from the above R command than that of the standard regression in a GuUI package.

1.4 plm for the Proficient R User

A better knowledge of R will disclose a wealth of possibilities streamlining the production pro-
cess of empirical research. Actually, while R might look difficult or unfriendly to the beginner,

4 Intentionally convoluted sentence. This is what actually happens under the bonnet, but the user need not
necessarily worry about it.

11
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for the proficient user the overall workload when producing a piece of scientific research may
turn out to be much lower than with competing solutions. The convenient features that allow
for a more advanced management of research activity with respect to the usual paradigm “an-
alyze the data — save the results — write the paper around them” can also be seen in the light of
producing reproducible econometric research.

1.4.1 Reproducible Econometric Work

Performing econometric work in R, possibly in conjunction with BTEX through literate sta-
tistical tools like Sweave (Leisch, 2002) and knitr (Xie, 2015), satisfies desirable standards of
reproducibility.

Following Peng (2011), “[an] important barrier [to reproducible research] is the lack of
an integrated infrastructure for distributing [it] to others.” Yet such infrastructures have
recently emerged in statistics and have been proposed for econometric practice. As advocated
by Koenker and Zeileis (2009), one way of ensuring the complete reproducibility of one’s
research is to provide a self-contained Sweave file — “a tightly coupled bundle of code and
documentation” — including all the text as well as the code generating the results of the paper
so that, given the original data, the complete document can be reproduced exactly by anybody,
on practically any computing platform.

Three aspects of R are worth highlighting in this context: object orientation; code availabil-
ity, documentation, and management; and reproducible econometric research through literate
programming functionalities. The latter two, in particular, help situate econometric work (prop-
erly) done with R toward the better end of the reproducibility spectrum in Peng (2011), the “gold
standard” of full replication, as providing “a detailed log of every action taken by the computer,”
which can be replicated by anyone with any type of machine and an Internet connection. In this
sense, R code is linked and executable (Peng, 2011, Fig.1) without the need for either proprietary
software or particular hardware/operating system, with the only possible limit of computing
power.

As for availability, R is open-source software (OSS); hence, all code can be used, inspected,
copied, and possibly modified at will. Source code, in the words of Koenker and Zeileis (2009),
is “the ultimate form of documentation for computational science,” and being accessible it can
more easily be subjected to critical scrutiny (on the subject, see also Yalta and Lucchetti, 2008;
Yalta and Yalta, 2010).

Besides accessibility, being OSS has important consequences on numerical accuracy (see
Yalta and Yalta, 2007) and, what matters most here, on the particular aspect of reproducibility.
The R project encourages (in a sense, enforces) documentation of code through its packaging
system: in order for a package to build, every (user-level) function inside it must be properly
documented, with valid syntax and working examples, as checked by automated scripts. Relia-
bility levels are explicit too: the main distribution site, the Comprehensive R Archive Network
(cran.r-project.org) accepts stable versions of packages, subject to a further validation step; ear-
lier versions of code, labeled according to development status (from “Planning” to “Mature”),
are to be found on collaborative development platforms of which R-Forge (r-forge.r-project
.org/) (Theufdl and Zeileis, 2009) is a prominent example. The latter, although typically contain-
ing very recent methods, are subject to all the above mentioned quality controls but also allow
for immediate patching of code; all changes are tracked inside the system’s version history and
are open to inspection from any user.

Lastly, and perhaps most importantly here, R explicitly encourages reproducibility of
research through utilities like Sweave (Leisch, 2002), which implements literate programming
techniques weaving together code and documentation in a dynamic document, as discussed
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in Meredith and Racine (2009) and Koenker and Zeileis (2009, 2.5). Convenient interfaces
for weaving together R and ETEX are available, from Emacs + ESS (Rossini et al.,, 2004) to the
more recent RStudio (Racine, 2012). This book has in fact been prepared as a dynamic BETEX
document, using the Emacs editor in ESS mode.

1.4.2 Object-orientation for the User

R has object-orientation features. Beside their user-friendliness, such features have a role
of their own in reproducibility: simplifying the code makes it more readable and using
modular, high-level components with sensible defaults for the different objects is generally
safer, especially for the accident-prone data manipulations and transformations typical of
panel data.

Methods for extracting (individual, average, or pooled) coefficients, standard errors and mea-
sures of fit from model objects of different kinds work with the same syntax, although with
different internals, transparently for the user. Formulae with compact representations of lags
and differences can be supplied to panel estimators, where the above operators will automati-
cally adjust to the particular context of panel data. Moreover, compact formulations of dynamic
models can be indexed, as in lag(x, 1:1i) for «, ,,...,x,_,, and used inside flow control
structures, simplifying the making of large tables. Preliminary data manipulation can often be
avoided altogether, calculating lags, differences, logs, or more specific panel operations, such
as averaging or demeaning over the time or individual dimension, inside the model formula. As
observed before, this generally allows to maintain only two files: the original data source and
the procedures, with obvious benefits to reliability and replicability of results.

The flexibility object-orientation features provide is highlighted when considering that the
R workspace can contain objects of many different kinds at the same time: in this instance,
panel or simple models, model formulae, matrices or lists of weights for representing spatial
dependence, and, differently from some widespread econometric packages, datasets of various
dimensions at the same time. Such flexibility is particularly useful in research work that blends
methods from different lines of research together, in order to avoid having to use different soft-
ware environments for the tasks at hand, and the common pitfalls of not saving the code relative
to preliminary data manipulations, or that which combines the results together (see Peng, 2011,
p. 1226).

1.5 plm for the R Developer

The last frontier for plm users is to become developers. The operation of plm is based on
a specific data infrastructure able to deal with the peculiar aspects of panel data: basically,
their double indexing feature, the possibility of unbalancedness, and the frequent need for
transformations along one (or both) dimension(s). This mid-level functionality for (panel) data
transformation is in general accessible at user level and can be very handy for those develop-
ing new methods, e.g., involving estimation over transformed data. It is in fact already in use
by a number of other packages: in particular, but not only, some packages aimed at more spe-
cific needs presented in this book (pglm, splm), which are based on this infrastructure and are
mostly compliant with plm’s conventions and syntax.

Just as the econometric estimation of a fixed effects model proceeds through applying stan-
dard oLs to demeaned data, so does the implementation in plm, like many others. Yet, unlike
many other software packages, here these steps can be readily performed in an explicit fashion.

13
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Example 1.4 explicit within transformation — Fatalities data set
In order to demonstrate within regression, we apply the transformation functions directly in
the model formula, excluding a priori the intercept (which has been transformed out):

w.mod <- plm(Within (frate) Within (beertax) - 1, data=Fatalities,
model = "pooling")

coef (w.mod)

Within (beertax)

-0.6559

(If trying this at home, remember that, unlike the coefficient, the standard error from this
model’s output would have to be adjusted by the degrees of freedom to match that of the canned
within routine. See the discussion in the next chapter, 2.2.3.)

As often happens with R, “ideas are turned into software” (Chambers, 1998) in a natural way,
the computational approach following the conceptual flow of the statistical reasoning. More-
over, while all of the software tools provided, being open-source, can ultimately be inspected by
the skilled programmer, in the case of plm much of the infrastructure is available at user level,
conveniently packaged with help and examples, both for instruction purposes and as a building
block for further development.

1.5.1 Object-orientation for Development

One last observation is in order, whose scope is not limited to plm or panel data economet-
rics. For a developer, working inside the R project has the huge benefit that she is able to access
a majority of all available statistical techniques from inside her preferred computing environ-
ment, by simply loading the relevant package. In our particular field, this means that one can
leverage functionality from, say, general statistics, such as, e.g., using principal components
analysis to approximate common factors (see Chapter 8); or from quantitative geography, such
as calculating distances between the centroids of regions to make spatial weights matrices (see
Chapter 10). This has to do with the functional orientation of R, by which complex (statistical)
tasks are abstracted into functions and therefore made available irrespective of the internals
(what happens under the hood).

Another side of abstraction is object-orientation: generic methods are often provided, which
particularize into different actual computations depending on the object they are fed. Simple
examples are summary and plot, which will produce different outcomes if applied to, say, a
numericoran lm.

A related, relevant feature of R, and in general of the S language (Chambers, 1998), for the
developer is that functions are a data type. This means that a function (the abstraction of a sta-
tistical procedure) can be passed on to another statistical procedure simply calling it by name.
A simple example is the case of the Wald test for generic linear restrictions of the form Ry = r
on the parameter vector y:

Wald(Ry — r)T[RTVR] MRy — r) (1.4)

Taking the oLs estimate of the linear model as an example, the standard — or “classi-

~ N s
1” — covariance matrix = 2=
ca covariance matrix V¢ NoKaD

independent and identically distributed. If heteroscedasticity is present, the parameter

(ZTZ)7! will only be appropriate if the errors are
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estimates 7, , are still consistent, but V. is not. The test can then be robustified employing a
heteroscedasticity-consistent covariance estimator in place of V,, ; (Zeileis, 2006a).

The R counterpart of the Wald test is the linearHypothesis function, aliased by
the abbreviation 1ht (Fox and Weisberg, 2011). Mimicking the relevant statistical procedure,
the latter will use coe f and — by default — vcov methods to extract 7 and V from the estimated
model, plugging them into (1.4). By default, an 1m object will contain V¢ but the user can,
optionally, provide a different way to calculate the covariance under form of the function
argument vcov.

Example 1.5 Wald test with user-supplied covariance —- Tileries data set

As previously seen, the production function model in the Tileries dataset is a good can-
didate for a pooling specification. Below, for the sake of exposition, we estimate a linearized
Cobb-Douglas version of the production function, in order to test a hypothesis of constant
returns to scale. It seems appropriate, as a first step, to estimate a pooled specification by oLs:

data("Tileries", package = "pder")

til.fm <- log(output) log(labor) + log(machine)

Im.mod <- 1Im(til.fm, data = Tileries, subset = area == "fayoum")

before proceeding to test the restriction Hy : y; + 7, =1

library (car)
lht (Im.mod, "log(labor) + log(machine) = 1")
Linear hypothesis test

Hypothesis:
log(labor) + log(machine) = 1

Model 1: restricted model
Model 2: log(output) ~ log(labor) + log(machine)

Res.Df RSS Df Sum of Sg F Pr(>F)
1 175 0.602
2 174 0.600 1 0.00104 0.3 0.58

Allowing for heteroscedasticity is as easy as passing on vcovHC to the vcov argument:

library (car)
lht (Im.mod, "log(labor) + log(machine) = 1", vcov=vcovHC)
Linear hypothesis test

Hypothesis:
log(labor) + log(machine) = 1

Model 1: restricted model
Model 2: log(output) ~ log(labor) + log(machine)

Note: Coefficient covariance matrix supplied.
Res.Df Df F Pr (>F)

1 175
2 174 1 0.23 0.63
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The qualitative findings are unchanged, but this is not the point. As the Note in the output
reminds us, a different covariance estimator has been employed.

Being generic methods, both 1ht and vcovHC will select and apply the appropriate partic-
ular procedure depending on the object type. Thus, if fed an 1m, inside 1ht . 1m coef . Imand
vcovHC. lmwill be applied, with the relevant defaults; if a plmis provided instead, coef . plm
and vcovHC.plm will be used.

By default, the most appropriate method for estimating the parameters’ covariance in a panel
setting is by allowing for clustering. This is what will happen if feeding the vcovHC function to
the 1ht together with a p1m object: the vcovHC generic will select the vcovHC . p1m method
for doing the actual computing.

Example 1.6 user-supplied covariance, continued — Tileries data set
The pooled specification by oLs can be estimated through p1m as well:

plm.mod <- plm(til.fm, data = Tileries, model = "pooling", subset = area == "fayoum")

before proceeding to test H:

library (car)
lht (plm.mod, "log(labor) + log(machine) = 1", vcov = vcovHC)
Linear hypothesis test

Hypothesis:
log(labor) + log(machine) =1

Model 1: restricted model
Model 2: log(output) ~ log(labor) + log(machine)

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisg Pr (>Chisq)
1 167
2 166 1 0.76 0.38

Another different covariance has been employed this time, which allows for clustering at indi-
vidual level: an idea that will be explored in Chapter 5. For now it will be sufficient to say that
this one, next to heteroscedasticity, allows for error correlation in time within each individual.

Again, constant returns to scale are not rejected; but now our conclusion is valid in a much
more general context.

The programmer writing a 1ht method for, say, a hypothetical mymode1 class will not have to
bother about these downstream details because all he needs is for mymodel objects to expose
vcov and coe f methods and, eventually, to provide alternative covariance estimators, embod-
ied in turn into vcovXX .mymodel functions. Then his function will automatically reproduce
equation (1.4) in the new context. The plm package has been designed to be compliant with
this framework and to allow for easy extensions along the lines sketched above.

Next to the issue of designing modular code for easier production and maintenance by
re-employing existing functionality in new contexts, object orientation also has important
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computational advantages in terms of efficiency. As we have seen, object orientation means that
the statistical “objects” (the coefficient vector, the covariance) are mapped to computational
tools according to types. From the point of view of the developer faced with computational
efficiency and accuracy issues, this means that often she is able to exploit the peculiar structure
of the problem at hand. Specialized methods (usually written and compiled in C or FORTRAN)
are often available, speeding up computations by many orders of magnitude for a specific class
of problems.

One simple example is the inversion of block-diagonal symmetric matrices; a typical problem
in panel data estimation by GLs, where the estimated error covariance matrix, which is NT x
NT, has to be solved. An obvious improvement is to exploit the property that the inverse of a
block-diagonal matrix is made of the inverses of the individual blocks; nevertheless, defining the
error covariance as a bdsmatrix object allows to use the fast solve .bdsmatrix method
from the package by the same name (Therneau, 2014). This solution is used, e.g., for the GGLs
estimators described in Chapter 5: a procedure for which computational efficiency is critical,
as being statistically appropriate for very large N panels, where on the other hand it becomes
computationally problematic.

Another instance where special matrix types greatly extend the feasibility boundaries is in
spatial models: here, sparse matrices are common, which contain a vast majority of zeros. Sim-
plifying, one could say that sparse matrix algebra methods rely on the additional information
on the position of zeros, avoiding both to consume memory for storing them, and to waste
resources to compute on them. Sparse matrix methods from the package spam (Furrer and Sain,
2010) and from the more general matrix algebra package Matrix (Bates and Maechler, 2016)
have been extensively employed in the spatial panel methods described in Chapter 10, together
with optimizers from nlme (Pinheiro et al., 2017) and MaxLik (Henningsen and Toomet, 2011)
(a discussion is to be found in Millo, 2014, Section 5.2).

On a different but related note, innovation in object types has in turn affected the symbolic
descriptions of models: formulae, from which model matrices and responses are derived for
actual computation. The extension of the formula object class into the Formula class, which
inherits from the former generalizing it to allow multi-part models and multiple responses
(Zeileis and Croissant, 2010), is the basis for the consistent specification of a number of esti-
mators based on combining different levels of instrumentation. The consistent and flexible plm
implementation of the econometric methods described in Chapters 6 and 7 is made possible
by the extended functionality of Formulae.

This book is on using, rather than developing, panel data methods in R. This short discussion,
therefore, cannot but scratch the surface of the wealth of computing infrastructure available
to the user who turns toward developing her own methods. We hope to have at least given an
intuition and some directions for further inquiry to any user of plm and related packages who
wants to extend the methods contained herein, leveraging the power of the R environment at
large. As Borges put it, “This plan is so vast that each writer’s contribution is infinitesimal.”

1.6 Notations

This book is necessarily notation-heavy. Moreover, conventions differ across the various sub-
fields of panel data econometrics covered herein. A considerable effort has been made to present
formalizations in a consistent way across chapters, although sometimes this can entail a depar-
ture from the usual habits.

This section is therefore meant as a reference for the whole book.

17
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1.6.1 General Notation

The probability is denoted by , the expected value is denoted by , the variance by , the
trace by , the correlation coefficient by [ cor |, and the standard deviation by [ ¢ ]. A quadratic
form is denoted by @ and the identity matrix by . A set of covariates defines two matrices:

, which returns the fitted values when post-multiplied by a vector; and , which returns the
residuals: P = X(X"X)™1X and M = [ — P. The Cholesky decomposition of a matrix is denoted

by , so that:

CACT =1

1.6.2 Maximum Likelihood Notations

For models estimated by the maximum likelihood method, the objective function is denoted by
, the Jacobian by , the gradient by , the Hessian by and the information matrix

by I. For generic presentations of the log-likelihood method, the generic set of parameters is

denoted by .

The statistics of the three tests are denoted by | LR |, | LM |, and | Wald | for, respectively, a
likelihood ratio, a Lagrange multiplier, and a Wald test.

1.6.3 Index

A panel is constituted of | N |individuals denoted by | 7 | (when necessary, is used as an alias
for n).

Each individual is observed during different periods denoted by ¢ (when necessary, s is
used as an alias to the ¢ index).

The size of the sample is denoted by @, it is equal to Zi\[zl T,, where T, is the number of
time series for individual n. If T, = T Vn (balanced panel case), we have O = NT.

The| K |covariates are indexed by ; note that a column of ones is not consider in this count.

1.6.4 The Two-way Error Component Model

Consider now the two-way error-component model (the more usual one-way individual error
component model is obtained as a special case); it writes for an observation:

T T
Ip=a+p X, +€,=7 2z, +€,

€nt = nn + /’lt + Vnt

is the response, [ a | the intercept, [ x | the vector of K covariates with associated coefficients

@. It would be sometimes easier to consider , which is obtained by adding a 1 in the first
position of vector x: ZL =(1, xL), with the vector of associated coefficients with yT =(a,y").
The error of the model is the sum of a time-invariant individual effect , an
individual-invariant time-effect , and a residual error . Except for some time-series

and spatial methods, v is assumed to be i.i.d..
2 2

The variance is denoted by 62; we therefore have for the error and its components: 2, 0y Oy
and o2.
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All estimated values are represented by the “true” value with a hat so that, for example, the
estimated coefficients, the residuals, and the estimated variance of the errors are respectively:

j, € and o2.
In matrix form, the same model is written:
y=aj+Xf+e=Zy+e
e=Dn+D,u+v
where|j |isavector of 1,| X |and| Z |the covariate matrices (the latter including a first column of
ones, the former without it), # the vector of N individual effects, i the vector of T time effects,

and v the vector of O residual effects.

denotes a matrix of dummy variables; D, and D, are respectively the dummy variable

matrices for individuals and periods. In the case of balanced panels, and if the observations are
ranked first by individual, then by time series (“the ¢ index changes faster”), these two matrices
can be expressed using Kronecker products. Denoting by = jiT a square matrix of ones, we
have:

D, =1y ®J;
Dy =/r®ly

The covariance matrix of the errors € is denoted by. Some simplifying assumptions lead to:
Q =oclyr+0 1y ®Jr +0.); Qly

orQ, = 63, with:

(72 62
=Ly + S5y ®J + 5/ QI
O-V O-V

1.6.5 Transformation for the One-way Error Component Model

For the one-way individual error component model, the last term disappears. In this case, we’ll
denote| S | the matrix that if post-multiplied by a variable, returns a vector of length O contain-
ing the individual sums of the variable, each one being repeated T, times.

S=I,®J,

We'll also make use of the matrix = I —J, which post-multiplied by a variable, returns the
variable in deviation from its overall mean:

I=1-7
In the case of balanced panels, the between and within matrices, respectively denoted by
and , can be defined:

1 1
B=?S=?IN®]T

1
WzI_B:INT_TINQb]T

Denoting = o0} + To;, the covariance matrix of the error can be written:

o - (w+%B)=o2(w+Ls
. = 0, +; =o0, +&
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with = ’;— We'll also denote =1 — ¢ the fraction of the individual mean that is sub-

tracted in the GLS model.
Two other transformation matrices are used: @ and @ perform respectively the
first-difference and the orthogonal deviation of a vector.

1.6.6 Transformation for the Two-ways Error Component Model

Back to the two-ways error component model, we now have two between matrices:
B,=Iy®J;/T
B, =]y ®ILy/N

The within matrix is, denoting by |/ | = Jyr/NT the matrix that post multiplied by a vector
representing a variable returns its overall mean repeated N7 times:

W=1-B,-B,+]

Denote further B,, =B, - Jand B =B, - J. The covariance matrix of the errors then writes:

Q. =o’ <W+ %Bn + %Bn + %7)
by oy b5
with:
2 _ oy
¢, = ——
1/03+ T0',2,
c
2 v
d)y -5 —
\/o2 + No,
= i

2
\/63+T63+N0'ﬁ

as for the one-way individual error component model, , =1 — ¢, for i = n, u, 2

1.6.7 Groups and Nested Models
The group effect is denoted by , the groups are indexed by .

1.6.8 Instrumental Variables

The matrix of instruments is denoted by , the number of instruments by .

1.6.9 Systems of Equations
We consider a system of | L | equations indexed by , aliased by when necessary. is

the matrix of dimension O X L where each column contains the error vector for one of the
equations. Its covariance matrix is denoted by :

L=EE'E
its elements being denoted by[o |.
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1.6.10 Time Series

The most general time-series model considered in the book is defined by the following
equations:

Iut = PYeor + 7 2+ €y

€nt = Myt Vi

Vie = WVyog + 8y
where |Z| is the auto-regressive coefficient of the AR(1) model, the coefficient of the AR(1)
process for v, and are iid errors.

When lags are needed, they’ll be denoted by |/|and the number of lags is denoted by . It

is sometimes useful to know the beginning of the process; this will be denoted by —, 1 being
the first available observation.

1.6.11 Limited Dependent and Count Variables
For the ordered model, the | ] |levels of the dependent variables, defined by the thresholds ,

are denoted by .

For Poisson models, the Poisson parameter is denoted by . In the cross-series case, it is
equal to:

0,=mn,\

‘nt

where| A |is alinear combination of the covariates.| A |and| Y |are respectively the sums of A and

of the response for one individual. For the Negbin model, @ is the parameter of the distribution
and | v | the parameter that links the expected value and the variance of the response.

1.6.12 Spatial Panels
The proximity matrix is denoted by , its elements by [w]. It can be constructed either on

binary neighborhood or on the distance | d | between two individuals. The most general model
considered in this book is described by the following equations:
y=M,;QW)y+Zy+e
e=({r®m+v
v=p(I; @ W)v+¢
L=yl +¢, t=1,...,T
The first equation defines a SAR model, and the auto-regressive spatial coefficient for the

response is denoted by . The third equation defines a SEM model: it indicates that
the non-individual part of the error of the model is also spatially auto-correlated, the
auto-regressive spatial coefficient being denoted by |Z| Finally, the last equation indicates
that the residual component of the model is serially auto-correlated, with an AR(1) coefficient

denoted by ; and | ¢ | defines i.i.d.errors.
To simplify the notation, we'll also define matrices =1—-AW and, =1- pW which
return respectively the spatial filter of the response and the error.
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The Error Component Model

The error component model is relevant when the slopes, i.e., the marginal effects of the covari-
ates on the response, are the same for all the individuals, the intercepts being a priori different.
Note that for some authors, the error component model is a byword for the “random-effects
model” as opposed to the “fixed-effects model.” These two estimators will be analyzed in this
chapter as two different ways to consider the individual component of the error terms for the
same error component model (assuming no correlation and correlation with the regressors,
respectively).

This is the landmark model of panel data econometrics, and this chapter presents the main
results about it.

2.1 Notations and Hypotheses

2.1.1 Notations

For the observation of individual # at period ¢, we can write the model to be estimated, denoting
by y,, the response, x,, the vector of K covariates, ¢, the error, a the intercept, and f the vector
of parameters associated to the covariates:

Ve = A+ %]+ €, (2.1)

It'll be sometimes easier to store the intercept and the slopes in the same vector of coefficients.
Denoting by y" = (a, f7) this vector and ZI: = (l,xlt) the associated vector of covariates, the
model can then be written:

ot = 2l + €y (2.2)
For the error component model, the error is the sum of two effects:

o the first, , is the individual effect for individual #,
o the second, v,, is the residual effect, also called the idiosyncratic effect.

€pp =Nyt Vi (2.3)

For the whole sample, we'll denote by y the vector containing the response and X the matrix
of covariates, storing the observations ordered by individual first and then by period. We'll
suppose from now that the panel is balanced, which means that we have the same number of
observations (T') for all the individuals (N). In this case, y is a vector of length N7 and X a matrix
of dimension NT X K.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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Denoting by j a vector of ones of length NT, we get:
y=aj+Xf+e€ (2.4)

When we want to use the extended vector of coefficients, we denote Z = (j, X), and the model
to be estimated is:

y=Zy+e (2.5)

2.1.2 Some Useful Transformations

Panel data econometricians usually break the total variation up into the sum of intra-individual
and inter-individual variations. These two variations can easily be obtained by transforming the
data using different transformation matrices, which can be written using Kronecker products.

The Kronecker product of 2 matrices, denoted A ® B, is the matrix obtained by multiplying
each element of A by B.

I; denotes the identity matrix of dimension k; j; is a vector of ones of length / and J; = j, X j|
is a matrix of 1 of dimension / X /.

The inter-individual (or between) transformation is obtained by using a transformation matrix
denoted by B, which is defined by:

B=IN®]T/T

For example, we have, for N =2 and T = 3:

10
B= ®

(111)/3

e
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1/3 1/3 1/3

10
=<0 1>® 1/3 1/3 1/3
1/3 1/3 1/3

1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
o o o0 1/3 1/3 1/3
o o o0 1/3 1/3 1/3
o o o0 1/3 1/3 1/3

We then have:
T - - - - - — — — —
(Bx) = (X1, %1, .03 X1, %0, %oy oo 3 Xy oo s XN Xpy s oo 5 Xy )

To get the intra-individual (or within) transformation, we’ll use a transformation matrix
W defined as:

W=ly-1y®J/T=1y-B
These two matrices have very important properties:

e they are symmetric, so we then have BT = Band W' = W,

e they are idempotent, which means that W x W = W and B x B = B. For example, for the
between transformation, if we apply it twice to x, we obtain: (B X B) X z = B X (B X z). One
computes the individual means of a vector, which already contains individual means; the
vector is, therefore, unchanged; we then have (B X B) X z = B X z, and the same reasoning
applies to W,

o theyperform a decomposition of a vector, which meansthat Bxz+ W xz=z,asW =1-B
and therefore W + B =1,

e they are orthogonal: W'B = 0. Indeed, as the two matrices are symmetric and using the
result that W =1—-B, we havee W' B=W XxB=(1-B)xB=B-BxB=B-B=0.
W (Bz) consist in taking the deviations from individual means of the individual means and
is therefore equal to O irrespective of z.

W and B therefore perform an orthogonal decomposition of a vector z; this means that
pre-multiplying z by each of the two matrices, we obtain two vectors that sum to z and for
which the inner product is 0.

2.1.3 Hypotheses Concerning the Errors

€ is the sum of a vector v of length NT containing the idiosyncratic part of the error and of the
individual effect #, which is a vector of length N for which each element is repeated T times.
This can be written in matrix form:

e=Iy®jpn+v (2.6)

The estimated model will be defined by estimated parameters 77 = (&, f7) and by a vector of
residuals é.

y=aj+Xf+eé
y=Zp+é



26

Panel Data Econometrics with R

Subtracting (2.5) from (2.8) enables to write the residuals as a function of the errors:
é=ec-2(G ) (29)

To get a similar expression in terms of X and f, we use (2.4) and (2.7):
é=e—(@—a)—-XP-p

The mean of this expression is, denoting j = j/(N x T):
jlée=jTe~(@~a)~j"X(h~p)

In a linear model with an intercept, jT¢, which is the average of the residuals, is 0. Using the
two previous equations, we get:

é=(10-Ne-X(p-p)=1e-XPp-p) (2.10)

with Jy; =jj"/(NT) a matrix that post-multiplied by a vector returns a vector of the same
length containing the overall mean. [ = I — ], post-multiplied by a vector returns the vector
in deviations from the overall mean.

The expressions (2.9 and 2.10) will be used all along this chapter to analyze the properties of
the estimators.

The following hypotheses are made concerning the errors:

o the expected values of the two components of the error are supposed to be 0; anyway, their
means can't be identified if there is an intercept in the model,

o the individual effects #,, are homoscedastic and mutually uncorrelated,

o the idiosyncratic part of the error v, is also homoscedastic and uncorrelated,

e the two components of the errors are uncorrelated.

In this case, the covariance matrix of the errors depends only on the variance of the two compo-
nents of the errors, i.e., the two parameters ¢ and o;. Concerning the variance and covariances
of the errors, we then have:

e for the variance of one error: E(e2,) = oy +o0p,

e for the covariance of two errors of the same individual for two different periods:
E(entens = Gr%’

o for the covariance of two errors of two different individuals (belonging to the same period or
not): E(e,,€,,,) = E(e.€,,.) = 0.

For a given individual #, the covariance matrix of the vector of errors for this individual
T is:
€, = (€,1,€,2, ... ,6€,) is:

Q,, =E(e,e)) =0l + (73/} (2.11)

For the whole sample, we have e = (elT, ezT yeens GI[), and the covariance matrix is a square matrix
of dimension NT that contains submatrices E(¢,€,,). For n = m, this submatrix is given by (2.11);
for n # m, this is a 0 matrix given the hypothesis of no correlation between the errors of two
different individuals. The covariance matrix of the errors Q is then a block-diagonal matrix, the
N blocks being the matrix given by the equation (2.11). This matrix can then be expressed as a
Kronecker product:

Q=1 ® (cll; +0))p) = 0Ly + or(ly ®J7)

This matrix can also be usefully expressed in terms of the two transformation matrices within
and between described in subsection 2.1.2. In fact, B = %IN ® Jr and W =1 — B. Introducing
these two matrices in the expression of Q, we get:

Q=0XB+ W)+ To’B
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which finally implies, denoting o7 = 67 + To;:
Q=02W +0’B (2.12)

Finally, all along this chapter, we’ll suppose that both components of the errors are uncorre-
lated with the covariates: E( | x) = E(v | x) = 0.

2.2 Ordinary Least Squares Estimators

The variability in a panel has two components:

o the between or inter-individual variability, which is the variability of panel’s variables
measured in individual means, which is z,, or, in matrix form, Bz,

o the within or intra-individual variability, which is the variability of panel’s variables measured
in deviation from individual means, which is z,, — z,, or, in matrix form Wz = z — Bz.

Three estimations by ordinary least squares can then be performed: the first one on raw data,
the second one on the individual means of the data (between model), and the last one on the
deviations from individual means (within model).

2.2.1 Ordinary Least Squares on the Raw Data: The Pooling Model

The model to be estimated is y = aj + X ffe = Zy + €. Using the second formulation, the sum of
squares residuals can be written:

0T =7r"ZD~Zr)
and the first-order conditions for a minimum are (up to the —2 multiplicative factor):
Z'ée=0 (2.13)

The first column of Z is a vector of ones associated to a, which is the first element of y. There-
fore, dividing the first element of this vector by the number of observations leads to:

j=a+x'p (2.14)

This is the well-known result that the mean of the sample, i.e., (%,%) is on the regression
line of the ordinary least squares estimator. The K other first-order conditions imply that
> 26X = 0, which can be rewritten, the average residual € being equal to 0:

ZnZt(ént - é)(ka - "_Ck) _
NxT h

which means that the sample covariances between the residuals and the covariates are 0.
Solving (2.13), we get the ordinary least squares estimator for the whole vector of coefficients:

Tors = (ZT2)'ZTy (2.16)

0 (2.15)

Substituting y by Zy + ¢ in (2.16),
JA/OLS -V = (ZTZ)_IZTG (217)
To get the estimator of the slopes, one splits Z in (j, X) and 77 in (&, f7):

-1
a\ (NT ;X iy
] XTj XX XTy
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The formula for the inverse of a partitioned matrix is given by:

<An A, ) _ (A;f(l +ApFALAL)  —ALALE, ) (2.18)
Ay Ay —F,A A £

with F, = (A, — A, A]}A},)™". The upper left block may also be written: F, = (A} —
ApAs AT
We have here:

o[} JNT +jTXFXTj/(NT)* —j"XFT/NT
—FXTj/NT F

with F = (XT(I — J)X)L. Jz returns a vector of length NT for which all the elements are the
vector mean z. One can easily check that this matrix is idempotent. We then have:

f=X"A-DX)"XTA-T)y (2.19)

which is a formula similar to (2.16), but with variables pre-multiplied by I — ], this transfor-
mation removing the overall mean of every variable. For the intercept &, we find the same
expression as (2.14). In order to analyze the characteristics of the oLs estimator, we substitute
in(2.19) yby aj + Xp + €:
f=p+XTA-DX'XTA-]e

The estimator is then unbiased (E(f) = #) if EXT(I — J)e) = 0, i.e., if the theoretical covari-
ances between the covariates and the errors are all 0. This result is directly linked with expres-
sion (2.13), which indicates that the oLs estimator is computed so that empirical covariances

between the residuals and the covariates are all 0. The estimator is consistent if: plim b =p.
This expression is:

" 1 - -1 1 -
lim = § + plim( —=X"(1= )X ) plim—=X"(1 -
plim f = f + plim{ - X" (1 - /) plim—- X" (I - J)e
The first term is the population covariance matrix of the covariates and the second one the
population covariance vector of the covariates and the errors. The estimator is therefore con-

sistent if the covariance matrix of the covariates exists, is not 0, and if the covariances between
the covariates and the errors are all 0. The variance of the OLs estimator is given by:

V(iors) = E((ors = N Fors = 1)) = (22 Z2TQZ(Z" Z)™ (2.20)

Note that for the error component model, the covariance matrix of the errors Q doesn’t
reduce to a scalar times the identity matrix because of the correlation induced by the individ-
ual effects. Therefore, the variance of the oLs estimator doesn’t reduce to V(J,,5) = 62(Z'2)7},
and using this expression in tests will lead to biased inference.

In conclusion, the OLS estimator, even if it is unbiased and consistent, has two limitations:

o the first one is that the usual estimator of the variance is not correct and should be replaced
by a more complex expression,

e the second is that, in this context, OLS is not the best linear unbiased estimator, which means
that there exist other linear unbiased estimators that are more efficient.

2.2.2 The between Estimator

The between estimator is the OLs estimator applied to the model pre-multiplied by B, i.e., the
model in individual means.

By =BZy + Be = aj + BXp + Be
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Note that the items of the model that don’t exhibit intra-individual variations are unaffected
by this transformation. This is the case of the column of 1 associated to the intercept, of
the matrix (Iy ® j;) associated to the individual effects and also of some covariates with no
intra-individual as, for exemple, the gender in a sample of individuals. Note also that the N X T
observations of this model are in fact N distinct observations of individual means repeated T
times. Using as in the case of the OLS estimator, the formula of the inverse of a partitioned
matrix, the between estimator is:

b= XTB=DX'XTB~])y = (XTBX)"'X By (2.21)
B = B —J is a matrix that transforms a variable in its individual means in deviation from the
overall mean. The variance of f is obtained by replacing y by aj + X + €:
b, — B =X"BX)"'X"Be
V(f,) = (X"BX)'X"BQBX(X"BX)™!
The expression of Q given by (2.12) implies that BQ = ¢2(B — J). Consequently, the expression
of the variance of the between estimator is simply:

V(By) = o7 (XTBX)™ (2.22)

For the full vector of the coefficients (including the intercept «), the between estimator and
its variance are:

7, = (Z"BZ)'Z By (2.23)
V(@,) = 6X(Z"Bz)™! (2.24)
To estimate 62, we use the deviance of the between model: g5 = é] Bé,. Using (2.23) and (2.9):
é,=(1-Z(Z"BZ)"'Z"B)e

Bé, = (B—BZ(Z'BZ)'Z"B)e = M,¢
The M, matrix is idempotent, and its trace is, using the property that the trace is invariant
under cyclical permutations: tr(M,) = tr(B) — tr(I,;) = N — K — 1. We then have g, = ¢"M, ¢
and E(g,) = E(tr(e"M,e¢)) = E(tr(M,ee")) = tr(M,Q)) = ¢2tr(M,). The unbiased estimator of
62 is then 62 = g,/(N — K — 1). The one returned by an oLs program is: g,/(NT — K — 1)
and the covariance matrix of the coefficients should then be multiplied by (N7 — K — 1)/

(N—K—1).

2.2.3 The within Estimator

The within estimator is obtained by applying the oLs estimator to the model pre-multiplied by
the W matrix.

Wy =W(aj+Xp+e)= WX+ Wv

The within transformation removes the vector of 1 associated to the intercept and the
matrix associated to the vector of individual effects. It also removes covariates that don’t
exhibit intra-individual variation. Applying oLs to the transformed model leads to the
within estimator:

by = XTWX)IXTWy (2.25)
The variance of f, is:

V() = XTWX) I XTWQWX(XTwX)™!
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WQ = W(62W + ¢2B) = 6,W. The within transformation therefore induces a correlation
among the errors of the model. The variance of the within estimator reduces to:

V() = o2(XTWX)™! (2.26)

we then have, in spite of this correlation, the standard expression of the variance. In order to esti-
mate 62, one uses the deviance of the within estimator: g, = é], Wé,,. Using (2.25) and (2.10):

é, = 1= XXTWX)'X"W)e
Weé, = (W — WXXTWX) ' XTW)e = Me

The matrix M,, is idempotent and its trace is tr(M,,) = tr(W) —tr(Iy) = NT — N — K.
We then have E(g,,) = E(tr(e"Mye)) = E(tr(Mee")) = tr(M,,Q)) = 62tr(M,,). The unbiased
estimator of ¢2 is then 62 = §,,/(NT — N — K), and the one returned by an oLs program is:
4y /(NT — K —1). The covariance matrix of the coefficients should then be multiplied by:
(NT-K-1)/(NT —N —K).

The within model is also called the “fixed-effects model” or the least-squares dummy variable
model, because it can be obtained as a linear model in which the individual effects are estimated
and then taken as fixed parameters. This model can be written:

y=Xp+(UyQjrn+v

where 7 is now a vector of parameters to be estimated. There are therefore N + K parameters
to estimate in this model.! The estimation of this model is computationally feasible if N is not
too large. In a micro panel of large size, the estimation becomes problematic.

The equivalence between both models may be established using the Frisch-Waugh theorem
or using the formula of the inverse of a partitioned matrix. The Frisch-Waugh theorem states
that it is equivalent to regress y on a set of covariates X;, X, or to regress the residuals of
y from a regression on X, on the residuals of X; on a regression on X,. The application of
the Frisch-Waugh theorem in this context consists in regressing each variable with respect
to X, = Iy ® j; and getting the residuals. Here, for each variable, the residual is z,, — #,. The
first-order condition of the sum of squared residuals minimization is X; € = 0. X, being a matrix

which selects the individuals, we finally get for every individual, denoting z, = Lo,

T
T T
z(znt - ﬁn) = Zznt - Tﬁn =0
t=1 t=1

Consequently, we have #, = z, and the residuals are the deviations of the variable from its
individual means. Therefore, the Frisch-Waugh theorem implies that the fixed effect model can
be estimated by applying the oLs estimator to the model transformed in deviations from the
individual means, i.e., by regressing Wy on WX.

With the within coefficients in hand, specific intercepts for every individual in the sample
a + 1, can then be computed:

N - -T A
@y =Yy — xn,ﬁ
where z, is the vector of individual means of z.
If one wants to define individual effects with 0 mean in the sample, a general intercept can be

computed: & =y — %Pz being the overall mean of z. We then have for every individual in the
sample fi, = &, — & = (¥, —)) — &, —X)'f

1 The N individual effects and the intercept a can’t both be identified. The choice made here consists in setting a to 0.
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Example 2.1 within estimator — TobinQ data set
To illustrate the estimation of the estimators seen in this chapter, we use the TobinQ dataset
of the pder package. These data concern 188 American firms for 35 years (from 1951 to 1985).

data ("TobinQ", package = "pder")

Schaller (1990) wishes to test Tobin (1969)’s theory of investment. In this model, the main
variable that explains investment is the ratio between the value of the firm and the replacement
cost of its physical capital, this ratio being called “Tobin Q” If the financial market is perfect,
the value of the firm equals the actual value of its future profits. If the Tobin Q is greater than 1,
this means that the profitability of investment is greater than its cost and so that the investment
is valuable. The response is therefore the rate of investment (investment divided by the capital
stock) and the covariate is Tobin Q.

The plm package provides the p1m function to estimate linear models on panel data. Its main
arguments are:

e formula, the symbolic description of the model,

e data,thedata. frame, which canbeeitheranordinarydata.frameorapdata.frame;
in the first case, the index may be added to indicate the individual and time index,

e model, the estimator one wants to compute: ' within’, 'between’, 'pooling’ (which
is the oLs estimator) and ' random’ (which is the GLs estimator that will be presented in
the next section).

We first create a pdata . frame using the pdata . frame function. This is done indicating
in the index:

e a character vector of length two indicating the individual and time index,

e a character vector of length one indicating the individual index (in this case, it is assumed
that there is no time index in the data),

e an integer indicating the number of periods (only for a balanced panel with observations first
ordered by individuals and then by period),

e NULL, the default: in this case, it is assumed that the first two columns of the data. frame
contain the individual and the time index.

These different possibilities are illustrated below, the first two columns of TobinQ containing
the individual and the time index.

pTobinQ <- pdata.frame (TobinQ)
188)
pTobinQb <- pdata.frame (TobinQ, index = c('cusip'))

pTobinQa <- pdata.frame (TobinQ, index

pTobinQc <- pdata.frame (TobinQ, index = c('cusip', 'year'))

The pdim function can be used to inspect the individual and time dimensions of the
data. It has a method for pdata.frame objects (without any further argument) and for
data.frame. In the latter case, the index argument can be set; if not, it is once more
assumed that the first two columns of the data . frame contain the individual and the time
index.

pdim (pTobinQ)
Balanced Panel: n = 188, T = 35, N = 6580
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pdim(TobinQ, index = 'cusip')
pdim (TobinQ)

A pdata. frame has an index attribute, which is a data . frame that contains the index.
It can be extracted using the index function:

head (index (pTobinQ) )
cusip year
2824 1951
2824 1952
2824 1953
2824 1954
2824 1955
2824 1956

< o0 U W N

We then estimate the three models we have described:

Qeq <- ikn " gn

Q.pooling <- plm(Qeq, pTobinQ, model = "pooling")
Q.within <- update (Q.pooling, model = "within")
Q.between <- update (Q.pooling, model = "between")

Either simple or extended printing of the results is obtained as usual with R applying the
print.plm or summary.plm methods to the object containing the fitted model. For
example, for the within estimator, we get:

Q.within
Model Formula: ikn ~ gn

Coefficients:
an
0.00379
summary (Q.within)
Oneway (individual) effect Within Model

Call:
plm(formula = Qeq, data = pTobinQ, model = "within")

Balanced Panel: n = 188, T = 35, N = 6580

Residuals:
Min. 1st Qu. Median 3rd Qu. Max .
-0.21631 -0.04525 -0.00849 0.03365 0.61844

Coefficients:
Estimate Std. Error t-value Pr(>|t])
gn 0.003792 0.000173 22 22@=1F “EE
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Signif. codes:
0 '*¥*%! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 36.7

Residual Sum of Squares: 34.1

R-Squared: 0.0702

Adj. R-Squared: 0.0428

F-statistic: 482.412 on 1 and 6391 DF, p-value: <2e-16

For the within estimator, the fixef .plm method computes the individual effects. Three
flavors of fixed effects may be obtained depending on the value of the type argument:

e ’'level’, the default value, returns the individual intercepts, i.e., & + 7},

e 'dfirst’ returns the individual effects in deviations from the first individual; & is in this
case the intercept for the first individual,

e ’'dmean’ returns the individual effects in deviations from their mean; in this case, @ is the
average of the individual intercepts.

head (fixef (Q.within))
2824 6284 9158 13716 17372 19411
0.1453 0.1281 0.2581 0.1100 0.1267 0.1695

head (fixef (Q.within, type = "dfirst"))

6284 9158 13716 17372 19411 19519
-0.01723 0.11279 -0.03528 -0.01856 0.02420 -0.01038
head (fixef (Q.within, type = "dmean"))

2824 6284 9158 13716 17372 19411

-0.014213 -0.031448 0.098581 -0.049492 -0.032778 0.009986

We then illustrate the equivalence of the within estimator and the least-squares dummy vari-
ables estimator. For this later estimator, we use the 1m function with the cusip variable used
as a covariate, as it is the individual index. The default behavior of 1m is to remove the first level
of the factor. The fixed effects are then equal to those obtained using the £ixef . p1lm function
with the argument type equal to *dfirst’.

head(coef (Im(ikn ~ gn + factor(cusip), pTobinQ)))

(Intercept) gn factor (cusip) 6284
0.145290 0.003792 -0.017235

factor (cusip) 9158 factor (cusip)13716 factor (cusip)l17372
0.112794 -0.035279 -0.018564

2.3 The Generalized Least Squares Estimator

The within estimator is a regression on data that have been transformed so that the individual
effects vanish (they are, so to say, “transformed out”), while the least squares dummy variables
considers the individual effects as parameters to be estimated (they are “estimated out”); both
give identical estimates of the slopes. On the contrary, the GLs estimator considers the individ-
ual effects as random draws from a specific distribution and seeks to estimate the parameters
of this distribution in order to obtain efficient estimators of the slopes.
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2.3.1 Presentation of the GLs Estimator

When the errors are not correlated with the covariates but are characterized by a non-scalar
covariance matrix Q, the efficient estimator is the generalized least squares estimator:

fas = (Z'Q'2)HZTQy) (2.27)

In order to compute the variance of 7, we substitute as previously y by Zy + €. We then
have:
Tas—r =Z'Q1'2)1ZTQ e
Using a reasoning similar to (2.20), we obtain the variance of the estimator:
Viias) = (XTQTX0)TXTQ T E(ee QT X(XTQTX)™
To-1y-1 (2.28)
= (XTQ1X)"

The hypothesis we have made concerning the errors implies that the covariance matrix of
the errors is given by (2.12): Q = 6} W + (T'o; + ¢7)B, which is a linear combination of two
idempotent and orthogonal matrices. Q depends only on two parameters: the variances of the
two components of the error terms (¢2 and 63). We have shown, in subsection 2.1.2, that these
two matrices are idempotent (BX B =B and W x W = W) and orthogonal (B X W = 0). The
expression of powers of Q is then particularly simple:

Q' =6"B+c2'W (2.29)
which can be easily checked, for example for v = 2. This result can also be extended to negative
integers and to rationals; we then have, for v = —1:

ol=1p + LW

o’ o

1 12

and the GLs estimator of the random error model and its variance are then:

-1
. 1 1 1 1
1 1 -
V(iars) = <§ZT WZ + —ZZTBZ> (2.31)

For the vector of slopes, we obtain:

-1
A 1 1 75 1 1 77
Pore = <;XT WX + ;XTBX> (;XT Wy + ;XTBy> (2.32)
-1
V(fo) = <$XT WX + %XTBX> (233)

This estimator is called the random effects model, as opposed to the fixed effects model. This
results from the fact that, as observed, in this case, the individual effects are considered as
random deviates, the parameters of whose distribution we seek to estimate.

The dimension of the matrix Q is given by the size of the sample. If the sample is large, it is
therefore not practical to compute the estimator according to the matrix formula (2.27). A more
efficient way is to apply OLs on suitably pre-transformed data. To this end, one has to compute
the C matrix such that: CTC = Q! and then use this matrix to transform all the variables of
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the model. Denoting # = Cy and Z = CZ the transformed variables, the estimation by oLs on
transformed variables gives:

7 =" 2Ty =Z"C'C2) ' ZTC"Cy = (ZTQ )1 2Ty
which is the GLs given by (2.30). The expression of the matrix C is obtained using equation (2.29)
for v = -0.5:
1

c=g=1lpy Ly

1 GV

This transformation consists in a linear combination of the between and within trans-
formations with weights depending on the variances of the two error components. In fact,
pre-multiplying the variables by ¢ Q%5 (which is equivalent to premultiplication by Q%% and
simplifies notation), the weights become respectively Z— and 1. The transformed variable is

therefore:

with, denoting ¢ = >

2
0=1-¢p=1- %zl—;
To, + oy o2
1+T=

As will be explained in detail below, the importance of the individual effects in the composite
errors, measured by their share of the total variance, determines how close the estimator will be
to either the within or the pooled oLs, which are obtained as special cases, respectively, when
the variance of the individual effects 5, dominates (¢ — 1) or vanishes (6 — 0).

2.3.2 Estimation of the Variances of the Components of the Error

In order to make operational the estimator, residuals from consistent estimators are used to
estimate the unknown parameters o, and o, (and hence ¢,). The estimator obtained is then
called the feasible generalized least squares estimator.

Consider the errors of the model ¢,,,, their individual mean €, and their deviations from these
individual means €,, — ¢, . By hypothesis, we have: V(¢,,,) = 62 + o,. For the individual means,
we get:

T
2 v

t=1

~z|~
.-

T
t=1
_ 1
V(e,) =0, + TG‘% =c2/T
The variance of the deviation from the individual means is easily obtained by isolating terms
ine,:

T
1 1

ent_ €at — 7 €t = (1_ _>€nt__ €y
T2 T

the sum then contains T — 1 terms. The variance is:

1 2 2 1 T 1 2

—) o, + ﬁ( - 1o,

Vie, =& =(1- %
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which finally leads to:
V(ent - én.) = r- 16\%

T

If € were known, natural estimators of these two variances 62 et 62 would be:

Z]::l 53. _ TZLV:l ZtT=1 53. _ T€TB€ €"Be
NT

62=T - (2.34)
N NT N
52 = T 221:1 EtT:I (€, — énA)Z _ 22[:1 ZtT:I (€ — €,)
YT T NT N(T - 1) (2.35)
_ €' We
T N(T-1)

i.e., estimators based on the norm of the errors transformed using the between and
within matrices. Of course, the errors are unknown, but consistent estimation of the
variances may be obtained by substituting the errors by residuals obtained from a consistent
estimation of the model. Among the numerous estimators available, the one proposed by
Wallace and Hussain (1969) is particularly simple as it consists on using the oLs residuals to
write the sample counterpart of equations (2.34) and (2.35)

AT N
AD €OLSB€0LS
6, = N
AT N
6’2 _ €oLs W€OLS
Y N(T-1)
The estimated variance of the individual effects can then be obtained:
A2 _ A2
A2 0, — 0,
[0} =
g T

The estimator of Amemiya (1971) is based on the estimation of the within model. We first
compute the overall intercept

d=y—phx
and then compute the residuals é,:
éw =)= &] - ABAWX

These residuals are then used to compute the two quadratic form.

6= ——
N

A2 é;l)—vWéw

T NT-1)

Note that the later is just the deviance of the within estimation divided by N X (T — 1). Note
also that the variance of the individual effect is overestimated if the model contains some
time-invariant variables which disappear with the within transformation.

In this case, Hausman and Taylor (1981) proposed the following adjustment: é, are regressed
on all the time-invariant variables in the model and the residuals of this regression é,, are
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substituted with é, in the computation of the quadratic forms. This will reduce the estimate
of 67 and leave unchanged the estimate of 67, so that the estimate of &, will also decrease.

For the Swamy and Arora (1972) estimator, the within and the between models are estimated.
The residuals of the between model are used for the first quadratic form and those of the

within model for the second one.

AT DA
AD €BB€B
6= ————
N-K-1
AT A
o e WE,
6

VON(T-1-K

Note that Swamy and Arora (1972) use the degrees of freedom of both regressions for the
estimation of the variances, i.e., K is deduced from the number of observations. Note also that
Bé, and W§é,, are the residuals of the between and within regressions computed on the trans-
formed data, so that the numerators of the two quadratic forms are the deviances of the two
regressions.

For all these estimators, o, is not directly estimated but obtained by subtracting 67 from &7.
In small samples, it can therefore be negative, and in this case it is set to 0.

On the contrary, for the Nerlove (1971) estimator, o, is estimated by computing the empirical
variance of the fixed effects of the within model, as the estimate of ¢, is obtained by dividing
the quadratic form of the within residuals by the number of observations.

ﬁn = J—}n. - ﬁw‘?_cn

N -
Y G, — /(N - 1)

A2
.=

n=1

AT A
52 = é We,
V" NxT

Example 2.2 random effects model — TobinQ data set
The random effects model is obtained by setting model to ' random’. Specific arguments
indicate how the variances are estimated.

e random.methodisoneof 'walhus’ for Wallace and Hussain (1969), ' swar’ for Swamy
and Arora (1972), amemiya for Amemiya (1971), ' ht * for Hausman and Taylor (1981) and
'nerlove’ for Nerlove (1971).

e random.models is an alternative to the random.methods argument : it is a character
vector of length 1 or 2 that indicates which preliminary estimations are performed in
order to estimate the variances; for example, c ("within", "between") use the
within residuals to estimate o, and the between residuals to estimate o,, ¢ ("pooling")
or ("pooling", "pooling") use the pooling residuals for the estimation of both
variances,

e random.dfcor is a numeric vector of length 2; it indicates what is the denominator of the
two quadratic forms. If :

— 0 the number of observations is used (NT, N),
— 1, the numerators of the theoretical formulas are used (N(7 — 1), N)
— 2, the number of estimated parameters are deduced (N(7 — 1) - K,N — K —1).
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The following two commands estimate the same Swamy and Arora (1972) model :

Q.swar <- plm(Qeq, pTobinQ, model = "random", random.method = "swar")
Q.swar2 <- plm(Qeqg, pTobinQ, model = "random",
random.models = c("within", "between"),

random.dfcor = c(2, 2))
summary (Q.swar)
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)

Call:
plm(formula = Qeq, data = pTobinQ, model = "random", random.method = "swar")

Balanced Panel: n = 188, T = 35, N = 6580

Effects:

var std.dev share
idiosyncratic 0.00533 0.07303 0.73
individual 0.00202 0.04493 0.27
theta: 0.735

Residuals:
Min. 1st Qu. Median 3rd Qu. Max .
-0.2330 -0.0475 -0.0103 0.0336 0.6211

Coefficients:

Estimate Std. Error t-value Pr(>|t])
(Intercept) 0.159327 0.003425 46.5 <2e-16 ***
an 0.003862 0.000168 22.9 <2@=1E ==

Signif. codes:
0 'x**! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1

Total Sum of Squares: 37.9

Residual Sum of Squares: 35.1

R-Squared: 0.0742

Adj. R-Squared: 0.074

F-statistic: 526.854 on 1 and 6578 DF, p-value: <2e-16

The results indicate that the part in the variance of the individual effect is about one fourth.
The parameter called 6 is the part of the individual mean that is removed from each variable for

the GLs estimator. It can be written as 1 — L and is here equal to 73%. This high value
14+To2 /02
a/o

is due to the large time dimension of this panel (7' = 35). This implies that the GLS estimator is
closer to the within estimator (0 = 1) than to the oLs estimator (6 = 0).

The part of the result that deals with the estimation of the two components of the error may
also be obtained by applying the ercomp function either to the GLs fitted model or using a
formula — data interface:

ercomp (Qeq, pTobinQ)
ercomp (Q.swar)
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We then compare the results obtained with the 4 estimation methods we’ve presented:

Q.walhus <- update(Q.swar, random.method = "swar")
Q.amemiya <- update(Q.swar, random.method = "amemiya")
Q.nerlove <- update(Q.swar, random.method = "nerlove")
Q.models <- list(swar = Q.swar, walhus = Q.walhus,

amemiya = Q.amemiya, nerlove = Q.nerlove)
sapply (Q.models, function(x) ercomp (x)Stheta)
swar.id walhus.id amemiya.id nerlove.id
0.7351 0.7351 0.7361 0.7489
sapply (Q.models, coef)
swar walhus amemiya nerlove
(Intercept) 0.159327 0.159327 0.159328 0.159344
an 0.003862 0.003862 0.003862 0.003855

The first sapply command extracts from the ercomp object the theta element, indicat-
ing the proportion of the individual mean that is removed from the variables. These are very
close to each other, and consequently, the estimated coefficients for the 4 models are almost
identical.

2.4 Comparison of the Estimators

We have four different estimators of the same model : the between and the within estimators use
only one source of the variance of the sample, while the oLs and the GLs estimators use both.
Note first that, if the hypothesis that the errors and the covariates are uncorrelated is true, all
these models are unbiased and consistent, which means that they should give similar results, at
least in large samples.
We'll first analyze the relations between these estimators; we’ll then compare their variances;
and finally we’ll analyze in which circumstances we should use fixed or random effects.

2.4.1 Relations between the Estimators

We can expect the OLs and GLS estimators to give intermediate results between the within and
the between estimators as they use both sources of variance. From equation (2.32), the
GLS estimator can be written :

Bars = XWX + ¢*X"BX) (X" Wy + $*X " By)
Using (2.21) and (2.25), f,, can then be expressed as a weighted average of the within and
the between estimators.
Bars = XTWX + ¢*X"BX)(XTWXB,, + ¢*X BXB,)
A similar result applies to the oLs estimator which is the GLS estimator for ¢ = 1.
Pors = XTWX + XTBX) \(XTWXS,, + X" BXf,)
For the oLs estimator, the weights are very intuitive because they are just the shares of the

intra- and the inter-individual variances of the covariates. For the GLs estimator, the weights
depend not only on the shares of the variance of the covariates but also on the variance of the
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errors, which determines the ¢ parameter. The GLS estimator will always give less weight to the
between variation, as ¢ is lower than 1. It leads to two special cases :

® ¢ — 0; this means that ¢, is “small” compared to o, . In this case, the GLs estimator converges
to the within estimator,

® ¢ — 1;this means that o, is “large” compared to o, . In this case, the GLs estimator converges
to the OLs estimator.

The relation between the estimators can also be illustrated by the fact that the oLs and the
GLS can be obtained by stacking the within and between transformations of the model:?

()= () (%)
= Y+ (2.36)
By BZ Be

The matrix of covariance of the errors of this stacked model is :

a2W 0
0 - (2.37)
O-I

Applying oLs to (2.36), we get;
(ZTWZ+Z"BZy N Z Wy + Z By) = (27 2)"'Z7y

which is the oLs estimator,
while applying GLs to (2.36) yields the GLS estimator of equation (2.30).

(Z"WZ + $*Z"BZ) "N Z" Wy + $*Z" By)

2.4.2 Comparison of the Variances
From equation (2.33), the variance of the GLS estimator can be written :
V(fors) = 02(XTWX + $2XBX)™! (2.38)

The variance of the within estimator being : 62(XT WX)™, V(f,,) — V(f,,,) is a positive defi-
nite matrix, and the GLS estimator is therefore more efficient than the within estimator. Simi-
larly, equation (2.22) shows that the variance of the between may be written 62(¢?X " BX)~! and
therefore V(f,) — V(f,,,) is also a positive definite matrix.

2.4.3 Fixed vs Random Effects

The individual effects are not fixed or random by nature. Within the same framework (the indi-
vidual effects model), they are treated as either a vector of constant parameters or the realization
of random deviates for the purpose of estimation, depending on their probabilistic structure
and, in particular, on their correlation with the explanatory variables.

In a micro-panel, the random effects approach is appealing, as we work on a sample with
numerous individuals who are randomly drawn from a very large population. There is no inter-
est in estimating the individual effects, and the random effect approach is more appropriate,
given the way the sample was obtained.

2 See Baltagi (2013).
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On the contrary, in a macro-panel, the sample is fixed or quasi-fixed and almost exhaus-
tive (think of the countries of the world or the large enterprises of a country). In this case, the
estimation of the individual effects may be an interesting result, and the fixed effects approach
seems relevant.

Anyway, the main argument that leads to choose one of the two approaches is the possibility
of correlation between some covariates and the individual effects. If we maintain the hypothesis
that the idiosyncratic error is uncorrelated with the covariates (E(X"v) = 0), two situations can
occur :

e E(X"n) = 0: the individual effects are not correlated; in this case, both models are consistent,
but the random effects estimator is more efficient that the fixed effects model,

e E(XTn) # 0: the individual effects are correlated; in this case, only the fixed effects method
gives consistent estimates as, with the within transformation, the individual effects vanish.

Example 2.3 comparison of the estimators — TobinQ data set

The following command extracts the coefficient of gn and its standard deviation for the four
estimators (we consider only the Swamy and Arora (1972) method for the GLS estimator, as all
the random effects models give very similar results).

sapply (list (pooling = Q.pooling, within = Q.within,
between = Q.between, swar = Q.swar),
function(x) coef (summary(x)) ["gn", c("Estimate", "Std. Error")])
pooling within between swar
Estimate 0.0043920 0.0037919 0.0051847 0.0038622
Std. Error 0.0001529 0.0001726 0.0007491 0.0001683

The oLs and GLs estimators are in the interval defined by the within and between estimators,
and the GLS estimator is closer to the within estimator than oOLs.

Looking at the standard deviations, OLS seems to be the most efficient model, but remember
that the standard formula for computing the variance of the oLs estimator is biased if indi-
vidual effects are present. The standard deviation for the GLS estimator (1.683E-04) is slightly
lower than for the within estimator (1.726E-04) and much lower than for the between estimator
(7.491E-04).

The formal relation between the different estimators is then illustrated by computing the
shares of the variances for the covariate gn. For this purpose, we'll extract this series from the
padata.frame, which is not, as for data . frame, a numeric vector, but a pseries object,
which inherits from the pdata . frame it has been extracted from the index attribute. The
summary . psries method applied to this object indicate the variance structure of the series:

summary (pTobinQS$gn)

total sum of squares: 314300
id time

0.43081 0.09393

We can use the Within and the Between function with this series in order to compute its
within and the between transformations, and then the weights of the within and the between
estimators in the OLS estimator.
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SxxW <- sum(Within (pTobinQs$gn) =~ 2)
SxxB <- sum( (Between (pTobinQ$gn) - mean (pTobinQ$qgn)) =~ 2)
SxxTot <- sum( (pTobinQ$gn - mean (pTobinQS$gn)) ~ 2)
pondW <- SxxW / SxxTot
pondW
[1] 0.5692
pondW * coef (Q.within) [["gn"]1] +
(1 - pondW) * coef (Q.between) [["gn"]]

[1] 0.004392

The weight of the within model is 57%. The oLs estimator (0.0044) is then about half
way between the between estimator (0.0052) and the within estimator (0.0038). To get the
GLS estimator, we first estimate the parameter ¢ using the residuals of the within and the
between estimators:

== 35

N <- 188

smxt2 <- deviance (Q.between) * T / (N - 2)
sidios2 <- deviance(Q.within) / (N * (T - 1) - 1)
phi <- sqgrt(sidios2 / smxt2)

The weights for the within and the between estimators and the GLS estimator are then com-
puted:

pondW <- SxxW / (SxxW + phi”2 * SxxB)

pondw
[1] 0.9496
pondW * coef (Q.within) [["gn"]] +
(1 - pondW) * coef (Q.between) [["gn"]]

[1] 0.003862

The weight of the within estimator (0.95) is much larger for the GLS estimator than for the
oLs estimator. This is mainly due to the fact that T is large (35 years). The GLs estimator (0.039)
is therefore very close to the within estimator (0.0038).

2.44 Some Simple Linear Model Examples

Even if they are of limited practical interest, given that relevant econometric models usually
contain several covariates, simple linear models have a great pedagogical value, as they enable
the graphical representation of the sample and estimators using regression lines. They are for
this reason very useful to illustrate the relationship between the estimators. We’ll use succes-
sively four data sets.

Example 2.4 simple linear model — ForeignTrade data set
The first one, called ForeignTrade, has been used by Kinal and Lahiri (1993) to construct
a full model of external exchange for developing countries, which will be presented in details
in chapter 6. For now, we’ll simply analyze the link between the imports (imports) and the
national product (gnp). Both variables are measured in log and per capita.

The following commands create a pdata.frame, extract the covariate and apply to it
the summary.pdata.frame method, which computes the decomposition of its variance.
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We then use the ercomp function in order to compute the variances of the error components.
Finally, to estimate all the models, we first create a vector containing the names of the
models, and we then use the sapply function in order to extract the coefficient from these
fitted models.

data ("ForeignTrade", package = "pder")
FT <- pdata.frame (ForeignTrade)
summary (FTSgnp)
total sum of squares: 4111

id time
0.982480 0.007638
ercomp (imports ~ gnp, FT)

var std.dev share

idiosyncratic 0.0863 0.2938 0.07

individual 1.0779 1.0382 0.93
theta: 0.942
models <- c("within", "random", "pooling", "between")

sapply (models, function(x) coef (plm(imports ~ gnp, FT, model = x)) ["gnp"])
within.gnp random.gnp pooling.gnp between.gnp
0.90236 0.76816 0.06366 0.04871

For this model, the variance of the covariate and of the error is almost only due to the
inter-individual variation (respectively 98 and 93%). In this case, the GLS estimator consists
in removing 94% of the individual mean and is therefore almost identical to the within
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Figure 2.1 Imports in terms of the national product for the ForeignTrade data.
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model. Concerning the oLs estimator, which takes into account almost all the inter-individual
variation, it is very close to the between estimator. Finally, the first two models give results that
are very different from the last two models and return a much higher elasticity. The Figure 2.1
indicates that there is a strong negative correlation between the individual effects and the
covariate. In this case, the estimators that do not control for the individual effects are biased
downward. This is the case for the oLs and the between estimators, and to a much lesser extent
for the GLs estimator, which uses only a very small part of the inter-individual variation.

Example 2.5 simple linear model — TurkishBanks data set

The TurkishBanks data were used by El-Gamal and Inanoglu (2005) to analyze production
costs of banks. The only covariate is the production, and both variables are in logs. Computing
as before, we get:

data ("TurkishBanks", package = "pder")
TurkishBanks <- na.omit (TurkishBanks)
TB <- pdata.frame (TurkishBanks)
summary (log (TBSoutput) )
total sum of squares: 2692

id time
0.84730 0.01255

ercomp (log (cost)

log (output), TB)
var std.dev share
idiosyncratic 0.329 0.574 0.6

individual 0.216 0.464 0.4
theta:
Min. 1st Qu. Median Mean 3rd Qu. Max .

0.619 0.651 0.651 0.647 0.651 0.651
sapply (models, function (x)

coef (plm(log(cost) " log(output), TB, model = x)) ["log(output)"])
within.log(output) random.log(output) pooling.log(output)
0.5064 0.6471 0.8007
between.log (output)
0.8531

The variation of the covariate is mainly inter-individual (85%), but for the error, the share of
the individual effect and that of the idiosyncratic effect are similar (40% and 60%). The oLs and
the between estimators are therefore very close. The GLs estimator is about halfway between
the oLs and the within estimators because the transformation removes about 65% of the indi-
vidual mean. The Figure 2.2 indicates that the individual effects are positively correlated with
the covariate, and consequently, the between, the oLs and in a lesser extent the GLs estimators
are upward-biased.

Example 2.6 simple linear model — TexasElectr data set

The TexasElectr data are used by Kumbhakar (1996) and Horrace and Schmidt (1996) and
concern the production cost of electric firms in Texas. We first define the cost as being the
sum of labor expense explab, capital expense expcap, and fuel expense exfuel. The same
computations are then done as above.



The Error Component Model | 45

20 - 14
18
—a— 27
18 -
28
40
B
8 16 - 41
g
o 42
14 -
models
/between
12 - '," ols
Co
10 15 20 ,7 random
log(output) ]
Vi s
,~within

Figure 2.2 Cost in terms of output for the TurkishBanks data.

data ("TexasElectr", package = "pder")
TexasElectr$cost <- with(TexasElectr, explab + expfuel + expcap)
TE <- pdata.frame (TexasElectr)
summary (log (TESoutput) )
total sum of squares: 113.5
id time
0.8234 0.1685

ercomp (log (cost)

log(output), TE)
var std.dev share
idiosyncratic 0.10681 0.32681 0.99
individual 0.00109 0.03299 0.01
theta: 0.0808

sapply (models, function (x)

coef (plm(log(cost) ~ log(output), TE, model = x)) ["log(output)"])
within.log(output) random.log(output) pooling.log (output)
2.6325 1.2260 1.1804
between.log (output)
0.8689

The variation of the covariate is mainly inter-individual (82%); yet this is not the case for the
error, for which the idiosyncratic share is very important: therefore, only a very small part of
the individual mean is removed while applying the GLs estimator. The GLs and OLS estimators
are therefore almost equal. The within estimator is much higher because the individual effects
and the covariate are negatively correlated (see Figure 2.3).
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Figure 2.3 Cost and output for the TexasElectr data set.

Example 2.7 simple linear model —- DemocracyIncome25 data set

The last dataset used is DemocracyIncome25 used by Acemoglu, Johnson, Robinson, and
Yared (2008). This dataset deals with 25 countries, observed over 7 25-year periods between
1850 and 2000. The authors analyze the dynamic causal relationship between wealth and
democracy. Their analysis will be reproduced in detail in chapter 7. For now, we’ll simply analyze
the relationship between democracy (democracy) and wealth (income) lagged one period.

data ("DemocracyIncome25", package = "pder")
DI <- pdata.frame (DemocracyIncome25)
summary (lag (DIS$Sincome) )
total sum of squares: 135
id time
0.4298 0.4891
ercomp (democracy ~ lag(income), DI)
var std.dev share
idiosyncratic 0.0586 0.2422 0.79
individual 0.0155 0.1243 0.21
theta: 0.378
sapply (models, function (x)
coef (plm(democracy ~ lag(income), DI, model = x)) ["lag(income)"])
within.lag(income) random.lag(income) pooling.lag(income)
0.1870 0.2101 0.2309
between.lag (income)
0.2892
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Figure 2.4 Democracy and lagged income for the data Democracylncome25.

The share of the inter-individual variation for the covariate and for the error are rather weak
(43 and 21%). 41% of the individual mean is removed from the variables in order to compute
the GLs estimator. Finally, Figure 2.4 shows that there is no obvious correlation between
the individual effects and the covariate; consequently, the 4 estimators are rather close to
each other.

2.5 The Two-ways Error Components Model

The two-ways error component is obtained by adding a time-invariant effect y, to the model.

Ve = A+ PXy +1,+ 4, + v,

2.5.1 Error Components in the Two-ways Model
We make for the time effects the same hypotheses that we made for the individual effects:

e 4 has a zero mean and is homoscedastic, its variance is denoted by o7,
o the time effects are mutually uncorrelated, E(u,u,) = 0 V¢t # s,
o the time effects are uncorrelated with the individual effects and the idiosyncratic terms.

With these hypotheses, the covariance matrix of the errors becomes:

Q= UVZINT + U,?IN QJr+ oﬁ]N ® I
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As for the individual error component model, we write this covariance matrix as a linear
combination of idempotent and mutually orthogonal matrices. To this aim, we write:

-1
B, =y ®Jr/T, B, =]y ®ly/Nand] = —Jy;

B, X x computes, as before, the individual means %, , B, X x the time means X, and Jx the
overall mean . Finally, the within matrix now produces deviations from the individual and the
time means: x,,, — X, — X, + X:

W=I1-B,-B,+]
With these notations, we get:
Q=0.W +(To; +6,)B, + (No. + 6.)B, — 6]

It can be easily checked that these matrices are idempotent. On the contrary, they are not
all orthogonal, as B, X B, = J # 0. The product of these two matrices allows to compute the
time means of the individual means, which results in the overall mean. For this reason, we use
B, =B, -] and B, = B, —J, which return respectively the individual and the time means in
deviations from the overall mean. We finally obtain:

Q= afW + (TO',? + 63)1_3,1 + (N()'fl + 0'3)3/4 + (TG,? +N6/3 + 0'3)7

2.5.2 Fixed and Random Effects Models

As for the individual effects model, the two-ways fixed effects model can be obtained in two
different ways:

e by estimating by oLs the model that includes individual and time dummies,
e by estimating by oLs the model where all the variables have been transformed in deviations
from the individual and the time means: z,, —z, — Z, + Z.

For the GLs model the variables are pre-multiplied by Q%5 or more simply by:

o, - o, - o, -
W+ B, + B, + J
\/ol+Top \/(c? + No3) \/o2 + Top + No;.

Collecting terms, we obtain the following expression for the transformed data:

6, Q0% =

Z,=2,—-0,z, —0,z,+(0,+0,— 0,)z

with:
9}1 =1- \/GE-VI—T(Y;ZV :1_¢'7
O-V —
0, = 1_—/m_1_¢y
0, =1- —2—=1-¢,

7/02+Tc2+No?
v n I

Example 2.8 two-ways effect model — TobinQ data set
We'’ve previously stored the four random effect models in a list called Q . mode1s. The two-ways
effect model is obtained by setting the ef fect argument to ' twoways’.
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Q.models2 <- lapply(Q.models, function(x) update(x, effect = "twoways"))
sapply (Q.models2, function(x) sqgrt (ercomp (x)$sigma2))
swar walhus amemiya nerlove
idios 0.06970 0.06970 0.06969 0.06850
id 0.04508 0.04508 0.04573 0.04735
time 0.02093 0.02093 0.02170 0.02262
sapply (Q.models2, function (x) ercomp (x)Stheta)
swar walhus amemiya nerlove
id 0.7472 0.7472 0.7505 0.7624
time 0.764 0.764 0.772 0.7843
total 0.6863 0.6863 0.6933 0.7085

The first sapply command extracts the standard deviations of the three components of the
error. As for the individual effects model, the estimates of the variance components are very
similar. The standard deviation of individual effects is more than twice the one of time effects.
The second command extracts the theta parameters. About 75% of the individual and time
means are removed from the variables.

2.6 Estimation of a Wage Equation

Example 2.9 multiple linear model — UnionWage data set

The estimation of a wage function is an important subject in econometrics, especially in panel
data econometrics, the main covariate of interest being generally education. We use here the
UnionWage dataset used by Vella and Verbeek (1998), who investigated the impact of union
negotiations on wages and the potential endogeneity of this covariate. The data concern 545
men observed during 8 years, from 1980 to 1987.

data ("UnionWage", package = "pglm")
pdim (UnionWage)

Balanced Panel: n = 545, T = 8, N = 4360

The response, wage, is the log of the hourly wage. The covariates are: whether wages are
set during negotiations with unions union, the number of years of education school, the
number of years of experience exper and its square, the community com, which identifies
black black and Hispanic hisp workers, whether one lives in a rural area rural, the marital
status married, having a health problem health, the region region, and the activity sector
sector.

The within and oLs models are estimated, including or not occupation dummies.

UnionWage$exper2 <- with(UnionWage, exper ~ 2)

wages.withinl <- plm(wage ~ union + school + exper + exper2 +
com + rural + married + health +
region + sector, UnionWage)

wages.within2 <- plm(wage ~ union + school + exper + exper2 +
com + rural + married + health +
region + sector + occ, UnionWage)

wages.poolingl <- update (wages.withinl, model = "pooling")

wages.pooling2 <- update (wages.within2, model = "pooling")
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Table 2.1 Wage Equation.

Dependent variable:

log of hourly wage

pooling estimation within estimation
(1) (2) (3) (4)

union membership 0.176** 0.146*** 0.080*** 0.079***

(0.017) (0.017) (0.020) (0.019)
education years 0.078*** 0.090***

(0.005) (0.005)
experience years 0.070"** 0.076*** 0.111"** 0.112%**

(0.010) (0.010) (0.009) (0.008)
experience years squared —0.002*** —0.002"** —0.004** —0.004"**

(0.001) (0.001) (0.001) (0.001)
black —0.130"** —0.155""*

(0.023) (0.023)
hispanic —0.047** —0.059"**

(0.022) (0.022)
rural residence -0.116" —0.131"** 0.048* 0.050*

(0.019) (0.018) (0.029) (0.029)
married 0.102% 0.110*** 0.038** 0.040**

(0.015) (0.015) (0.018) (0.018)
health problems —0.035 —0.058 —-0.010 -0.017

(0.054) (0.054) (0.047) (0.047)
Intercept 0.273*** —0.039

(0.091) (0.076)
region dummies Yes Yes Yes Yes
sector dummies Yes Yes Yes Yes
occupation dummies Yes No Yes No
Observations 4,360 4,360 4,360 4,360
R? 0.278 0.264 0.192 0.190

Note: *p<0.1; *p<0.05; ***p<0.01

Estimation results are presented in Table 2.1, using the stargazer library (Hlavac, 2013). We
use several possibilities offered by the library to improve the appearance of the table:

e the omit argument is used to omit two sets of coefficients corresponding to the region
and sector factors; omit . labels indicates how the information about these covariates
will be included in the table,

o the F statistic and adjusted R? are removed from the output using omit .stat,

e customized names for the response and the covariates are provided with dep . var . labels
and covariate.labels

e column.labels and column. separate are used to indicate the method of estimation
used for the first two and the last two models.
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library ("stargazer")
stargazer (wages.pooling2, wages.poolingl, wages.within2, wages.withinl,

omit = c("region", "sector", "occ"),

omit.labels = c("region dummies", "sector dummies", "occupation
dummies") ,

column.labels = c("pooling estimation", "within estimation"),

column.separate = c(2, 2),

dep.var.labels = "log of hourly wage",

covariate.labels = c("union membership", "education years",
"experience years", "experience years squared",
"black", "hispanic", "rural residence",
"married", "health problems",
"Intercept")

omit.stat = c("adj.rsq", "f"),

title = "Wage equation",

label = "tab:wagesresult",

no.space = TRUE

Table 2.1 exactly matches the results presented in Vella and Verbeek (1998) in columns (2),
(1), (3), and (4).

Looking at the results, we see that the union premium is about 18% with the oLs model and
falls to 8% for the within model. This indicates that the individual effects are strongly positively
correlated with union membership. The return of education is about 8% more wage for one
more year of education. This is a consistent result only if the education level is uncorrelated
with the individual effects. If there is any correlation, the only consistent model is the within
model; unfortunately, the within transformation eliminates all the time-invariant covariates
(education, community, and rural residence).

This example illustrates the main concern about panel data econometrics, the correlation
between some covariates and the two components of the error term:

o if there is no correlation, use GLs, which gives consistent and efficient estimators and allows
estimating the coefficients for time-invariant covariates;

o ifthere is correlation only with the individual component of the error, use the within model; it
provides consistent estimates, but the effect of time-invariant covariates cannot be estimated;

o if there is correlation between any covariates and both components of the error term, none
of the models we have presented are consistent. Vella and Verbeek (1998) argued that the
endogeneity of union membership is not limited to the time-invariant part of the error. In
this case, all the models presented, including the within model, are inconsistent, and the
authors propose a more sophisticated estimation procedure in order to obtain a consistent
estimator.
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3.1 Unbalanced Panels

For unbalanced panels, the number of observations for each individual is now individual spe-
cific and denoted by T,. We'll denote by O = Zﬁ]:l T, the total number of observations. Com-
pared to the balanced panel case, three complications appear:

o firstly, the covariance matrix of the errors cannot be written any more as a linear combination
of idempotent and mutually orthogonal matrices (for the one-way error component model,
the within and the between matrices), the weights being the variances of the errors (o-,? and
6?2). Denoting by D, and D, two matrices of individual and time dummies, matrices of the
type S = DD, returning either the sum of the values for an individual or for a time series,
will explicitly appear, and these matrices are not idempotent;

o secondly, for the individual effects model, the within transformation still consists of remov-
ing the individual mean from the variable. On the contrary, for the two-ways effects, the
within transformation is not obtained by performing a difference with the individual and
time means, as in the balanced panel case, but requires more tedious matrix algebra;

e finally, to estimate the components of the variance, we will still compute quadratic forms of
the residuals of some consistent preliminary estimations, but there is no obvious choice of
denominators, as there was in the balanced case.

3.1.1 Individual Effects Model
The model to be estimated can be written:
y:Zy+€:Zy+D,]n+v

The fixed effects model may be estimated by regressing y on X and D,. Like in the balanced
panel case, the Frisch-Waugh theorem enables to avoid the estimation of the fixed effects. The
estimation of # may be obtained by regressing in a first stage y and X on D,, computing the
residuals and then regressing in the second stage the residuals of y on those of X. As in the

balanced panel case, these residuals are just the individual within transformation, i.e., z,, — z,,
or W,z in matrix form, and the fixed effects model is simply obtained by regressing W,y on W, X.

For the GLS model, the covariance matrix of the errors is:
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The GLS estimator writes:
Tars = 't zTatz

D,D; is a block-diagonal matrix that contains N square matrices of ones of dimension 7.
For balanced panels, T, = T Vn and S = TB. Sz returns the sum of the values of z for each
individual. Q is also a block-diagonal matrix, with blocks ,, of the form:
. X+ T,
Q, = O"%IT +0'3]T = 0'3 lIT + —2an
) g ) o )

v

with =1-].

The inverse of a block-diagonal matrix being equal to a block-diagonal matrix for which the
blocks are the inverses of those of the initial matrix, it is sufficient to calculate the inverse of Q.
As it is a linear combination of two idempotent and orthogonal matrices, the general formula
for any power of Q,, is:

2 2\ Y
_ -+ T o _
QZ B G‘%U lITn + ( V 62 n r] > ]’[:I‘|

In particular, the inverse is:
2
1 |- o -
Ql==|l;, + ———J
" o2 [ T o2+ T,p,? T

which can also be written as Q! = Q;%°Q-%5 with:

o5 1= o, -
Q" = P Iy + —Jr
v

\/oo+T,05

The GLs estimator may then be obtained by applying oLs on variables that have been
transformed by pre-multiplying them by Q%5 or, equivalently, by ¢,Q,,%° (which will simplify
notation):

- o, - o, -
=|ly, + ——/r Ly =1 = ——/1, ||

n n n Zn = n n
\/ol+T,02 \/ol+T,02

As in the balanced case, the transformed data can be expressed as quasi-differences, z,, =
z,, — 0,z,, with:

-05
0,Q, "z

[0}
0,=1—-——— =1-¢,

\/ol+ T2

the only difference being that now, the proportion of the individual mean that is removed is not
a constant, as it depends on the number of observations for each individual.

3.1.2 Two-ways Error Component Model
For the two-ways error component model, we have:

T
Y=+ X, +0,+p+v,
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or, in matrix form:
y=oj+Xf+D,n+D,u+v

where D, and D, are matrices of respectively individual and time dummies. Pre-multiplying a
vector by S, = D,,D; and S, =D MD; returns, respectively, the individual and time sum of the
variable.

DD, and D;D, are two diagonal matrices that contain the number of observations for
each individual and time-series. Pre-multiplying a vector by B, =D;(D;D,)"'D, or by
B, = D;(D;DM)‘lD” returns, respectively, the individual and the time series means. Finally,
DD, is a T x N matrix of ones and zeros, which indicates whether an observation for a
specific individual and time period is present or not.

To help visualizing these matrices, we consider a panel with 3 individuals and 4 periods; the
panel is unbalanced, as the first individual is not observed in the third and fourth periods, and
the third one is not observed in the first period.

100 1000
100 0100
010 1000
010 0100
D,=l0 10| D,={0010
010 0001
00 1 0100
00 1 0010
001 0001
50 0 2000 110
p/p,=[04 0| DpD,=|?%°%% pp |1 1!
o R lo o020 olo 1
003
000 2 011
110000000 101000000
110000000 010100100
001111000 101000000
001111000 010100100
DD;/=l001111000|DD;=[000010010
001111000 000001001
000000111 010100100
000000111 000010010
000000111 000001001

3.1.2.1 Fixed Effects Model
The fixed effects model can be estimated regressing y on X and the two matrices associated
with the effects vectors D, and D,,.

The application of the Frisch-Waugh theorem implies that the estimation can be performed
by regressing in a first stage y, X, and D, on D, and then, in a second stage, by regressing the
residuals of y on those of X and D ,, which means regressing W,y on W, X and W,D,.
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Applying the same theorem again, one can regress in W,y and W, X on W, D, in the first stage,
and the residuals of W,y on those of W, X in the second stage.

Residuals of a regression on W,D, are obtained by pre-multiplying the variables by the
matrix:

— T -
W =1-W,D,(DIW,D,)"W,D,

where, for any matrix A, A~ is the generalized inverse of A. Finally, the two-ways error compo-
nent fixed effects model may be obtained by applying to y and every column of X the following
transformation:

T -
(I- W,D,(DIW,D,)"W,D,)W,z

The double-within transformation consists then, for unbalanced panels, in multiplying any
data vector by the following matrix:

— T -
W =W, - W,D,(DIW,D,)"W,D,W,

Therefore, the two-ways fixed effects model is still easy to compute even if the panel is unbal-
anced: all that is required is OLS estimation and the computation of deviations from the indi-
vidual means. One proceeds as follows:

o first, the individual within transformation is applied to X, y and D w0

e next, W, X and W,y are regressed on WD,

e finally, from these regressions, the residuals of W, X and W,y are obtained; then the residuals
of the latter are regressed on those of the former.

The within transformation is performed on K + T + 1 variables, and then K + 1 preliminary
linear estimations are performed on T covariates before the final estimation for which there are
K covariates.

Note that no specific matrix computation is required and that, in particular, the matrix of indi-
vidual dummies, which is often very large (O X N), need not to be stored during the estimation.

3.1.2.2 Random Effects Model
The variance matrix of the errors is:

Q=01+0,D,D; +0.D,D; =0,%

U= u
with:
2 2
c o
_ 1 T u T
¥ =1+—D,D] +—D,D]
v v

2
Denote ¢ %, = o, <I+ %D,,D;) the covariance matrix of the errors of the individual

one-way error components model. We then have:

0.2
2 2 H T
Q= sz =0, <217 + ;D#D”>

%, is block-diagonal, with blocks: I; + %]Tn =1 + Jr .1y and J; being idempotent

02+T,07
and orthogonal, the matrix Z0° (defined so that Z)°X%° = X, ) is also a block-diagonal matrix
_ 4/02+T,02% _
with blocks: I, + ~———].. We then have:
o2
_ 305505 , OF u
L= 2’5+ 4D,D]

v
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0.2
_ y05 H 5—0.5 Ty-05 0.5
=30 <1+—22,, D,DIs; )2,7

oy

for which the inverse is:

o? -
ESR—y H$-05 T—05 ~05
=3 <1+;zn D,DIs; ) 5

We then apply the following result: I+ XX")™' =1- X1+ X"X)"'XT to the matrix in
brackets:

2 2

2 -1 !
%4 w05 T-05 _ %405 Oy Te-1 T§-05
<1+—22n D,DIE; =1- 29D, ( 1+ —DIx'D, | Dix;

o o

\2 v v

Finally, we have:

-1
sl=x-1_ 6—’2'2‘1D I+ G—iDTz-lD DIzt
- 25 u P e usn

n
Oy v

and the GLS estimator is:
},} — (ZTz—IZ)—lsz—ly

LetZ = %,°Zand D, = £,%°D , the matrix of the covariates and of the time dummies mea-
sured in quasi-difference from the individual means. We then have:

oy Oy

0'2 0'2 !
Ty-ly _ 575 B HTTS HRTT 5T 5
z2'xz2=272-—=2D,\\1+=5D,D,| D,Z
and a similar expression for ZT=!y. With the two matrices D . and Z in hand, the computation
of the estimator requires:

e computing the cross products of the two matrices Z'Z, ZTD , and ]5;]3 W
e computing the inverse of a matrix of dimension T

These are reasonable computational tasks: note especially that the matrix of individual effects
needn’t be stored and that the dimension of the matrix that has to be inverted is 7" and not N
or O and that, at least for micro-panels, T is relatively small. Note also that computation of the
GLS estimator requires explicit matrix operations and it can no longer be obtained as a series
of linear regressions on transformed data.

3.1.3 Estimation of the Components of the Error Variance

Remember that, in the balanced panel case, we used the result that natural estimators of 62 and
A2
62 were:

A €' Be

62 = £
N

A0 _ €'We

oy = N(T-1)

Feasible estimates were obtained by replacing € by the residuals é from a consistent estima-
tion. For the balanced case, N and N(T — 1) were natural denominators. This is no longer the
case when the panel is unbalanced, as T, is not the same for all individuals (and N, is not the
same for all time periods).
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The strategy used here consists in computing the expected values of the quadratic forms in
order to obtain unbiased estimators of the variance components:

e first, for a given estimator, define the matrix M" that transforms the errors into the residuals
of the V estimator: " = MV,

e compute the two quadratic forms of the within and between transformation of the residuals:
gy =¢"TWéY and gq) = éVTBeY (211‘;" =¢""B,é" and q; = ¢"TB,¢é" for the two-ways error
component model).

e compute the expected values of these quadratic forms, which are functions of 7, 67 (and o,
for the two-ways model),

e equate the quadratic forms to their expected values and solve the system of two (or three
equations for the two-ways error component model) for o2, o-,f (and 0',24 in the latter case).

Different estimators are obtained using different preliminary models to obtain the residuals.
Among the numerous possible choices, as previously seen on chapter 2:

e Wallace and Hussain (1969) use the residuals of the pooling estimator for the two quadratic
forms,

e Amemiya (1971) use the residuals of the oLs estimator for the two quadratic forms,

e Swamy and Arora (1972) use the residuals of the oLs estimator for the first quadratic form
and those of the oLs estimator for the second one.

The model and its estimation are:

y=Zy+e=aj+Xp+e (3.1)
y=Zp+é=aj+Xf+é )

The intercept can be removed by pre-multiplying every element of the model by: I =1—7,
which subtracts from every variable its overall mean and therefore removes the intercept, as
Ii=o0.

Iy=IXp+1

ly=IXp+le (3.2)
Iy =1IXp+¢

Subtracting the expression of the model and of its estimation, we get:
Zy—y)+é—e
X -p)+é-Te

0
0

(3.3)

The three estimators we use (OLS, within, and between) can be seen as GLS estimators of this
model, with V being equal, respectively, to I, W, and B:

AR VAR A RVARY = y+Z'VZ)'ZTVe (3.4)
f = XTIVIX)"'XTIVIy = g+ (XTIVIX)' X 1VIe '
Using the two previous expressions, we get ¢ = M" e with:
MY =1-2Z"vZ)y'ZTv =1 - IXX'IVIX) "' X"1VI (3.5)

MV is the matrix that transforms the error vector into the residuals vector. Note that it is
not a symmetric matrix, at least unless V' = I (which corresponds to the pooling model). The



quadratic form of the residuals with a matrix A is:
g, =¢"TAé" =e'M"TAM" e
QX being a scalar, it is also equal to its trace:
c}X =tr(e' M"TAMV¢)
Using the cyclic property of the trace operator, we get:
g, =trM"TAM" ee")
from which, taking expectations, we obtain:
E@g)) = ttM"TAM"E(ee")) = tM"TAM" Q)

with Q = 6’1+ 6,5, + 0.5,
Finally, we get:
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E@y) = o;tM"TAM") + optr(M"TAM"S,) + o, tr(M"TAM"S )

Replacing MV by its expression and denoting ®, = XTAX, we get:

tr(IAD) — 2tr(87' Oyypy) + tr(©7' Oryp)
E(qX) _ tr(iAiSﬂ) _ 2tr(®\_/1®TAI5,,V) + tI‘(@‘_/l@TATe\_/IG)VS”V) o
tr(IAIS,) = 2tr(07Opzs ) + tr(07'01107'Oy5 ) ) | @

or, denoting Y, = ZTAZ:

tr(A) — 2te (Y31 Y ) + tr(Y51Y )

E@y) =| tr(4S,) - 260 (Y7 Yy )+t Y, Y0 Yy )
tr(AS,) — 2tr(Y‘—/1YVS“A) + tr(Y\‘,lYAY;lesﬂv)

T

ENCERNE

=N

(o2

O

o

TN SN SN

The most common estimators are obtained by considering the quadratic forms with the
within, between-individual, and between-time matrices. We then get the following system of

equations:
A V 2
9w o,
P72 2
s, | = Hl o,
AV 2
B, O-ll
with

(3.6)

aeMTWMY)  aMTWMYS,) M TWMYS,)
H=| «M""BM") aM'"BM"S,) tr(M""BM"S,) 3.7)
rM""B,MY) tMVTB,M'S,) t(M'TB,M'S))

Using the following results: Iw=Ww, r(W)=0-N-T+1, WS, =0, WS, =0,
B,S, =S, BﬂSﬂ_= *_Sw tr(_S”) = tr(S,) = O, tr(B,) = N, tr(B,) = T, 1B,1S, = 1S, imd tr(1S,) =
o-%,T,/0, 1B,IS, =1S, and tr(IS,) =0 - >N,/0, tr(IB,)=N -1, tr(B,)=T -1,
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tr(B,IS,) = T - ¥, T2/0, tr(B,IS,) = N - ¥, N2/O, tr(B,S,) = T, tr(B,S,) = N, we get:

E@Y) = 62[0 =N = T + 1 = 2tr(0, O,y + tr(©;' 0]
+o, [tl‘(@}l@W@\_/l@vs” )
+ Gﬁ [tl"(@‘_/IG)W@‘_/IG)VSuv)]

E(gy) = 02N — 1 - 2t(07'Oyy) + tr(©7/ 05 )]
+0}[0= X, T/0 + 210710y ) + tr(G);lG)B']@;,l@VSnv)]
+ol N- Y NP /O = 2tr(O7 Oy ) + tr(®;1®gn®;1®vsuv)]

E(@y) = 02T — 1 - 2tr(07' Oy ) + tr(©7/0p)]

+02| T~ 3,72/0 - 2tr(©7'0y5,,) + tr(@;IGE‘(G);l@VS"V)]

+02[0— T,N2/0 - 2tr(©7'055 ) + tr(@(}@BM@;lG)VS“V)]

or:
[(E@Y) = 62[0-N =T +1-tr(Y;'Y )]
+ a2 Y Y Y g )]
+ o2 [tr (Y Yy Y Y g )]
E@y) = 02IN = 2tr(Y;1 Y ) + e (X Y )]
I 4e0- 2tr (Y Y g ) + (VY Y4 g )
+ 0[N — 2tr(Y;1YB”S”V) + tr(Y;lYB”Y\‘,lYVSHV)]
E@y) = 02T = 20031 Y g )+ tr(Y31 Y5 )]
L 4T 2tr(Y Y 5 )+ (XY YA Y g )
+02[0 = 2r(YH Y ) + tr (V1Y Yl Yy )

\

The estimator is obtained by equating the quadratic form and its expected value:

AV1 2
9w oy
v2 | 2
45, | = H| o,
~V3 2
qs " Oy

The H matrices corresponding to the three most common estimators are presented in
Figure 3.1.

Example 3.1 unbalanced panel — Tileries data set

To illustrate the estimation of unbalanced panels, we employ the Tileries data, concerning
the weekly production of cement floor tiles for 25 Egyptian small-scale tileries in 1982—1983.
The data are observed over 66 weeks in total, and aggregated on periods of three weeks. The
number of observations for each firm ranges from 12 to 22, which can be checked using the
pdim function.
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Amemiya (1971):

O-N-T+1-K 0 0
N-1+tr(®,)0p ;) O-Y T?/O N-Y,N2/O
T-1+t(©y0; ;) T-3,7;/0 O-3¥N}/O

H=

Wallace and Hussain (1969):

O-N-T+1-tr(X;'Y) tr(Yl’lYWYl’le”)

H= N - tr(Y"YBW) O —2tr(Y;'Y 5)+ tr(YI‘lYBﬂYI‘IYSq)
T— (Y'Y ) T =2tr(Y Y 5) +te(Y; Y5 Y7 Y)
Swamy and Arora (1972):
O-N-T+1-K 0 0
H= N-K-1 O-t(Y3'Ys) N-tu(Y;'Yps5)
T-K-1 T—-t(;'Yps5) O-t(Y;'Ys)

Figure 3.1 Estimators of the variance components for unbalanced panels.

tr(YI’lYWYI’le’)
N = 20(Y7 Y )+ (X7 Y Y'Y )
o- 2tr(Y;1Ys“) + tr(Y;‘YBHY;‘YS“)
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data("Tileries", package = "pder")
head (Tileries, 3)

id week area output labor machine
1 2 1 fayoum ©5.650 4.533 4.663
2 2 2 fayoum 6.522 5.347 4.234
3 2 3 fayoum 6.303 4.970 4.234

pdim(Tileries)
Unbalanced Panel: n = 25, T = 12-22, N = 483

We estimate a Cobb-Douglas production function where the production (output) depends
on the quantity of two inputs, labor (1abor) and machines (machine). We first check that the
same fixed effects model can still be estimated either by applying oLs on the within transformed

variables or using individual dummy variables:

Tileries <- pdata.frame(Tileries)

plm.within <- plm(log(output) ~ log(labor) + log(machine), Tileries)

y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)

Im.within <- 1Im(I(y - Between(y)) ~ I(xl - Between(xl)) + I(x2 - Between(x2)) - 1)

Im.lsdv <- 1lm(log(output)
coef (Im.1lsdv) [2:3]
log(labor) log(machine)

0.87062 0.02438
coef (Im.within)
I(x1l - Between(xl)) I(x2 - Between (x2))
0.87062 0.02438

coef (plm.within)
log(labor) log(machine)
0.87062 0.02438

The one-way random effects model is then estimated:

tile.r <- plm(log(output) ~ log(labor) + log(machine),

summary (tile.r)
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)

Call:

plm(formula = log(output) ~ log(labor) + log(machine),

model = "random")
Unbalanced Panel: n = 25, T = 12-22, N = 483
Effects:

var std.dev share
idiosyncratic 0.002640 0.051377 0.81

individual 0.000623 0.024964 0.19

theta:
Min. 1st Qu. Median Mean 3rd Qu. Max .
0.489 0.573 0.582 0.578 0.590 0.598

log(labor) + log(machine)

+ factor(id), Tileries)

Tileries, model = "random")

data = Tileries,
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Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.1866 -0.0272 0.0031 0.0000 0.0334 0.2268

Coefficients:

Estimate Std. Error t-value Pr(>|t])
(Intercept) 0.2779 0.0608 4.57 6.1le-06 ***
log (labor) 0.9088 0.0300 30.25 < 2e-16 ***
log (machine) 0.0240 0.0270 0.89 0.38

Signif. codes:
@ U=wel @001 Vel @.1L =Y @05 ",7 @, VU a4

Total Sum of Squares: 4.84

Residual Sum of Squares: 1.3

R-Squared: 0.732

Adj. R-Squared: 0.731

F-statistic: 656.318 on 2 and 480 DF, p-value: <2e-16

The transformation parameter is now individual specific; more precisely, it depends on the
number of available observations for every individual. The 6 parameter here varies from 0.49
to 0.60.

The two-ways random effect model is obtained by setting the effect argument to
"twoways’.

We check that the oLs model cannot be obtained any more by applying oLs to variables
where the individual and time means have been removed.

plm.within <- plm(log(output) ~ log(labor) + log(machine),
Tileries, effect = "twoways")

Im.1lsdv <- 1Im(log(output) ~ log(labor) + log(machine) +
factor (id) + factor (week), Tileries)

y <- log(TileriesSoutput)

x1 <- log(Tileries$labor)

x2 <- log(Tileriessmachine)

y <- y - Between(y, "individual") - Between(y, "time") + mean(y)

x1l <- x1 - Between(xl, "individual") - Between(xl, "time") + mean (x1)
X2 <- x2 - Between(x2, "individual") - Between(x2, "time") + mean (x2)
Im.within <- Im(y ~ x1 + x2 - 1)

coef (plm.within)
log(labor) log(machine)
0.86951 0.03539
coef (Im.within)
x1 X2
0.88085 0.03554
coef (1m.1lsdv) [2:3]
log(labor) log(machine)
0.86951 0.03539

Finally we estimate the time and individual random effects model, using the three methods
of estimation we have described:
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wh <- plm(log(output) ~ log(labor) + log(machine), Tileries,
model = "random", random.method = "walhus",
effect = "twoways")

am <- update(wh, random.method = "amemiya")

sa <- update(wh, random.method = "swar")

ercomp (sa)
var std.dev share
idiosyncratic 0.002589 0.050884 0.77

individual 0.000625 0.025001 0.19
time 0.000158 0.012551 0.05
theta:
Min. 1st Qu. Median Mean 3rd Qu. Max .
id 0.4934 0.5769 0.5858 0.5813 0.5941 0.6019

time 0.1962 0.3461 0.3544 0.3487 0.3625 0.3702
total 0.1665 0.3023 0.3097 0.3058 0.3186 0.3295

The shares of the individual and the time effects in the total error variance are now about 19
and 5% for the Swamy-Arora estimator.

re.models <- list(walhus = wh, amemiya = am, swar = sa)
sapply (re.models, function(x) sqgrt (ercomp (x)$sigma2))

walhus amemiya swar
idios 0.05167 0.05088 0.05088
id 0.02778 0.03192 0.02500

time 0.01177 0.01267 0.01255
sapply (re.models, coef)

walhus amemiya swar
(Intercept) 0.27420 0.28560 0.26528
log(labor) 0.90778 0.90062 0.91279

log (machine) 0.02696 0.02774 0.02692

3.2 Seemingly Unrelated Regression

3.2.1 Introduction

Very often in economics, the phenomenon under investigation is not well described by
a single equation but by a system of equations. It is particularly the case in the field of
micro-econometrics of consumption or production. For example, the behavior of a producer
is described by a minimum cost equation along with equations of factor demand. In this case,
there are two advantages in considering the whole system of equations:

o firstly, the errors of the different equations for an observation may be correlated. In this case,
even if the estimation of a single equation is consistent, it is inefficient because it does not
take into account the correlation between the errors,

e secondly, economic theory may impose restrictions on different coefficients of the system, for
example, the equality of two coefficients in two different equations of the system. In this case,
these restrictions can be taken into account using the method of constrained least squares.
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3.2.2 Constrained Least Squares

Linear restrictions on the vector of coefficients to be estimated can be represented using a
restriction matrix R and a numeric vector g:

Rp=q

For example, if the sum of the first two coefficients must equal 1 and the first and third ones
should be equal, the joint restrictions can be written as:

110 ﬁ [t
1o-1/)121 \o
Ps
To estimate the constrained oLs estimator, we write the Lagrangian:

L=e"e4+2A"(Rf—q)

with e = y — Zy and A the vector of Lagrange multipliers associated to the different constraints.!
The Lagrangian can also be written as:

L=y"y=28"X"y+ BT X"Xp 4+ 2ARp — q)

The first-order conditions become:

% = -2XTy+2X"Xp+2RTA=0

S =2Rp-q)=0

04

which can also be written in matrix form:

(7 9)0)-(7)

The constrained OLs estimator can be obtained using the formula for the inverse of a parti-
tioned matrix (see equation 2.18):
-1
All A12 _ Bll BIZ _ Al_ll(I + A12F2A21A1_11) _AI11A12F2

Ay Ay By, By, ~F,A, Al F,

with F, = (Ay, — Ay AT A ) and F, = (A, — A, A5 A,)
We have here F, = —(R(X"X)~'RT)!. The constrained estimator is then: f, = B;; Xy + B},q,
with B, = (XTX)"1(I = RT(R(XTX)"'RT)"'R(XT X)) and B,, = (XTX)"'RT(R(XTX)~1RT)~!
The unconstrained estimator being f,. = (XTX)"'XTy, we finally get:

B = B, — X X)'RTRXTX)"'RN) " (RB,, — )
The difference between the constrained and the unconstrained estimators is then a linear

combination of the excess of the linear constraints of the model evaluated for the unconstrained
model.

1 These multipliers are multiplied by two in order to simplify the first- order conditions.
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3.2.3 Inter-equations Correlation

We consider a system of L equations denoted y, = X, + €, with / = 1 ... L. In matrix form, the
system can be written as follows:

b X 0 ... 0 b €
¥, 0 X, ... 0l]|s €
= +
YL 0 0 ... X )\p5 €
The covariance matrix of the errors of the system is:
T T T
€16, €€ ... €€
T T T
€26, €€, ... €€
2 2 2
Q=FEe")=E 1 2 L
T T
€6, €€, €€,

We suppose that the errors of two equations / and m for the same observations are correlated
and that the covariance, denoted by 6, is constant. With this hypothesis, the covariance matrix
is:

ol opl o oyl
ol o0, ... 0,1
Q= 12 22 2L
ol oyl ... oyl

Denoting by X the matrix of inter-equations covariances, we have:

0-11 612 ven GIL
(o} (o} oo O
12 22 2L
> =
GIL O-2L een GLL
Q=XRI

Because of the inter-equations correlations, the efficient estimator is the GLS estimator: ﬁ =
(XTQ1X)~1XTQ1y. This estimator, first proposed by Zellner (1962), is known by the acronym
SUR for seemingly unrelated regression. It can be obtained by applying oLs on transformed data,
each variable being pre-multiplied by Q5. This matrix is simply Q%% = £7%5 ® I. Denoting
by r,,, the elements of 7%, the transformed response and covariates are:

Y1ty e+ mXy Xy o X
- Ty t 1Yy + .o+ 1y o Xy TpXy o Ty X)
y= and X =

g1 H )y + oty Xy X, o X

Y is a matrix that contains unknown parameters, which can be estimated using residuals
of a consistent but inefficient preliminary estimator, like oLs. The efficient estimator is then
obtained the following way:
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first, each equation is estimated separately by oLs and we note Z = (€,,é,,...,¢,) the N x L
matrix for which every column is the residual vector of one of the equations in the system,
then, estimate the covariance matrix of the errors: £ = ETZ/N,

compute the matrix £7°5 and use it to transform the response and the covariates of the model,

finally, estimate the model by applying oLs on transformed data.

5795 can conveniently be computed using the Cholesky decomposition, i.e., computing the
lower-triangular matrix C such that CCT = 71,

3.2.4 SUR With Panel Data

Applying the SUR estimator on panel data is straightforward when only the between or the
within variability of the data is taken into account. In this case, one just has to apply the above
formula using the variables in individual means (between-sUR) or in deviations from individual
means (within-sUR). Taking into account both sources of variability requires more attention
and leads to the SUR error component model proposed by Avery (1977) and Baltagi (1980). The
errors of the model then present two sources of correlation:

e the correlation of the SUR model, i.e., inter-equations correlation,
e the correlation taken into account in the error component model, i.e., the intra-individual
correlations.

Every observation is now characterized by three indexes: z,, is the observation of z for
equation /, individual # and period t. The observations are first ordered by equation, then by
individual. Denoting elT = (elT €1 ,...,el ) the error vector for equation / and individual #,

n nl’ ~in2 nT
one gets:

E(elnelm) = O'BMIT + O'%m]T
The errors concerning different individuals being uncorrelated, the correlation matrix for two

equations and all individuals is:

E(ge)) = Iy ® (o, 17 +o0, Jr)

= O-VImINT + O-"IzmIN ®]T

o, (W+B)+To, B
o, W+, +To, )B
lem W+ alsz

Finally, for the whole system of equations, denoting X, and X, the two matrices of dimension
L X L containing the parameters 6, and o, , the covariance matrix of the errors is:

Q=3 QW+% QB

The sUR error component model may be obtained by applying oLs on transformed data,
every variable being pre-multiplied by Q=0°.

9—0.5 — 2;0.5 ® W + 21—0.5 ® B (3.8)

and may be estimated using the Cholesky decomposition of ;! and X! (see Kinal and
Lahiri, 1990).

The two error covariance matrices being unknown, the error-component SUR estimator is
obtained with the following steps:

o first, each equation is estimated separately using a consistent method of estimation (for
example OLs): we denote by WE and BE the matrices of residuals in deviation from the
individual means and in individual means, respectively,
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e next, we estimate the error covariance matrices: ﬁ‘.v = (W/E)T(W/E) J(N(T = 1)) and
3, = (BE) (BE)/(N - 1),

e we then compute the matrices £7%° and £-%° and hence, through 3.8, we obtain the trans-
formed variables ¥ and X,

e finally, we apply oLs on y and X.

Different choices of preliminary estimates lead to different SUR-error component estimators.
For example, Baltagi (1980) used the method of Amemiya (1971) while Avery (1977) chose the
one of Swamy and Arora (1972).

Example 3.2 SUR estimation — TexasElectr data set

A common application of the SUR model is the analysis of production cost. The cost function
returns the minimum cost of production C for a given vector of prices of the F production
factors p" = (p;,p,, .-, pr) and the level of output g. The minimum cost function is C(p, g). It
has several properties:

e it is homogeneous of degree 1 with respect to the factor prices: C(4p, q) = AC(p, q),
e the demand functions for production factors are the derivatives of the minimum cost func-
tion with respect to factor prices,? i.e., the gradient of the cost function: %(p, q) = xp,q)
*c _ &C

o the Hessian matrix of the cost function is symmetric: — = .
opidp;  9p;op;

The most common functional form assumed for the cost function is the translog, defined by:

F

InC(p,q) = p + B, Ing + Zﬁilnpi
i=1

F F

+ O.Sﬂqqlnzq +0.5 Z Z B;Inp;Inp;

i=1 j=1
Dividing total cost and factor prices by one of these prices (the first, for example), homogene-
ity of degree 1 with respect to prices is imposed:

F
C b;
In =) = fo+ f;Inq + Zﬂilnp—
1

i=2 1
F F p p
+0.58,In°+05 )" f;In=In—=
=2 j=2 1 P

L dlnC _ oC :
Shephard’s lemma implies that: 22~ = =2 — 2%
dlnp, op, C C

the cost with respect to the price of a factor equals the share of that factor in total cost. The
share of factor j is then:

= s,, that is, the logarithmic derivative of

F
0lnC pi
5 alnpj ﬂl izzzﬁl] npl

It is customary to divide each price and the production by their means. In this case, In g and
In p, are zero at the sample mean, which gives an intuitive meaning to the first-order coefficients.
B, is then the cost elasticity with respect to the production level at the sample mean, and f; the
share of factor i in the cost at the sample mean.

The data we use concern the production cost of ten electricity producers in Texas over
18 years (from 1966 to 1983). They have been analyzed by Kumbhakar (1996), Horrace and

2 This result is known as Shephard’s lemma.
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Schmidt (1996) and Horrace and Schmidt (2000). Three production factors are used: fuel,
labor, and capital. For each factor, we observe unit factor prices (pfuel, plab, and pcap) and
factor expenses (expfuel, explab, and expcap).

We first compute the prices in logarithms, we divide them by their sample mean, and we

also divide them by one of the prices, here fuel price. We perform this task using the mutate
function of the dplyr package.

data ("TexasElectr", package = "pder")

library ("dplyr")

TexasElectr <- mutate (TexasElectr,
pf = log(pfuel / mean(pfuel)),
pl = log(plab / mean(plab)) - pf,
pk = log(pcap / mean(pcap)) - pf)

The production is also measured in logarithms and divided by its sample mean.

TexasElectr <- mutate (TexasElectr, g = log(output / mean (output)))

We then compute total production cost by summing the expenses for the three factors and

factor shares. Finally, we measure the cost in logarithms and divide it by its sample mean and
by the reference price.

TexasElectr <- mutate (TexasElectr,
C = expfuel + explab + expcap,
sl = explab / C,
sk = expcap / C,
C = log(C / mean(C)) - pf)

Finally, we compute the squares and the interaction terms for the variables.

TexasElectr <- mutate (TexasElectr,
pll = 1/2 * pl ~ 2,
plk = pl * pk,
pkk = 1/2 * pk "~ 2,
qg = 1/2 * g ~ 2)

We define the three equations of the system, one for total cost and the other two for factor
shares.?

cost <- C " pl + pk + g + pll + plk + pkk + qgg
shlab <- sl 7 pl + pk
shcap <- sk 7 pl + pk

Factor shares being the derivatives of the cost function, the following restrictions must be
imposed:

e the coefficient of p1 in the cost equation must equal the intercept in the labor share equation,

e the coefficient of pk in the cost equation must equal the intercept in the capital share
equation,

3 The fuel share is omitted to avoid perfect collinearity, given that the three shares sum to one.
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o the coefficient of p11 in the cost equation should equal the coefficient associated to pl in
the labor share equation,

o the coefficient of pkk in the cost equation should be equal to the coefficient associated to pk
in the capital share equation,

e the coefficient of plk in the cost equation should equal the coefficient of pk in the labor
share equation and the coefficient of p1 in the capital share equation.

We construct for this purpose a 6 (number of restrictions) by 14 (number of coefficients)
matrix.

R <- matrix (0, nrow = 6, ncol = 14)
R[1, 2] <- R[2, 3] <- RI[3, 5] <- R[4, 6] <- R[5, 6] <- R[6, 7] <- 1
R[1, 9] <- R[2, 12] <- R[3, 10] <- R[4, 11] <- R[5, 13] <- R[6, 14] <- -1

The first line of the matrix indicates that the second coefficient (the one associated to pl in
the cost equation) must be equal to the ninth (the constant term in the labor share equation).

The sUR model is estimated providing a list of formulae, defining the system of equations
to be estimated, as the first argument to p1lm. The different formulae in the list can be named,
which makes the output more readable. The model argument is set to ' random’ in order
to estimate the SUR error components model. Lastly, the arguments restrict .matrix and
restrict.rhs allow to specify the matrix R and the vector g defining the linear constraints
of the model. If, as happens here, all elements of g are zero, the restrict . rhs argument can
be omitted.

z <- plm(list(cost = C " pl + pk + g + pll + plk + pkk + qq,
shlab = sl ~ pl + pk,
shcap = sk ” pl + pk),
TexasElectr, model = "random",
restrict.matrix = R)
summary (z)
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)
Call:
plm.list (formula = list(cost = C "~ pl + pk + g + pll + plk +
pkk + ag, shlab = sl ~ pl + pk, shcap = sk " pl + pk), data = TexasElectr,
model = "random", restrict.matrix = R)
Balanced Panel: n = 10, T = 18, N = 180
Effects:

Estimated standard deviations of the error
cost shlab shcap
id 0.1429 0.0248 0.0270
idios 0.0377 0.0195 0.0175

Estimated correlation matrix of the individual effects
cost shlab shcap
cost 1.0000 .
shlab -0.6926 1.00
shcap -0.0964 0.21 1
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Estimated correlation matrix of the idiosyncratic effects

cost
cost 1.0000
shlab 0.2813
shcap -0.0766
- cost
Es
(Intercept) -0
pl 0.
pk 0.
a 0.
pll 0
plk -0
pkk 0
aq 0
Signif. codes:
@ Vet 0,001
- shlab
Es
(Intercept) O
pl 0
pk -0
Signif. codes:
@ Vet 0,001
- shcap
Es
(Intercept) 0
pl =0
pk 0
Signif. codes:
@ Vet Q001

shlab shcap

1.000
0.204 1

timate Std.
.22924
12484
31573
85452
.13698
.04025
.19884
.19821

O O O O O O o o

Pees il @, @1

timate Std.

.12484 0.
.13698 0.
.04025 0.

Peesl @, @1

timate Std.

.31573 0.
.04025 0.
.19884 @,

Pl @, 01

Tkl

Tkl

Tkl

Error t-value Pr(>|t])

.04175 -5.49 6.2e-08
.00614 20.32 < 2e-16
.00612 51.59 < 2e-16
.01200 71.20 < 2e-16
.00931 14.71 < 2e-16
.00867 -4.64 4.3e-06
.00832 23.90 < 2e-16
.01150 17.23 < 2e-16
0.05 '." 0.1 " "1

Error t-value Pr(>|t])

00614 20.32 < 2e-16

00931 14.71 < 2e-16

00867 -4.64 4.3e-06
0.05 '." 0.1 " "1

Error t-value Pr(>|t])

00612 51.59 < 2e-16

00867 -4.64 4.3e-06

00832 23.90 < 2e-16
0.05 '." 0.1 " "1

*kk

* % %

*kk

* % %

* % %

*kk

* % %

The results indicate the presence of increasing returns to scale, as g is significantly lower
than 1. Factor shares at the sample mean for labor and capital are respectively 12 and 31%.

3.3 The Maximum Likelihood Estimator

An alternative to the oLs estimator presented in the previous chapter is the maximum likeli-
hood estimator. Contrary to the GLs estimator, the parameters are not estimated sequentially
(first ¢ and then f) but simultaneously.

3.3.1

Derivation of the Likelihood Function

In order to write the likelihood of the model, the distribution of the errors must be perfectly
characterized; compared with the GLs model, we then must add an hypothesis concerning the
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distribution of the two components of the error term, the individual # and the idiosyncratic v
effects: we’ll suppose that they are both normally distributed. The likelihood is the joint density
for the whole sample, which is the product of the individual densities in the case of a random
sample. This is not the case here, as the T, observations of individual # are correlated because
of the common individual effect. The model to be estimated is then:

T
ynt=ﬂ xn+’7n+vnt

with 7, ~ N(0,0,) and v,, ~ N(0, 5,). For a given value of the individual effect, 7, the density
fory,, is:

2
]_ _1 (J’nrﬁTxnr'rn )
e 2

oy

f(ym | m,) =

2ro,

For a given value of 5, the distribution of y, = ,,, ... , ,,, is the one of a vector of independent
random deviates, and the joint distribution is therefore the product of individual densities:

In

2 1T T 2
> e_ 252 21 OB %= 11,)
v

f(yn|ﬂn)=(zm2

\2

The unconditional distribution is obtained by integrating out the individual effects #, which
means that the mean value of the density is computed for all possible values of #:

teo 1 Lz +o00 .
S0, = —= / Fo,Inpe i) ay= L ( 1 ) / e dn
o 5 5

2
1/ 27[0',? 27[6,7 2roy

with, denoting e,, = y,, — f%,,, €, =5, — f'x, and 0}, = 6> + T, 0

NE

T
(€nt - ’1)2 ’72
A = _— + —_
X 7

t oy
1 (o5, 2
m -
== | —=n"-2T,n+ ) e
63 6,% n-n. Z nt
2 2
1 (0o, _ Oy 1 2 2 On
==|—n-T,.E,— | +—= €, —T,€ —
63 < U” n-n. O_m 0_3 Z nt n-n. 5,2,,
Denoting by z? the first term, we have dz = :’; dn and the joint density is then (denoting
o, v
¢, = U—)i
In L 2
1\, -H(ze-ned)
e ) K
2no;
For the second term, we have:
o2
- n - -
et -T2 =Y - T,A— ¢DE2 = Y (e, — (1= $,)E,)?
t m t t

so that the joint density for an individual is finally:

In

1 2 = Te—(1-0,)5,)
100= (525 ) 03

270;
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The contribution of the #-th individual to the log likelihood function is simply the logarithm
of the joint density:

T T
InL, = _7” In 27 — 7 Ine?+ = ln¢2 -— Z (e,, — (1 —¢,)E, )
The log likelihood function is then obtained by summing over all the individuals of the panel:
ZnTn ZnTn 2 1 2 1 = \2
InL=-=r"In2z - =" Ino) + o Zn:lnqﬁn 3 Z Z‘(em —(1-¢,E,)
or, more simply in the special case of a balanced panel:
InL = —71 n2r— —lno- += ln¢2— — ZZ(em—(l—qﬁ)e )

Note also that:

D (e —A=$)E, = D (€, =6, +¢* Y T,é2 = We + ¢’ Be
n t n t n

3.3.2 Computation of the Estimator

The first derivatives of the log likelihood are, denoting z,, = z,, — (1 — ¢)z,, :

dInl _ —3 X5 - XTX)p) (3.9)
ap o?
olnL _ NT 1 T 2T
T.-‘% = —E + 27‘3(6 We + ¢ € B€) (310)
olnL N €'Be
= — 3.11
0¢? 2¢? 202 ( )
Solving (3.9), we obtain:
f=X"X)"1XTy (3.12)

The estimator of ¢? is simply obtained by using (3.10) as the residual variance of the model
estimated on the transformed data:

ETWE+ ¢?€é"Bé

6= —— (3.13)
NT
Finally, using (3.11) and (3.13), the transformation parameter is:
AT A
22 Eé'wWe
= 3.14
¢ (T —1)é"Bé (3.14)

The estimation can be performed iteratively. Starting from an estimator of § (for example
the within estimator), we calculate ¢* using the formula given by 3.14. We then transform the
response and the covariates using this estimator of ¢*> and we compute a second estimation of
p using (3.12). These computations are repeated until the convergence of /§ and @ 0?2 is then
estimated using (3.13).

Example 3.3 maximum likelihood estimator — RiceFarms data set
The maximum likelihood estimator is available in the pglm package. The pglm function enables
maximum likelihood estimation of generalized linear models for panel data.* We have to specify

4 See chapter 9.
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the distribution of the errors of the model, here normal, by setting the argument family to
"gaussian’.

data ("RiceFarms", package = "splm")

Rice <- pdata.frame (RiceFarms, index = "id")

library ("pglm")

rice.ml <- pglm(log(goutput) ~ log(seed) + log(totlabor) + log(size),
data = Rice, family = gaussian)

summary (rice.ml)

Maximum Likelihood estimation

Newton-Raphson maximisation, 5 iterations

Return code 2: successive function values within tolerance limit
Log-Likelihood: -460.5

6 free parameters

Estimates:

Estimate Std. error t value Pr (> t)
(Intercept) 55,3125 0.2038 26,07 = 2@=16 o
log (seed) 0.2200 0.0283 7.76 8.2e-15 **x
log (totlabor) 0.2855 0.0311 8,20 = 20=16 “=w
log(size) 0.5280 0.0326 16.17 < 2e-16 ***
sd.id 0.1190 0.0171 ©.95 3.7e=1a Fww
sd.idios 0.3637 0.0086 42.28 < 2e-16 ***x
Signif. codes:
@ Uessml @ Il Twl @@l YU Q.5 VoU @,k 70 Al

The coefficients are very similar to those obtained with the GLS estimator. The two parameters
called sd.idios and sd. id are the estimated standard deviations of the idiosyncratic and of
the individual parts of the error. These values are also almost equal to those obtained using the
GLS estimator.

3.4 The Nested Error Components Model

3.4.1 Presentation of the Model

The nested random effect model is relevant when the individuals can be put together in different
groups. For example, with a panel of firms, groups may be constituted by regions or production
sectors.

In this chapter, we’ll restrict ourselves to panels with two characteristics:

e panels without time effects,
o balanced panels inside each group, which means that, for every group, the number of obser-
vations for each individual is the same.
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The number of individuals and the length of time series for two groups may be different.
This is why this model, presented in Baltagi et al. (2001) is called the unbalanced nested error
component model, even if its unbalancedness must be understood in the very restrictive sense
we've just described.

Three effects will now be considered: the usual individual # and idiosyncratic v effects, but
also a new one that represents group effects 4. Denoting by D, the matrix of group dummies:

y=a+Xp+Dn+D,A+v
Q is block-diagonal with G (the number of groups) blocks of the following shape:
Qg = Uz[INg ®]Tg] + O-EUNg ®]Tg] + GE[INg ® ITg]

Replacing J, by RJ, and I by I + Jp, this can be rewritten as a linear combination of three
symmetric, idempotent, and orthogonal matrices which sum to I:

Q, =[o)ly, ® Iy 1+ (o) + Toly, ®Jr 1+ (o) + T, + NTo))ly, ®Jr ]
where:

e I, ®I; isthe within-individual transformation,
14 &

. TNQ ®ng is the between-individual transformation measured as a difference with the group
mean,
. jNg ® 7Tg is the between-group transformation.

0-\/

A/02+Tc?
v n

and

This expression enables to easily find the expression for angO‘s, denoting ¢, =
d)A - A /0'3+T¢7"ZI+NT0'§:
GVQg_O's = [IN ® iT] + d)r][i]\[ ®7T] + d)AUNg ®7T]
which finally writes:
UVQg_O's = [INg ® ITg] - gn[INg ®jTg] - HAUNg ®sz]

withf, =1-¢,and 0, = ¢, — ¢,.
The model can therefore be estimated by oLs on transformed variables for which part of the
individual and the group mean (respectively 6, and 6, have been subtracted).

3.4.2 Estimation of the Variance of the Error Components

We proceed along the lines of section 3.1.3. Using residuals from a preliminary estimation V'
denoted &V = M"¢, we compute a quadratic form of €" with a matrix A 7} .

E@)) = ootV TAM") + otrM"TAM"S,) + o5t (MVTAM"'S )

Replacing M" by its expression and denoting ®, = XTAX, we obtain:
tr(IAD) — 2tr(©}'Oyy) + tr(©}' Oy c
E@7y) = | tr(IALS,) — 2tr(07}' Oy ) + (070,107 O 5 1) | | o
tI'(IAIS/l) - 2tr(®‘_/l®IAISAV) + tr(®\_/l®IAi®\_/l®VSAV) 02
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or, denoting Y, = ZTAZ:
.
tr(A) — 2tr(Y 'Y ) + tr(Y 1Y ) o?

v

E@y) = tr(AS,) = 2r(Y Yy ) + x| | o2

tr(AS,) — 2tl’(Y‘_/lesAA) + tr(Y“,lYAY;IYVSAV) Uf

The most popular estimators are obtained by computing the three quadratic forms with the
within-individual, between-individual and between-group matrices. We then get the following
system of equations:

- o)
3y |=H| o2 (3.15)
w) o

with:
M TWMY)  aMVTWMYS,) taMYTWMYS,)
tr(M""B,M")  tt(M'TB,M"S,) tr(M""B,M"S)) (3.16)
aMVTB,MY)  tu(M"TB,MYS,) tr(M"TB,M"S))

Using the following results: IW =W, tr(W)=0-N-T+1, ws,=0, WS, =0,
B,S, =S, B,S,=S, te(S,)=te(5,)=0, tr(B)) =N, tr(B,) =T, IB,,TSW = TS”, tr(fSn) —

HoH_ W o - ) -
0-%,T,/0, 1B]IS, =15, tr(S,)=0-3 ,N,/O, tr(IB))=N-1, tr(IB)=T-1,
tr(IB,IS,) =T - Y, T7/O, tr(B,1S,) =N — ¥ ,N?/O, tr(B,S,) = T, tr(B,S,) = N.

We finally obtain:

E@Y) = 62[0—N — T +1-2tr(0;'Oyyy) + tr(07'0y,)]
+07[tr(07' 0,070y )]
+0,[tr(0,10,, 07Oy )]
E(al,‘g/n) = 0[N — 1 -2tr(0,' Oy ) + tr(©'0p )]
+07|0-3,12/0 + 2007 0y ) + tr(@;l(agn@)‘—/l@vsnv)]
+0} [N = ZN2/0 - 207/ 0y5,1) + 110703, 0710,
E@y) = ol[T =1 -2t(8 @y ) + tx(©}Op )]

+02 [T~ 3,12/0 - 2(©7'y,,) + tr(©7'0; 0705 )]

+02[0— X,N2/0 - 20710y ) + r(©7'0; 07105 )|
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or:
” E@G@Y) = 63[0 -N-T+1- tr(Y‘_/lYW)]
+ 63 [tr(Y‘_,lYWY‘_,lesnv)]
+o [t (Y Y Y Y g )]
E(?];]) = 63 [N — 2tr(Y\_/1YB"V) + tr(Y\_/lYBn)]
3 + 0'3[0 - 2tr(Y‘_,1YS”V) + tr(Y‘_,1 YB” Y\_/IYVS,,V)]
+ 65 [N - 2tr(Y\_/1Yan“v) + tr(Y\_/lYBnY‘_,lYVSyV)]
E(ﬁjj‘g/u) = 63[T - 2tr(Y;1YB“V) + tr(Y;lYB“)]
+ Gi[T - 2tr(Y‘_,1YBMSnV) + tr(Y‘_/lYBM Y\_/IYVS”V)]
+ 0',3[0 - Ztr(Y‘_/lYS“V) + tr(Y;lYB“Y\_/lYVSHV)]

Baltagi et al. (2001) have proposed a variant of the Amemiya (1971) estimator (where the
within estimator is used for the three quadratic forms), the Wallace and Hussain (1969) esti-
mator (the oLs estimator is used for the three quadratic forms) and of the Swamy and Arora
(1972) estimator (the within, between-individual and between-group are used respectively for
the within, between-individual, and between-group quadratic forms). The detailed formulas are
presented in Figure 3.2.

Example 3.4 nested error component model — Produc data set
Baltagi et al. (2001) have estimated the nested error component model extending the work
of Baltagi and Pinnoi (1995). This article, inspired by Munnell (1990), aims at analyzing the
effect of public capital on production. The dataset consists on 48 American states for the period
1970-1986. The observations are nested, as the states can be grouped in 9 regions, which con-
tain between 3 and 8 states. The panel is therefore unbalanced, as the number of individuals
differs from one group to another, but the number of time series is the same for all the individ-
uals inside a group (and in fact here for every individual), which is a necessity in order to be
able to estimate the model.

A Cobb-Douglas production function is estimated; the state output gsp is explained by the
private capital stock pc and non-agricultural labor emp, but also by three measures of the public
capital stock:

e roads and highways hwy,
e water infrastructure water,
o other public buildings and infrastructure util.

The state unemployment rate is also used as a covariate in order to take into account the
business cycle of every state. All the covariates, except for the unemployment rate, are in loga-
rithms.

In order to estimate the model, one has to indicate which variable is the group index. This
can be done using several variants:

o if the first three columns of the data frame are the individual, time, and group indexes, the
structure of the panel is directly understood by plm,

o the indexargumentof plmorof pdata . frame can also be used to indicate which variable
is the group index, naming this variable if the other indexes are not indicated.
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Amemiya (1971):

O-N-K 0 0
N-G+1tr(0310, ) 0-YTyg 0
&g

G-1+t(©y0, ;) XT,-YNJT2/O O-YNT2/O
g & &

Wallace and Hussain (1969):

O-N-tr(Y]'Yy) tr(Y;‘YWY;‘YS”) tr(Y;lYWY;IYSA)
A=| N-G-tQ Y p) O=XT, =207 Y5 p)5) + e Y5 g YY) (Y Y55, Y7 Ys)
£
G—tr(\7'Yp) 2T —2te (X7 Y 5 ) + e (Y Y5 Y71 Y ) 0= 2tr(Y7 Y 5)) + tr(Y 7 Y 5 Y71 Y )
&

Swamy and Arora (1972):

O-N-K 0 0
4| N-G-K O—%Tg - (@, 055 5,) 0
G-K ST, - (Y5 Y5 0 - tr(Y;1Ys)
&

Figure 3.2 Error components estimators for the nested error component model.
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To illustrate these different possibilities, we use the RiceFarms data set from plm.

data ("RiceFarms", package = "plm")
head (RiceFarms, 2)
id size status varieties bimas seed urea phosphate

1 101001 3 owner mixed mixed 90 900 80

2 101001 2 owner trad mixed 40 600 0
pesticide pseed purea pphosph hiredlabor famlabor

1 6000 80 75 75 2875 40

2 3000 70 75 75 2110 45
totlabor wage goutput noutput price region

1 2915 68.49 7980 6800 60 wargabinangun

2 2155 60.09 4083 3500 60 wargabinangun

The individual index is 1d (the fist column), we use region, the last column of the data
frame as the group index. The three lines below give the same results:

Rl <- pdata.frame(RiceFarms, index = c(id = "id", time = NULL, group = "region"))
R2 <- pdata.frame(RiceFarms, index = c(id = "id", group = "region"))
R3 <- pdata.frame(RiceFarms, index = c("id", group = "region"))
head (index (R1))
id time region
1 101001 1 wargabinangun
2 101001 2 wargabinangun
3 101001 3 wargabinangun
4 101001 4 wargabinangun
5 101001 5 wargabinangun
6 101001 6 wargabinangun

For the Produc data frame, it is easier to describe the structure of the sample as the first
three columns are the individual, time, and group indexes.

To estimate the nested error component model, the model must be set to 'nested’. We
first estimate the Swamy and Arora (1972) model:

data ("Produc", package = "plm")
nswar <- plm(log(gsp) ~ log(pc) + log(emp) + log(hwy) + log(water) +
log(util) + unemp, data = Produc,
model = "random", effect = "nested",
random.method = "swar", index = c(group = "region"))
summary (nswar)
Nested effects Random Effect Model
(Swamy-Arora's transformation)

Call:

plm(formula = log(gsp) ~ log(pc) + log(emp) + log(hwy) + log(water) +
log(util) + unemp, data = Produc, effect = "nested", model = "random",
random.method = "swar", index = c(group = "region"))

Balanced Panel: n = 48, T = 17, N = 816
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Effects:
var std.dev share
idiosyncratic 0.00135 0.03676 0.19

individual 0.00428 0.06541 0.60
group 0.00146 0.03815 0.21
theta:
Min. 1st Qu. Median Mean 3rd Qu. Max .
id 0.86493 0.86493 0.86493 0.86493 0.86493 0.86493

group 0.03961 0.04669 0.05714 0.05578 0.06458 0.06458

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.1062 -0.0248 -0.0018 -0.0001 0.0198 0.1828

Coefficients:

Estimate Std. Error t-value Pr(>|t])
(Intercept) 2.089211 0.145702 14.34 < 2e-16 ***
log (pc) 0.274124 0.020544 13,34 <= 2@=16 ==%
log (emp) 0.739838 0.025750 28.73 < 2e=1F @
log (hwy) 0.072736 0.022025 3.30 ©.001 =%
log (water) 0.076453 0.013858 5.52 4.6e-08 ***
log (util) -0.094374 0.016773 =5,62 2.5@=08 @i
unemp -0.006163 0.000903 -6.82 1.8e-11 **x*
Signif. codes:
@ Pw=el .00l "w=l @.01L "E" @05 ",V @.di " U i
Total Sum of Squares: 43

Residual Sum of Squares: 1.12

R-Squared: 0.974

Adj. R-Squared: 0.974

F-statistic: 5025.33 on 6 and 809 DF, p-value: <2e-16

We then update the model in order to use the two other estimators of the variances of the
components of the error. The results are summarized using the screenreg function of the
texreg package.

library ("texreg")

namem <- update (nswar, random.method = "amemiya")
nwalhus <- update (nswar, random.method = "walhus")
iswar <- update (nswar, effect = "individual")
iwith <- update (nswar, model = "within", effect = "individual")
screenreg (list ("fe-id" = iwith, "re-id" = iswar,
"Swamy Arora" = nswar, "Wallas-Hussein" = nwalhus,

"Amemiya" = namem), digits = 3)
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log (pc) 0.235 #%x 0.273 #%x 0.274 *%x 0.273 *%x 0.264 *%x
(0.026) (0.020) (0.021) (0.021) (0.022)
log (emp) 0.801 #%x 0.749 *%x 0.740 *%x 0.742 *%x 0.758 #%x
(0.030) (0.025) (0.026) (0.026) (0.027)
log (hwy) 0.077 * 0.062 ** 0.073 ** 0.075 *%x 0.072 **
(0.031) (0.022) (0.022) (0.022) (0.024)
log (water) 0.079 #%x 0.076 *%x 0.076 *%x 0.076 *%x 0.076 #%x
(0.015) (0.014) (0.014) (0.014) (0.014)
log (util) -0.115 ***  -0.098 ***  -0.094 **%*  -0.095 *%%* -0.102 ***
(0.018) (0.017) (0.017) (0.017) (0.017)
unemp -0.005 ***  -0.006 ***  -0.006 *** -0.006 *** -0.006 **%
(0.001) (0.001) (0.001) (0.001) (0.001)
(Intercept) 2.168 x%% 2.089 x%% 2.082 **% 2.131 **%*
(0.143) (0.146) (0.150) (0.160)
R"2 0.946 0.961 0.974 972 0.968
Adj. R"2 0.942 0.961 0.974 0.972 0.968
Num. obs. 816 816 816 816 816
s_idios 0.037 0.037 0.038 0.037
s_id 0.082 0.065 0.067 0.083

HEY P o2 0,001, *% P < 0,01, ¥ P < 0,05
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Tests on Error Component Models

The double dimensionality of panel data allows for much richer specifications than simple cross
sections or time series. This is both a blessing and a curse, given how much more complicated
the specification may become. In fact, all possible features from either cross sections or time
series, like distance-decaying correlation in — respectively — space or time, can coexist with indi-
vidual (time), time-(individual-) invariant heterogeneity. Moreover, diagnostic tests will usually
have a hard time distinguishing between different forms of persistence along the same dimen-
sion unless explicitly designed to take the “other” effect into account.

The specification problem of panel models is typically associated with the presence or absence
of individual effects, i.e., with the need to account for unobserved heterogeneity. Given that in
the vast majority of cases it will be inappropriate to rule out individual heterogeneity altogether,
the related issue emerges of whether it is safe to assume that the latter is uncorrelated with the
explanatory variables (and therefore to proceed in a random effects framework) or rather to pro-
ceed estimating out (transforming out) the individual effects in a fixed effects fashion. Hence,
tests for individual effects under either of the two approaches and Hausman-type tests for deter-
mining which one is appropriate are among the most popular diagnostic procedures in this field.

Next to the fundamental specification issues with individual effects , the remainder errors
can in turn be correlated: either in time, in which case it will be crucial to distinguish
time-decaying persistence of idiosyncratic shocks from the time-invariant persistence deriving
from the presence of an individual effect; or in space, and then the issue becomes whether
correlation simply descends from participating in the same cross section or, provided the
data are referenced in some space (e.g., in geography), whether nearby observations are more
correlated than distant ones.

For these reasons, a rich toolbox of diagnostic and specification testing procedures has been
developed, which will be the subject of this chapter, presented roughly in the order given above
up to the issue of cross-sectional correlation. On the converse, spatial correlation proper will
be the subject of a separate chapter.

4.1 Tests on Individual and/or Time Effects

In order to test whether either individual or time effects are present, two approaches are pos-
sible:

o the first is to start from estimating said effects out (within model) and then perform a zero
restriction test,

e the second is to start from the oLs model and to infer about the presence of the effects
drawing on the oLs residuals.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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4.1.1 F Tests

The sum of squared residuals and the degrees of freedom for the within model are: €] ¢, and
N(T —1) — K. Let the null hypothesis be the absence of individual effects so that the restricted
model is pooled oLs where the sum of squared residuals and the degrees of freedom are, respec-

tively, & (é,,c and NT — K — 1. Under H,), the test statistic:

CorsWéois = €4 NT — K = N + 1

ey Weéy N-1
follows a Fisher-Snedecor F with N — 1 and NT — K — N + 1 degrees of freedom.

The test of the null hypothesis of no individual and time effects is obtained by using the
two-ways within model and the pooling model:

Eorsbors — Eqy W2 NT =K~ N—-T +1

é;—WWZéZW N+T-1

Finally, the test of the null hypothesis of, say, no time effects, but in the presence of individual
effects is:
e Weéy — & W2y NT—-K-N—-T+1
bpvy W2éyy T-1

4.1.2 Breusch-Pagan Tests

The Breusch and Pagan (1980) test is a Lagrange multipliers test based on the oLs residuals. It is
based on the score vector g(0) = L ' e, the vector of partial derivatives of the log-likelihood
function from the restricted model. The variance of the score vector is the information

matrix:

_rf(_9dInL
1(6) —E< 0060T> )

We estimate a restricted model characterized by a parameter vector §; under H,, we have:
g(0) ~ N0, V()
or, denoting by g and V the score and its estimated variance in the restricted model:
AT =142
§Vve
which is distributed as a y? where the degrees of freedom are equal to the number of restric-

tions. We'll first derive the test for the one-way individual error component model, for which
the log-likelihood function is:

NT NT-1), , N, 2
InL = -5 In27 — ——1Ino, - 5 In(oy, + T'o;)
T T
_e W,e B €' Be
2 2 2
20} 2(cy + Toy)
The gradient is then:
dlnL _N@T-) N e'W,e €'B,e
g(g) _ do? _ 20?2 2(0’5+T{r?]) 204 2(0’3+T6§)2
olnL NT Te"B,e

907 T 2024702 | 2Ao*HTo2)
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. . . . - dlnL
To derive the variance, we start by calculating the matrix of second derivatives H(0) = aageT:
N(T-1) N e"We ¢'B,e NT Te"B,e
H(0) — 20 2(0’3+To‘§)2 [ (0'3+T0'5)3 2(¢7§+Tz>',2’)2 (65+T63)3
NT Te"B,e NT? T?¢"B,e
2(63+T¢73)2 (trf-%—To';)2 2(63+To'3)2 (0'3+T63)3

To compute the expectation of this matrix, we note that E(e" W,e) = N(T — 1)o7 and
E(¢"B,e) = N(o} + To)):

_N(T-1) N ___NT
204 2(c2+Tao2)? 2(c2+Tc2)?
E(H(9)) = ' !
_ NT __NT
2(05+T‘772,)2 2(63+T0-721)2

To compute the test statistic, we impose the null hypothesis: H;, : o; = 0 (absence of individ-

ual effects). In this case, the estimator for the parameters is OLs and that of 62 is éTé/NT. The
score and its estimated variance are then:

X 0
g0) =

NT [ €'B,é
byt -1
262 No?

A 1 1
BHO) = 2 ( : T>

whose inverse is:

10) = 262 T -1
()_NT(T—I) -1 1

Finally, the test statistic is:

LM nr( Be Y 2 NT_ () €8¢ ’
= —_ X = —_
" 262\ 1 - Nég? NT(T-1) 2T-1) Né?

Or, replacing 62 by é"é/NT:

NT €ATB,,€A :
LM, = T -1

2T -1) éTé

which is asymptotically distributed as a y? with 1 degree of freedom.
The test of the time effect is likewise computed:

e\
M, =T (N2
KON =-1) évé

The Breusch-Pagan test extends easily to the two-ways error component model, as the statis-
tic can be written as the sum of the two previous statistics:

&Be \ e\
M, = T T—— -1 + NT N—— -1
weeuqT -1) évé 2(N — 1) évé

and follows a y? with two degrees of freedom under the null hypothesis of no individual and
time effects.
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For unbalanced panels, the relevant statistics are:!

o s, e 2

M, =555 (7 1)
LM o éTs,é 1 2
e =i ()

LM,, =LM, + LM,

These statistics present two problems. The first one is that the alternative hypothesis is that
the effects’ variance is non-zero, i.e., strictly positive or negative; when a variance must be
non-negative. For the one-way error component model, Honda (1985) and King and Wu (1997)
proposed a one-sided test based on the square root of the above statistic, which is then normally
distributed. The Honda statistic is then 4/LM, and its 5% critical value is 1.64 (and likewise for
the test of no time effects). For the two-ways error components model, Honda (1985) proposed

to use —‘LM”\% VM as Baltagi et al. (1992) and King and Wu (1997) use:

—_,/LM”+—_,/LM,4
VN+T -2 VN+T -2

Baltagi et al. (1992), following Gourieroux et al (1982) proposed to replace the statistic by 0.
The modified statistic is then defined by:

é'B,é é'Bé ?
_NT max | 0, T -1 ]),max{ OLN—— -1
2(N — 1) Té éTe

which follows a mixed y? distribution: y2% ~ ( ) 720) + ( ) X))+ <i) 742

Example 4.1 F and LM tests — RiceFarms data set

A F test for the presence of individual effects is implemented in the function pFtest, which
compares the nested models oLs and within. Under the null of no individual effects, the statistic
is distributed as an F with degrees of freedom equal to the number of individuals minus 1 on
the numerator and to the degrees of freedom of the within model on the denominator. We first
estimate the relevant models:

data ("RiceFarms", package = "splm")

Rice <- pdata.frame(RiceFarms, index = "id")

rice.w <- plm(log(goutput) ~ log(seed) + log(totlabor) + log(size), Rice)

rice.p <- update(rice.w, model = "pooling")

rice.wd <- plm(log(goutput) ~ log(seed) + log(totlabor) + log(size), Rice,
effect = "twoways")

and we then supply the testing function with two fitted models:

pFtest (rice.w, rice.p)

F test for individual effects

1 See Baltagi and Li (1990).
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data: 1log(goutput) ~ log(seed) + log(totlabor) + log(size)
F=1.7, dfl = 170, df2 = 850, p-value = 3e-06
alternative hypothesis: significant effects

The formula-data syntax may also be used:
pFtest (log(goutput) ~ log(seed) + log(totlabor) + log(size), Rice)
Unsurprisingly, the absence of individual effects is strongly rejected.
To test the absence of individual and time effects, one would use:
pFtest (rice.wd, rice.p)
F test for twoways effects
data: 1log(goutput) ~ log(seed) + log(totlabor) + log(size)

F = 4.3, dfl = 180, df2 = 850, p-value <2e-16
alternative hypothesis: significant effects

or

pFtest (log(goutput) ~ log(seed) + log(totlabor) + log(size), Rice,
effect = "twoways")

To test the absence of time effects allowing for the presence of individual effects, we compare
the individual and the two-ways effect within models:
pFtest (rice.wd, rice.w)

F test for twoways effects
data: log(goutput) ~ log(seed) + log(totlabor) + log(size)

F = 70, dfl1 = 5, df2 = 850, p-value <2e-16
alternative hypothesis: significant effects

Once more, the null hypothesis is very strongly rejected.

The Breusch and Pagan (1980) test can be computed using the function plmtest. The argu-
ment is either an oLsS model or a formula-data pair. By default, the Honda (1985) version is
computed. The direction of the effects, as usual, is determined by the ef fect argument.

plmtest (rice.p)

Lagrange Multiplier Test - (Honda) for balanced

panels
data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
normal = 4.8, p-value = 7e-07

alternative hypothesis: significant effects
plmtest (log (goutput) "log(seed) +1log (totlabor) +log(size), Rice)
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Lagrange Multiplier Test - (Honda) for balanced

panels
data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
normal = 4.8, p-value = 7e-07

alternative hypothesis: significant effects
plmtest (rice.p, effect = "time")

Lagrange Multiplier Test - time effects (Honda) for

balanced panels

data: log(goutput) log(seed) + log(totlabor) + log(size)
normal = 59, p-value <2e-16
alternative hypothesis: significant effects

plmtest (rice.p, effect = "twoways")

Lagrange Multiplier Test - two-ways effects (Honda)
for balanced panels

data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
normal = 45, p-value <2e-16
alternative hypothesis: significant effects

The two useful extensions proposed by Baltagi et al. (1992) can be applied to test the existence
of individual and time effects, setting the argument t ype to  kw’ or ' ghm’ to use respectively
the techniques proposed by King and Wu (1997) and Gourieroux et al. (1982).

plmtest (rice.p, effect = "twoways", type = "kw")

Lagrange Multiplier Test - two-ways effects (King
and Wu) for balanced panels

data: log(goutput) log(seed) + log(totlabor) + log(size)
normal = 59, p-value <2e-16
alternative hypothesis: significant effects

plmtest (rice.p, effect = "twoways", type = "ghm")

Lagrange Multiplier Test - two-ways effects
(Gourieroux, Holly and Monfort) for balanced panels

data: log(goutput) log(seed) + log(totlabor) + log(size)
chibarsg = 3500, df0 = 0.00, dfl = 1.00, df2 = 2.00,

w0 = 0.25, wl = 0.50, w2 = 0.25, p-value <2e-16
alternative hypothesis: significant effects

4.2 Tests for Correlated Effects

We have seen that if the model errors are not correlated with the explanatory variables, then
both estimators, fixed as well as random effects, are consistent. To compare them, we keep
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assuming that the idiosyncratic component of the error term (E(X"v) = 0) is uncorrelated to
the regressors. Two situations are then possible:

e E(XTn) = 0: the individual effects are not correlated with the explanatory variables; in this
case, both estimators are consistent, but the random effects estimator is more efficient than
the fixed effects.

e E(XT#) # 0: the individual effects are correlated with the explanatory variables; in this case,
the fixed effects estimator, which estimates out the individual effects, is consistent. On the
contrary, the random effects estimator is inconsistent because one component of the com-
posite error, the individual effect, is correlated with the explanatory variables.

4.2.1 The Mundlak Approach

In order to clarify the relationship between the two estimators, Mundlak (1978) considered the
following model:
ynt = x;lrtﬁ + Wn + Vnt
with
W, =X, 7+,
The individual effects are therefore correlated with the explanatory variables, being they equal

to the sum of a linear combination of the individual means of said variables and of an error term
y,,. The model to be estimated is then written, in matrix form, as:

y=Xp+BXr+(y®J)n+v

The error term € = (I, ® J;)n + v has the usual properties of the error components model,
i.e., zero mean and a variance equal to:

Q=oc.lyr+0,(Iy®J;) =0, W +0/B

The GLs model is estimated by applying oLs on the data transformed pre-multiplying each
variable by 270 = W + ¢B, with ¢ = %,

0,

We thenhavej = Wy + ¢pBy, X = WX + »BX and BX = ¢BX. The GLS estimator is then writ-
ten as:

A

T

R -1
A\ | XTWX+¢XTBX ¢*XTBX XTWy + $>X By
X BX X BX #*X By

p

N

Using the formula of the inverse of a partitioned matrix (see equation 2.18), we get:
i XTWx)! —(XTWX)! XTWy + ¢*X By
=W TwX) + L(XTBX)! #*X By
_ XTWX) 1 XT Wy _ Py
# (XTBX)"'XTBy — (XTWX)"LXT Wy s — Py

vl )2 | @ —(XTWX)
) ° -XTwx)™! (XTWX)‘1+$(XTBX)‘1

=

and:
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The fundamental result of Mundlak (1978) is therefore that, if one correctly accounts for the
correlation between the error terms and the explanatory variables, the GLs estimator is the
within estimator.

4.2.2 Hausman Test

This results also suggests a way to test for the presence of correlation; in fact, testing for no
correlation corresponds to testing for: H, : # = 0. Under H,, we have:

AV@#) 2
which is distributed as a y? with K degrees of freedom. Well, we have # = /§B - ﬁw and
V(ﬁ) = V(ﬂw) + V(ﬁB)~

This test statistic is one version of the test proposed by Hausman (1978). The general principle
consists in comparing two models A and B where:

e under H,: A and B are both consistent, but B is more efficient than A,
e under H;: only A is consistent.

The idea of the test is that if H,, is true, then the estimated coefficients from the two models
shall not diverge; under the alternative, they will. The test is therefore based on f, — f; and
Hausman showed that, under H,, the variance of this difference is simply: V(3, — fz) = V(4,) —
V(By).

The most common version of this test is based on comparing the within and the
GLs estimators. The difference between the two is: § = fiyy — flos- Under the hypothesis
of no correlation between errors and explanatory variables, we have plim g = 0. The variance
of g is:

V(@) = V(By) + V(Bers) — 2c0v(Pry. fys)

To determine these variances and covariances, we write the two estimators as functions of
the errors: B, = (XTQX)'XTQ e and fyy = (XTWX)'XTWe. We then have: V(f,,,) =
XTQ1X)™, V(hy) = 62(XTWX)™" and cov(fy, fes) = (XTQ X)L, The variance of § is then
simply:

V(@) =2 XWX - (XTQ )
and the test statistic becomes:
V@ 'q

which, under Hy, is distributed as a y* with K degrees of freedom.

4.2.3 Chamberlain’s Approach

Chamberlain (1982) proposed a more general model than that of Mundlak (1978). In his model,
the individual effects are not assumed to be a linear function of the means of the explanatory
variables anymore, but of their values over the whole time period.

Denote y, = (9,1, ---,y,r) the vector of length T containing the values of the explanatory
variables for the #-th individual, and X, the T X K matrix containing the values of K explanatory
variables for the T observation periods for the n-th individual. , = vec(X,,) is a vector of length
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T X K obtained by stacking the columns of X,. The model is then written as:
Y, =1 @ Bx, +y, +v, (4.1)
with:
v, =7'%,+1, (4.2)
Substituting (4.2) in (4.1), we get:
Vo=@, @B +jrx, +m,+ v, =1x, + p, + v, (4.3)
The parameter matrix I1, of dimension 7' X (T X K), contains two types of parameters:

o the vector of parameters g, which measure the marginal effect of the explanatory variables
on the response,

o the vector of parameters y, measuring the marginal effect of the explanatory variables in each
period on the individual effect.

The y vector is only marginally interesting per se, but its estimation allows to consistently
estimate f. If » = 3 and K = 2, the IT matrix takes the form:

B B O 0 0 O Y11 Y12 Y21 Va2 V31 V32
0 0 B B, O O |+l vu 712 Y1 Y22 731 73
0 0 0 0 B B Yiu Y12 Y1 Y2 Y31 Va2

We then have a system of T equations containing the same explanatory variables x,,. In this
case, the generalized least squares estimator is the SUR estimator. The explanatory variables
being the same across equations, this can be obtained simply by estimating each individual
equation separately by oLs. If the assumptions of the fixed effects model hold, then the estima-
tion of each column of the IT matrix will yield just about equal coefficients, with the exception
of those situated on the diagonal.

4.2.3.1 Unconstrained Estimator
The coefficients of the ™ row of IT are then:

More generally, we can write the estimator of I in two different ways. The first consists in
defining:

T T
X N
X7 T
X=|"?]and y= 72
Xy N

We have then:

ﬁT - (XTx)—ley
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In order to analyze the properties of this estimator, it is easier to consider the vector of coef-
ficients 7 = Vec I1" obtained by stacking the rows of I1. Defining;

I @x] N
¥ IT?xg ot y= )’.2
I @« IN
-1
A=, ® (Z x,ycl) Z(IT ®x,)y,

Denoting s, = Zijzl x,x) /N and substituting, in the last expression, y by its expression in
the “true” model:

. 1 _ 1 _
i-n=—0;® s2h ;(IT ®x,)e, = ;(IT ®s.lx,)e,
\/]Tl(ﬁ' —-r) = L Ir® s;xlxn)en
VN Z '

The limiting distribution of \/ZV (# — r) is the same as that of:

L Z n(l; ® o, x,)e,

VN
with 6, = E(x,x) because Y nx,x! /N — E(x,x]).
AsE([I; ® x,]e,) = 0, the central limit theorem implies that:

VN = 1) ~ N0, Q)

Q=V (ﬁ z nl; ® a;xlxn)€n>
- %E (Z n(ly ® 6,%,)e, ¥ ney(ly ® x;am))
- %E (Z n(ly ® o,.x)e,el (I ® x;am))

= %E (Z ne, €] ® (axxxnxlam)>

If the error variance of # is not correlated with x,x!, this matrix simplifies to:

Ql = E(ene;lt— ® O-xx)
Finally, if the errors are homoscedastic, we get an even simpler expression:
92 =0 ® Ox

with o = E(ee™).
An estimator of Q can be obtained considering the sample equivalent. Denoting by ¢, the
estimation residuals, we get:

A 1 A A - -
Q= N Z n(é, e} @ s x,x)s;h)
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O, = % Y ne,él @5
1 N
szﬁ;énA;lr@S;l

4.2.3.2 Constrained Estimator
In a second time, Chamberlain (1982) utilizes the asymptotic least squares estimator in order
to obtain an estimator of the structural coefficients of the model, denoted by 6. These are
made of the K coefficients associated to the explanatory variables of equation (4.1) and of the
K X T coefficients from equation (4.2) concerning the individual effects. There are therefore
K % (T + 1) structural coefficients, while the number of coefficients in the matrix ITis K X T?2.
The relation between the two coefficient vectors can be expressed as # = F6, F being a matrix
of dimensions (K X T?) x (K x (T + 1)).

The restricted model is obtained employing the method of asymptotic least squares, consist-
ing in minimizing a quadratic form in the deviations between # and F:

(# — FO)"A(# — F)
The first-order conditions for a minimum can be written as:
—2FTA(# - F0) =0
which yields the following estimator:
O =(FTAF)'FTA#

This estimator is consistent regardless of the weighting matrix employed. Just as with the
generalized method of moments, the estimator is efficient if A~! is the covariance matrix of
the residuals’ vector. If the hypotheses are verified (x = F0), the latter can be written as: A~} =
V(%) = Q/N.

4.2.3.3 Fixed Effects Models

If the hypotheses 7 = F6 hold, the minimum of the objective function from the asymptotic
least squares method is distributed as a y? with degrees of freedom equal to the difference in
length between the two vectors 7 and 6, ie., T> X K — (T + 1) x K = (T?> — T — 1) x K. This
enables the computation of a test of the restrictions on the coefficients implied by the fixed
effects model.

Angrist and Newey (1991) have shown that these restrictions can more simply be tested using
the results of T artificial regressions of the fixed effect model’s residuals of a specific period on
the covariates for every period. Denoting R? the coefficient of determination of the artifactual
regression of residuals of period ¢, we have:

T
(NT —KT) ) R?
=1
which follows a y2? with (72 — T — 1) X K if the underlying hypotheses of the within model are
relevant.

Example 4.2 Hausman test — RiceFarms data set
The Hausman test is performed with the phtest function, which can either take as arguments
two estimated models (here: the within and the GLS) or use the formula — data interface:
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data ("RiceFarms", package = "splm")

Rice <- pdata.frame(RiceFarms, index = "id")

rice.w <- plm(log(goutput) ~ log(seed) + log(totlabor) + log(size), Rice)
rice.r <- update(rice.w, model = "random")

phtest (rice.w, rice.r)

Hausman Test

data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
chisqg = 3.8, df = 3, p-value = 0.3

alternative hypothesis: one model is inconsistent

Under the hypothesis of no correlation between the regressors and the individual effects,
the statistic is distributed as a y? with three degrees of freedom. This hypothesis, with a
p-value of 29%, is not rejected at the 5% confidence level. One could get the same result

following the Mundlak (1978) approach, drawing on the difference between the within and
between estimators:

rice.b <- update(rice.w, model = "between")
cp <- intersect (names (coef (rice.b)), names (coef (rice.w)))
dcoef <- coef (rice.w) [cp] - coef (rice.b) [cp]

V <- vcov(rice.w) [cp, cp] + vcov(rice.b) [cp, cpl
as.numeric (t (dcoef) %*% solve (V) %$*% dcoef)
[1] 3.773

This result is confirmed by the correlation coefficient between the individual effects (esti-
mated by the fixed effects of the within model) and the individual means of the explanatory
variable, which is obtained by applying the between function to the series.

cor (fixef (rice.w), between (log(RiceS$goutput)))
[1] 0.448

The correlation is positive but moderate.

The Chamberlain test is available in the function piest. It is computed using the usual
formula-data interface.

data ("RiceFarms", package = "splm")

pdim(RiceFarms, index = "id")

Balanced Panel: n = 171, T = 6, N = 1026

piest (log(goutput) ~ log(seed) + log(totlabor) + log(size),
RiceFarms, index = "id")

Chamberlain's pi test

data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
chisq = 110, df = 87, p-value = 0.03

2 Note that we use between and not Between, the latter returning a vector of the same length as the series with
the individual means repeated T, times.
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The variant of the Chamberlain test proposed by Angrist and Newey (1991) is available with
the aneweytest function which uses the same interface.

aneweytest (log (goutput) ~ log(seed) + log(totlabor) + log(size),
RiceFarms, index = "id")

Angrist and Newey's test of within model

data: log(goutput) ~ log(seed) + log(totlabor) + log(size)
chisqg = 140, df = 87, p-value = 2e-04

The restrictions implied by the within model are rejected by both tests at the 5% level,
although they are not rejected at the 1% level for Chamberlain’s version of the test.

4.3 Tests for Serial Correlation

A model with individual effects has composite errors that are serially correlated by definition.
The presence of the time-invariant error component gives rise to serial correlation that does
not die out over time; thus standard tests applied on pooled data usually end up rejecting the
null of spherical residuals. There may also be serial correlation of the time-decaying kind in the
idiosyncratic error terms, e.g., as an AR(1) process. By “testing for serial correlation” we mean
testing for this latter kind of dependence.

For these reasons, the subjects of testing for individual error components and for serially
correlated idiosyncratic errors are closely related. In particular, simple (marginal) tests for one
direction of departure from the hypothesis of spherical errors usually have power against the
other one: in case it is present, they are substantially biased toward rejection. Joint tests are
correctly sized and have power against both directions but usually do not give any informa-
tion about which one actually caused rejection. Conditional tests for serial correlation that
take into account the error components are correctly sized under presence of both departures
from sphericity and have power only against the alternative of interest. While most powerful
if correctly specified, the latter, based on the likelihood framework, are crucially dependent on
normality and homoscedasticity of the errors.

In plm a number of joint, marginal, and conditional ML-based tests are provided, plus some
semi-parametric alternatives that are robust versus heteroscedasticity and free from distribu-
tional assumptions.

More tests can be obtained by comparing nested models, in a likelihood ratio test framework,
or by restriction on a more general model, in the Wald test framework.

4.3.1 Unobserved Effects Test

The unobserved effects test a la Wooldridge (see Wooldridge, 2010, 10.4.4), is a semi-parametric
test for the null hypothesis that o; = 0, i.e., that there are no unobserved effects in the residuals.
Given that under the null, the covariance matrix of the residuals for each individual is diagonal,
the test statistic is based on the average of elements in the upper (or lower) triangle of its esti-
mate, diagonal excluded: N-/2 3N ST-U ST +1 €46, (Where € are the pooled oLs residuals),
which must be “statistically close” to zero under the null, scaled by its standard deviation:

N T-1 T A A
Zn:l Zt:l Zs=t+1 €utCns
N T-1 T 2 2
[Zn:l < t=1 25=t+1 énténs> ]

W =
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This test is (N-) asymptotically distributed as a standard normal regardless of the distribution
of the errors. It does also not rely on homoscedasticity.

It has power both against the standard random effects specification, where the unobserved
effects are constant within every group, as well as against any kind of serial correlation. As such,
it “nests” both individual effects and serial correlation tests, trading some power against more
specific alternatives in exchange for robustness.

While not rejecting the null favors the use of pooled oLs, rejection may follow from serial
correlation of different kinds, and in particular, quoting Wooldridge (2010, 10.4.4), “should not
be interpreted as implying that the random effects error structure must be true”.

Example 4.3 unobserved effects test - RiceFarms data set
Below, the test is applied to the rice farms data:

data ("RiceFarms", package="plm")

Rice <- pdata.frame(RiceFarms, index = "id")

fm <- log(goutput) ~ log(seed) + log(totlabor) + log(size)
pwtest (fm, Rice)

Wooldridge's test for unobserved individual effects

data: formula

z = 2.9, p-value = 0.003
alternative hypothesis: unobserved effect

The null hypothesis of no unobserved effects is rejected.

4.3.2 Score Test of Serial Correlation and/or Individual Effects

The Wooldridge testing procedure will detect very general forms of persistence in the errors but
give few directions toward a finer specification. If one is willing to make more specific paramet-
ric hypotheses, a maximum likelihood approach will allow to detect the features of persistence
in a finer way.

The random effects model can be extended to having idiosyncratic errors that follow an
autoregressive process of order 1 (AR(1)):

y=a+Xf+e
e=(Iy®jrn+v
Vi=wv, .+ ¢

where the now familiar hypotheses of the random effects model apply, i.e., individual effects %
are independent of both the regressors and the idiosyncratic errors v. Moreover, normality is
assumed for both error components.

The specification analysis of the above model requires telling apart the time-invariant indi-
vidual effects from the time-decaying persistence due to the AR(1) component. As observed,
the presence of individual effects may affect tests for serial correlation and vice versa. Several
alternative strategies can be used, based on the following tools:

e ajoint test, which has power against both alternatives,
e marginal tests, testing the null hypothesis of no serial correlation while maintaining the
hypothesis of no individual effects under both the null and the alternative hypothesis,
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e locally robust tests, i.e., marginal tests with a correction that makes them robust to local
deviations from the maintained hypothesis,

e conditional test, i.e., testing the null hypothesis of no serial correlation, the hypothesis of
the presence of individual effects being maintained under both the null and the alternative
hypothesis.

The advantage of the robust tests is that the unconstrained model (RE-AR(1) for random effect
model with first-order auto-regressive errors) need not be estimated.

Baltagi and Li (1991) and Baltagi and Li (1995) proposed a joint test of no serial correlation
and no individual effects. The test statistic is:

_ NT?
W T — 1)(T — 2)
with A = é7S,é/€7é and B = €7¢, /€7¢, € being the oLs residuals.

Baltagi and Li (1995) also proposed a marginal test of serial correlation, the maintained
hypothesis being the absence of individual effects:

2
- _NTI"_p
voouT-1
Symmetrically, the marginal test of individual effects, with the maintained hypothesis of no
serial correlation is simply the Breusch-Pagan test:

NT? A
2T -1)

They also proposed a conditional test of serial correlation, the maintained hypothesis being
the presence of individual effects. This latter test (LM, in the original paper) is based on the
residuals of the random effect model estimated by the maximum likelihood method. Under the
null of serially uncorrelated errors, the test turns out to be identical for both the alternative of
AR(1) and MA(1) processes.

Bera et al. (2001) derive locally robust tests both for individual random effects and for
first-order serial correlation in residuals as “corrected” versions of the standard LM test LM,,
and LM, . They write respectively:

. NT?
M =T Da -2/

LM [A? — 4AB + 2TB?]

LM

LM, =

(B+A/T)*

and
M, = NT

AT -1)(1-2/T)
While still dependent on normality and homoscedasticity, these are robust to local departures
from the hypotheses of, respectively, no serial correlation or no individual effects. Although
suboptimal, these tests may help detecting the right direction of the departure from the null,
thus complementing the use of joint tests. Moreover, being based on pooled oLs residuals,
the BsY tests are computationally far less demanding than the conditional test of Baltagi and
Li (1995).

On the other hand, the statistical properties of these locally corrected tests are inferior to
those of the non-corrected counterparts when the latter are correctly specified. If there is no
serial correlation, then the optimal test for random effects is the likelihood-based LM test of
Breusch and Pagan (with refinements by Honda, see plmtest), while if there are no indi-
vidual effects, the optimal test for serial correlation is the Breusch-Godfrey test. If the pres-
ence of a random effect is taken for granted, then the optimal test for serial correlation is the
likelihood-based conditional LM test of Baltagi and Li (1995) (see pbltest).

(A + 2B)>
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Example 4.4 LM tests for random effects and/or serial correlation — RiceFarms
data set

From the LM test in a previous example, the Rice Farming data show evidence of individual
effects; and from the Hausman test, the latter seem to comply with the hypothesis that they are
uncorrelated with the covariates. We now investigate the presence of serial correlation in the
context of the RE-AR(1) model outlined above.

The joint LM test for random effects and serial correlation under normality and homoscedas-
ticity of the idiosyncratic errors has been derived by Baltagi and Li (1991) and Baltagi and Li
(1995) and is implemented as an option in pbsytest, by setting the test to / J’. In the case
of the rice farming model, the test strongly rejects. Rejection of the joint test, though, gives no
information on the direction of the departure from the null hypothesis, i.e., is rejection due to
the presence of serial correlation, of random effects, or of both?

Bera et al. (2001)’s locally robust tests can provide statistical evidence about the direction
of misspecification in the (doubly) restricted model. In fact, the presence of the “other” effect
(individual effects when testing for serial correlation and vice versa) will not influence the test
statistic as long as the magnitude is moderate. How much of the “other” effect is tolerated before
the test statistic becomes biased, however, is an empirical question and will be case-specific,
although the simulations in the original paper can provide a rough assessment.

The locally robust BsY tests for, respectively, serial correlation or individual effects are imple-
mented in the function pbsytest, by setting the test argument to ' AR’ (default) or 'RE’.
The test for random effects is implemented in the one-sided version, which takes into account
that the variance of the random effect must be non-negative.

bsy.LM <- matrix(ncol=3, nrow = 2)
tests <- c("J", "RE", "AR")
dimnames (bsy.LM) <- list(c("LM test", "p-value"), tests)
for (i in tests) ({
mytest <- pbsytest(fm, data = Rice, test = i)
bsy.ILM[1:2, i] <- c(mytestS$statistic, mytestsSp. value)

}

round (bsy.LM, 6)

J RE AR
LM test 62.65 0.3351 39.23
p-value 0.00 0.3688 0.00

The robust tests allow us to discriminate between time-invariant error persistence (random
effects) and time-decaying persistence (autoregressive errors), concluding in favor of the
second.

Finally, the optimal conditional test of Baltagi and Li for serial correlation, allowing for
random effects of any magnitude, is computed using the pb1test function, using the residuals
of the random effects maximum likelihood estimator:

pbltest (fm, Rice, alternative = "onesided")
Baltagi and Li one-sided LM test
data: fm

z = 6.1, p-value = 6e-10
alternative hypothesis: AR(1)/MA(l) errors in RE panel model

Serial correlation is detected, i.e., we conclude that y # 0 in the encompassing model.
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4.3.3 Likelihood Ratio Tests for Ar(1) and Individual Effects

Likelihood ratio (LR) tests for restrictions are based on the likelihoods from the general
and the restricted model. The test statistic is simply twice the difference of the values of the
log-likelihood function:

2[InL@B) — InL@)] ~ x2

where 0 is the full vector of parameter estimates from the unrestricted model and 8 from the
restricted one, and m is the number of restrictions.

A likelihood ratio test for serial correlation in the idiosyncratic residuals can be done, in gen-
eral, as a nested models test comparing the model with spherical idiosyncratic residuals with the
more general alternative featuring AR(1) residuals. If both estimated models allow for random
effects, then the test will become conditional on the latter feature.

Thus,

LR, = 2[In L@, 7, ) — In L(#, B)) ~ i}

and symmetrically for LR, .

Example 4.5 Likelihood ratio tests — Grunfeld data set

Maximum likelihood estimation of linear models with or without either random individual
effects or serially correlated errors can be estimated, e.g., with functionality from the nlme
package. In its notation, the RE specification is a model with only one random effects regressor:
the intercept. Below we report coefficients of Grunfeld’s model estimated by GLs and then
by ML.

library ("nlme")

data (Grunfeld, package = "plm")

reGLS <- plm(inv ~ value + capital, data = Grunfeld, model = "random")
reML <- lme(inv ~ value + capital, data = Grunfeld, random "1 | firm)
rbind (coef (reGLS), fixef (reML))

(Intercept) value capital
[1,] -57.83 0.1098 0.3081
2,1 -57.86 0.1098 0.3082

Linear models with groupwise structures of time dependence may be fitted by gls, specifying
the correlation structure in the correlation option:

1ImARIML <- gls(inv ~ value + capital, data = Grunfeld,
correlation = corAR1 (0, form = " year | firm))

and analogously the random effects panel with, e.g., AR(1) errors (see Baltagi, 2013, Ch. 5) may
be fit by 1me specifying an additional random intercept:

reARIML <- lme(inv ~ value + capital, data = Grunfeld,
random = ~ 1 | firm, correlation = corAR1(0, form = " year \ firm))
summary (reAR1ML)
Linear mixed-effects model fit by REML
Data: Grunfeld
AIC BIC logLik
2095 2115 -1041
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Random effects:
Formula: "1 | firm
(Intercept) Residual
StdDev: 78 .04 72.8

Correlation Structure: AR(1)
Formula: “year | firm
Parameter estimate(s):
Phi
0.8238
Fixed effects: inv ~ value + capital
Value Std.Error DF t-value p-value

(Intercept) -40.28 30.694 188 -1.312 0.1911

value 0.09 0.008 188 11.770 0.0000
capital 0.31 0.032 188 9.737 0.0000
Correlation:

(Intr) value
value -0.239
capital -0.280 -0.125

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.40759 -0.31847 0.04847 0.19863 3.30040

Number of Observations: 200

Number of Groups: 10

Let us compare either with the restricted alternative. The GLs model without correlation in
the residuals is the same as oLs, and one could well use 1m for the restricted model. Here we
estimate it by gls.

ImML <- gls(inv ~ value + capital, data = Grunfeld)
anova (1mML, 1mAR1ML)
Model df AIC BIC logLik Test L.Ratio p-value
1mML 1 4 2400 2413 -1196
1ImAR1ML 2 5 2095 2111 -1042 1 vs 2 307.3 <.0001

The AR(1) test on the random effects model is to be done in much the same way, using the
random effects model objects estimated above:

anova (reML, reAR1ML)

Model df AIC BIC logLik Test L.Ratio p-value
reML 1 5 2206 2222 -1098
reAR1ML 2 6 2095 2114 -1041 1 vs 2 113 <.0001

A likelihood ratio test for random effects compares the specifications with and without ran-
dom effects and spherical idiosyncratic errors:

anova (1lmML, reML)

Model df AIC BIC logLik Test L.Ratio p-value
1mML 1 4 2400 2413 -1196
reML 2 5 2206 2222 -1098 1 vs 2 196.4 <.0001
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The random effects, AR(1) errors model in turn nests the AR(1) pooling model; therefore, a
likelihood ratio test for random effects sub AR(1) errors may be carried out, again, by comparing
the two autoregressive specifications:

anova (1mARIML, reAR1ML)

Model df AIC BIC logLik Test L.Ratio p-value
1mARIML 1 5 2095 2111 -1042
reAR1ML 2 6 2095 2114 -1041 1 vs 2 2.134 0.144

whence we see that the Grunfeld model specification doesn’t seem to need any random effects
once we control for serial correlation in the data.

4.3.4 Applying Traditional Serial Correlation Tests to Panel Data

A general testing procedure for serial correlation in fixed effects (FE), random effects (RE),
and pooled-oLs panel models alike can be based on considerations in (Wooldridge, 2010,
10.7.2). For the random effects model, Wooldridge (2010) observes that under the null of
homoscedasticity and no serial correlation in the idiosyncratic errors, the residuals from
the quasi-demeaned regression must be spherical as well. Else, as the individual effects are
wiped out in the demeaning, any remaining serial correlation must be due to the idiosyncratic
component. Hence, a simple way of testing for serial correlation is to apply a standard serial
correlation test to the quasi-demeaned model. The same applies in a pooled model, w.r.t.the
original data.

The FE case is different. It is well known that if the original model’s errors are uncorrelated,
then FE residuals are negatively serially correlated, with cor(é,,, é,,) = —1/(T — 1) for each ¢,s
(see Wooldridge, 2010, 10.5.4). This correlation clearly dies out as T increases, so this kind of
AR test is applicable to within model objects only for T “sufficiently large” Baltagi and Li (1995)
derive a basically analogous T-asymptotic test for first-order serial correlation in a FE panel
model as a Breusch-Godfrey LM test on within residuals (see Baltagi and Li, 1995, par. 2.3 and
formula 12). They also observe that the test on within residuals can be used for testing on the RE
model, as “the within transformation wipes out the individual effects, whether fixed or random.”
Generalizing the Durbin-Watson test to FE models by applying it to fixed effects residuals is
documented in Bhargava et al. (1982). On the converse, in short panels the test gets severely
biased toward rejection (or, as the induced correlation is negative, toward acceptance in the
case of the one-sided Durbin-Watson test with alternative setto ' greater’). See below
for a serial correlation test applicable to “short” FE panel models.

Example 4.6 Breusch-Godfrey and Durbin Watson tests — RiceFarms data set

The functions pbgtest and pdwtest re-estimate the relevant quasi-demeaned model by
oLs and apply, respectively, standard Breusch-Godfrey and Durbin-Watson tests from package
Imtest to the residuals:

rice.re <- plm(fm, Rice, model='random')
pbgtest (rice.re, order = 2)

Breusch-Godfrey/Wooldridge test for serial
correlation in panel models

data: fm

chisqg = 36, df = 2, p-value = 2e-08

alternative hypothesis: serial correlation in idiosyncratic errors
pdwtest (rice.re, order = 2)



102

Panel Data Econometrics with R

Durbin-Watson test for serial correlation in panel
models

data: fm
DW = 1.7, p-value = 5e-07
alternative hypothesis: serial correlation in idiosyncratic errors

The tests share the features of their oLs counterparts, in particular the pbgtest allows test-
ing for higher-order serial correlation, which can be of particular interest for quarterly data. As
the functions are simple wrappers toward bgtest and dwtest, all arguments from the latter
two apply and may be passed on through the ‘..." operator.

As observed above, applying the pbgtest and pdwtest functions to an FE model is appro-
priate only if the time dimension is long enough. In the frequent case of "short” panels, one of
the two testing procedures due to Wooldridge (2010) and described in the next section should
be used instead.

4.3.5 Wald Tests for Serial Correlation using within and First-differenced Estimators

4.3.5.1 Wooldridge’s within-based Test

Due to the demeaning procedure, under the null of no serial correlation in the errors, the resid-
uals of an FE model must be negatively serially correlated, with cor(é,,, é,,) = —1/(T — 1) for
each ¢,s. Wooldridge suggests basing a test for this null hypothesis on a pooled regression of
FE residuals on their first lag:

€ =a + Y€1 + Cnt

Rejecting the restriction 6 = —1/(T — 1) makes us conclude against the original null of no serial
correlation.

The function carrying out this procedure estimates the FE model, retrieves residuals, then
estimates an auxiliary (pooled) AR(1) model, and tests the above-mentioned restriction on .
Internally, a heteroscedasticity- and autocorrelation-consistent covariance matrix (vcovHC,
see next chapter) is used, as originally prescribed. The test is applicable to any FE panel model
and in particular to “short” panels with small 7" and large N.

Example 4.7 serial correlation tests for fixed effects models — Emp1 UK data set
In the following example, Wooldridge’s within-based serial correlation test is applied to the
EmplUK data:

data ("EmplUK", package = "plm")
pwartest (log(emp) ~ log(wage) + log(capital), data = EmplUK)

Wooldridge's test for serial correlation in FE
panels

data: plm.model
F = 310, dfl = 1, df2 = 890, p-value <2e-16
alternative hypothesis: serial correlation
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We strongly reject the null of no serial correlation. If the evidence of persistence is too strong,
one should wonder whether the residuals are stationary at all, and whether a specification in
differences might be preferable. In the next section we will see a similar test that can be seen as
a specification device in this sense.

4.3.5.2 Wooldridge’s First-difference-based Test

In the context of the first difference model, Wooldridge (2010, 10.6.3) proposes a serial corre-
lation test that can also be seen as a specification test to choose the most efficient estimator
between fixed effects (within) and first difference (FD).

The starting point is the observation that if the idiosyncratic errors of the original model ¢,
are uncorrelated, the errors of the (first) differenced model €} = ¢, — ¢,,_; will be correlated,
with cor(e,,, €,,_;) = —0.5, while any time-invariant effect is wiped out in the differencing. So a
serial correlation test for models with individual effects of any kind can be based on estimating
the auxiliary model

é:;) = Wé;;)—l + Cnt
and testing the restriction y = —0.5, corresponding to the null of no serial correlation in the
original model. Drukker (2003) provides Monte Carlo evidence of the good empirical properties
of the test.
On the other extreme (see Wooldridge, 2010, 10.6.1), if the differenced errors are uncor-

related, then ¢, is a random walk. In this latter case, the most efficient estimator is the first
difference (ED) one; in the former case, it is the fixed effects one (within).

Example 4.8 Wooldridge’s first difference test - Emp1lUK data set

We apply the test in the context of the Emp1UK data, a large and short panel with strong indi-
vidual heterogeneity. We want to test for serial correlation in both within and first-differenced
errors. The function pwfdtest allows testing either hypothesis: the default behavior
ho='£d"’ is to test for serial correlation in first-differenced errors:

pwfdtest (log(emp) ~ log(wage) + log(capital), data = EmplUK)

Wooldridge's first-difference test for serial
correlation in panels

data: plm.model
F =0.93, dfl1 = 1, df2 = 750, p-value = 0.3
alternative hypothesis: serial correlation in differenced errors

while specifyingh0= ' fe’ the null hypothesis becomes no serial correlation in original errors,
which is similar to the pwartest.

pwfdtest (log(emp) ~ log(wage) + log(capital), data = EmplUK,
ho = "fe")

Wooldridge's first-difference test for serial
correlation in panels

data: plm.model
F = 130, dfl = 1, df2 = 750, p-value <2e-16

alternative hypothesis: serial correlation in original errors
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Not rejecting one of the two is evidence in favor of using the estimator corresponding to ho.
In this case, the original residuals show evidence of serial correlation, which disappears after
first differencing. The results point at a unit root in the errors.

Example 4.9 Wooldridge’s first difference test - RiceFarms data set
Results will not always be so clear-cut. For the RiceFarms example,

W.fd <- matrix(ncol = 2, nrow =2)
HO <- c("£fd", "fe")
dimnames (W.fd) <- list(c("test", "p-value"), HO)

for (i in HO) {
mytest <- pwfdtest (fm, Rice, h0 = i)
W.fd[1, 1] <- mytest$statistic
w.fd[2, i] <- mytestS$p. value
1
round (W.£fd, 6)
fd fe
test 176.4 19.492371
p-value 0.0 0.000012

The truth clearly lies in the middle (both rejected, although one more strongly than the other);
in this case, whichever estimator is chosen will have serially correlated errors: therefore it will
be advisable to use an autocorrelation-robust covariance matrix.

4.4 Tests for Cross-sectional Dependence

Next to the more familiar issue of serial correlation, a growing body of literature has been deal-
ing with cross-sectional dependence in panels, which can arise, e.g., if individuals respond to
common shocks (as in common factor models) or if spatial diffusion processes are present,
relating individuals in a way depending on a measure of distance (as in spatial models).

If cross-sectional dependence is present, the consequence is, at a minimum, inefficiency of
the usual estimators and invalid inference when using the standard covariance matrix. This is
the case, for example, in unobserved effects models when cross-sectional dependence is due to
an unobservable factor structure but with factors uncorrelated with the regressors. In this case
the within or RE are still consistent, although inefficient (see De Hoyos and Sarafidis, 2006).
If the unobserved factors are correlated with the regressors, which can seldom be ruled out,
consequences are more serious: the estimators will be inconsistent.

4.4.1 Pairwise Correlation Coefficients

Correlation in the cross-section can take very diverse shapes. The most common testing pro-
cedures are based on considering the population of all possible pairwise correlations between
pairs of distinct individual units, estimating each one independently, by exploiting the time
dimension of the data, and then calculating some synthetic measure or test statistic. The basic
tool for assessing pairwise correlation between individual units # and m for a double-indexed
vector z,,, is the product-moment correlation coefficient, defined as

T A~ &
Zt:l ZptZmt

1/2 1/2
T A2 T A2
( t=1 Znt) (Zt:l th)

2 —
Pum =
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A descriptive assessment of the degree of cross-sectional correlation in the given sample
can then be based on the average of individual correlation coefficients: p = 1/(N(N — 1))
Zn 1 Zm 1 P If individual correlations are some positive and some negative, this solution has
the problem that coefficients with different signs compensate, yielding a statistic that underes-
timates the true level of dependence in the data. Therefore, another common procedure is to
average the absolute values of individual coefficients: j,, = 1/(N(N — 1)) Zn 1 Zm 1 1Pl

4.4.2 cp-type Tests for Cross-sectional Dependence

A number of statistics for testing the null hypothesis of no cross-sectional dependence in model
errors can be based on . The function pcdtest implements both the calculation of 5 and
Dans» and a family of cross-sectional dependence tests that can be applied in different settings,
ranging from those where T grows large with N fixed to “short” panels with a big N dimension
and a few time periods. All are based on (transformations of)) the product-moment correlation
coefficient of a model’s residuals, defined as above. The Breusch-Pagan LM test, based on the
squares of p,,,, is valid for T — oo with N fixed:

N-1 N
2
LMp = Z Z Tnmpnm
n=1 m=n+1
where in the case of an unbalanced panel only pairwise complete observations are considered,
and T,,, = min(T,, T,,) with T, being the number of observations for individual #; else, if the
panel is balanced, T,,, = T for each n, m. The test is distributed as 1]%/(1\1-1) /2 It is inappropriate
whenever the N dimension is “large.” A scaled version, applicable also if T — oo and then N —
oo (as in some pooled time series contexts), is defined as:

SCLM = A | N(N (; m;*'l nmpnm>

and distributed as a standard normal.
Pesaran’s (2004) cp test

PEVNN-D N(N -1 <z{ mz,:il ”’"p”'">

based on j,,, without squaring (also distributed as a standard Normal) is appropriate both for
N- and T-asymptotics. It has good properties in samples of any practically relevant size and
is robust to a variety of settings. The only big drawback is that the test loses power against
the alternative of cross-sectional dependence if the average correlation is zero, even if indi-
vidual coefficients are non-zero. Such a situation is not uncommon and can arise for example
in the presence of an unobserved factor structure with factor loadings averaging zero, that is,
where some units react positively to common shocks, others negatively. Another case where
the test will lose power is if the data are cross-sectionally demeaned, or when the model con-
tains time-specific dummies (see Sarafidis and Wansbeek, 2012, p. 27). In these instances, the
absolute correlation coefficient j, is likely to turn out much bigger than p.

Example 4.10 tests for cross-sectional dependence — RDSpillovers data set

Eberhardt et al. (2013) consider the returns of own research and development (R&D) in
the production function of European firms. They account for common factors and spillover
effects; they find evidence that when controlling for such features, the effect of own R&D is not
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significant any more and conclude that the value of R&D derives from a complex mix of own
sources and spillovers from other firms. They estimate various specifications of a standard
production function (where output is a function of labor and capital) augmented with R&D
expenditure.

data ("RDSpillovers", package = "pder")
fm.rds <- 1lny ~ 1Inl + 1lnk + 1lnrd

Pairwise-correlations-based tests are originally meant to use the residuals of separate esti-
mation of one time-series regression for each cross-sectional unit. In the original example of
Eberhardt et al. (2013), this is done in the first of the heterogeneous static specifications of
Table 7, the mean groups model. This is also the default behavior of pcdtest.? The default
version of the test is ' cd’, which is appropriate in a large panel setting like this.

pcdtest (fm.rds, RDSpillovers)

Pesaran CD test for cross-sectional dependence in
panels

data: 1ny 7 1Inl + 1lnk + 1lnrd
z = 29, p-value <2e-16
alternative hypothesis: cross-sectional dependence

The residuals from separate time series regressions show strong evidence of error cross-
sectional dependence.

If a different model specification (within, RE, ...) is assumed consistent, one can resort to its
residuals for testing* by specifying the relevant mode1 type. The main argument of this function
may be either plmor a formula and a data . frame; in the second case, unless model is set
to NULL, all usual parameters relative to the estimation of a p1m model may be passed on. The
test is compatible with any consistent plm model for the data at hand, with any specification
of effect; e.g., specifying effect = 'time’ or effect = ' twoways’ allows to test for
residual cross-sectional dependence after the introduction of time fixed effects to account for
common shocks. Let us consider the static two-way fixed effects specification in Eberhardt et al.
(2013, Table 5):

rds.2fe <- plm(fm.rds, RDSpillovers, model = "within", effect = "twoways")
pcdtest (rds.2fe)

Pesaran CD test for cross-sectional dependence in
panels

data: 1ny 7 1Inl + 1lnk + lnrd
z = -1.5, p-value = 0.1
alternative hypothesis: cross-sectional dependence

3 If the time dimension is insufficient and mode1=NULL, the function defaults to estimation of a within model and
issues a warning.

4 This is also the only solution when the time dimension’s length is insufficient for estimating the heterogeneous
model.
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As observed, the test loses its power if time fixed effects are included in the model specifica-
tion. Now the test does not reject the hypothesis of no cross-sectional correlation. One can get
an idea of what is happening by comparing p and p,:

cbind ("rho" = pcdtest(rds.2fe, test = "rho")S$statistic,
"|rho|"= pcdtest (rds.2fe, test = "absrho")$statistic)

rho |rho]
rho -0.004879 0.5021

whence it can be seen how substantial cross-sectional dependence is present, but the addition
of time effects has centered the mean of correlation coefficients on zero so that positive and
negative j,,, s compensate.

4.4.3 Testing Cross-sectional Dependence in a pseries

Next to testing for cross-sectional correlation in model residuals, tests in the cp family can
be employed in preliminary statistical assessments as well, in order to determine whether
the dependent and explanatory variables show any correlation to begin with. To this end, the
pcdtest function has a pseries method, meaning that it can be fed a pseries object as
well. One can either calculate the descriptive statistics g and j, ¢ or resort to a formal test.

Example 4.11 cross-sectional dependence test for a pseries — HousePricesUS
data set

Holly et al. (2010) analyze changes in real house prices in 49 US states between 1975 and 2003
to assess to which extent they are driven by fundamentals like disposable per capita income,
net borrowing costs, and population growth (see also the full replication in Millo, 2015). The
empirical analysis proceeds from the initial assessment of spatial dependence of the variables;
here we reproduce the cross-sectional correlation assessment for the dependent variable, the
house price index (1980=100), taken in first differences of logs.

data ("HousePricesUS", package = "pder")
php <- pdata.frame (HousePricesUS)

"rho") $statistic,

"|rho|" = pcdtest (diff (log(php$price)), test = "absrho") $statistic)

cbind ("rho" = pcdtest (diff (log(phpSprice)), test

rho |rho]
rho 0.3942 0.4247

The overall averages of j and p, 4 are quite large in magnitude and very close to each other,
indicating substantial positive correlation.

To investigate whether this behavior is geographically uniform or not, one can drill down
to the regional level. within and between regions correlation tables can be constructed
by means of the pcdtest function, setting test = ’rho’ for the average correlation
coefficient. A function cortab is provided that automates this procedure, construct-
ing suitable W matrices from the provided grouping index and calculating j (default) or
Daps (f test = rabsrho’) for each region (main diagonal) and each pair of regions
(oft-diagonal).
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regions.names <- c("New Engl", "Mideast", "Southeast", "Great Lks",
"Plains", "Southwest", "Rocky Mnt", "Far West")
corr.table.hp <- cortab(diff (log(phpsSprice)), grouping = phpSregion,
groupnames = regions.names)
colnames (corr.table.hp) <- substr(rownames (corr.table.hp), 1, 5)

round (corr.table.hp, 2)
New E Midea South Great Plain South Rocky Far W

New Engl 0.80 NA NA NA NA NA NA NA
Mideast 0.68 0.66 NA NA NA NA NA NA
Southeast 0.40 0.35 0.81 NA NA NA NA NA
Great Lks 0.27 0.20 0.62 0.61 NA NA NA NA
Plains 0.40 0.32 0.57 0.53 0.52 NA NA NA
Southwest 0.07 -0.05 0.28 0.39 0.35 0.52 NA NA
Rocky Mnt -0.03 -0.11 0.52 0.53 0.40 0.57 0.70 NA
Far West 0.13 0.17 0.52 0.42 0.29 0.31 0.46 0.57

The preliminary spatial dependence analysis highlights the correlation between neighbor-
ing regions and also some cases of correlation with distant ones, as is the case for California
and some more developed states on the East Coast. According to the authors, this is evidence
of factor-related dependence: common shocks to technology stimulate growth in the most
advanced states irrespective of geographic proximity.

The significance of cross-sectional correlation in a pseries can also be assessed through a
formal test, exactly as done above for model residuals. Given that, beside stationarity (which in
our example was ensured by first differencing the data), the properties of the CD test rest on
the hypothesis of no serial correlation, we follow Pesaran (2004)’s suggestion to remove any by
specifying a univariate AR(2) model of the variable of interest and proceed testing the residuals
of the latter for cross-sectional dependence. This is made easy by the lagging functionalities of
plm. In the following, we test cross-sectional correlation in log house prices drawing on the
residuals of an AR(2) model in order to control for any persistence in the data:

pcdtest (diff (log(price)) ~ diff (lag(log(price))) + diff(lag(log(price), 2)),
data = php)

Pesaran CD test for cross-sectional dependence in

panels

data: diff(log(price)) ~ diff(lag(log(price))) + diff(lag(log(price), 2))
z = 59, p-value <2e-16
alternative hypothesis: cross-sectional dependence

The test strongly rejects the null hypothesis, confirming substantial cross-sectional comove-
ment in house prices.
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Robust Inference and Estimation for Non-spherical Errors

5.1 Robust Inference

In this chapter we focus on relaxing the hypothesis of independence and homoscedasticity of
the remainder errors. Independent and identically distributed (i.i.d.) errors can seldom be taken
for granted in the mostly non-experimental contexts of econometrics. In the so-called robust
approach to model diagnostics, one relaxes the hypothesis of homoscedastic and independent
errors from the beginning, and consequently uses an appropriate estimator for the parame-
ters’ covariance matrix, instead of testing for departures from sphericity after estimation, as is
customary in the classical approach.

In panel data, error correlation often descends from clustering issues: the group (firm, individ-
ual, country) and the time dimension define natural clusters; observations sharing a common
individual unit, or time period, are likely to share common characters, violating the indepen-
dence assumption and potentially biasing inference. In particular, variance estimates derived
under the random sampling assumption are typically biased downward, possibly leading to false
significance of model parameters. Although clustering can often be an issue in cross-sectional
data too, especially when employing data at different levels of aggregation (Moulton, 1986,
1990), it is such an obvious feature in panels that a number of robust covariance estimators have
been devised for the most common situations: within-individual and/or -time period correla-
tion, the former of either time-constant or time-decaying type, and cross correlation between
different individuals over time.

Next to the panel-specific implementation of the well-known heteroscedasticity-consistent
covariance, there are a number of other robust covariance estimators specifically devised for
panel data. We will now review the general idea of sandwich estimation, its application in a
panel setting, and lastly the best known covariance estimators for the most common cases of
nonsphericity in the errors and their implementations in plm.

5.1.1 Robust Covariance Estimators

Consider alinear model y = Zy + € and the oLs estimator 7, ; = (Z7Z)"1Z7y. If the error terms
€ are independent and identically distributed, then the estimated covariance matrix of estima-
tors takes the familiar textbook form: V(7) = 62(Z7Z)~!, where 62 is an estimate of the error
variance. This is the classical case, also known as spherical errors, and the relative formulation
of V(§,,s) is often referred to as “OLs covariance”,

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
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Let us consider robust estimation in the context of the simple linear model outlined above.
The problem at hand is to estimate the covariance matrix of the OLs estimator relaxing the
assumptions of serial correlation and/or homoscedasticity without imposing any particular
structure to the errors’ variance or interdependence. The oLs parameters’ covariance matrix
with a general error covariance Q is:

V() =(Z'2) (2 [e?*Q12)(Z" Z)!

According to the seminal work of White (1980), in order to consistently estimate V(7), it is
not necessary to estimate all the N(N + 1)/2 unknown elements in the Q matrix but only the
K(K +1)/2 ones in

N N
-

z z O-nmznzm

n=1 m=1
which may be called the meat of the sandwich, the two (Z7Z)~! being the bread. All that is
required are pointwise consistent estimates of the errors, which is satisfied by consistency of the
estimator for y (see Greene, 2003). In the heteroscedasticity case, correlation between different
observations is ruled out, and the meat reduces to

N
_ 2 T
SO - Z 0uZuZn
n=1

where the N unknown ¢2s can be substituted by é2 (see White, 1980). In the serial cor-
relation case, the natural estimation counterpart would be 22;1 Zﬁzl é,€,,2,2,, but this
structure proves too general to achieve convergence. Newey and West (1987) devise a het-
eroscedasticity and-autocorrelation consistent estimator that works based on the assumption
of correlation dying out as the distance between observations increases. The Newey-West
HAC estimator for the meat takes that of White and adds a sum of covariances between
the different residuals, smoothed out by a kernel function giving weights decreasing with

distance:

N N
A A T T
So + Z Z w€,€,_[(z,z, | +2,z,)

n=1 m=1

with w,; the weight from the kernel smoother. For the latter, Newey and West (1987) chose
the well-known Bartlett kernel function: w; = 1 — L—frl The lag / is usually truncated well below
sample size: one popular rule of thumb is L = N'/* (see Greene, 2003; Driscoll and Kraay, 1998).

In the following we will consider the extensions of this framework for a panel data setting
where, thanks to added dimensionality, various combinations of the two above structures will

turn out to be able to accommodate very general types of dependence.

5.1.1.1 Cluster-robust Estimation in a Panel Setting

Clustering estimators extend the sandwich principle to panel data. Besides heteroscedas-
ticity, the added dimensionality allows to obtain robustness against totally unrestricted
time-wise or cross-sectional correlation, provided this is along the “smaller” dimension.
In the case of “large-N” (wide) panels, the big cross-sectional dimension allows robust-
ness against serial correlation (Arellano, 1987); in “large-T” (long) panels, on the converse,
robustness to cross-sectional correlation can be attained drawing on the large number of
time periods observed. As a general rule, the estimator is asymptotic in the number of
clusters.
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Imposing cross-sectional (serial) independence in fact restricts all covariances between
observations belonging to different individuals (time periods) to zero, yielding an error

covariance matrix that is block-diagonal, with blocks %, of the form:

2
O-nl 6n1,n2 Gnl,nT
2 .
O-nz,nl an
3, = (5.1)
O'2 (o}
nT—1 nT—-1,nT
2
| Ourm cer OurT—1 o |

and the consistency relies on the cross-sectional dimension being “large enough” with respect to
the number of free covariance parameters in the diagonal blocks. The other case is symmetric.
White’s heteroscedasticity-consistent covariance matrix has been extended to clustered data
by Liang and Zeger (1986) and to econometric panel data by Arellano (1987). Observations
can be clustered by the individual index, which is the most popular use of this estimator and is
appropriate in large, short panels because it is based on N-asymptotics, or by the time index,
which is based on T-asymptotics and therefore appropriate for long panels. In the first case,
the covariance estimator is robust against cross-sectional heteroscedasticity and also against
serial correlation of arbitrary form; in the second case, symmetrically, against time-wise het-
eroscedasticity and cross-sectional correlation. Arellano’s original estimator, an instance of the
first case, has the form:
N
Vo, =(Z2)! 2 AR A VAV A (5.2)
n=1
It is of course still feasible to rule out serial correlation and compute an estimator that is
robust to heteroscedasticity only, based on the following error structure:

0'51 eee ... 0
0 o2, :
%, =| | o (5.3)
o ... .. O'ET

in which case the original White estimator applies:

N T
Vou =27 Y Y 2,20 (27 2)! (5.4)
n=1 t=1
The case of clustering by time period is symmetric to that along the other dimension: data
are assumed to be serially independent and allowed to have arbitrary heteroscedasticity and an
unrestricted cross-sectional dependence structure.

T
Ve =220 Y Z] e8] 227 2)7 (5.5)

t=1

Example 5.1 clustered standard errors for pooled models — Produc data set

Munnell (1990) analyzes the impact of public infrastructure on economic activity by draw-
ing on a sample of 48 US states (all continental states minus the District of Columbia) over
17 years, 1970—1986. She specifies a Cobb-Douglas production function that relates the gross
social product (gsp) of a given state to the input of public capital (pcap), private capital (pc)
and labor (emp); she also includes the state unemployment rate (unemp) to capture business
cycle effects:
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library ("plm")
data ("Produc", package = "plm")
fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

The function coeftest from package Imtest produces a compact coefficients table allowing
for a flexible choice of the covariance matrix. We calculate a heteroscedasticity-robust diagnos-
tic table for two statistically equivalent models. First, pooled oLs by 1m:

Immod <- 1lm(fm, Produc)
library ("lmtest")

library ("sandwich")

coeftest (lmmod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.64330 0.07161 22.95 < 2e-16 ***
log (pcap) 0.15501 0.01870 8.29 4.7e-16 *x*
log (pc) 0.30919 0.01263 24 .48 < 2e-16 ***
log (emp) 0.59393 0.01979 30.01 < 2e-16 ***
unemp -0.00673 0.00135 =4 ,99 7.58=07 “vw
Signif. codes:

0 '***x!' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Next, we compute pooled oLs by plm. The coeftest function complies with plm objects,
so the same syntax as above can be employed. In turn, the summary.plm method is itself
compliant with providing a custom covariance (a note about using a nonstandard covariance
will be issued):

plmmod <- plm(fm, Produc, model = "pooling")
summary (plmmod, vcov = vcovHC)
Pooling Model

Note: Coefficient variance-covariance matrix supplied: vcovHC

Call:
plm(formula = fm, data = Produc, model = "pooling")

Balanced Panel: n = 48, T = 17, N = 816

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.231762 -0.061037 -0.000102 0.050852 0.351113

Coefficients:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.64330 0.24418 ©.73 3I.2e=1lLl =u%
log (pcap) 0.15501 0.06012 2.58 0.01 *
log(pc) 0.30919 0.04623 6.69 4.2e-11 ***
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log (emp) 0.59393 0.06861 8.66 < 2e-16 **xx
unemp -0.00673 0.00309 -2.18 0.03 *

Signif. codes:
@ U=wel @001 Vel @, V=Y @05 ",7 @, VU d

Total Sum of Squares: 850

Residual Sum of Squares: 6.29

R-Squared: 0.993

Adj. R-Squared: 0.993

F-statistic: 2778.06 on 4 and 47 DF, p-value: <2e-16

Coeflicients are obviously the same, but the estimated standard errors will turn out differ-
ent. In particular, the standard error of the coefficient on pcap is much larger, and while still
significant at the 5% level, it is not any more at the 1% level. This is because the classes of the
model objects to be tested are different, and so are the default settings of the vcovHC. 1m
and vcovHC . plm methods. Only if one overrides the defaults, here, specifying the method
as ‘whitel’ and the small sample correction as ' HC3 ', the 1m results will be replicated.
Therefore, thanks to object orientation, if applying the generic robust method vcovHC to a
panelmodel object, one will get a result that is likely to be “sensible” for the most common
applications.

Clustering in Non-Panels Clustering can occur in non-panel settings too. Whenever a grouping
index of some sort is provided and there is reason to believe that errors are dependent within
groups defined by that index, the clustered standard errors can be employed to account for
heteroscedasticity across groups and for within group correlation of any kind, not limited to
proper serial correlation in time. One example is when a regression is augmented with variables
at a higher level of aggregation.

The seminal example is in Moulton (1986, 1990): if some regressors are observed at group
level, as is the case, e.g., when adding local GDP to individual data drawn from different geo-
graphical units, then standard errors have to be adjusted for intra-group correlation.

Froot (1989), in the context of financial data, discusses sampling firms from different indus-
tries, assumed mutually independent. In his application, clustering is employed to account for
within-industry dependence, while it would be meaningless across the “other” dimension.

Any dataset mixing different levels of detail is prone to this issue. In such cases, panel data
methods can seamlessly be employed on cross-sectional datasets by specifying the relevant
grouping variable as the first element of the index. The second one will obviously be left blank
as there would be no meaningful second dimension.

Example 5.2 Clustered standard errors for non-panel data — Hedonic data set
Harrison and Rubinfeld (1978) consider the median values of owner-occupied homes in a cross
section of 506 census tracts from 92 towns in the Boston area. Values are explained by a combi-
nation of tract- and town-level variables. Crime rate (crim), pollution (nox), average number
of rooms (rm) and age, distance to employment centers (dis), and proportion of blacks in the
population are observed at tract level. Other variables such as proportion of industrial dwellings
(1ndus), distance to radial highways (rad), property tax rate, and pupil-to-teacher ratio in
local schools (ptratio) are observed at town level, thus leading to the Moulton problem.
The town identifier for each tract (townid) allows to account for clustering within each town,
which may comprise from 1 to 30 tracts. We estimate oLs with HC SEs by Im:
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data ("Hedonic", package = "plm")

hfm <- mv ~ crim + zn + indus + chas + nox + rm + age + dis +
rad + tax + ptratio + blacks + lstat

hlmmod <- 1m(hfm, Hedonic)
coeftest (hlmmod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 9.76e+00 1.74e-01 BE .21l & 2e=1E W
crim -1.19e-02 2.85e-03 -4.16 3.8e-05 **x*
zZn 8.03e-05 3.89%e-04 0.21 0.83670
indus 2.41e-04 1.84e-03 0.13 0.89589
chasyes 9.14e-02 3.71le-02 2.46 0.01413 *
nox -6.38e-03 1.26e-03 -5.08 5.4e-07 ***
rm 6.33e-03 2.11e-03 3.00 0.00282 **
age 8.98e-05 6.07e-04 0.15 0.88252

dis -1.91e-01 4.08e-02 -4.69 3.5e-06 **x*
rad 9.57e-02 2.03e-02 4.71 3.2e-06 ***
tax -4.20e-04 1.17e-04 =3,58 0,00036 =
ptratio -3.11le-02 4.17e-03 -7.47 3.7e-13 **x%
blacks 3.64e-01 1.54e-01 2.36 0.01884 *
lstat -3.71le-01 3.94e-02 -9.43 < 2e-16 **x*
Signif. codes:

@ "=eel @ el 'SV @01 "0 ©.05 .9 @i 7 U

and pooled oLs by plm; then we compare White and clustered standard errors:.
hplmmod <- plm(hfm, Hedonic, model = "pooling", index = "townid")

sign.tab <- cbind(coef (hlmmod), coeftest (hlmmod, vcov = vcovHC) [,4],
coeftest (hplmmod, vcov = vcovHC) [, 4])
dimnames (sign.tab) [[2]] <- c("Coefficient", "p-values, HC", "p-val., cluster")
round (sign.tab, 3)
Coefficient p-values, HC p-val., cluster

(Intercept) 9.756 0.000 0.000
crim -0.012 0.000 0.000
zZn 0.000 0.837 0.882
indus 0.000 0.896 0.933
chasyes 0.091 0.014 0.064
nox -0.006 0.000 0.003
rm 0.006 0.003 0.090
age 0.000 0.883 0.914
dis -0.191 0.000 0.004
rad 0.096 0.000 0.000
tax 0.000 0.000 0.005
ptratio -0.031 0.000 0.000
blacks 0.364 0.019 0.235
lstat -0.371 0.000 0.000
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Proximity to the Charles River, average number of rooms, and the proportion of blacks in the
population are not significant any more after clustering by town.

5.1.1.2 Double Clustering

Double clustering methods have originated in the financial literature (Petersen, 2009; Cameron
et al., 2011; Thompson, 2011) and are motivated by the need to account for persistent shocks
(another name for individual, time-invariant error components) and at the same time for
cross-sectional or spatial correlation. The former feature, persistent shocks, is usually dealt
with in the econometric literature by parametric estimation of random effects models; the
latter through spatial panels, where again it is estimated parametrically imposing a structure
to the dependence, or common factor models. As Cameron et al. (2011) observe, though,
double clustering, as all robustified inference of this kind, relies on much weaker assumptions
as regards the data-generating process than parametric modeling of dependence does. In
fact, this estimator combining both individual and time clustering relies on a combination
of the asymptotics of each: the minimum number of clusters along the two dimensions must
go to infinity (which will be especially appropriate for data-rich financial applications, less
so in the smaller samples that are frequently encountered in economics). Apart from this,
any dependence structure is allowed within each group or within each time period, while
cross-serial correlations between observations belonging to different groups and time periods
are ruled out.

Cameron et al. (2011) have shown how the double-clustered estimator is simply calcu-
lated by summing up the group-clustering and the time-clustering ones, then subtracting
the standard White estimator in order to avoid double counting the error variances along the
diagonal:

VCXT = ch + VCT - VWH (56)

In order to control for the effect of common shocks, Thompson (2011) proposes to add to the
sum of covariances one more term, related to the covariances between observations from any
group at different points in time. Given a maximum lag L, this will be the sum over /=1, ... L
of the following generic term:

T
vc‘r,l = Z Z;rétéllzt—l (57)
t=1

representing the covariance between pairs of observations from any group distanced / periods
in time. As the correlation between observations belonging to the same group at different points
in time has already been captured by the group-clustering term, to avoid double counting one
must subtract the within-groups part:

T N
VWH,I = Z Z[znzémé;’t_ﬂ;t_[] (5.8)

t=1 n=1
for each /. The resulting estimator

L L
T T
VCXT,L = ch + VCT - VWH + Z[VCT,Z + VCT,J] - Z[VWH,I + VWHJ] (59)
=1 =1
is robust to cross-sectional and time-wise correlation inside, respectively, time periods and
groups and to the cross-serial correlation between observations belonging to different groups,
up to the L-th lag.
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5.1.1.3 Panel Newey-west and scc

As mentioned above, in a time series context Newey and West (1987) have proposed an
estimator that is robust to serial correlation as well as to heteroscedasticity. This estima-
tor, based on the hypothesis of the serial correlation dying out “quickly enough,” takes
into account the covariance between units by weighting it through a kernel-smoothing
function giving less weight as they get more distant and adding it to the standard White
estimator.

A panel version of the original Newey-West estimator can be obtained as:

L T N
Vewr = Ve + ), ® (2,661 2]
Nw,L — Y wH 1 nt-nt=pt—1"nt—1
=1

t=1 n=1

T N
+ Z l [Z"té"té;t—lzz,t—l]T] (5.10)
1

t=1 | n=

L
= Vu + D, 0,[Vys + V1]
I=1
As can readily be seen, the Newey-West non-parametric estimator closely resembles the double
clustering plus lags, the difference being that instead of adding a (possibly truncated) sum of
unweighted lag terms, the latter downweighs the correlation between “distant” terms through
a kernel-smoothing function.

Driscoll and Kraay (1998) have adapted the Newey-West estimator to a panel time series
context where not only serial correlation between residuals from the same individual in different
time periods is taken into account but also cross-serial correlation between different individuals
in different times and, within the same period, cross-sectional correlation (see also Arellano,
2003).

The Driscoll and Kraay estimator, labeled scc (as in “spatial correlation consistent”), is
defined as the time-clustering version of Arellano plus a sum of lagged covariance terms,
weighted by a distance-decreasing kernel function w;:

L T T
Ta AT Ta AT T
Vscc,L = V(:T + Z w; Z Zt etet_lzt—l + Z [Zt etet_lzt—l]
=1 t=1 t=1
L
-
=Ver+ D o[Vers + Vi (5.11)

I=1
The “scc” covariance estimator requires the data to be a mixing sequence, i.e., roughly speaking,
to have serial and cross-serial dependence dying out quickly enough with the 7" dimension,
which is therefore supposed to be fairly large: Driscoll and Kraay (1998), based on Monte Carlo
simulation, put the practical minimum at 7" > 20 — 25; the N dimension is irrelevant in this
respect and is allowed to grow at any rate relative to 7.

As is apparent from Equation 5.1.1.3, if the maximum lag order is set to 0 (no serial or
cross-serial dependence is allowed) the scc estimator becomes the cross-section version
(time-clustering) of the Arellano estimator V_,. On the other hand, if the cross-serial terms
are all unweighted (i.e., if w, = 1VI), then V¢ 7121 = Ver s

A Comprehensive Definition Let us now look systematically at the similarities between the above
formulas, embedding them into an encompassing one (see Millo, 2017b). A comprehensive
formulation can be written in terms of White’s heteroscedasticity-consistent covariance
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Table 5.1 Covariance structures as combinations of the basic building blocks.

double-clustering Vexr = Vex T Ver = Van

_V +Zl I[VCT1+VCT[]

L =Vew+ X 1O Vs + Vi
sch_V +Zl 19 VCT1+VCTI]

cxt,L — V + Zl—l[vcrl + VCT [] + ch
- VWH - El:l [VWH,I + VWHJ]

='Van4‘VEx"V

time-clustering + shocks
panel Newey-West ]

Ver
Viw
Driscoll and Kraay’s scc V,
\Y

double-clustering + shocks

Nw,L|w=1

matrix V,, the group-clustering and time-clustering ones V_, and V_,, and an appropriate
kernel-weighted sum of their lags:
L
Vexrsio = Ver + D, 0Ver + Vi 1+ Vey = Vi = X o[V + Vi ] (5.12)
I=1 I=1
The different estimators are in turn particularizations of the above and can be expressed in
terms of the same basic common components, as shown in Table 5.1. A function vcovG making
either Vy,, V, or V,is provided at user level, mainly for educational purposes, and is used
internally to construct all other estimators.!

Higher-level functions are provided to produce the double-clustering and kernel-smoothing
estimators by (possibly weighted) sums of the former terms. The general tool in this
respect, in turn based on vcovG, is vcovSCC, which computes weighted sums of vV,
according to a weighting function that is by default the Bartlett kernel. The default values
will yield the Driscoll and Kraay estimator, Vi..;. As the scc estimator differs from the
(one-way) time-shocks-robust version of the double-clustering a la Cameron et al. (2011)
only by the distance-decaying weighting of the covariances between different periods so that
Verr = Vscerjo=1» DO Weighting (equivalent to passing the constant 1 as the weighting function:
wj=1) will produce the building blocks for double clustering, according to formula 5.9.

Convenient wrappers are provided as the tool of choice for the end user: vcovNW computes
the panel Newey-West estimator V,, ;; vcovDC the double-clustering one V.,

Example 5.3 Newey-West and double-clustering estimators — Produc data set
Reconsidering the Munnell (1990) example, one might want to account for both the spatial
correlation between states observed in the same time period and for the serial correlation within
the same state and across different ones. To this end, one may supply the vcovSCC function to
the vcov argument in coeftest:

coeftest (plmmod, vcov=vcovSCC)
t test of coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.64330 0.15035 10,93 < 2e=16 “%%

1 vcovG can be used for calculating V. ,or Ve, or, leaving the default lag at 0, to calculate V., V., or V.

WH,[? VCT,I WH’

It takes as arguments a clustering dimension (cluster), a function of the errors corresponding to E(é) (1nner), and
a lag order. The inner argument can accept either one of two strings ' cluster’ or ‘white’, specifying
respectively E(€) = é¢T and E(¢) = diag(é" é), or a user-supplied function. For example, specifying vcovG (plmmod,
cluster = "group", inner = "cluster", 1 = 0) isequivalent to set vcovHC (plmmod) and will
produce the Arellano estimator.
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log (pcap) 0.15501 0.03697 4,19  3,le=05 wow
log (pc) 0.30919 0.00764 40.45 < 2e-16 ***
log (emp) 0.59393 0.03870 15,35 < 2@8=16 9%
unemp -0.00673 0.00254 -2.65 0.0082 *x*
Signif. codes:

@ P"=eel @01 "= .l e ©,05 T,V @.d4 " U 4

or possibly, if allowing for double clustering,

coeftest (plmmod, vcov=vcovDC)

(results omitted, see the next example). More complicated structures allowing for two-way
clustering and error persistence in the sense of Thompson (2011) can be obtained by combi-
nation, as illustrated above. Below, the case of double clustering plus four periods of persistent
(unweighted) shocks a la Thompson (2011) (notice that the weighting function w3j has been
defined as the constant 1 but must still be a function of two arguments):

myvcovDCS <- function(x, maxlag = NULL, ...) {
wl <- function(j, maxlag) 1
VsccL.1l <- vcovSCC(x, maxlag = maxlag, wj = wl, ...)
Vcx <- vcovHC (x, cluster = "group", method = "arellano", ...)
VnwL.1l <- vcovSCC(x, maxlag = maxlag, inner = "white", wj = wl, ...)

return(VsccL.l + Vex - VnwL.1)
coeftest (plmmod, vcov=function (x) myvcovDCS (x, maxlag = 4))

t test of coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.64330 0.27694 5.93 4.4e-09 **x*
log (pcap) 0.15501 0.06612 2.34 0.019 *
log (pc) 0.30919 0.03265 9.47 < 2e-16 ***
log (emp) 0.59393 0.07244 8.20 9.5@=16 ==%
unemp -0.00673 0.00375 -1.80 0.073
Signif. codes:

@ "=wel @0l "swY ©.01L "E0 ©.05 Y.9 @i U ¥ dl

Example 5.4 computing an array of standard errors — Produc data set
In the following applied example, still considering the Munnell (1990) model, we take advantage
of the capabilities of the R language for compactly presenting the complete array of standard
error estimates for each estimator in Table 5.1 by defining a vector of covariance functions and
then looping on it.2

Looping on a vector of functions is a useful consequence of R treating functions as a data type.
For the sake of clarity, let us predefine some functions for calculating the different covariance

2 One must nevertheless keep in mind that the sample size and the number of clusters in either cross section or time
might prove inadequate for some estimators, as reported in the reference papers (see in particular Thompson, 2011).
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estimators with the appropriate parameters (leaving the maximum lag calculation at its default
1
value of L = T'%):

Vw <- function (x) vcovHC(x, method = "whitel")

Vecx <- function(x) vcovHC(x, cluster = "group", method = "arellano")
Vet <- function(x) vcovHC(x, cluster = "time", method = "arellano")
Vext <- function(x) Vex(x) + Vet (x) - Vw(x)

Vet .L <- function(x) vcovSCC(x, wj = function(j, maxlag) 1)
Vnw.L <- function(x) vcovNW (x)
X) VvcovSCC(x)

x) Vect.L(x) + Vex(x) - vcovNW(x, wj = function(j, maxlag) 1)

Vscc.L <- function(
(

Vext.L <- function

then build up a vector of functions on which to loop:

vcovs <- c(vcov, Vw, Vex, Vect, Vext, Vet.L, Vnw.L, Vscc.L, Vext.L)
names (vcovs) <- c("OLS", "vw", "Vex", "Vet", "Vext", "Vect.L", "Vnw.L",
"Vscc.L", "Vext.L")

in order to calculate a comprehensive table of p-values from robust estimators. To this end we
define a convenience function:

cfrtab <- function(mod, vcovs, ...) {
cfrtab <- matrix(nrow = length(coef (mod)), ncol = 1 + length(vcovs))
dimnames (cfrtab) <- list (names (coef (mod)),

c("Coefficient", paste("s.e.", names(vcovs))))
cfrtab[,1] <- coef (mod)
for (i in 1:length(vcovs)) {
myvcov = vcovs[[i]]
cfrtab[ , 1 + i] <- sqgrt(diag(myvcov(mod)))

}

return (t (round (cfrtab, 4)))

The additive nature of the three basic components V,,,, V., and V., allows the researcher
to infer on the relative importance of each clustering dimension by looking at the contribution
of each to the standard error estimate, so that if, e.g., Vo, < V. ~ V, then this is evidence

of important cross-sectional correlation (Petersen, 2009).

CXT’

cfrtab (plmmod, vcovs)

(Intercept) log(pcap) log(pc) log(emp) unemp
Coefficient 1.6433 0.1550 0.3092 0.5939 -0.0067
s.e. OLS 0.0576 0.0172 0.0103 0.0137 0.0014
s.e. Vw 0.0708 0.0185 0.0125 0.0195 0.0013
s.e. Vcx 0.2442 0.0601 0.0462 0.0686 0.0031
s.e. Vct 0.0944 0.0232 0.0063 0.0246 0.0018
s.e. Vcxt 0.2520 0.0617 0.0450 0.0702 0.0033
s.e. Vct.L 0.1875 0.0461 0.0079 0.0480 0.0031
s.e. Vnw.L 0.1144 0.0299 0.0206 0.0316 0.0020
s.e. Vscc.L 0.1503 0.0370 0.0076 0.0387 0.0025
s.e. Vext.L 0.2722 0.0657 0.0389 0.0736 0.0036
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For this pooled oLs model, standard errors estimates assuming group clustering are consis-
tently larger that the rest, including Newey-West and scc, pointing at non-decaying serial error
dependence.

5.1.2 Generic Sandwich Estimators and Panel Models

plm provides a comprehensive set of modular tools: lower-level components, conceptually cor-
responding to the statistical “objects” involved, (see Zeileis, 2006a,b), and a higher-level set of
“wrapper functions” corresponding to standard parameter covariance estimators as they would
be used in statistical packages, which work by combining the same, few lower-level components
in multiple ways in the spirit of the Lego principle of Hothorn et al. (2006).

When estimating regression models, R creates a model object that, together with estimation
results, carries on a wealth of useful information, including the original data. Robust testing
in R is done retrieving the necessary elements from the model object, using them to calculate
a robust covariance matrix for coefficient estimates and then feeding the latter to the actual
test function, for example a t-test for significance or a Wald restriction test. This approach
to diagnostic testing is more flexible than with standard econometric software packages, where
diagnostics usually come with standard output. In our case, for example, one can obtain differ-
ent estimates of the standard errors under various kinds of dependence without re-estimating
the model and present them compactly.

Robust covariance estimators a la White or a la Newey and West for different kinds of regres-
sion models are available in package sandwich (Lumley and Zeileis, 2007) under form of appro-
priate methods for the generic functions vcovHC and vcovHAC (Zeileis, 2004, 2006a). These
are designed for data sampled along one dimension; therefore, they cannot generally be used
for panel data, yet they provide a uniform and flexible software approach, which has become
standard in the R environment. The corresponding p1m methods described in this chapter have
therefore been designed to be sintactically compliant with them.

For example, a vcovHC . plm method for the generic vcovHC is available, allowing to apply
sandwich estimators to panel models in a way that is natural for users of the sandwich pack-
age. In fact, despite the different structure “under the hood,” the user will, e.g., specify a robust
covariance for the diagnostics table of a panel model the same way she would for a linear or
a generalized linear model, the object-orientation features of R taking care that the right sta-
tistical procedure be applied to the model object at hand. What will change, though, are the
defaults: the vcovHC . lm method defaults to the original White estimator, while vcovHC.plm
to clustering by groups, both the most obvious choices for the object at hand.

Next to the HC estimator of White (1980), all variants of the panel-specific estimators used
in applied practice (Arellano, 1987; Newey and West, 1987; Driscoll and Kraay, 1998; Cameron
et al., 2011) are provided; all can be applied to objects representing panel models of different
kinds: FE, RE, FD, and, obviously, pooled oLs. The estimate of the parameters’ covariance thus
obtained can in turn be plugged into diagnostic testing functions, producing either significance
tables or hypothesis tests. A function is a regular object type in R, hence compact comparisons
of standard errors from different (statistical) methods can be produced by looping on covari-
ance types, as shown in the examples.

Application to Models on Transformed Data

The application of the above estimators to pooled data is always warranted, subject to the rel-
evant assumptions mentioned before. In some, but not all cases, these can also be applied to
random or fixed effects panel models, or models estimated on first-differenced data. In all of
these cases the estimator is computed as oLs on transformed (partially or totally demeaned,
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first differenced) data. In general, the same transformation used in estimation is employed.
Sandwich estimators can then be computed by applying the usual formula to the transformed
data and residuals: é = § — Z (see Arellano (1987) and Wooldridge (2010, Eq. 10.59) for the
fixed effects case, Wooldridge (2010, Ch.10) in general).

Under the fixed effects hypothesis, the oLs estimator is biased and FE is required for consis-
tency of parameter estimates in the first place. Similarly, under the hypothesis of a unit root in
the errors, first differencing the data is warranted in order to revert to a stationary error term.
On the contrary, under the random effects hypothesis, oLs is still consistent, and asymptoti-
cally, using RE instead makes no difference. Yet for the sake of parameter covariance estimation,
it may be advisable to eliminate time-invariant heterogeneity first, by using one of the above.

One compelling reason for combining a demeaning or a differencing estimator with robust
standard errors may be to get rid of persistent individual effects before applying a more parsi-
monious and efficient kernel-based covariance estimator if cross-serial correlation is suspected
or if the sample is simply not big enough to allow double clustering. In fact, as Petersen (2009)
shows, the Newey-West- type estimators are biased if effects are persistent, because the kernel
smoother unduly downweighs the covariance between faraway observations.

In the following we discuss when it is appropriate to apply clustering estimators to the resid-
uals of demeaned or first-differenced models.

Fixed Effects

The fixed effects estimator requires particular caution. In fact, under the hypothesis of
spherical errors in the original model, the time-demeaning of data induces a serial correlation
cor(é,, €, ) =—1/(T — 1) in the demeaned residuals (see Wooldridge, 2010, p. 310).

The White-Arellano estimator has originally been devised for this case. By way of symmetry; it
can be used for time-clustered data with time fixed effects. The combination of group clustering
with time fixed effects and the reverse is inappropriate because of the serial (cross-sectional)
correlation induced by the time- (cross-sectional-) demeaning.

By analogy, the Newey-West-type estimators can be safely applied to models with individual
fixed effects, while the time and two-way cases require caution. The best policy in both cases,
if the degrees of freedom allow, is perhaps to explicitly add dummy variables to account for the
fixed effects along the “short” dimension.

Random Effects

In the random effects case, as Wooldridge (2010) notes, the quasi-time demeaning procedure
removes the random effects reducing the model on transformed data to a pooled regression,
thus preserving the properties of the White-type estimators. By extension of this line of rea-
soning, all above estimators are applicable to the demeaned data of a random effects model,
provided the transformed errors meet the relevant assumptions.

First-Differences

First-differencing, like fixed effects estimation, removes time-invariant effects. Roughly speak-
ing, the choice between the two rests on the properties of the error term: if it is assumed to
be well behaved in the original data, then FE is the most efficient estimator and is to be pre-
ferred; if on the contrary the original errors are believed to behave as a random walk, then
first-differencing the data will yield stationary and uncorrelated errors and is therefore advisable
(see Wooldridge, 2010, p. 317). Given this, FD estimation is nothing else than oLs on differ-
enced data, and the usual clustering formula applies (see Wooldridge, 2010, p. 318 and Chapter
4 here). As in the RE case, the statistical properties of the different covariance estimators will
depend on whether the transformed errors meet the relevant assumptions.
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Example 5.5 random effects and robust covariances — Produc data set

Consider again the comprehensive table of estimators for the Munnell (1990) model in the pre-
vious example. The relative magnitude of standard errors under group clustering with respect
to the others was hinting at error correlation in time. In the following, the previous table is
replicated on a random effects specification:

replmmod <- plm(fm, Produc)
cfrtab (replmmod, vcovs)
log(pcap) log(pc) log(emp) unemp

Coefficient -0.0261 0.2920 0.7682 -0.0053
s.e. OLS 0.0290 0.0251 0.0301 0.0010
s.e. Vw 0.0312 0.0305 0.0398 0.0011
s.e. Vcx 0.0603 0.0617 0.0817 0.0025
B8.@. VEE 0.0454 0.0480 0.0627 0.0015
s.e. Vext 0.0688 0.0720 0.0949 0.0027
B.@. VEE. L 0.0640 0.0644 0.0941 0.0015
s.e. Vnw.L 0.0434 0.0417 0.0562 0.0015
s.e. Vscc.L 0.0575 0.0588 0.0828 0.0015
s.e. Vext.L 0.0717 0.0747 0.1054 0.0023

The cross-sectional dependence component becomes relatively more important when
accounting for time persistence in the model through random individual (country) effects.

5.1.2.1 Panel Corrected Standard Errors

Unconditional covariance estimators are based on the assumption of no error correlation in
time (cross-section) and of an unrestricted but invariant correlation structure inside every cross
section (time period). > They are popular in contexts characterized by relatively small samples,
with prevalence of the time dimension. The most common use is on pooled time series, where
the assumption of no serial correlation can be accommodated, for example, by adding lagged
values of the dependent variable.

Beck and Katz (1995), in the context of political science models with moderate time and
cross-sectional dimensions, introduced the so-called panel corrected standard errors (PCSE),
which, in the original time-clustering setting, are robust against cross-sectional heteroscedas-
ticity and correlation. The “PCSE” covariance is based on the hypothesis that the covariance
matrix of the errors in every group be the same: Q = X, ® I, with

o} 612 -+ OiN-1  OIN
021 67 ... Oyn.1  Oun
Xy = : : : : (5.13)
ON-11 ON-12 --- 0'1%;_1 ON-1N
On1  On2 -+ ONN-1 ‘712\[

so that X, can be estimated by:

T A AT
S 21 &8
N = ——

T

from which Q can be constructed and inserted in the usual “sandwich” formula.

3 A further step in this direction is to use the unconditional estimate of the error covariance in a feasible
GLS analysis: see the next section of this chapter.
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Example 5.6 time fixed effects model — agl data set

Alvarez et al. (1991) estimate a model where economic performance in a panel of 16 countries
over 15 years is related to political and labor organization variables: union strength (central)
and the prevalence of a leftist cabinet (leftc). They control for trade openness of countries
toward other oEcD and for lagged growth, instrumented through an auxiliary regression. They
originally use the FGLS estimator of Parks (1967), finding out that economic performance
is enhanced where strong unions coexist with an important presence of leftist movements
in government or in the opposite situation (rightist governments with weak unions), being
less satisfactory for in-between cases. Their original results (see the example in the next
section) are very sharp, with narrow standard errors. Beck et al. (1993) attribute the narrow
confidence bands to the estimator employed being inappropriate for the sample size at
hand; they re-examine the data using oLs estimation of a dynamic model with time fixed
effects and time-clustered errors, upholding previous conclusions as regards the effects on
growth (although with lower significance) but rendering mixed evidence for inflation and
unemployment. The dataset is included in package pcse (Bailey and Katz, 2011):

library ("pcse")
data("agl", package = "pcse")

In the following we estimate the model with time fixed effects? and produce the diagnostics
table with PcSE standard errors:

fm <- growth ~ laggl + opengdp + openex + openimp + central * leftc
aglmod <- plm(fm, agl, model = "w", effect = "time")
coeftest (aglmod, vcov=vcovBK)

t test of coefficients:

Estimate Std. Error t value Pr(>|t])

laggl 0.095085 0.117523 0.81 0.41935
opengdp 0.007256 0.001735 4.18 4.2e-05 ***
openex 0.002373 0.000882 2.69 0.00768 **
openimp -0.006475 0.002301 -2.81 0.00534 **
leftc -0.023378 0.008009 -2.92 0.00388 **
central:leftc 0.013172 0.003497 3,77 0,00021 S
Signif. codes:

0 '**%%! (0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1

5.1.3 Robust Testing of Linear Hypotheses

The main use of robust covariance estimators is together with testing functions from the lmtest
(Zeileis and Hothorn, 2002) and car (Fox and Weisberg, 2011) packages. We have seen the
special case of testing single exclusion restrictions through coeftest: in order of increasing
generality, joint restrictions can be tested through waldtest, while 1inearHypothesis
from package car enables testing a general linear hypothesis on model parameters.

4 Notice that time effects, while present in the original Beck et al. (1993), are omitted in the Bailey and Katz (2011)
example.
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Example 5.7 testing with robust covariance matrices — Produc data set

All these functions typically allow passing the vcov parameter either as a matrix or as a func-
tion (see Zeileis, 2004). If one is happy with the defaults, it is easiest to pass the function itself,
as seen in the previous examples; else, one may do the covariance computation inside the call
to coeftest, thus passing on a matrix:

coeftest (plmmod, vcov = vcovHC (plmmod, type = "HC3"))

or, rather, define an appropriate function inside the call: in this case, optional parameters are
provided as shown below (see also Zeileis, 2004, p. 12):

coeftest (plmmod, vcov = function(x) vcovHC(x, type = "HC3"))

For some tests, e.g., for multiple model comparisons by waldtest, one should always pro-
vide a function.

Example 5.8 testing with robust covariance matrices — Parity data set
The next example shows how to extend the comparison across models with different kinds of
fixed effects, using 1linearHypothesis from package car.

Coakley et al. (2006) present a purchasing power parity (PPP) regression on a “long” panel
of quarterly data 1973-Q1 to 1998-Q4 for 17 developed countries so that N = 17 and T = 104.
The estimated model is

As,, =a+ p(Ap — Ap),, +V,,

where s, is the relative exchange rate against USD and (Ap — Ap*),, is the inflation differential
between each country and the US.

data ("Parity", package = "plm")
fm <- 1s 7 1d
pppmod <- plm(fm, data = Parity, effect = "twoways")

The hypothesis of interest is f = 1, meaning that inflation differentials are fully reflected in
the exchange rate. We report the corresponding robust Wald test from 1inearHypothesis
in package car (Fox and Weisberg, 2011), which would be done interactively as follows:

library ("car")

linearHypothesis (pppmod, "1d = 1", vcov = vcov)

(output suppressed), in a compact table supplying different covariance estimators to each of
four models: oLs, one-way time or country fixed effects, and two-way fixed effects.

vcovs <- c(vcov, Vw, Vecx, Vect, Vext, Vet.L, Vanw.L, Vscc.L, Vext.L)

names (vcovs) <- c("OLS", "vw", "Vex", "Vect", "Vext", "Vect.L", "Vnw.L",
"Vscc.L", "Vcxt.L")
tttab <- matrix(nrow = 4, ncol = length(vcovs))

dimnames (tttab) <- list(c("Pooled OLS","Time FE", "Country FE", "Two-way FE"),
names (vcovs) )
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pppmod.ols <- plm(fm, data = Parity, model = "pooling")
for(i in 1:length(vcovs)) ({
tttab[l, i] <- linearHypothesis (pppmod.ols, "ld = 1",
vecov = vcovs[[1i]]) [2, 4]
}
pppmod.tfe <- plm(fm, data = Parity, effect = "time")
for (i in 1:length(vcovs)) {
tttab[2, 1] <- linearHypothesis (pppmod.tfe, "1d = 1",
vecov = vecovs[[1i]]) [2, 4]
}
pppmod.cfe <- plm(fm, data = Parity, effect = "individual")

for (i in 1:length(vcovs)) ({
tttab[3, 1] <- linearHypothesis (pppmod.cfe, "1d = 1",
vcov = vecovs[[i]]) [2, 4]

pppmod.2fe <- plm(fm, data = Parity, effect = "twoways")
for (i in 1:length (vcovs)) {
tttab[4, i] <- linearHypothesis (pppmod.2fe, "1ld = 1",
vecov = vcovs[[1]]) [2, 4]

print (t (round(tttab, 6)))
Pooled OLS Time FE Country FE Two-way FE

OLS 0.000000 0.000000 0.000000 0.000000
Vw 0.000000 0.000000 0.000000 0.000000
Vex 0.001032 0.000869 0.070773 0.119787
Vet 0.000000 0.000000 0.000000 0.000000
Vext 0.000966 0.000842 0.071866 0.121614
Vect.L 0.000000 0.000000 0.001861 0.000748
Vnw.L 0.000000 0.000000 0.000030 0.000000
Vscc.L 0.000000 0.000000 0.000076 0.000013
Vext. L 0.000648 0.000672 0.075022 0.129857

As is apparent from the results’ table, the PPP hypothesis is not rejected any more once one
controls for, at a minimum, country fixed effects and by-group clustering.

5.1.3.1 An Application: Robust Hausman Testing

Beside the usual quadratic form, Hausman’s specification test can be performed in an equiv-
alent form based on testing a linear restriction in an auxiliary linear model. In particular, it
can be computed through an artificial regression of the quasi-demeaned response over the
quasi-demeaned regressors from the random effects augmented with the fully demeaned
regressors from the within model:

¥ =Zy + WXé.

The Hausman test is then the redundancy test on WX, i.e., the restriction test 6 = 0. This arti-
ficial regression version of the test can easily be robustified (see Wooldridge, 2010) by using a
robust covariance matrix.
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Example 5.9 regression-based Hausman test — Grunfeld data set

We compare the Hausman test in original and regression-based form for the Grunfeld
data. The function phtest allows for an optional argument method, defaulting to ' chisq’
(original form); if method is specified as * aux’, the test is performed through the auxiliary
regression. Below we compare the two versions, using the default estimated covariance matrix
in the auxiliary regression.

data ("Grunfeld", package = "plm")
phtest (inv 7 value + capital, data = Grunfeld)

Hausman Test

data: inv 7 value + capital

chisqg = 2.3, df = 2, p-value = 0.3

alternative hypothesis: one model is inconsistent

phtest (inv ~ value + capital, data = Grunfeld, method = "aux")

Regression-based Hausman test

data: 1inv 7 value + capital
chisqg = 2.1, df = 2, p-value = 0.3
alternative hypothesis: one model is inconsistent

Unsurprisingly, the results from the regression-based and the original Hausman test are con-
sistent: both support the random effects hypothesis.

Example 5.10 robust Hausman test - RDSpillovers data set

The RDSpillovers data are highly heteroscedastic. In this situation, the original Hausman
test is biased toward rejection, as is the alternative regression-based version if not robustified.
The latter can nevertheless be computed in robust form, by employing a robust covariance
matrix in the restriction test on the auxiliary regression. If method is ’aux’, the pht-
est function admits a further vcov argument, possibly allowing to specify the use of a
robust estimator for the covariance. As can be seen from the table below, the results change
substantially:

data ("RDSpillovers", package = "pder")

pehs <- pdata.frame (RDSpillovers, index = c("id", "year"))
ehsfm <- 1lny - 1Inl + 1nk + 1lnrd

phtest (ehsfm, pehs, method = "aux")

Regression-based Hausman test
data: ehsfm

chisqg = 53, df = 3, p-value = 2e-11
alternative hypothesis: one model is inconsistent
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phtest (ehsfm, pehs, method = "aux", vcov = vcovHC)
Regression-based Hausman test, vcov: vcovHC

data: ehsfm
chisqg = 2.3, df = 3, p-value = 0.5
alternative hypothesis: one model is inconsistent

The robust version of the Hausman test does not reject the random effects hypothesis
any more.

5.2 Unrestricted Generalized Least Squares

If the data-generating process is:
y=Zy+e

and € ~ (0,Q) has a general structure, ordinary least squares estimates for f are inefficient,
though consistent. By Aitken’s theorem (see, e.g., Greene (2003), 10.5), generalized least squares
(GLs) are the efficient estimator for the model parameters if Q is known. The estimator is then

Pes = (ZTQ12) 1 ZTQY)

Various feasible GLS procedures exist drawing on consistent estimators of , which are then
plugged into the GLs estimator. The key to obtaining a consistent estimate of Q is, in general,
to specify enough structure to faithfully represent its characteristics while keeping the number
of parameters to be estimated at a manageable level.

In the standard one-way error components model, as already seen, the disturbance term
may be written as €,, = 7, + v,, where 5, denotes the (time-invariant) individual-specific effect
and v,, the idiosyncratic error. Observations regarding the same individual # share the same
n, effect, thus the relative errors are autocorrelated. The random effects structure is a very
parsimonious way to account for individual heterogeneity, which can be extended in various
dimensions, e.g., by specifying an autoregressive process in space and/or time for the idiosyn-
cratic component v,,.

Under the random effects specification, the variance-covariance matrix of the errors Q =
0,’(Iy ® J1) + 0,>(Iy ® 1) is block-diagonal with Q = I, ® X, where

2 2 2 2
o, +o, o, o,
2 o o oito
ZT=(7”]T+GV I, = )
o,
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2 2 2
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The above is the standard specification of random effects panels, described in the previous
chapters. It parsimoniously describes the error covariance by means of just two parameters and
is, therefore, of very general applicability as far as sample sizes are concerned. In panels with
one dimension much larger than the other (typically, large and short panels) a less restrictive
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approach is possible, termed general GLs (Wooldridge, 2010, 10.4.3), which allows for arbitrary
within-individual heteroscedasticity and serial correlation of errors, i.e., inside the X covariance
submatrices, provided that these remain the same for every individual.

5.2.1 General Feasible Generalized Least Squares

If one assumes Q = I, ® X, but leaves the structure of X, completely free except for the obvi-
ous requisites of being symmetric and positive definite:

0] Op o1r
2
s - c1y Oy
=
Or-1r1
2
oir o

individual errors can evolve through time with an unlimited amount of heteroscedasticity and
autocorrelation, but they are assumed to be uncorrelated between them in the cross section,
and this structure is assumed constant over the different individuals. By this assumption,
the components o, of X, can be estimated drawing on the cross-sectional dimension,
using the average over individuals of the outer products of the residuals from a consistent
estimator:

N 5 A
5=25
=
- N
n=1

where é, = (€, ... €,7) is the subvector of oLs residuals for individual #.

This estimator is called general feasible GLs, or GGLS and is also sometimes referred to as
the Parks (1967) estimator and is, as observed by Driscoll and Kraay (1998), a variant of the
SUR estimator by Zellner (1962). Greene (2003) presents the same estimator in the context of
pooled time series, with fixed N and “large” 7T

Leaving the intra-group error covariance parameters completely free to vary is an attractive
strategy, provided that N > T because the number of variance parameters to be estimated with
NT data points is T(T + 1)/2 (Wooldridge, 2010). This is a typical situation in micro-panels
such as, e.g., household income surveys, where N is in the thousands but T is typically quite
short so that even if estimating an unrestricted covariance, many degrees of freedom are still
available.

The original applications have instead been in the field of pooled time series, aimed at
accounting for cross-sectional correlation and heteroscedasticity. In this context, Driscoll and
Kraay (1998) observe how the lack of degrees of freedom in estimating the error covariance
leads to near-singular estimates and hence to downward-biased standard errors, thus over-
estimating parameter significance. Beck and Katz (1995) also discuss some severe biases of
this estimator in small samples. Both start from a pooled time series, T-asymptotic approach,
and both are interested in robustness over the cross-sectional dimension. In this light, most of
the criticism this estimator has been subject to depends on the peculiar field of application,
especially in Beck and Katz (1995) and references therein (Alvarez et al., 1991) where it is
applied to political science data with very modest sample sizes; but recent simulations by Chen
et al. (2009) show that even in such situations FGLS can be more efficient than the proposed
alternatives (oLs with PCSE standard errors).

=
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The GGLs principle can be applied to various situations, consistent with different views
on heterogeneity (random vs fixed effects hypothesis) or stationarity (e.g., to a model in first
differences). That translates into either applying the unrestricted GLS estimator directly to the
observed data or to a transformation thereof.

This framework allows the error covariance structure inside every group (if effect is set
to “individual’) of observations to be fully unrestricted and is therefore robust against
any type of intra-group heteroscedasticity and serial correlation. This structure, by converse,
is assumed identical across groups and thus general FGLS is inefficient under group-wise het-
eroscedasticity. Cross-sectional correlation is excluded a priori.

In a pooled time series context (effect is set to ‘' time’), symmetrically, this estimator
is able to account for arbitrary cross-sectional correlation, provided that the latter is time
invariant (see Greene, 2003, 13.9.1-2, p. 321-322). In this case, serial correlation has to be

assumed away and the estimator is consistent with respect to the time dimension, keeping
N fixed.

5.2.1.1 Pooled GaLs

Under the specification described at the beginning of this section, residuals can be consistently
estimated by oLs and then used to estimate X, as above. Using Q = I, ® £, the FGLS estima-
tor is:

— (ZTQ—IZ)—I (ZTQ—Iy)

~
YGGLS

The estimated individual submatrix 2, will give an assessment of the structure, if any, of the
errors’ covariance, which may guide towards more parsimonious specifications like the RE one
(if all diagonal and, respectively, all off-diagonal elements are of similar magnitude) or possibly
an AR(1) specification, if covariances between pairs of oft-diagonal elements become smaller
with distance.

In this small-T', large-N context, one will often want to include time fixed effects to mitigate
cross-sectional correlation, which is assumed out of the residuals.

The function pggls estimates general FGLS models, either with or without fixed effects, or
on first-differenced data. In the following we illustrate it on the Emp1UK data.

Example 5.11 generalized GLs estimator — Emp1UK data set
The Emp1UK dataset is a good candidate for GGLS estimation as being a relatively big random
sample of firms observed over a limited number of years.

The “random effect” equivalent, general GLS, is estimated by specifying the model argument
as ‘pooling’:

data ("EmplUK", package = "plm")

gglsmod <- pggls(log(emp) ~ log(wage) + log(capital),
data = EmplUK, model = "pooling")

summary (gglsmod)

Call:
pggls (formula = log(emp) ~ log(wage) + log(capital), data = EmplUK,
model = "pooling")
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Unbalanced Panel: n = 140, T = 7-9, N = 1031

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max .
-1.8070 -0.3655 0.0618 0.0323 0.4428 1.5872

Coefficients:

Estimate Std. Error z-value Pr(>|z|)
(Intercept) 2.0235 0.1585 12.77 < 2e-16 ***
log (wage) -0.2323 0.0480 -4.84 1.3e-06 **x*
log (capital) 0.6105 0.0174 35,02 < 2@=16 T

Signif. codes:

@ "M==l @01 " .l "e0 @05 T,V @, 7 " 4
Total Sum of Squares: 1850

Residual Sum of Squares: 403

Multiple R-squared: 0.783

The pggls function is similar to plm in many respects. An exception is that the estimate
of the group covariance matrix of errors (sigma, a matrix) is reported in the model objects
instead of the usual estimated variances of the two error components. It can be displayed as
follows:

round (gglsmod$sigma, 3)
1976 1977 1978 1979 1980 1981 1982 1983 1984

1976 0.307 0.291 0.277 0.269 0.252 0.254 0.247 0.303 0.362
1977 0.291 0.303 0.296 0.294 0.275 0.259 0.251 0.272 0.428
1978 0.277 0.296 0.299 0.301 0.280 0.264 0.256 0.280 0.433
1979 0.269 0.294 0.301 0.314 0.291 0.273 0.263 0.287 0.452
1980 0.252 0.275 0.280 0.291 0.282 0.265 0.254 0.279 0.426
1981 0.254 0.259 0.264 0.273 0.265 0.266 0.254 0.279 0.447
1982 0.247 0.251 0.256 0.263 0.254 0.254 0.262 0.291 0.473
1983 0.303 0.272 0.280 0.287 0.279 0.279 0.291 0.300 0.486
1984 0.362 0.428 0.433 0.452 0.426 0.447 0.473 0.486 0.505

As can be seen, the correlations between pairs of residuals (in time) for the same individual
do not die out with the distance in time. The estimated error covariance very much resembles
the random effects structure, with a strong prevalence of the individual variance component o;
over 62 (witness the small difference between values on and outside the diagonal).

5.2.1.2 Fixed Effects cLs

If individual heterogeneity is present but we do not trust the random effects assumption, and
moreover the remainder errors are expected to show heteroscedasticity and serial correla-
tion, the FE estimator can be employed together with a robust covariance matrix; but if the
cross-sectional dimension is sufficient and the assumption of constant covariance matrix across
individuals is realistic, then applying the GGLs method to time-demeaned data can provide a
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more efficient alternative, called the fixed effects GLS (FEGLS) estimator (Wooldridge, 2010,
10.5.5).5
The errors covariance submatrix for each individual is now:

S A

N
. é, el
greas _ 3 St
FEGLS —
~ N

where €, = (€15 --- €w,ur) 1S the subvector of FE (within) residuals for individual #. Using
QrFEaLy) — [ ® ﬁl(TFEGLS)and the within transformed data, the FEGLS estimator is:

ﬂAFEGLS = (XT WQ(FEGLS)_I VVAX)_1 (XT WQ(FEGLS)_l WJ’)

This estimator, originally due to Kiefer (1980), takes care of both the serial correlation present
in the original errors €,, and, implicitly, of that induced by the demeaning. For this reason, being
a combination of both, the estimated £ does not give a direct assessment of the original error
structure anymore.

Example 5.12 FEGLS estimator — EmplUK data set

The fixed effects pggls is based on the estimation of a within model in the first step,
but this is transparent to the user; estimation follows as above but for the need to specify
model='within’. For reasons of robustness, as happens with plm, this is the default
method. It is estimated by:

feglsmod <- pggls(log(emp) ~ log(wage) + log(capital), data = EmplUK,

model = "within")
summary (feglsmod)
Within model
Call:
pggls (formula = log(emp) ~ log(wage) + log(capital), data = EmplUK,
model = "within")

Unbalanced Panel: n = 140, T = 7-9, N = 1031

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.5084 -0.0743 -0.0024 0.0000 0.0761 0.6014

Coefficients:

Estimate Std. Error z-value Pr(s|z|)
log (wage) -0.6176 0.0308 -20.1 <2e-16 ***
log(capital) 0.5610 0.0172 32.6 <2e-16 ***

5 Notice that one time period has to be dropped from the data because the empirical covariance matrix of
transformed errors has rank T’ — 1: see again Wooldrodge (2010, p. 312) and references therein.
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Signif. codes:

0 '***x!' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 1850

Residual Sum of Squares: 17.4

Multiple R-squared: 0.991

The phtest function can be used to assess the need for fixed effects through a Hausman
test:

phtest (feglsmod, gglsmod)
Hausman Test

data: log(emp) ~ log(wage) + log(capital)
chisg = 1100, df = 2, p-value <2e-16
alternative hypothesis: one model is inconsistent

The Hausman test strongly favours the fixed effects model.

5.2.1.3 First Difference cLs
Analogously, the GGLS principle can be applied to data in first differences, in the very same
way as for FEGLS, giving rise to the first difference GLs (FDGLS) estimator (Wooldridge, 2010,
p. 320).
In this case, the errors covariance submatrix for an individual is:
i(FDGLS) — i AénAéI
T-1 ~ N-1

where Aé, = (Aé,,, ... Aé,;) is the subvector of D residuals for individual 7. Using Q®PStS) =

I, ® ﬁl(;ff S)and the differenced data, the FDGLS estimator is:

— (AZTQ(PDGLS)—I Az)—l(AzTQ(FDGLS)—l Ay)

A
J/l’DGLS

First differencing eliminates time-invariant unobserved heterogeneity, as does the
within transformation; one difference is that now one time period is lost for each indi-
vidual. FD has to be preferred to FE when the original data are likely to be nonstationary,
because then the FD-transformed residuals will be. Again, elements of £*”*$do not directly
represent the correlation structure of residuals because of the induced correlation from first
differencing.

To choose which method to use, one can look at the stationarity properties of the residuals. If
the residuals of the FEGLS estimator are not stationary, then FDGLS will be a more appropriate
estimator.

Example 5.13 FDGLS estimator — Emp1UK data set
Specifying model='£d’, we obtain the FDGLS estimator.

fdglsmod <- pggls(log(emp) ~ log(wage) + log(capital), data = EmplUK,
model = "fd")

summary (£dglsmod)

NA
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Call:
pggls (formula = log(emp) ~ log(wage) + log(capital), data = EmplUK,
model = "fd")

Unbalanced Panel: n = 140, T = 7-9, N = 1031
Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.7578 -0.0751 -0.0189 -0.0283 0.0260 0.6506

Coefficients:

Estimate Std. Error z-value Pr(>|z|)
log (wage) -0.3343 0.0385 -8.67 E2R=1E “EE
log(capital) 0.3786 0.0203 18.68 <2e-16 **xx

Signif. codes:

0 '**%%'! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 1850

Residual Sum of Squares: 11.6

Multiple R-squared: 0.994

5.2.2 Applied Examples

Example 5.14 generalized GLS estimator — RiceFarms data set

The Rice Farming dataset contains observations on 171 farms over 6 years; therefore, the
number of covariance parameters to estimate on 1026 data points is a still manageable 21.
Farms come from 6 different regions, each with peculiar characteristics. The random sampling
assumption seems to be reasonable within regions, but one might suspect observations from
the same region to share some common characteristics, and such characteristics to be possibly
related to the regressors: therefore it is advisable to include 5 regional fixed effects, to control
for region-related, correlated heterogeneity along the lines of Wooldridge (2010, p. 328). For
the reasons given above, we include time effects to control for contemporaneous correlation
in the cross section; instead of following the original application of Druska and Horrace (2004)
adding one dummy for wet seasons as opposed to dry ones, we simply introduce 5 separate
time effects.

data ("RiceFarms", package = "splm")

RiceFarms <- transform(RiceFarms,
phosphate = phosphate / 1000,
pesticide = as.numeric(pesticide > 0))

fm <- log(goutput) ~ log(seed) + log(urea) + phosphate +
log(totlabor) + log(size) + pesticide + varieties +
+ region + time

gglsmodrice <- pggls (fm, RiceFarms, model = "pooling", index = "id")
summary (gglsmodrice)
NA

133



134

Panel Data Econometrics with R

"pooling",

< 2e-16
9.1le-08
< 2e-16

0.0053
2., le=15
< 2e-16

0.1473
8.9e-05
.0209
.3393
.7926
L7121
.2049
.0021
.2102
8.4e-11
< 2e-16
0.0448
0.1581

O O O O O o o

Call:

pggls (formula = fm, data = RiceFarms, model =
Balanced Panel: n = 171, T = 6, N = 1026
Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.9315 -0.2285 0.0151 0.0000 0.2147 1.3740
Coefficients:

Estimate Std. Error z-value Pr(>|z|)
(Intercept) 5.3334 0.1788 29.83
log (seed) 0.1285 0.0241 5.34
log (urea) 0.1351 0.0151 8.94
phosphate 0.7040 0.2526 2.79
log (totlabor) 0.2099 0.0265 7.93
log (size) 0.5000 0.0281 17.77
pesticide 0.0355 0.0245 1.45
varietieshigh 0.1351 0.0345 3.92
varietiesmixed 0.1031 0.0446 2.31
regionlangan -0.0451 0.0472 -0.96
regiongunungwangi 0.0140 0.0532 0.26
regionmalausma 0.0200 0.0541 0.37
regionsukaambit 0.0671 0.0529 1.27
regionciwangi 0.1633 0.0530 3.08
time2 -0.0328 0.0262 -1.25
time3 -0.2049 0.0316 -6.49
time4 -0.3440 0.0285 -12.08
time5 0.0576 0.0287 2.01
timeé6 0.0441 0.0313 1.41
Signif. codes:
@ "=wel Q0oL "==V @.01L "¥"' @.05 Y.U @.d " °©
Total Sum of Squares: 1010
Residual Sum of Squares: 101
Multiple R-squared: 0.901

Regions do not seem to be so important after all, only Ciwangi being significantly different

from the baseline; although a joint restriction test still rejects:

library ("lmtest")

waldtest (gglsmodrice, "region")

Wald test

Model 1: log(goutput) ~ log(seed)
log(size)

Model 2: log(goutput) ~ log(seed)

log(size)
Res.Df Df Chisqg Pr (>Chisq)

1 1007
2 1012 -5

28.9 2.52=05 %

+ log(urea)

+ log(urea)

+ pesticide + varieties + time

+ pesticide + varieties + +region + time

index =

* % %
*kk
* % %
* %

* % %

*kk

*kk

* %k

* k *k

* % %

nidn)

+ phosphate + log(totlabor)

+ phosphate + log(totlabor)
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Signif. codes:
@ U=wel @001 Vel @, V=T @5 "7 @, YO0 a4

feglsmodrice <- pggls(update(fm, . ~ . - region), RiceFarms, index = "id")

Qualitatively, the results do not seem to change much when adding individual fixed effects.
The hypothesis that after controlling for the region, all remaining individual heterogeneity be
of the random effects type can be tested formally by means of a Hausman test:

phtest (gglsmodrice, feglsmodrice)
Hausman Test

data: fm
chisg = 18, df = 13, p-value = 0.1
alternative hypothesis: one model is inconsistent

The Hausman test does in fact not reject. Given the low significance of the regional effects,
one might wonder whether a full “random effects” specification can be justified. An updated
GGLS specification can readily be compared to the already estimated FEGLS model:

phtest (pggls (update (fm, - region), RiceFarms,

model = "pooling", index = "id"),
feglsmodrice)
Hausman Test
data: wupdate(fm, . 7 . - region)

chisg = 19, df = 13, p-value = 0.1
alternative hypothesis: one model is inconsistent

In fact, even omitting the regional fixed effects, the GGLS specification still passes the Haus-
man test. The 171 rice farms can actually be seen as random draws from the same population,
without the need for either individual or regional fixed effects.

Example 5.15 generalized GLs estimator — RDSpillovers data set

The static production function estimation in Eberhardt et al. (2013) is a problematic candidate
for GGLs techniques; although it is desirable to allow for a free heteroscedasticity and serial
correlation structure across this sample of manufacturing firms observed over a relatively long
period of time, care shall be taken with the results exactly because of the relatively big time
dimension. As too many covariance parameters, as discussed above, would result in underesti-
mation of standard errors and hence false significance, sharp results should be looked at with
suspicion. The example is nevertheless useful for illustration purposes, especially as it can be
benchmarked against the thorough specification analysis in the original paper. As it will turn
out, the GGLS approach ultimately seems to have satisfactory properties in this setting too.

fm <- Iny ~ 1Inl + 1lnk + 1lnrd
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gglsmodehs <- pggls(fm, RDSpillovers, model = "pooling")
coeftest (gglsmodehs)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.04589 0.06416 16.3 22@=1E LG
Inl 0.54825 0.01118 49.0 <2@=1FE =¥
1nk 0.43762 0.01384 31.6 22@=1E ©uEG
Inrd 0.08548 0.00548 15.6 <2@=16E =¥
Signif. codes:

0 'x*x! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1
feglsmodehs <- pggls(fm, RDSpillovers, model = "within")

coeftest (feglsmodehs)
t test of coefficients:

Estimate Std. Error t value Pr(>|t])

Inl 0.4942 0.0204 24.18 < 2e-16 **x*
Ink 0.4922 0.0307 16.01 < 2e-16 ***
Inrd 0.0490 0.0147 3.34 0.00086 **=*

Signif. codes:
@ "=wel @, eel "e=t @.01L "#0 ©.,05 .9 ©@.i " ¥

phtest (gglsmodehs, feglsmodehs)
Hausman Test
data: fm

chisg = 18, df = 3, p-value = 5e-04
alternative hypothesis: one model is inconsistent

The Hausman test rejects the “random effects” GGLs specification. Given that correlated
heterogeneity seems to be present, an alternative to eliminate it is the first difference trans-

formation:

fdglsmodehs <- pggls(fm, RDSpillovers, model = "fd")

Which one to choose between FEGLS and FDGLS depends on the properties of transformed
residuals. FEGLS residuals show a high level of persistence, as a simple serial correlation test
(Wooldridge, 2010, 10.6.3) shows. We make a data.frame of the residuals, then estimate a

(pooled) autoregressive model:

fee <- resid(feglsmodehs)
dbfee <- data.frame (fee=fee, id=attr(fee, "index") [[1]])
1l

1
coeftest (plm(fee'lag(fee)+lag(fee,2), dbfee, model = "p",

index="id"))
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01096 0.00123 B.688 < 2e=iE s
lag(fee) 1.07741 0.01926 55.95 < 2e-16 ***
lag(fee, 2) -0.14512 0.01886 -7.69 2.le-14 ***

Signif. codes:
0 '*¥*%! (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The FEGLS residuals seem close to being nonstationary. The estimated autocorrelation in
FDGLS residuals is instead much lower:

fde <- resid(fdglsmodehs)
dbfde <- data.frame (fde=fde, id=attr(fde, "index") [[1]1])
coeftest (plm(fdelag(fde) +lag(fde,2), dbfde, model = "p", index="id"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01392 0.00132 10.50 < 2e-16 ***
lag(fde) 0.10548 0.02085 5.06 4.6e-07 **x*
lag(fde, 2) 0.02317 0.01969 1.18 0.24

Signif. codes:
@ T=wel Q.01 "1 Q.01 "7 @.05 "." @.1 Y U 1

hence it is advisable to resort to the FDGLS estimator:
coeftest (fdglsmodehs)
t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

1nl 0.5569 0.0217 25.61 SAQ=1E “E
1nk 0.3514 0.0326 10.78 22@=1E @
1nrd 0.0611 0.0157 3.89 le-04 **x*

Signif. codes:
@ U=wel @001 Vel o @.01L Y=Y @05 ",0 @, VU a4

The result, despite the limited number of degrees of freedom in estimating X, is in line
with the more sophisticated analyses in the original paper by Eberhardt et al. (2013, Table 7) and
with the preferred FD specification in Table 5, ibid. Moreover, despite the expected downward
bias, standard errors are not too far from those of the above-mentioned Fp model.
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6

Endogeneity

6.1 Introduction

There is an endogeneity problem when the error is correlated with at least one explanatory
variable. This phenomenon is very common in econometrics because, compared to experimen-
tal sciences, it is not possible (or it is at least difficult) to control the data-generating process.
Among the possible causes of endogeneity, the three most important are:

simultaneity. In this case, there is an explanatory variable that is set simultaneously with the
response: this is, for example, the case when one seeks to estimate a demand equation for a
good, which contains the price of the good itself. The demand and the price are simultane-
ously set by the condition of equality of supply and demand and, therefore, a variation of the
error term of the demand equation will shift the demand curve and therefore induce a vari-
ation of the quantity and the equilibrium price. The price variable is therefore endogenous.

covariate measured with error. If the “true” model is y = @ + fx + v and what is observed
is x* =x + 7, the estimated model writes: y =a + f(x* —n)+ v, or y = a + fx* + ¢ with
€ = v — pn. Hence, € is correlated with x*, which is therefore endogenous.

omitted variable. If the “true” modelisy = @ + f,x + f,z + vand zis unobserved, the estimated
modelisy = a + f.x + €, with e = f,z + v. The error of the estimated model then contains the
influence of the omitted variable, and this error is correlated with x if x and z are correlated.
Once again, the covariate x is then endogenous.

The oLS estimator is:
y=Z"2)"Z7y

Replacing y by its expression: Zy + €, we obtain 7 as a function of the errors of the model:
=y +Z"Z2)y'Ze

We then have, denoting N the sample size:
e ()

The estimator is consistent (plim 7 = y) iflim,,_, ZTTe = 0, this expression being the vector of
covariances for the population between the covariates and the error. The ordinary least squares
model is therefore consistent if the covariates and the error are uncorrelated. When this condi-
tion is not met, the method of instrumental variables, which will be presented in detail in this
chapter, can be used.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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Concerning simultaneity, there is an additional problem as the model is not defined by one
equation but by a system of equations. In this case, two strategies can be followed:

e estimating only the equation of interest (limited information estimator),
e estimating simultaneously all the equations (full information estimator).

The latter approach leads to a more efficient estimator, as the correlation of the errors of all the
equations is taken into account. But if an equation is wrongly specified, it can contaminate
the estimation of the parameters of the other equations of the model.

6.2 The Instrumental Variables Estimator

6.2.1 Generalities about the Instrumental Variables Estimator

Let us consider the following model: y = Zy + € with V(e€) = L. if at least one of the covariates
is correlated with the errors, the OLs estimator is not consistent. In order to obtain consis-
tency, we use the instrumental variables estimator. The instrumental variables are denoted by
L.! Denoting by K the number of the covariates and by M > K the number of instruments (not
including the column of ones), the instrumental variables must verify: lim,,_, , %e = 0. Stated
differently, they must not be correlated with the errors.? In the simplest case where the number
of instruments equals the number of covariates, the instrumental variable estimator is simply
obtained by solving the system of equations: LTe = 0, which is just identified. Developing this
expression, we obtain: LT(y — Zy) = 0, which can also be written:

p=W@T2)'LTy (6.1)

If there are more instruments than covariates (M > K), LT ¢ is an over-determined system of
linear equations, which, except for very special cases, doesn’t have a solution. In this case, two
equivalent approaches can be used to obtain the optimal estimator. The first one consists in
pre-multiplying the model by LT:

L'y=L"Zy+L"e (6.2)

It is a model that contains M + 1 rows and K + 1 parameters to estimate y. If one considers
it as a standard regression model, the variance of the errors being V(LTe) = 62LTL, the best
linear estimator is the GLs estimator, and we then obtain the following instrumental variables
estimator:

Y =C LATL)'L" 2y (ZTL(LTL) LT y)
=Z'P,Z)yNZ"P,y)
with P, = L(LTL)7ILT.

The second approach is the generalized method of moments. We consider here a vector of
M + 1 moments: E(LTe) = E(LT(y — Zy)) = 0 for which the variance is V(LT¢) = ¢2LTL. Using
the generalized method of moments, we seek to minimize the quadratic form of the vector of
moments, using the inverse of the variance matrix of these moments:

(6.3)

SO =y LT = Zn = 07 =y 2R - Z)

The first-order conditions for a minimum are: —2Z"P, (y — Zy)/c?* = 0, and solving this sys-
tem of linear equations, we obtain the same estimator as before.

1 As for the Z matrix, the first column of L is a column of ones.
2 Itis often the case that some covariates are uncorrelated with the errors and are therefore also used as instruments.
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The instrumental variables estimator is also called the two-stage least squares estimator
(2sLs), as it can be obtained by applying twice the method of ordinary least squares. When
we consider the regression of z on L, we obtain the estimator = (LTL)"!LTz and the fitted
values 2, = Ly = L(L"L)"'L"z = P, z. The matrix P, is therefore the projection matrix on the
subspace defined by the columns of L. This matrix is symmetric and idempotent, which means
that P, P, = P,. The instrumental variables estimator (6.3) can also be written, denoting by
Z, = P, Z the fitted values of the covariates regressed on the instrumental variables:

T = 2120720y = Z[2)7' 2[5, (6.4)
and can therefore be obtained by applying oLs twice:

o the first time by regressing every covariate on the instruments,
o the second time by regressing the response on the fitted values of the first-stage estimation.

The variance of the instrumental variables estimator is:
V@) =X 2] Z)™

The estimator is therefore the more efficient the larger the variance of Z;, which means that
Z and L are highly correlated.

6.2.2 The within Instrumental Variables Estimator

The specificity of panel data methods is that the error term is modeled as having two com-
ponents, an individual effect and an idiosyncratic term. Therefore, the correlation between
covariates and instrumental variables, on the one hand, and the errors of the model, on the
other hand, must be analyzed separately for each component of the error. In this section, we
consider the estimation of the model transformed in deviations from individual means. This
transformation wipes out the individual effect; therefore, there is no reason to take care of
the correlation between the covariates and the individual effects. The w2sLs is obtained by
pre-multiplying the model first by W: Wy = WZy + We and then by L7,

L'Wy=L"WZy+L"We (6.5)

and applying GLS to this transformed data, the variance matrix of the errors of this model being
2L WL:

Pwass = (ZTWLLTWLY'LTWZ)™ (ZT WL WL)' LT Wy)

or, denoting by: P = WL(LTWL)"'LTW the projection matrix defined by the within transfor-
mation of the instruments:

Pwass = (ZTPYZ)H(ZTPYy) (6.6)

A similar reasoning can be followed for the between model. We consider the between transfor-
mation of the model By = BZy + Be, with the same transformation applied to the instruments
(BL). The instrumental variables estimator is obtained by pre-multiplying the model by LT B:

L'By=L"BZy + L"Be (6.7)
and applying to this transformed model the GLS estimator:

Parss = (ZP}2)(ZTPLy) (6.8)
with PP = BL(LTBL)"'L"B.
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The w2sLs is consistent, even if the individual effects are correlated with the covariates.
On the contrary, the B2sLs is consistent only if there is no correlation. If this hypothesis is
verified, none of them is efficient, as each of them take into account only one component of
variability.

Example 6.1 within 2sLs estimator — SeatBelt data set

Cohen and Einav (2003) study the influence of using seat belts on the number of deaths on
American roads; they consider occupants of the vehicles involved in accidents (about 35,000
killed a year) and non-occupants (e.g., pedestrians; about 5,000 killed a year). They use panel
data for the 50 American states for the 1983-1997 period. This dataset, called SeatBelt, is
available in the pder package. The main covariate is the rate of seat belt usage. Two main
questions are analyzed:

o the first one concerns the behavior compensation theory developed by Peltzman (1975).
According to this theory, using the seat belt makes the driver more confident and leads him
to adopt a less prudent driving behavior. Combined with the expected negative effect from
seat belts on occupants’ deaths, the global effect on mortality may then be insignificant, or
even positive if the mortality of non-occupants increases with the use of seat belts,

o the second deals with the problem of endogeneity: if driving conditions get worse, for
example for meteorological reasons, other things being equal, road mortality will increase,
but seat belt use will also increase, as the drivers are conscious that the probability of having
an accident increases. There is therefore in this case a correlation between the error term of
the mortality equation and the seat belt use variable. In this case, not taking this endogeneity
into account will induce a downward bias on the estimation of the seat belt-use coefficient.

Cohen and Einav (2003) use three estimators. First, the model is estimated using oLs and
therefore the endogeneity is not taken into account. The second is the within estimator; in this
case, the problem of the correlation between the individual effect and the covariate is taken
into account as the within transformation wipes out the individual effects. On the contrary, the
problem of correlation between the idiosyncratic part of the error and the covariate remains.
This last problem is solved using the w2sLs estimator. The instruments used are variables that
indicate the laws concerning the use of seat belts. These variables (ds, dp and dsp) are corre-
lated with the use of seat belts but not with the errors. Other variables are also used as controls
(and are described in the help page of the dataset).

The instrumental variables estimator is computed using the p1m function. The instruments
are specified with a two-part formula, using the Formula package (Zeileis and Croissant,
2010). The first part indicates the covariates of the model, while the second part indicates the
instruments. Often, a large subset of covariates are used as instruments. In order to avoid
repeating almost the same list of variables twice, it is possible to use a more efficient syntax
using the . operator, constructing the second part of the formula by updating the first part.
For example, if the covariates are x1, x2 and x3, only x2 is endogenous, and there is only
one external instrument z, the model to be estimated can be described by either of the two
equivalent following formulas:

y T xl + x2 + X3 | X1 + X3 + z

y T xl + x2 + x3 | . - %2 + z

The three models estimated by Cohen and Einav (2003), which are reproduced below, include
time fixed effects. The response (occfat) is the number of vehicle occupants killed on the road.
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data ("SeatBelt", package = "pder")
SeatBelt$occfat <- with(SeatBelt, log(farsocc / (vmtrural + vmturban)))
ols <- plm(occfat ~ log(usage) + log(percapin) + log(unemp) + log(meanage) +
log(precentb) + log(precenth)+ log(densrur) +
log(densurb) + log(viopcap) + log(proppcap) +
log(vmtrural) + log(vmturban) + log(fueltax) +
1limé5 + 1im70p + mlda2l + bac08, SeatBelt,

effect = "time")
fe <- update(ols, effect = "twoways")
ivfe <- update(fe, . ~ . | . - log(usage) + ds + dp +dsp)
rbind(ols = coef (summary (ols)) [1,],
fe = coef (summary (fe)) [1, 1,
w2sls = coef (summary (ivfe)) [1, 1)

Estimate Std. Error t-value Pr(>|t])

ols 0.1140 0.02547 4.478 9.252e-06
fe =0,0535 0.02252 -2.376 1.790e-02
w2sls -0.1334 0.04482 -2.975 3.079e-03

The results confirm that the endogeneity problem is very important. For the first fitted model,
the seat belt-use coefficient is significantly positive. It becomes significantly negative for the
fixed effects model, which means that usage is strongly correlated with the individual effects.
Finally, this coefficient increases importantly (in absolute value) if instrumental variables are
used, which indicates that the idiosyncratic error is also correlated with usage.

In order to test the behavior compensation theory, the authors estimate the same models, this
time using the number of non-occupants killed (noccfat) as response.

SeatBeltSnoccfat <- with(SeatBelt, log(farsnocc / (vmtrural + vmturban)))

nivfe <- update(ivfe, noccfat ~ . | )

coef (summary (nivfe)) [1, ]
Estimate Std. Error t-value  Pr(>|t])
-0.04237 0.10312 -0.41091 0.68133

The results indicate that seat belt use has no influence on out-of -vehicle mortality, in con-
tradiction with Peltzman (1975)’s theory of behavior compensation.

6.3 Error Components Instrumental Variables Estimator

In the previous section, the potential correlation between some covariates and the individual
effects has been treated drastically by using the within transformation, which wipes out the
individual effects. In this section, we present the error component instrumental variables esti-
mator. The two components of the error being present in this model, it is in this case essential
to tackle the issue of a potential correlation of some covariates with the two components of the
error.

6.3.1 The General Model

Suppose in a first step that the idiosyncratic component of the error is not correlated with
the covariates. In this case, if all the covariates are uncorrelated with the individual effects,
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the unbiased efficient estimator is the GLS estimator. This estimator enables, on the one hand,
to take into account part of the inter-individual variation in the sample and, on the other
hand, to estimate parameters associated with covariates that don’t exhibit temporal variations.

If, on the contrary, all the covariates are correlated with the individual effects, Mundlak (1978)
(see subsection 4.2) has shown that the efficient estimator, which is the GLS estimator, is the
same as the within estimator if the correlation between the individual effects and the covariates
(more precisely the individual means of the covariates) is taken into account.

When only some covariates are correlated with the individual effects, none of the two previ-
ous estimators is appropriate any more:

e the GLS estimator is not consistent anymore because of the correlation of some covariates
with the individual effects,

o the within estimator is still consistent but not efficient any more, as it doesn’t take into
account the fact that some covariates are uncorrelated with the individual effects but wipes
out all the inter-individual variation in the sample, especially the covariates that don’t exhibit
any temporal variation.

The best solution in this case consists then in using an estimator that, on the one hand, uses
instrumental variables and, on the other hand, exploits the two sources of variability of the panel
in an optimal way. The essential question is then to find good instruments, which is often a diffi-
cult task. The richness of panel data allows to overcome this problem. Actually, every covariate
can generate two instrumental variables, using the between and the within transformations.
If a rank condition that will be detailed later on is checked, the model can then be estimated
without any external instrument. This approach has been used by Hausman and Taylor (1981),
Amemiya and MaCurdy (1986), and Breusch et al. (1989).

If, from now, we suspect that some covariates are also correlated with the idiosyncratic part
of the error, then none of the estimators we have listed above is consistent. We then use an
instrumental variables estimator (within or GLS) using external instruments. This strategy has
been developed by Baltagi (1981) with his “error component two-stage least squares” EC2SLS
estimator and by Balestra and Varadharajan-Krishnakumar (1987) with their “generalized two-
stage least squares” G2sLs estimator, which differ by the way the instruments are introduced in
the model.

This two branches of the literature have been developed separately, and this dichotomy exists
also in most software packages, which usually provide two different functions to estimate these
models. We'll follow the approach of Cornwell et al. (1992), who provide a unified view of panel
models with instrumental variables. These authors consider three kinds of variables:

o the endogenous variables, which are correlated with the two components of the error,

o the simply exogenous variables, which are correlated with the individual effects but not with
the idiosyncratic part of the error,

o the doubly exogenous variables, which are uncorrelated with both components of the error.

Variables from the first category don’t provide any usable instrument. For the second one, the
within transformation is a valid instrument, as it is by construction orthogonal to the individual
effects and by hypothesis uncorrelated with the idiosyncratic part. Finally, each covariate of the
third category provides two instruments by using the within and the between transformation.

Consider now the specific case of time-invariant covariates. For these variables, WX = 0 and
BX = X. Therefore, such a variable provides either one instrument, if it is uncorrelated with the
individual effects (the covariate itself), or no instrument.

We start with the model to be estimated written in matrix form:

y=Zy+e
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With the usual hypotheses concerning the error component model, the variance matrix of
the error is: Q = 6 W + ¢7B. We first pre-multiply the model by: Q™% = 67**W + 6, °°B and
then obtain a transformed model for which the errors are iid.

Q_O'Sy - Q—O.SZY + Q—O.Se

We then apply to this model the instrumental variables method, using a set of instruments,
which, denoting by L ;) the doubly exogenous variables, by L ,, the simply exogenous variables,
and by L = (L), L)) the whole set of instruments, can be written:

A = (WL, BL)

where L is a set of variables that will be defined later. For now, just consider that these variables
must provide valid instruments when the between transformation is applied.

The instrumental variables estimator is, denoting by P, = A(ATA)"!AT the projection matrix
defined by the instruments:

5; — (ZTQ—O.S PA Q—O.SZ)—lzTQ—O.SPAQ—O.Sy

The two matrices W and B being orthogonal, the projection matrix may also be written
as the sum of two projection matrices defined by the instruments transformed by the within
and the between matrices:

P, =WLWL"WL)'L"W + BL(L'BL)"'L"B = Py, + Py;
The estimator is then:

-1
. _ (1 1 1 1
Y= <_ZZTPWLZ + ;ZTPBZZ> (;ZTPWLJ/ + ;ZTPBZJ/>

or also, denoting ¢? = 62 /5%
7= (ZPZ+ ¢ Z Py 2) (2 Py + 6 ZTPyy) (6.9)
One can check that, as in the simple error component model, this estimator is a weighted
average of the within and the between estimators: 7,cog,s = DY Vyasrs T DPF2ersr With:
DY =[Z"P,,Z + ¢*Z'P;Z17\ZTP,
{DB = @ZTP,Z + $*Z P 21\ ZTP,;

Several models proposed in the literature are special cases of this general model.

6.3.2 Special Cases of the General Model

6.3.2.1 The within Model
Firstly, if there are no external instruments and if all the covariates are simply exogenous, we
have L = Z and L = 0, and the within estimator results.

Then, if all the covariates are either simply exogenous or endogenous and if the external
instruments are simply exogenous, we also have L = 0, and L is constituted only by simply
exogenous covariates and external instruments. The condition for identification is then that the
number of external instruments must be at least equal to the number of endogenous covariates.
We then have the within instrumental variables estimator:

7= (ZTPWLZ)_IZTPWL.)/
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6.3.2.2 Error Components Two Stage Least Squares

Baltagi (1981)’s estimator is the special case where L = L, which means that all the instruments
(and potentially some of the covariates) are assumed to be doubly exogenous and are therefore
used twice. We start from equations (6.5) and (6.7), which leads respectively to the within and
between estimators. Stacking these two equations, we obtain:

LTWy L'wz L™We
1By )=\ 17z )7\ e
which is justified by the fact that the vector of parameters to be estimated y is the same in the

two equations. In order to apply GLs, we compute the variance of the errors of the stacked
model:

LWe L™WeeTWL LT Wee BL (LWL 0
\ =E =0, 1,7
L™ Be L"Bee"WL L"Bee'BL 0 SLTBL
We then apply the formula of the GLs estimator:

LWL 0 T ITwz
7=|(Z"WL Z"BL) !
0 -LTBL L'BZ

I'wlL o \'/L'w
x (ZTWL ZTBL) - ‘
0 —LTBL LBy

P=[Z"WLWL"WL)Y'L"WZ + $*Z"BL(L"BL)"'L"BZ]™*
X [ZT"WL(L"WL) ' L™ Wy + ¢*ZT BL(L"BL) 'L By]
and we finally obtain:
Vecass = [Z PYZ + ¢*ZTPEZ1 M ZTPEy + ¢*Z T PEy] (6.10)
which is the special case of the general model defined by equation (6.9) for which I = L.

6.3.2.3 The Hausman and Taylor Model
In the Hausman and Taylor (1981) model, there are no endogenous variables, only simply or
doubly exogenous variables. We then have L, = X;), Ly = X and L = L, + Ly = Xj) +
X()- Moreover, the authors stress the presence of variables with (X*) or without (X°) time vari-
ation. The set of instruments they use is:
(WX, X)) BX (1)) = (W(X(,), X5), X, BX()
Only covariates that exhibit time variation may be used with their within transformation
(WX(,, = WX(, =0) and doubly exogenous time-invariant variables are used without
transformation as instruments (BX{, = X7, ). Without external instruments, denoting by
K<C1)’K(C2)’K<Li)’K(g) the number of covariates of the 4 categories, the number of instruments is

2 C U ~ 1ce C C U U :
2K(1) + K(l) + K(2> as the number of covariates is: K(l) + K(z) + K(l) + K(z)' The model is then

identified if K} > K, , i.e., if the number of doubly exogenous time-varying variables (which

provide two instruments) is greater than the number of time-invariant simply exogenous
variables, which provide no instrument.
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6.3.2.4 The Amemiya-Macurdy Estimator

Hausman and Taylor (1981)’s estimator is consistent if the individual means of the doubly
exogenous variables are uncorrelated with the individual effects. Amemiya and MaCurdy (1986)
use the stronger hypothesis that the doubly exogenous variables are uncorrelated with the
individual effects for each period. We then have: E(x,,#,) = 0 V¢ for every doubly exogenous
covariate. The corresponding instrument matrix is constructed the following way. Let X',
be the matrix of doubly exogenous instruments of dimension T x K}, for individual 7. x; | =
vec(X] ) is a vector of length T'x K/, obtained by stacking the columns of X}, . The instru-
ment matrix for individual # is then j; ® xz(l)T, and for the whole sample, we obtain a matrix
of dimension NT X TK:

jT ® xij(l)

XU* =

@»

e
T T (6.11)

: U
]T ® xN(l)

6.3.2.5 The Breusch, Mizon and Schmidt’s Estimator

Breusch et al. (1989) expand the instruments used by Amemiya and MaCurdy (1986) by
assuming that the within transformations of simply exogenous covariates are valid instruments
at every period. Stated differently: E((x,,) — ¥,2))%,) = 0. We then obtain the further matrix
of instruments (W. )" by applying to W. @ the same transformation than the one used in
equation 6.11. The other contribution of Breusch et al. (1989) is to show how the different
estimators can be presented in a consistent and nested way. They use the fact that the projection
subspace defined by X* is the same as the one defined by BX, (WX)*:

. v v c v
e Hausman and Taylor (1981): WX(I)’ WXz’Xa)’BX(l)’

e Amemiya and MaCurdy (1986): WX(”D, WXZU,X(CD,BX(”D, (W. (”1))*,

e Breusch et al. (1989): W. (”1), WX;,X(CI),BX(”D, (W (”1))*, Q2 (”2))*,

As each estimator adds instruments to the previous one, if these instruments are valid, it is
necessarily more efficient. Moreover, the validity of extra instruments may be tested by com-
paring the two models with a Hausman test.

6.3.2.6 Balestra and Varadharajan-Krishnakumar Estimator

This last estimator, proposed by Balestra and Varadharajan-Krishnakumar (1987), is not, con-
trary to the others, a special case of the general model previously presented. For this model,
called the G2sLs estimator (for “generalized two-stage least squares”), the same transformation
is applied to the instruments that is applied also to the covariates and to the response. Therefore,
the matrix of instruments is:

WL+ @¢BL=L—-(1—-¢)BL

Baltagi and Li (1992) have shown that the instruments used by Baltagi (1981), L, = (WX, BX),
perform the same projectionas L, = (WX, WX + ¢BX) and (WX + ¢BX, BX). The instruments
used by Balestra and Varadharajan-Krishnakumar (1987) are therefore a subset of those used by
Baltagi (1981), the supplementary instruments used by Baltagi (1981) being either WX or BX.
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Therefore, the estimator of Baltagi (1981) is necessarily not less efficient than the one of Balestra
and Varadharajan-Krishnakumar (1987). Baltagi and Li (1992) show, using White (1986), that
the supplementary instruments used by Baltagi (1981) are redundant, which means that they
don’t add any gain in terms of asymptotic efficiency. Consequently, both estimators have the
same asymptotic variance.

However, the estimator of Balestra and Varadharajan-Krishnakumar (1987) has an impor-
tant drawback. A part of the between component of every instrumental variable is included in
the instruments, and consequently, the estimator of Balestra and Varadharajan-Krishnakumar
(1987) is unable to take into account simply exogenous instruments.

With plm, the way instruments are introduced is indicated by the inst .method argu-
ment: 'baltagi’ indicates that instruments are introduced with the within and the
between transformations, ' amc’ uses the set of instruments used by Amemiya and MaCurdy
(1986), ' bmsc’ the one used by Breusch et al. (1989), and 'bvk’ indicates that the instru-
mental variables are transformed the same way as the covariates and the response, as proposed
by Balestra and Varadharajan-Krishnakumar (1987).

Example 6.2 EC2sLs estimator — ForeignTrade data set
Kinal and Lahiri (1993) studied the determinants of international trade for developing countries
and especially the measure of the price and income elasticities. This question is very important
because it crucially determines the growth and debt of these countries. The panel dataset used
concerns 31 developing countries, for the period 1964-1986. 1t is available as ForeignTrade
in the pder package.

More precisely, Kinal and Lahiri (1993) estimate three equations: the first one defines the
demand for imports, the second one the demand for exports, and the last one the exports supply.
The authors suppose that:

e the demand for imports imports increases with the domestic income gnp, decreases with
the price of imports in local currency divided by domestic prices pmpci, and rises with the
one-period lag of the ratio of reserves to imports resimp.

e exports demand exports rises with the world income gnpw and decreases with the relative
price of exports with respect to their foreign substitutes pxpw,

e exports supply exports increases with the world price in domestic currency divided by the
domestic consumer price index pwpci, with the potential domestic product pgnp (used as
a proxy for the capital stock) and also depends positively on a variable that represents the
influence of the imports in the supply of exports importspmpx (measured by imports in
local currency divided by export price).?

All the variables are per capita and in logs, in order to avoid heteroscedasticity problems.

In order to take the dynamics of adjustment into account, a one-period lag of the response is
introduced as a covariate in every equation.

gnp, exports, imports, and their lags (and therefore resimp and importspmpx) are
assumed to be endogenous, as are the exports price (which induces that pxpw is endogenous)
and the domestic consumer price index is endogenous (which induces that pmcpi and pwepi
are also endogenous). Among the covariates, only gnpw and pgnp are assumed to be exogenous
and can therefore be used as instruments. Numerous external instruments are also introduced:
alinear trend trend, the population pop, the exchange rate exrate, the consumption con-
sump, the disposable income income, the reserves reserves, money supply money, the

3 The authors justify the use of this variable by the fact that, in most developing countries, imports of intermediate
and investment goods are very important to be able to produce export goods.
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consumer price index cpi, import prices pm, export prices px, and world prices pw, most of
the time with a one-period lag.

Kinal and Lahiri (1993) is an extension of the article of Khan and Knight (1988), who esti-
mated a system of equations explaining the determinants of international trade for developing
countries using the within transformation. They looked for a more efficient estimator, and for
this purpose they employed the Ec2sLs estimator. However, the latter is consistent only if the
instruments are uncorrelated with the individual effects. Their strategy is to use the same spec-
ification for the within and the EC2sLs estimators and to test the hypothesis of exogeneity of
the instruments through a Hausman test.

We present below the results obtained for the imports demand equation. The within and the
Ec2sLs models are estimated. Kinal and Lahiri (1993) use a nonstandard method to estimate
the variance of the error components. It is similar to Nerlove (1971), but with a degrees of
freedom correction. It is reproduced here by using the random. df cor argument.

data ("ForeignTrade", package = "pder")

wl <- plm(imports™mcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + lag(reserves) +
lag(exports) + trend + pgnp + lag(px),

ForeignTrade, model = "within")
rl <- update(wl, model = "random", random.method = "nerlove",
random.dfcor = c(1, 1), inst.method = "baltagi")

The hypothesis of no correlation between the instruments and the individual effects implies
that the within and the GLS models are consistent, the latter being more efficient. On the con-
trary, if this hypothesis is rejected, only the within model is consistent. In order to test this
hypothesis the authors used the Hausman (1978) test:

phtest (rl, wil)

Hausman Test

data: imports ~ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) +
chisg = 11, df = 4, p-value = 0.03
alternative hypothesis: one model is inconsistent

The hypothesis of no correlation between the instruments and the individual effects is
rejected at the 5% threshold.* One solution would be to maintain the within estimator, but
Kinal and Lahiri (1993), following Cornwell et al. (1992), considered two kinds of instruments:

o those that are not correlated with the individual effects and that therefore can be used twice
using the within and the between transformations,

o those that are correlated with the individual effects and that can therefore only be used in
their within transformation.

Such a model is defined using a three-part formula:

o the second part indicates the doubly exogenous instruments,
o the third part indicates the simply exogenous instruments.

4 This is also the case for the two other equations: exports supply and exports demand.
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Kinal and Lahiri (1993) finally got the following specification:

rlb <- plm(imports ~ pmcpi + gnp + lag(imports) + lag(resimp) |
lag(consump) + lag(cpi) + lag(income) + lag(px) +

lag (reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp,
ForeignTrade, model = "random", inst.method = "baltagi",
random.method = "nerlove", random.dfcor = c(1, 1))

phtest (wl, rlb)

Hausman Test

data: imports ~ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) +
chisqg = 7.1, df = 4, p-value = 0.1

alternative hypothesis: one model is inconsistent

Based on the Hausman (1978) test, the hypothesis of consistency of the GLs estimator is no
longer rejected. Results are presented below; the within and GLS estimators give very similar
results.

rbind (within = coef(wl), ec2sls = coef(rlb) [-1])

pmcpi gnp lag(imports) lag(resimp)
within -0.05873 0.02890 0.9512 0.05215
ec2sls -0.05420 0.01361 0.9482 0.04195

The short-term elasticity of imports demand is directly given by the price coefficient. The
long-term elasticity is obtained by dividing this coefficient by one minus the coefficient of the
lagged response. We then have:

elast <- sapply(list(wl, rl, rlb),
function(x) c(coef (x) ["pmcpi"],
coef (x) ["pmcpi"] / (1 - coef (x) ["lag(imports)"])))

dimnames (elast) <- list(c("sT", "LT"), c("wl", "rl", "rlb"))
elast

wl rl rlb
ST -0.05873 -0.0552 -0.0542
LT -1.20393 -1.1953 -1.0465

The use of this GLs estimator, which efficiently exploits part of the inter-individual variation,
has dramatically reduced the standard deviations of the coefficients.

rbind (within = coef (summary(wl)) [, 21,
ec2sls = coef (summary(rlb)) [-1, 2])
pmcpi gnp lag(imports) lag(resimp)
within 0.02915 0.041235 0.03067 0.008257

ec2sls 0.02180 0.006999 0.01289 0.006709
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Example 6.3 Hausman-Taylor estimator — TradeEU data set

The analysis of international trade is often based on the gravity model, inspired by the law
of universal gravitation in physics, which indicates that a particle attracts every other parti-
cle in the universe using a force that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between their centers. By similarity, in inter-
national trade the volume of exchange between two countries (imports and exports) is linked to
the “masses” of both countries (which can be measured by the population or by their national
product) and by the distance between them. Many econometric analyses of the gravity model
have drawn on cross sections of countries. The problem of these studies is that they are unable
to take into account unobservable heterogeneity at the country level, which leads to biased esti-
mators. In this respect, the use of panel data seems very useful, but the fact that some covariates
are correlated with individual effects often leads to employing the within estimator. The prob-
lem in this case is that that the time-invariant covariates disappear: yet some of these can be of
major interest, especially the distance between two countries. The estimator of Hausman and
Taylor (1981), which enables, on the one hand, to tackle the problem of correlation between
some covariates and the individual effects and on the other hand to estimate the coefficients
associated to time-invariant covariates, is very useful in this respect.

Serlenga and Shin (2007) estimate a gravity model for 14 countries of the European Union®
observed over 42 years (1960-2001). In this panel, the individual unit of observation is not a
country but a pair of countries for which the volume of trade is given by the sum of bilateral
exports and imports. There are, therefore, (14 X 13)/2 = 91 “individuals”

The response t rade is the logarithm of the sum of bilateral imports and exports. The covari-
ates are: gdp, the sum of the logarithms of the two national products; dist, the distance
between the capitals of the two countries; sim, a measure of the similarity between the pair
of countries; r1£, the relative factor endowment; and rer, the logarithm of the real exchange
rate. To this quantitative variables, several qualitative variables are added: mutual adhesion to
the European Community, cee and to the Euro Zone emu; common border; bor; and common
language, 1an.

The dataset, called TradeEU, is available in the pder package.

data ("TradeEU", package = "pder")

Following the authors, we first estimate the oLs and the within model:

ols <- plm(trade "~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan, TradeEU,
model = "pooling", index = c("pair", "year"))
fe <- update(ols, model = "within")

fe
Model Formula: trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan
Coefficients:

gdp rer rlf sim cee emu
1.8125 0.0610 0.0325 1.1723 0.3093 0.0852

5 Austria, Belgium and Luxemburg (taken as a unique entity), Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Netherlands, Portugal, Spain, and the United Kingdom.
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As expected, coefficients associated to dist, bor, and 1lan are not estimated in the within
model, as these covariates disappear with the within transformation. On the contrary, the ran-
dom effects estimator produces estimates for their coefficients.

re <- update(fe, model = "random")
re

Model Formula: trade "~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan

Coefficients:
(Intercept) gdp dist rer rlf
-13.9303 1.7949 -0.5909 0.0690 0.0334
sim cee emu bor lan
1.1427 0.3182 0.0927 0.4414 0.4172

The results of the random effects model indicate a distance elasticity of bilateral trade of about

—0.6 and that having a common border or a common language have a similar effect (an increase
of about 40%).

phtest (re, fe)

Hausman Test

data: trade T~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan
chisqg = 13, df = 6, p-value = 0.04

alternative hypothesis: one model is inconsistent

With the Hausman test, we reject the hypothesis of no correlation at the 5% threshold.

Serlenga and Shin (2007) consider that, among the time-invariant variables, only lan
is correlated with the individual effects. Two Hausman and Taylor (1981) models are then
estimated. In the first one, the only doubly exogenous variable is the real exchange rate
rer. In this case, the instrumental variables estimator is just identified, as there is only one
instrument (the between transformation of rer) and only one endogenous variable 1an. In

the second one, domestic product gdp and relative factor endowment r1f are also used as
instruments.

htl <- plm(trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |
rer + dist + bor | gdp + rlf + sim + cee + emu + lan ,
data = TradeEU, model = "random", index = c("pair", "year"),
inst.method = "baltagi", random.method = "ht")

ht2 <- update (htl, trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |

rer + gdp + rlf + dist + bor| sim + cee + emu + lan)

Note than random.method is set to " ht’ so that the within residuals used to compute
the variance of the components of the error are purged of the influence of the time-invariant
covariates.® The consistency of either specification is not rejected by the Hausman test.

6 See subsection 2.3.2.
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phtest (htl, fe)
Hausman Test

data: trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |
chisqg = 5e-25, df = 6, p-value = 1

alternative hypothesis: one model is inconsistent
phtest (ht2, fe)

Hausman Test
data: trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |
chisq = 2.2, df = 6, p-value = 0.9

alternative hypothesis: one model is inconsistent

The last estimated model is suggested by Baltagi (2012). It is similar to the second specification
but uses the instruments suggested by Amemiya and MaCurdy (1986) instead. The results are
presented in table 6.1 by using the texreg package (see Leifeld, 2013).

ht2am <- update(ht2, inst.method = "am")

library ("texreg")
texreg(list (ols, fe, re, htl, ht2, ht2am),

custom.model .names = c("OLS", "FE", "RE", "HT1", "HT2", "AM2"),

caption = "Estimations of the gravity model.", label = "table:gravity",

custom.gof.names = c("R$"2$", "Adj. R$"2$", "Num. obs.", "s\\_idios",
"s\\_id"),

scriptsize = FALSE)

The results of table 6.1 show first that the coefficients of the time-varying covariates are iden-
tical for the within and the just identified Hausman and Taylor (1981) estimator. This is not
the case with the ht 2 model, which is overidentified, as noted by Baltagi (2012). Serlenga and
Shin (2007) insist on the fact that the Hausman and Taylor (1981) estimations lead to a great
reduction of the influence of the distance and an important increase of the influence of com-
mon language and common border. This last conclusion is qualified by Baltagi (2012), which
uses the more efficient Amemiya and MaCurdy (1986) estimator. The latter introduces further
orthogonality conditions by imposing that doubly exogenous variables be uncorrelated with
individual effects at any time, while the Hausman and Taylor (1981) estimator simply requires
no correlation between individual effects and the averages of said variables. If these conditions
are valid (which can be tested through the Hausman procedure), this estimator is necessarily
not less efficient than that of Hausman and Taylor (1981).

phtest (ht2am, fe)
Hausman Test
data: trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |

chisg = 10, df = 6, p-value = 0.1
alternative hypothesis: one model is inconsistent
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Table 6.1 Estimations of the gravity model.

oLs FE RE HT1 HT2 AM2
(Intercept) —10.95"* —13.93" —15.76"* —15.66™* —14.00*
(0.25) (0.89) (1.50) (1.50) (1.13)
gdp 1.58% 1.81%* 1.79%* 1.81% 1.81% 1.80%*
(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
dist —0.65"** —0.59"* -0.38" -0.38" —0.59"*
(0.02) (0.12) (0.19) (0.19) (0.15)
rer 0.10%* 0.06*** 0.07** 0.06™** 0.06"** 0.07**
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)
rlf 0.03*** 0.03*** 0.03*** 0.03*** 0.03*** 0.03**
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
sim 0.88*** 1177 1.147* 1177 1.20%* 1.15%*
(0.02) (0.06) (0.05) (0.06) (0.05) (0.05)
cee 0.32%** 0.31%* 0.32** 0.31** 0.31*** 0.31%*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
emu 0.20*** 0.09** 0.09"** 0.09** 0.09** 0.09%**
(0.05) (0.03) (0.03) (0.03) (0.03) (0.03)
bor 0.52* 0.44* 0.60* 0.61* 0.44
(0.03) (0.19) (0.26) (0.26) (0.25)
lan 0.23** 0.42* 1.56* 1.56* 0.43
(0.03) (0.18) (0.71) (0.68) (0.24)
R? 0.90 0.90 0.90 0.90 0.90 0.90
Adj. R? 0.90 0.90 0.90 0.90 0.90 0.90
Num. obs. 3822 3822 3822 3822 3822 3822
s_idios 0.29 0.29 0.29 0.29
s_id 0.52 0.65 0.67 0.67

**p < 0.001, *p < 0.01, *p < 0.05

The validity of the supplementary instruments used for the Amemiya and MaCurdy (1986)
estimator is not rejected by the Hausman test. The standard deviation of the endogenous vari-
able (1an) is much lower than in the Hausman and Taylor (1981) estimator (0.24 vs 0.68). The
coeflicients of the three time-invariant covariates are closer to the oLs coefficients than to the
Hausman and Taylor (1981) coefficients.

6.4 Estimation of a System of Equations

Instead of estimating only one equation, we can consider a whole system of simultaneous
equations, in order to take into account the correlation between the errors of different
equations. The estimator obtained is a mix of the 2sLs estimator described in the previous
chapter and the SUR estimator (see 3.2.4).
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6.4.1 The Three Stage Least Squares Estimator

When there is no correlation between the covariates and the error, the relevant model for the
system of equations is the SUR model, which is a GLs estimator and is described in section 3.2.
Denoting by X the matrix of covariance of the errors of the L equations, the variance of the
errors of the system is Q = X ® [, and the SUR estimator is:

7=Z'ERD'DHZTERD 'y

This expression involves square matrices of dimensions equal to the sample size. It is therefore
not operational for large samples, and it is numerically inefficient anyway. It is therefore pre-
ferred, as often happens for GLSs estimators, to apply oLs on transformed data. Denoting by v,
the elements of the matrix 7%, each variable z" = (2], 2, , ..., z]) of the model is transformed

1
by pre-multiplying it by: ¥ = Q%% = £7%> ® I. We then have:

zZ; 01127 + 012, + ... 01, 2;
_ 2y 09121 + 0992y + ... 0y, 2;

Z* — (2 0.5 ® I) i —
zZ 01127 + 092y + ... 01, 2;

The three-stage least squares estimator is obtained by using the moment conditions:
E(LTe) = E(LT(y — Zy)) = 0, for which the variance is: V(LT¢) = 62LTQL. Consistently with
the method of moments approach, the estimator is obtained by minimizing a quadratic form
of the vector of moments, using the inverse of the variance matrix of these moments:

%@T —y"ZDOLLTQLY LT (y - Zy)
First order conditions for a minimum are:
—2Z"L(L"QL) 'L (y — Zy)/6* = 0
Solving this linear system of equations, we obtain the 3sLs estimator:
I =C LLTERDL) L2 (ZTLILT QL) 'LTy) (6.12)

The 3sLs estimator may be obtained by employing the instrumental variables estima-
tor, pre-multiplying the covariates and the response by ¥ = £7%° @ I and the instruments by
PHT = (Z°°)T ® I. The instruments are then L = (¥~')TL and define the following projection
matrix:

P; =) LTI HT D)L Ty
But:

DT =@ = ¢TY) = Q
We then have

P, =W HLELTQL) LTy

Using this projection matrix in the formula of the instrumental variables estimator (6.3) we
finally get:

=Y HLLTQL)ILTY P Z) !
X ZTTP YT LILTQL) LY Wy) (6.13)
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or
7 =CLA"QLY'LT2) N (ZTL(LTQL)LTy)

which is the formula (6.12) of the 3sLs estimator. Of course, as in the GLS estimator, Q is in
practice unknown and shall be estimated based on the results from a consistent preliminary
estimation.

The practical computation of the 3sLs estimator consists then of the following steps:

e each equation is first estimated independently using the instrumental variables estimator,
which leads to a matrix of residuals = = (é,,6,,...,€,) which is a consistent estimate of the
errors of the equations,

e the covariance matrix of the errors of the system is then estimated: £ = ZT2/0

e the Cholesky decomposition of this matrix is computed: C | CECT =1,

e the variables are transformed using this matrix: j = C® Iy, Z= (C®DZ and
L=(CHT QL.

¢ and finally the instrumental variables estimator is applied to the transformed system.

The computation of the within or between 3sLs estimators is straightforward, as it consists
in applying the 3sLs to within or between transformed data.

6.4.2 The Error Components Three Stage Least Squares Estimator

Balestra and Varadharajan-Krishnakumar (1987) and Baltagi (1981) have proposed
3sLs estimators that use the inter- and intra-individual variations of the data in an optimal way.

From now, three indexes must be considered, the individual » = 1... N and time indexes
t =1... T as usual, but also the equation index/=1... L.

€t = My + Vint

. T _ . .o e .
Denoting by €, = (€, --- , €,r), the error vector for individual 7 and equation /, the error
vector for the system of equations is:
T _(oT T T T T T T T T
€ = ((€11> €19 -+ » E1p ) (€315 € wvv s €qp)s wvv s (€115 €15 oo €1 7))

The covariance matrix of the errors is then:
Q=V(Ee) =%, 0y®Jr)+%, Q& (Iy®I)

The presence of individual effects makes this model specific compared to the standard
3sLs estimator. Compared to the standard error component model, scalars o-f, and o2 are
replaced by two covariance matrices X, and Z,.

Q= (TZV + 2,7) ® (IN ®7T) + Zv ® (IN ® (IT _7T))
=(TZ,+Z)®B+%X, QW
=Y ®B+Z,®W
The 3sLs estimator can then be computed the following way:
o firstly, the different equations are estimated using 2sLs so that a consistent estimator of the
matrix of the errors of the different equations Z may be computed;
e then, =, and X, are estimated by &, and £,

e covariates and responses are transformed by pre-multiplying them by: ¥ = Q05 =
C®B+C,®@W,
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e instrumental variables are transformed by pre-multiplying them by: (C',‘ DT @B+
CSH'ew,
e the 2sLs estimator is then applied to the transformed data.

As for the 2sLs estimator, the difference between the estimators of Baltagi (1981) and
Balestra and Varadharajan-Krishnakumar (1987) is that the former uses the within and
the between transformations of the instruments, while the latter uses a quasi-difference
transformation.

Example 6.4 error components 3sLs — ForeignTrade data set
Kinal and Lahiri (1993) estimate the system composed of the demand for imports and the
demand for exports by 3sLs. To compute this estimator with p1m, one has to use as first argu-
ment a list containing the description of the equations in the system.

eqgimp <- imports ~ pmcpi + gnp + lag(imports) +
lag(resimp) | lag(consump) + lag(cpi) + lag(income) +
lag(px) + lag(reserves) + lag(exports) | lag(gnp) + pm +
lag(invest) + lag(money) + gnpw + pw + trend + pgnp
egexp <- exports ~ pxpw + gnpw + lag(exports) |
lag(gnp) + pw + lag(consump) + pm + lag(px) + lag(cpi) |
lag(money) + gnpw + pgnp + pop + lag(invest) +
lag(income) + lag(reserves) + exrate
rl2 <- plm(list (import.demand = egimp,
export.demand = egexp),
data = ForeignTrade, index = 31, model = "random",
inst.method = "baltagi", random.method = "nerlove",
random.dfcor = c(1, 1))
summary (rl2)
Oneway (individual) effect Random Effect Model
(Nerlove's transformation)

Call:

plm.list (formula = list (import.demand = egimp, export.demand = egexp),
data = ForeignTrade, model = "random", random.method = "nerlove",
inst.method = "baltagi", index = 31, ... = pairlist(random.dfcor = c(1,

1)))
Balanced Panel: n = 31, T = 24, N = 744
Effects:

Estimated standard deviations of the error
import.demand export.demand
id 0.0619 0.0782
idios 0.1439 0.1200

Estimated correlation matrix of the individual effects
import.demand export.demand
import .demand 1.000
export .demand 0.138 1
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Estimated correlation matrix of the idiosyncratic effects
import.demand export.demand
import .demand 1.0000
export .demand 0.0975 1

- import.demand
Estimate Std. Error t-value Pr(>|t])

(Intercept) 0.39874 0.11899 3,35 0,00083 o
pmcpi -0.05407 0.02170 -2.49 0.01282 *
gnp 0.01103 0.00531 2.08 0.03785 *
lag (imports) 0.95046 0.01187 80.05 < 2e-16 ***x
lag(resimp) 0.03948 0.00634 ©.22 6,3@=1L0 “ww
Signif. codes:

0 '***x!' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- export.demand
Estimate Std. Error t-value Pr(>|t])

(Intercept) 0.1437 0.1395 1.03 0.3032
DPXPW -0.0615 0.0195 -3.16 0.0016 **
gnpw 0.1144 0.0534 2.14 ©.0322 %
lag (exports) 0.9465 0.0133 71.11 <2e-16 ***
Signif. codes:

@ P"=melo @01 "= .l "e @05 .7 @.d4 7 " 4

The coefficients for the imports demand equation are very close to those we obtained using
the 2sLs estimator. The correlation between the two components of the errors of the two
equations is about 10%. Taking into account this correlation slightly reduces the standard errors
of the coefficients, as illustrated below.

rbind (ec2sls = coef (summary (rlb)) [-1, 2],
ec3sls = coef (summary(rl2), "import.demand") [-1, 2])
pmcpi gnp lag(imports) lag(resimp) (Intercept)
ec2sls 0.0218 0.006999 0.01289 0.006709 0.0218
ec3sls 0.0217 0.005308 0.01187 0.006342 0.1395
PXPW gnpw lag (exports)
ec2sls 0.006999 0.01289 0.006709
ec3sls 0.019467 0.05336 0.013310

6.5 More Empirical Examples

Acconcia et al. (2014) seek to estimate the multiplier effect of public spending. This is a dif-
ficult task, as public spending can hardly be considered exogenous. They use a panel of 95
Italian administrative regions (provinces) for the years 1990-1999 and take advantage of the
implementation of anti-mafia laws, which resulted in the eviction of some elected officials who
were replaced by external commissioners. This replacement, which led to a drastic reduction
in local public spending, represents an exogenous source of variation in public spending that
can be usefully employed as instrument. Using a fixed effects 2sLs estimator, they estimate the
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long-term public spending multiplier to be 1.95, a much larger value than the one obtained
using the within estimator. The Mafia dataset is available in the pder package.

Egger and Pfaffermayr (2004) studied the determinants of bilateral trade of two countries,
Germany and the United States, with their partners, bilateral trade being measured by imports
and exports on the one hand, and by foreign direct investment on the other. The authors suspect
that the individual effect, which indicates a propensity to trade with a given country for geo-
graphical and cultural reasons, is correlated with the distance. In this case, this variable, which
is the only time-invariant one, is certainly correlated with the individual effect. The authors use
the estimator of Hausman and Taylor (1981) for each equation and also for the system of two
equations. The data are provided as TradeFDI in the pder package.

Hutchison and Noy (2005) study the effects of twin crises, characterized by the simultane-
ous occurrence of a bank and a currency crisis, on the wealth of countries. The panel consists
of 24 developing countries for the 1975-1997 period. The response is the growth rate of the
GDP and the two main covariates are the lag of the growth rate and a dummy variable indicat-
ing the occurrence of a twin crisis. Employing the lag of the growth rate as a covariate induces
an endogeneity problem, which the authors tackle using an error component 2sLs estimator.
The results indicate that the cost of a currency crisis is about 5-8% in terms of growth every year
for about 2-4 years, while for the bank crisis this is about 8-10%. The article doesn’t provide any
evidence of a specific effect of twin crises. The data are provided as TwinCrises in the pder
package.

Cornwell and Trumbull (1994) and Baltagi (2006) estimate a crime economics model for the
counties of North Carolina. The response is the criminality rate and, among the covariates, they
introduce the probability of being arrested and the number of policemen per inhabitant. These
two covariates induce an endogeneity problem: one actually wants to estimate the causal effect
of police on crime, but a reverse causality effect is also likely, because more crime will induce
the presence of more policemen. Two instrumental variables are used: the offense mix, which
is defined as the ratio of crimes involving face-to-face contact to those that do not, and the per
capita tax revenue. The first instrument is positively correlated with the probability of being
arrested (because the offender may be identified by the victim). The second variable is positively
correlated with the number of policemen, more tax income indicating a strong preference for
public services and particularly for security. The 2sLs error component model indicates a much
stronger effect of the probability of being arrested than for the other estimators, especially the
within estimator. The data are provided as Crime in the plm package.

Baltagi and Khanti-Akom (1990) and Cornwell and Rupert (1988) estimate a wage function
using a panel of American individuals, with particular interest in the return to education. A
well-known problem of such studies is that unobserved characteristics of individuals, called
abilities, are part of the individual effects and may be correlated with education. Using the
within model, the education covariate disappears: the use of the estimator of Hausman and
Taylor (1981) is therefore very relevant in this context. Two time-invariant covariates (being
black and being a female) are assumed exogenous, while the level of education is endogenous.
Some other time-varying covariates are assumed exogenous and therefore provide two instru-
ments so that the model is identified. The coefficient of education from the Hausman and Taylor
(1981) estimator is larger than the one obtained using GLS (0.14 vs 0.10). The data are provided
as Wages in the plm package.
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Estimation of a Dynamic Model

A model is said to be dynamic when one of the regressors is the lagged dependent variable.
The usefulness of panel data for estimating dynamic models is self-evident: it is impossible to
estimate a dynamic relationship on cross-sectional data while, in the case of time series data,
such model cannot be precisely estimated without drawing on long enough a sample. By con-
trast, with panel data a dynamic model can be estimated over a set of individuals observed
over a small number of time periods. The models presented in this chapter are well suited to
“micro-panels,” i.e., datasets where N >> T. For “macro-panels,” characterized by a temporal
dimension equivalent to, or bigger than, the cross-sectional one, the appropriate models will
be based on an adaptation of the methodology employed in unit roots tests and cointegration
estimators to the specific issues of panel data.
Among the many applied examples from the literature, one can mention:

o the estimation of per capita income convergence by regressing the growth rate as a function
of the initial wealth level or, equivalently, regressing the level of per capita wealth as a function
of the lagged wealth level;

o the analysis of the speed of adjustment of the labor force, obtained by regressing employment
over different variables, including lagged employment;

e the dynamic analysis of consumption, based on a consumption function including lagged
consumption.

The seminal article regarding estimation of dynamic panel models is Balestra and Nerlove
(1966). The literature on the subject has become considerable since the 1990s and the papers by
Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991), who introduced the use
of the generalized method of moments for dynamic panels.? This one has become the preferred
estimation method and the better part of this chapter will be dedicated to presenting it. It shall
nevertheless be noted that the field of application of this method to panel data is not limited to
dynamic panels and that it can be equally appropriate for static models.

Example 7.1 description of the data — DemocracyIncome data set
Along this whole chapter, we will use the paper by Acemoglu, Johnson, Robinson, and Yared
(2008) to illustrate results. This study addresses the causal relationship between the level of

1 See section 8.4.
2 Among the many reviews of this literature see in particular Harris et al. (2008), Bond (2002), Roodman (2009a).
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wealth and that of democracy in a country. The authors draw on different panel datasets, among
which we have considered two:

o the first, made of data observed every 5 years, with 11 observations over the period 1950-2000
for 211 countries;

e the second, corresponding to data observed every 25 years, with 7 observations over the
period 1850-2000 for 25 countries.

data ("DemocracyIncome", package = "pder")
data ("DemocracyIncome25", package = "pder")

In the cross section, the positive relationship between the degree of democracy and per capita
income is apparent and is illustrated in the Figure 7.1, which uses Acemoglu et al. (2008)’s data
for the year 2000. However, this contemporaneous correlation does not necessarily imply a
causal relationship between the two variables. Using panel data instead allows to investigate
causality by specifying a dynamic relationship.

library ("plm")

pdim (DemocracyIncome)

Balanced Panel: n = 211, T = 11, N = 2321
head (DemocracyIncome, 4)

country year democracy income sample

1 Andorra 1950 NA NA 0
2 Andorra 1955 NA NA 0
3 Andorra 1960 NA NA 1
4 Andorra 1965 NA NA 1
United Kir.lg;dom United States
1.00 = (] (] oHIO @D 00 000 @0 on C .
Bolivia South Africa Argentina Australia
India Phili.ppines
e o LN} L] L] L] L] o0 L] - o o L]
Madagascar Korea, Rep.
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L] L] o e o o000 o o e
Indonesia Peru
>
o
g Turke
8 0.50 - ) ® oo . e o o oo ur.ey )
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Figure 7.1 Relationship between income and democracy.
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The five-year data constitutes a balanced panel of 211 countries observed over 11 periods.
However, such balance is artificial because many observations are actually missing, in par-
ticular as regards democracy levels. The data comprise the two individual and time indexes
(country and year), the democracy index democracy, the log of per capita gross domestic
product income, and lastly, an indicator allowing to select the subset considered by the
authors sample.

7.1 Dynamic Model and Endogeneity

The simplest dynamic model is the first order auto-regressive model

ynt = pyn(t—l) + rln + Vnt

The error of the model is the sum of an individual effect #,,, which is time-invariant, and of
an idiosyncratic component v,,,, which would be called the innovation.

Throughout this chapter, we’ll suppose that the innovations are mutually uncorrelated
E(v,,v,,) = 0 Vs # t, not correlated with the individual effect E(#,v,,) = 0, and that the process
is stationary (| p |< 1).

For the previous period, the model can be written as: y,,_;) = p¥,_» + 1, + V,,_1)- The error
and the covariate y,,_;, are then correlated because y,,_,, is correlated with the individual
effect n,,.

7.1.1 The Bias of the oLs Estimator

Because of this correlation, the oLs estimator (and also the GLS) is not consistent. This
estimator is:

N T
En=1 Zt=2 YutVne-1) o+ En 1 Zt L1, + Vnt)yn(t 1
N T - T-1
En:l Zt:Z yi(t—l) Zn 1 Z 2

and the numerator of the second term does not converge to 0 because #,, is positively correlated
withy,,_,. The correlation being positive, the oLs estimator is biased upward. In order to assess
its magnitude, y,, can be rewritten, by recursive substitution and denoting by —S the starting
date of the process and 1 that of the first observation:

p=

1 _ pt+s
1-p (7.1)
+ Ve + PV + PZVn(z—z) +... l’t+s_1"n(—s+1))

Supposing that the initial values of y be fixed, for the denominator of the oLs estimator, one
has then the following limits, first with respect to N and then to T

4
Vot =P Yus)

Plas 2 1 — p2+S)
2 P 2
Nl—IH-loo N Zynt ( _ > 6;1 + 1 _ P2 O-v
I o5 (7.2)
Am  lim 2 Zy ne = p)2 1i—p2 :

n=1 t=1

For the numerator, by the hypothesis of no correlation between the individual effect and the
innovations, one has:
t+5-1

1-p
1-p

)
=N

Nl—IH-I ﬁ Z(ﬂn + Vnt)yn(t =
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2
| _ o
NllToo Tl—1>Too NT zn: ;(’1” Ve = 1-p (7.3)

The oLs estimator converges then to:

0_2
n

1-p 1- /72)0'3

o2 2 =P + 2 2

4 I+ p)oy + (1 = p)oy
(1-p)? 1-p?

plim p=p+

In view of this expression, the oLs estimator is biased upward. The bias tends to 0 when
o2 does
p .

Example 7.2 time effects within model — DemocracyIncome data set

In the model of Acemoglu et al. (2008), the dependent variable is the democracy index, and the
regressors are the one-period lags of the democracy index itself and of the per capita income.
Yearly dummies are also introduced, and estimation is performed on the subsample defined by
the sample variable. oLs estimation through the R function 1m is distorted by the presence of
lagged values. In fact, the 1ag method used by the program will be the one appropriate for time
series, not the one for panel data.® For this reason, the function plm in the plm package will
be used instead, setting the model argument to ' pooling’, thus keeping the untransformed
data. The -1 in the formula indicates that we do not want to estimate a general constant but
one coefficient for all instances of the year variable, which does not affect estimation.

ols <- plm(democracy ~ lag(democracy) + lag(income) + year - 1,

DemocracyIncome, index = c("country", "year"),
model = "pooling", subset = sample == 1)

The same model may be estimated by setting the model to ‘within’ and the effect to
‘time’:

ols <- plm(democracy ~ lag(democracy) + lag(income),

DemocracyIncome, index = c("country", "year"),
model = "within", effect = "time",
subset = sample == 1)
coef (summary (ols))
Estimate Std. Error t-value Pr(>|t])
lag(democracy) 0.70637 0.024293 29.077 6.979e-133
lag (income) 0.07232 0.008343 8.668 1.915e-17

This first model highlights two results. On one hand, the democracy variable shows high
persistence, with a coefficient of 0.71. However, we know that the oLs estimator suffers from a
positive bias. On the other hand, lagged income seems to exert a significantly positive influence
on the democracy index.

7.1.2 The within Estimator

The bias of oLs is due to the correlation between the error term and the lagged endogenous
variable due to the presence of an individual effect; hence one may think to solve the problem

3 In particular, this means that the lagged value of the variable for the first observation of the second country will
incorrectly be made equal to the last observation of the first country.
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through a transformation that eliminates the individual effect. The most obvious choice is the
within estimator. One has then, denoting y,,_;, = >y /(T =1 andy, = Y1, /(T = 1)

T SOt = IOty = Ity
Yot Zims Ot = Fue))?
.\ Yot 2Oty = T2Vt = )
Yo Zis Ot = Fen))?

The individual effects (and hence the bias) have disappeared from the oLs estimator, but
a second source of bias has been introduced. In fact, y,,_;) — ﬁ(ym + ... +Y,4-p) and v, —
1

p=

ﬁ(vn2 + ... +v,,) are correlated. For ¢ > 2, one has a term in — 77 Vnt X Vup ODE N Y,y X
_ﬁ"n(t—l)’ and T — 2 terms in ﬁymvm. Each term in v,,y,, having an expectation of 62, one

finally has:

ool 1 . T-2)\_ ., -T
v\ T-1 T-1 (T-12) vV (T-1)2

so that the bias is negative.* More precisely, one can show that:’

11,7
1+p T 1-p

T—ll_ 2p (1_ l—pT>
(1-pX(T-1) T(1-p)

This bias differs from that of oLs in two ways. Firstly, it is negative, and secondly, it tends to 0
as T tends to infinity. This bias cannot therefore be ignored in the case of micro-panels, where

the time dimension is short. For example, if £ = 10 (a fairly long time span) and p = 0.5, the bias
is —0.167.

plim p=p—

Example 7.3 two-ways within Model — DemocracyIncome data set

The within model is obtained with p1lm fixing themodel and ef fect argumentsto ' within’
and ' twoways’, since we want to introduce individual and time effects. The model can be
simply estimated by updating the previous oLs model:

within <- update(ols, effect = "twoways")
coef (summary (within))

Estimate Std. Error t-value Pr(>|t])
lag (democracy) 0.37863 0.03344 11.3212 1.252e-27
lag (income) 0.01041 0.02640 0.3945 6.933e-01

With respect to the oLs model, the autoregressive coefficient is smaller (0.38 vs. 0.71), which
was to be expected as the within estimator is biased downward while oLs is biased upward.
Notice also that after introducing individual effects, the coefficient of income is very close to 0
and not significant any more.

7.1.3 Consistent Estimation Methods for Dynamic Models

The most common estimation methods used for static models being inappropriate, various esti-
mation strategies can be adopted to attain consistency.

4 Nickel (1981).
5 See for example Hsiao (2003) p. 72.
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o the first is using the maximum likelihood method. However, it has a major shortcoming
of being extremely sensitive to hypotheses made on the starting values of the explanatory
variables. Depending on whether one considers the latter to be either fixed or random, and
whether it is correlated with the individual effects or not, one obtains rather different mod-
els, and the estimation bias can be severe in case of misspecification. For this reason, this
estimation method is scarcely used and will not be presented here;®

o the second consists in starting with a biased estimator and then correcting the bias. It is the
step taken by Kiviet (1995), who proposes a within estimator corrected for the previously
analyzed bias. However, the interest of this approach is limited by its applicability only to
balanced panels and by the fact that it does not consider the possible endogeneity of other
regressors;’

o the third possibility is using the instrumental variables method, the instruments being lagged
levels or differences of the dependent variable. The generalized method of moments, which
is an extension of the instrumental variables method, has become more and more popular to
this end.

The instrumental variables method is used on a model that was pre-transformed in order to
eliminate individual effects. Upon first consideration, the within transformation would seem
a natural choice; it turns out to be inappropriate instead. In fact, in absence of appropriate
external instruments, the only available instrumental variable is often the lagged dependent
one, here meaning the dependent variable lagged at least twice. Then, in the within model, the
error is: v,, — ﬁ thz , V- It contains all realizations of v,, and is therefore correlated with
every lagged value of y,,. Two alternative transformations can be successfully used here: first
differences and orthogonal deviations.

For first differences, one simply has Az,, =z, — z,,_,, or else, in vector form, Az, = Dz,
with:

1 -1 O
0o 1 -1

D= 0 o 1 0 0
0 0 o ... -1 0
0 0 o ... 1 -1

The advantage of such transformation is to be simple and intuitive. It has, nevertheless, three
drawbacks:

o firstly, one observation, the first one, is necessarily lost;

o secondly, if the original errors are not correlated to begin with, the transformed model’s ones
are. In fact, one has Av,Av,_; = (v, — v,_)(v,_; — v,_,) and hence, if the v are homoscedastic
and uncorrelated, the transformed errors are still homoscedastic E(Avtz) = 262, but corre-

lated across two successive errors E(Av,Av,_;) = —c2;

o lastly, for every time period ¢ where one observation is missing, two are lost in differences: ¢
and £ + 1.

6 For a detailed presentation of maximum likelihood estimation of dynamic panels, see Hsiao (2003), Chapter 4.
7 See Roodman (2009a), p. 103.
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The orthogonal deviations transformation does not suffer from the last two problems, although
it is less intuitive, consisting in calculating the difference between each observation and the
average of those posterior. Formally, one has:

where T, is the number of observations posterior to ¢ for individual # and c,, is a scale factor
Tnt
T,+1"

As for the first difference transformation, one observation is lost, but this is usually the
last one. In matrix form, for a balanced panel, the transformation is written z, = Oz, with

z=1(z,,25,...2,) and:

equal to

T-1 1 1 1 1
T VT(T-1) VT (T-1) VT(T-1) \T(T-1)
0 T-2 _ 1 _ 1 _ 1
T-1 VT-na-2 V(T-1)(T-2) V(T-1)(T-2)
O = 0 O E _ 1 _ 1
T-2 e V(T-2)(T-3) V(T-2)(T-3)
0 0 0 ... 1 —/3
2 2

Assuming that the original errors are homoscedastic and uncorrelated, one has, for the trans-
formed errors:

V() = E@v") = EOW'0") = 200" = 6’1

This last result is due to the fact that the rows of O are mutually orthogonal.

Moreover, in case of missing observations for one period, only that observation will be lost
for estimation, versus two of them for the model estimated in first differences.

The estimator proposed by Anderson and Hsiao (1982) uses the model written in first differ-
ence form in order to eliminate individual effects. The explanatory variable Ay, ,_1) = ¥,—1) —
Yn(—2) 18 then correlated with the differenced error Av,, = v,, —v,,,_;). If the innovations are not
serially correlated, Ay, ,_;, can be instrumented either by Ay, , » = ¥,,_2) = ¥,¢—3) O By ¥,,_2)-
In practice, y,,,_,) is often a much better instrument than Ay, ,_,,.

Example 7.4 Anderson and Hsiao estimator — DemocracyIncome data set

To compute the Anderson and Hsiao (1982) estimator, one must specify that both the regres-
sand and regressors are differenced and that the lagged endogenous variable in differences is
instrumented with the endogenous in levels lagged two periods. Acemoglu et al. (2008) also
chose to instrument per capita income using a second lag. The model is simply described using a
two-part formula,® the first part indicating the explanatory variables and the second the instru-
ments, the two parts being separated by the sign |.

8 The extended formulas provided in the Formula package (Zeileis and Croissant, 2010) are used.

167



168

Panel Data Econometrics with R

ahsiao <- plm(diff (democracy) ~ lag(diff (democracy)) +
lag (diff (income)) + year - 1 |
lag(democracy, 2) + lag(income, 2) + year - 1,
DemocracyIncome, index = c("country", "year"),
model = "pooling", subset = sample == 1)

coef (summary (ahsiao) ) [1:2,]

Estimate Std. Error t-value Pr(s|t])
lag(diff (democracy)) 0.4687 0.1182 3.9651 7.971e-05
lag(diff (income)) -0.1036 0.3049 -0.3398 7.341le-01

Anderson and Hsiao (1982)’s model being consistent, one expects the estimated autoregres-
sive coeflicient to be comprised between that of the within model (biased downward) and that
of the oLs model (biased upward). This is actually the case here, the obtained value of 0.47
falling between 0.38 and 0.71.

7.2 GMM Estimation of the Differenced Model

The instrumental variables estimator presented in the preceding section is inefficient for two
reasons:

o firstly, it does not account for the correlation induced into the errors by first-differencing,
e secondly, there are further valid instruments available.

7.2.1 Instrumental Variables and Generalized Method of Moments

This estimator considers the fact that the number of valid instruments is growing in ¢. The
dynamic character of the model renders the first observation unusable and first-differencing,
the second one. Consequently, the first usable observation is the third one, for which the model
can be written as:

Yz = V2 = p(yn2 _ynl) + (VnB - Vn2)

For this observation, y,, is the only valid instrument. For the fourth observation, the error is
Vs — Vu3r Vo and y,,; are valid instruments. Thus, a supplementary instrument is added as ¢ is
incremented by 1. For the nth individual, the instruments matrix becomes:

y, 0 0 0 0 O .. 0 0 O 0
0 9, %, 0 O O .. 0 0 0 0

Ln = O O 0 ynl ynZ ynS O 0 O 0 (74)
0 0 0 0 . v Y Ve o Vur-n

The moment conditions correspond to the vector y = LTAv. The instruments being by
hypothesis uncorrelated with the differenced errors, the expectation of this vector must be 0:
E(u) = 0.

The generalized method of moments consists in writing the sample equivalent of this vec-
tor of theoretical moments, i.e., the arithmetic average of the above expression for the set of
individuals in the sample:

N N
_1 _1 T
m= Z{ m, =~ ;anyn — AX,f) (7.5)
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where, in the simplest case of an autoregressive model, AX,, is a column vector containing
the endogenous variable differenced and lagged by one period. How to obtain the estimator
depends now on the comparison between the number of moments J and that of estimands K. If
J = K, the method of moments estimator is obtained simply setting (7.5) to 0 and solving for S.
One has then:

N -1 /N
- (ym) (zmyn)
n=1 n=1

If ] < K, the system of linear equations defined by (7.5) is underidentified, and there are infi-
nite combinations of parameter values allowing to equate (7.5) to 0. In the case when J > K,
the system is overidentified and, apart form very particular cases, there is no combination of
parameter values satisfying the equation. In this case, one will look for the parameter combi-
nation that minimizes the size of the moment conditions’ vector, defined as a quadratic form in
the vector of empirical moments:

N N
1 1
< N 2By = ATAX] >Ln> A <N Zl Ly (Ay, - AXH/») (7.6)

n=1

where A is the weighting matrix of the moments. Setting to 0 the derivatives of (7.6) with respect
to f, and solving with respect to f§, one obtains the generalized method of moments estimator:

= [(ZWAX;L,,>A <ZnLIAXn>]_l
x [(ZHAXMTLn)A <ZHLIAyn)]

7.2.2 One-step Estimator

(7.7)

In order to make this estimator computable, a weighting matrix has to be chosen. The simplest
choice for A is identity. In this case, the function to minimize is simply the sum of squares
of the elements in the vector. This solution is inefficient if the variances of these elements are
different. In this case, intuitively, it is more efficient to assign a correspondingly higher weight
to elements of the vector that have lower variance. The weighting matrix is then a diagonal one
containing the inverse of the variance of each element. Moreover, if any elements in the vector
are correlated, their joint weight will have to be reduced because they carry similar information.
In general, the optimal weighting matrix is the inverse of the variance-covariance matrix of the
vector of moments.’ One has therefore:

N N
_ B} 1 1
A 1:V(m)=V(ﬁ;mn> =m;\/(mn)

Ifthe errors in levels are homoscedastic and uncorrelated, V(m1,,) has a very simple expression.
In fact, one has:

V(m,) = E(LAv,AV]L,) = LE(Dv,vID"L, = 62LThL,

with:
2 -1 0 0
-1 2 -1 0
(7.8)

h=DD"' = 0 -1 2

- O

9 See Hansen (1982).
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In fact, the model errors are the differenced innovations v,, — v,,_;,. Supposing that these
errors are homoscedastic and uncorrelated, one has:

e E(AV%) =203
e E(Av,Av,, ) = —c%
e E(Av,Av,)=0si|t—s|>1.

The inverse of the weighting matrix can then be written as:

N 2 N
_ o1 oy
AV = V) = o D Vim,) = g Y LihL, (7.9)
n=1 n=1

6?2 is an unknown scalar that does not play any role in estimation and which can therefore be
ignored. The estimator using this weighting matrix is called the one-step estimator. It can be

1
N LTth) for A in the equation (7.7). To calculate its

n=1"n

obtained simply by substituting (Z )
variance, one starts with replacing Ay, in (7.7) by AX,,f + Av,. One then has:

e [( Y axiL) (3, cons,) ( ZHL;M”)]—I

B (7.10)
x [(ZHAX,ILH) (ZHLIth> <2nLIAVn)]
which allows to obtain the variance of A, denoted V(¥
VO =E@-pB-p")
_ [(ZWAX;LH> (ZnLIth>_l (ZHLIAXM>] B
x [(ZHAXIL,,> <ZnLthn)_l
(7.11)

x E [(ZnLl—AV:) (X,avL,)]
x (X, 1L, (Zﬂ“ﬂ)]

[z o) () (o)

If the hypotheses on errors are verified, one has:

E KZ LZAVH> (Z Av;Ln>] =02 ;LIth

and the expression for the variance simplifies to:

-1
VO = 52 <Z AX,ILH> <Z L,Ith> (Z LIAXH> (7.12)

The generalized moments estimator and its variance can be expressed more compactly using
the following matrix notation: AXT = (AX[,AX],...,AX]), Ay" = (Ay],Ay;,...,Ay)), LT =
(LT,Ll,...,L}) and H a block-diagonal matrix obtained by repeating # N times.

1>t n

Y = [(AXTLYLTHL) (LT AX)] ' [(AXTLYLTHL) M (LT Ay)] (7.13)

VO = 62[(AXTL)YLTHL) ™ (LTAX)]? (7.14)
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If, contrary to the assumptions made, the errors are actually heteroscedastic and/or autocor-
related, the one-step estimator remains consistent, but two classic problems arise:

e on the one hand, the weighting matrix employed isn’t a consistent estimate of the “true”
weighting matrix any more, which leads to an efficiency loss;

e on the other hand, equation (7.14) is an inconsistent estimator of the variance. As a conse-
quence, any test statistic based upon it will be biased.

7.2.3 Two-steps Estimator

In order to partly resolve the first problem, one can use a two-step estimator, consisting in recov-
ering the residuals from the one-step model A9} and estimating E [(¥, LT Av,) (X,Av)L,)]
through ZMLIAO;DAOS)TLW this estimator being robust to the presence of heteroscedasticity
and/or autocorrelation. In this case, the inverse of the weighting matrix of moments used is
written as:

N 1 N
2)-1 _ =\ —
AP =V0m) = 5 3 Vom,)
= A%ZLZAOS)AOLDTLH = A%LTQ@UL (7.15)

with Q,;m a block diagonal matrix with blocks: ADVADVT for m=1...N. The two-step
GMM estimator is then obtained substituting (7.15) for A in equation (7.7):

f? = [(AXTLL QL) (LT AX)]
X [(AXTLY(L Q50 L) (LT Ay)] (7.16)

Regarding the estimator’s variance, by similar reasoning to that of equations (7.11 and 7.12),
one has:

V@ = [(AXTL)LTQs0 L) LT AX)] ™ (7.17)

The problem of this estimator is that it contains Qﬁ*(l), which depends on the residuals of the

one-step model and therefore on #"’ and on y. This estimator is therefore biased and the deriva-
tion of a robust estimator for the variance will be presented in section 7.2.3.

Example 7.5 difference GMM estimator — DemocracyIncome data set
GMM estimation of a panel model is performed through the pgmm function in the plm library,
The arguments of this function are the same as for the p1lm function, plus some specific ones:

e formula: the formula is peculiar, as it has three parts: the first, as usual, contains
the explanatory variables, the second the “GMM” instruments, the third the “normal”
instruments,

e model: the model to be estimated, either in one step: ' onestep’, or two: ' twosteps’,

o effect: the effects are either ' individual’ (they are then eliminated by differencing),
or 'twoways’, in which case indicator variables for each period are added as “normal”
instruments.

We first compute the one-step estimator:

diffl <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99)| lag(income, 2),
DemocracyIncome, index=c("country", "year"),
model="onestep", effect="twoways", subset = sample == 1)
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coef (summary (diff1l))

Estimate Std. Error z-value Pr(>|z])
lag(democracy) 0.50499 0.09049 5.581 2.396e-08
lag (income) -0.09011 0.08029 -1.122 2.617e-01

The two-step model is obtained by setting the model argument to ' twosteps’:

diff2 <- update(diffl, model = "twosteps")
coef (summary (diff2))

Estimate Std. Error z-value Pr(>|z])
lag(democracy) 0.554007 0.10783 5.13777 2.780e-07
lag (income) 0.001844 0.06054 0.03045 9.757e-01

All available lags having been used, the number of instruments is sizable. One actually has:
0.5x (11 — 1) X (11 — 2) = 45 GMM instruments; plus the 9 indicator variables for time periods
and the second lag of income, ] = 55.

Notice also how the results are near those of the Anderson and Hsiao (1982) model.

7.2.4 The Proliferation of Instruments in the Generalized Method of Moments
Difference Estimator

For the generalized method of moments estimator, the number of instruments grows with
the time dimension of the sample. For the difference GMM model, considering only the lev-
els of y which instrument Ay, one has: an instrument y, for the third observation (the first
usable one); two instruments y,, y, for the fourth; and 7' — 2 instruments for the last obser-
vation y,,%,, ..., yr_g, foratotalJ =1+2 + ... + (T — 2) = 0.5(T — 1)(T — 2) instruments. For
example, if £ = 10, one has 36 instruments. The number of instruments grows quadratically
with T'. The weighting matrices of moments (7.9 and 7.15) are of dimension / X J. Because of
their symmetry, they contain / X (J + 1)/2 unique elements. The number of estimands of the
matrix is therefore given by a polynomial in T whose dominant element is 7*/8. Every element
of this matrix having to be estimated through an empirical average calculated over the N indi-
viduals in the sample, the precision in estimating the matrix elements is not guaranteed unless
N is “big” with respect to J. Else, it can frequently happen that (7.9 et 7.15) be singular. The
generalized moments estimator cannot then be calculated through the formula (7.7) because
it uses the inverse of said matrix. One can then resort to generalized inversion methods, but
this is clearly the symptom of too many instruments for the given number of individuals in the
sample.

To understand the consequences of too many instruments, it is simplest to consider the case
of the instrumental variables estimator. This estimator can be obtained by applying least squares
twice: the first time regressing each column of the explanatory variables’ matrix X on that of
instrumental variables L, the second time regressing the dependent variable y on the predicted
values of the previous regression X. The bigger the number of instruments J, the better the first
stage fit, i.e., the closest X will be to X. Should J become equal or greater than the number of
observations, one will have X = X and the instrumental variables estimator will be identical to
the ordinary least squares one. This is referred to as the “overfitting” problem.!°

Different solutions are possible in order to limit the number of instruments. The first one con-
sists in limiting the number of lags considered. For example, for ¢ = 10, if limiting the number of

10 See Roodman (2009a), pp. 98-99.
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lags to 3 one gets 1 instrument fort = 3,2fort = 4and3fort =5 ... 10:a total of 21 instruments
versus 36 if using all lags.

The second possibility is to “collapse” the moment conditions.!! In this case, the matrix of
instruments (7.4) is replaced by the following one:

Y 0 0 0 .. 0 0 O
YV Y1 0 0 ... 0 0 O
0 ... 0 0 O

Yur=3) Yur-4y Yur=5) Ynr—6) -+ Ym2 Ym O
Yucr-2) In(r-3) Ynr-4 Yua-s5 -+ IYn3 V2 Im

The vector of (T’ — 2) empirical moments is then: 71 = %ZWL;AVW with:

T T T
T T_
L,Av,) = Z Vn(e-2 AVt Z Vn(e-3)A Vit Z Vnt-0yAVips -+ »
t=3 t=4 t=5

T
Z Vnte-T+2 Vot Y1 AVt

t=T-1

Example 7.6 instruments proliferation — DemocracyIncome25 data set

To illustrate the problem of instrument proliferation, we consider the second dataset, where
the frequency is 25 years.

data ("DemocracyIncome25", package = "pder")
pdim (DemocracyIncome25)
Balanced Panel: n = 25, T = 7, N = 175

We estimate the GMM model in differences, using the two variables democracy and income
as GMM instruments with all the available lags.

diff25 <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99) + lag(income, 2:99),
DemocracyIncome25, model = "twosteps")

For each GMM instrument, there are 0.5 X 6 X 5 = 15 moment conditions and hence a total
of 30 MM instruments plus the 5 time dummies, i.e. / = 35, when the number of individuals
is N = 25.

diff251lim <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:4)+ lag(income, 2:4),
DemocracyIncome, index=c("country", "year"),
model="twosteps", effect="twoways", subset = sample == 1)
diff25coll <- pgmm(democracy ~ lag(democracy) + lag(income) |
lag(democracy, 2:99)+ lag(income, 2:99),
DemocracyIncome, index=c("country", "year"),
model="twosteps", effect="twoways", subset = sample == 1,
collapse = TRUE)

11 See Roodman (2009b), p. 148.
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sapply (list (diff25, diff251im, diff25coll), function(x) coef (x) [1:2])

[,1] [,2] [,3]
lag(democracy) 0.4066 0.4678 0.50273
lag (income) -0.1713 -0.1258 -0.04221

As can be readily seen, the results of the three models are quite similar, which seems to indi-
cate that the proliferation of instruments is not an important issue in this particular context.

7.3 Generalized Method of Moments Estimator in Differences
and Levels

The main drawback of the difference GMM estimator is that lagged levels of the dependent
variable are often very weakly correlated with its lagged first difference. To solve this weak
instruments problem, one can add moment conditions on the model in levels.

7.3.1 Weak Instruments

One can clearly see the weakness of the correlation between the instruments of the difference
model and the regressor Ay,_; in the case of a simple autoregressive model with 7' = 3.12 In this
case, the difference model for the third observation (the only usable one) can be written:

Aynfi = pAyn2 + AvnB

The only available instrument for this observation is y,,. The GMM estimator reverts then
to the instrumental variables one, Ay,, being instrumented by y,,. Applying two-stage least
squares, one first estimates Ay, , as a function of y,;, then in a second step Ay, ; as a function of
Aj’nZ‘ T

The structural model being y,, = py,,_1) + 1, + v,,,» the equation to be estimated in the first
step can equivalently be written:

Ay = (P =Dy + 1, + Vi
The oLs estimator is then:
1/NY, Y, + Vi)
1/NY,ym
Supposing that the process began many periods ago, one can calculate the limit of # observ-

ing that the numerator tends to 67 /(1 — p) (see 7.3) and the denominator to o7 /(1 — p)* +
62 /(1 — p?) (see 7.2). One has then, denoting k = (1 — p)?/(1 — p?):

A k
plim # = (p 1)63/0'5 "y (7.19)
Observing that lim,_, k = 0, one can clearly see how, if the process is close to having a unit
root, 7 will be close to 0. Figure 7.2, representing plim # and p — 1 as a function of p illustrates
the fact that, even for values of p well below 1, plim # is very close to 0. The instruments are
therefore weak, and the quality of the second step in the two-stage least squares estimator will
be low (erratic estimate, high standard error).
The instruments will be equally weak if the variance of the individual effect is much larger
than that of the innovation.

g=(p-1+

12 See Blundell and Bond (1998) p. 120.
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Figure 7.2 First step coefficient as a function of p.

7.3.2 Moment Conditions on the Levels Model

Arellano and Bover (1995) and Blundell and Bond (1998) show that under weak hypotheses on
the data-generating process, another moment condition exists for the levels equation, which
can be written as:

Yut = pyn(t—l) + My + Vit
The supplementary moment conditions can be written:
E(Ayn(t_s)(nn +v,)=0s=1...t—-1

These show how Ay, are valid instruments for y,,_,, in the levels equation. If one takes
into account the moment conditions for the differenced model too, only the condition corre-
sponding to s = 1 is appropriate, the others being redundant. For example, for T' = 4 there are
3 moment conditions for the levels equation:!3

(n + v3)Ay, (7.20)

(n+ v,)Ay, (7.21)

(1 + va)Ay, (7.22)
and 3 conditions for the differenced model:

(V3 — Vo), (7.23)

(V4 = v3)y, (7.24)

(V4 — V30, (7.25)

Subtracting (7.20) from (7.22) or subtracting (7.25) from (7.24), one has in both cases:
(v4 — v3)Ay,. Consequently, one moment condition is redundant. One can omit the

13 The individual index is temporarily omitted.
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condition (7.22) and, more generally, only consider moment conditions from the levels
model of the type: E(Ay,,_1,(1, +v,,)) =0
Replacing y,,,_;) with py,_,) + 1, + V,,_1), one has:
E[(n, + v, )((p = D)y, 0) + 11, + Vo)) = 0

As the v are uncorrelated, one has:

Eln,((p - l)yn(t—z) +n,)]=0
Or else, for period ¢:

Eln,((p = 1)y, +n,)1=0

For | p |< 1 (stationarity hypothesis), such condition can be rewritten, dividing by 1 — p
My
mntzE |:’7n <ynt_ 1_p>] =0
No

1ndlcates therefore that, for period ¢, the difference between the actual Value of the variable and
the steady state must be uncorrelated with the individual effect.
Replacing y,, with py,,_;, +n, + v,,, one has:

My
m,, = E My \ PYue-1) + 1,V — 1— P)
Py,
=E|m, | mue-r) — 1-, P = Pyt

Therefore: m,,_ ;) =0 = m,, =0. This equation indicates that the moment condition is
verified either for all periods or for none. This situation is illustrated in the first panel of
Figure 7.3.14

A more pragmatic interpretation of this equation is that 71, decreases in time at a rate p. If
the process has begun a long time ago, y is near its steady state value and the moment condition
is acceptable, even if it is not exactly verified. This situation is illustrated in the second panel of

Figure 7.3.
Case 1 Case 2
10.0 - e
7.5- — E)
i
5.0 -
a
25 - —b
0.0 -
0 10 20 30 0 10 20 30

Figure 7.3 The supplementary condition of th system-Gmm estimator.

14 This figure is inspired by Roodman (2009b) p. 145 et 147.
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7.3.3 The System evmm Estimator

The estimator adding moment conditions from the levels estimator to the difference model
is called generalized method of moments system estimator, or “sys-GMM” This estimator is
obtained using the vector of errors in differences and in levels:

€ =(Ag,€,) = (Av,,€,)

and the corresponding matrix of moments:

L, 0 0 .. 0
JR U P
" 0 0 Ays ... O

0 0 0 ... Ay

The moment conditions are then:
T
Av,(B)
ZL;:T < € (7) = ZynlAvnB’ ZynlAme’ ZyMZAVn4""’
ZynlAVm7 ZynZAVnt’ tee Zyn(T—Z)AVnt’

:
Z €n3Ayn2’ Z €n4Ayn3’ tee Z €ntAyn(t—l)
n n n
where, as usual, T = (a,y"). There is an intercept to be estimated for the sys-GMm model,
which is not the case for the diff-GMM one.

The choice of an initial weighting matrix is less obvious than in the case of the difference
model. In fact, there, only the vector of differenced errors is used, and consequently the vari-
ance of said vector, under the hypotheses of homoscedasticity and no serial correlation of the
innovations, is proportional to a known matrix according to the coefficient 2: hence estimation
is unnecessary (see 7.8). By contrast, here the augmented vector of errors includes the errors in
levels and hence the individual effects. In this case, the variance matrix depends on 62 and on 03.
To solve this problem and allow for a known starting matrix, one can assume 0'2 = 0. In this case:

Av, T Dv,vID" Dv,v] ,( B D
V() =E (Av,,v,) | =E =0,
v, v,v)DT vl D" 1

Example 7.7 system GMM — DemocracyIncome data set

The system GMM model is obtained in a way similar to that in differences, the only change being
the argument transformation, which defaults to * d’ for difference, must be set to * 1d’
(for level and difference).

sys2 <- pgmm(democracy ~ lag(democracy) + lag(income) |

lag(democracy, 2:99)| lag(income, 2),
DemocracyIncome, index = c("country", "year"),
model = "twosteps", effect = "twoways",
transformation = "1d")

coef (summary (sys2))

Estimate Std. Error z-value Pr(>|z]|)
lag (democracy) 0.6176 0.05714 10.809 3.134e-27
lag(income) 0.1200 0.01792 6.696 2.142e-11
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The autoregressive coefficient obtained with the difference and the system models are close.
The income coefficient is now significantly positive and much larger than previously.

7.4 Inference

Generalized method of moments estimation poses two types of problems in terms of inference:

o the first is that, even if the estimator is consistent, the same is not necessarily true for the
variance-covariance matrix of coefficients if applying the classical formula. One can then
use robust estimators of said matrix;

o the second is that estimation is consistent only under certain hypotheses: in particular those
of no error correlation and of moments’ validity.

7.4.1 Robust Estimation of the Coefficients’ Covariance

The variance of the one-step estimator is given by equation (7.11). If the innovations are het-
eroscedastic and/or correlated, LT HL is an inconsistent estimator of E [(ZHLIAVH) (XA, Ln)]
and the variance estimator given by (7.14) is not robust. By contrast, LTQﬁmL is a consistent
estimator of the moments’ variance, which allows, plugging this expression into (7.11), to
obtain a robust estimator of the coefficients’ variance for the one-step estimator:

2 (1)
V =[AX"LILTHL)'LTAX]™?

x AXTL(LTHL) ™ (L0, L)YLTHL) ' LT AX (7.26)

X [AXTLWLTHL)'LTAX]™!

The expression of the two-step estimator is given by (7.16). The problem is its dependence on
Qﬁ““ in turn depending on #1 and hence on Ay. Consequently, §? is a nonlinear function of
Ay and the usual variance formula is inappropriate.

Estimation of the variance Q/;m of the /] moments’ vector is typically very imprecise for two
reasons. The first is that the number of parameters is large (J X (J + 1)/2). The second is that
these parameters are second-order moments of second-order moments, hence fourth-order
moments of the original data.!®

The solution proposed by Windmeijer (2005) allows to obtain a consistent estimator of the
two-step estimators’ variance. To begin with, one replaces in (7.16) Ay by AXf + Av. One has
then:

AP = p = [(AXTLY(L Gy L) (LT AX)]

A (7.27)
X [(AXTLY(L™ Q40 L) (LT AV)]
In general, define:
Ay, Q) = [(AXTL)LTQL ™ (LTAX)]™
8(Ay, Q) = [( X ) ( )] (7.28)

X [(AXTLYLTQL) (LT Av)]

implying that f® — g = g(Ay, Qﬁu)). The variance of §@ is then that of g(Ay, Qﬁql,). One subse-
quently approximates g around the true value of parameters f. Denote by D the gradient of g
evaluated at the true parameter values:

p) N
D= —g(Ay, Q5|5
aﬂg ) p=p

15 See Roodman (2009b) p. 140.
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The first-order approximation can then be written:
88y, Q) ~ g(8y, Q) + DY — p)

Or, (f — p) = g(Ay, H). Consequently, the approximation becomes:
8(8y.Q50) ~ g(8y. Q) + Dg(Ay. H)

The variance of §® is then approximated by:

2(2) A A
V= [g(Ay, Q) + Dg(Ay, H)][g(Ay, Q) + Dg(Ay, )"

or:

A

7~ gy, Q)g(Ay, H)'D'

+ Dg(Ay, H)g(Ay, Q)"
+g(Ay, Q))g(Ay. Q)T

+ Dg(Ay, H)g(Ay, H)'D'

(7.29)

Replacing Av by AD® and Qﬂ by Q/;u,, g(Ay, Qﬁ)g(Ay, Qﬂ)T and g(Ay, fzﬁ)g(Ay,H)T are
both approximated by V® = [AXTL(LTQ/?(DL)‘ILTAX]‘I. Moreover, g(Ay, H)g(Ay,H)" =
[AXTL(LTHL)'LTAX]™' = V®, One has then, finally, the expression for the robust covariance
of the two-step estimator:

" —9®DT 4 DYODT 4 V@ 4 DY

The expression of D is to be found in Windmeijer (2005).

Example 7.8 robust estimation of the covariance matrix - DemocracyIncome
data set

The function vcov computes the “classical” (and inconsistent) version of the variance, and
vcovHC the robust version (equations 7.26 for the one-step model, and 7.29 for the two-step
one). Below we extract the standard errors of the first two coefficients for the two-step difference
model.

sgrt (diag(vcov (diff2))) [1:2]

lag (democracy) lag (income)
0.04795 0.04646

sgrt (diag (vcovHC (diff2))) [1:2]

lag(democracy) lag (income)
0.10783 0.06054

One can actually see that in this example the classical variance formula seems to be biased
downward. In fact, “robust” standard errors are clearly superior.

7.4.2 Overidentification Tests

If the moment conditions are valid, the empirical moments’ vector /71 = %ZHLIAV,, has expec-
tation zero. If this hypothesis is verified, the Wald statistic:

m' V(m) '
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is distributed as a y* with ] — K degrees of freedom. This test has been proposed by Sargan
(1958) and applied to MM models by Hansen (1982). Various versions of this test can be
obtained, depending on whether:

o the one-step or the two-step residuals are used to approximate 7;

2 A
e the simple estimator (%LTHL) or the robust one (%LTQ[;(I)L) is used for the moments’ vari-
ance matrix.

For example, the test on the two-step model using the robust estimator of the moments’
matrix is based on the following statistic:

-1
(a02TL) (517 @uL)  (L720®)
N N2 N
= (AVPTL)(LTQ0, L) (LT AVP)

which is the value of the objective function of the two-step GMm model evaluated in /@

It is recommended, in the case of “sys-GMM” models, to perform a Sargan-Hansen test on
the subset of moment conditions concerning the levels model, in order to separately test the
validity of the supplementary hypotheses imposed by that model.

Example 7.9 Sargan-Hansen test - DemocracyIncome data set
The Sargan-Hansen test can be performed through function sargan. For example, for the
one-step difference model, one has:

sargan (diff2)
Sargan test

data: democracy ~ lag(democracy) + lag(income) | lag(democracy, 2:99) |
chisg = 50, df = 44, p-value = 0.3
sargan (sys2)

Sargan test

data: democracy ~ lag(democracy) + lag(income) | lag(democracy, 2:99) |
chisqg = 56, df = 54, p-value = 0.4

For the difference model, one has J = 55 (the 45 “GMM” instruments, the income variable and
nine time dummies) and K = 11 (the lagged endogenous variable, income and the nine time
dummies). The number of degrees of freedom is then / — K = 44. In this case, the hypothesis
of moments’ validity is not rejected.

For the system model, the number of periods used is 10 (one more than in the difference
model). There are therefore one more coefficient and one more instrument (the coefficient
associated to the added time dummy) and 10 supplementary instruments corresponding to
the 10 moment conditions for the 10 observations of the model in levels. One therefore has
J=55+1+10=66and K =11+ 1 = 12. Hence, the number of degrees of freedomisJ — K =
66 — 12 = 54, and again, the hypothesis of validity of the moment conditions for the system
GMM model is not rejected.

The Hansen-Sargan test is particularly sensitive to the problem of instrument proliferation.
Roodman (2009b), using the studies by Levine et al. (2000) and Forbes (2000), shows that the
p-value of this test tends to be very high, leading to non-rejecting the validity of moment
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conditions, when the same test performed on models more parsimonious in terms of instru-
ments may lead to the opposite conclusions. To illustrate this result, we compute Sargan’s test
on the model previously estimated on the dataset with 7 observations of 25 countries.

sapply (list (diff25, diff251im, diff25coll),
function(x) sargan(x) [["p.value"]])
chisqg chisg chisqg
0.91890 0.07105 0.21531

The p-value for the model using all moment conditions is near 1, while those of the other mod-
els are much lower; in particular, for the model limiting the number of lags to 3, the hypothesis
of instruments validity is rejected at the 10% significance level.

7.4.3 Error Serial Correlation Test

The generalized method of moments is not consistent unless the moment conditions are ver-
ified, which, in particular, implies that the innovations are serially uncorrelated. Arellano and
Bond (1991) proposed an appropriate test, based on the following statistic:

a; = L AoTav
VN

where Av~ is the [-th lag of Av. Using the expression of the theoretical model and of the esti-
mated one: Ay = AXf + Av = AXﬁ + A7, one gets:

AV =Av—AX(S - p)
Inserting this expression into the test statistic, one obtains:

1 A N
a,=—(AvI — (- pTAXT YAV — AXT(B - p))
i \/ﬁ
= LAVTA\/_Z
N

- %AvTAX—l\/ﬁ(ﬁ s
~ VNG - ﬁ)T%AXTAV"

A 1 1 _ .

+ VNG - ﬁ)TT SAXTAX VNG - p)
N
This expression simplifies if N — +oo observing that:

e J converges at a rate \/ﬁ , \/ﬁ (B — B) does neither diverge nor converge to 0;

o if the explanatory variables are not post-determined, they are not correlated with posterior
values of v. One has then: %\/TAX L0

° ]%]AXTAX‘I does not diverge.

which implies that the second and fourth terms converge to 0. A consistent estimator of the
variance of g; can therefore be based on:

b= L (AVTAV = (- pTAXT AV
N
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A consistent estimator of b, (and hence of a)) is:
%(AV”V(AO)AO—’ + AVTAXV(AHAXT D
—2A0TAX(AXTLALTAX) " AXLAL™V(AD)AD™)

The test statistic is thus obtained by dividing a; by the square root of the above expression
and it is normally distributed under the hypothesis of no serial correlation. The model being
expressed in first differences, the first-order serial correlation test is inappropriate because
Av,, =V, =V, is correlated with Av, ;. ,, = v, 1, — V,,_, because of the presence of v, ,_,,
in the two successive differences. On the converse, the second-order serial correlation test
is appropriate, as it consists in testing correlation between Av,, =v,, — v, ;) and Av,, 5 =
Vut—2) = V(-3 Which will be only presentif v, ,_,, is correlated with v, ,_,), i.e., if the innovations
in levels are serially correlated of order 1.

Example 7.10 autocorrelation test - DemocracyIncome data set
The error serial correlation test of Arellano and Bond (1991) is obtained through the function
mtest. The argument order is here set to 2 according to the preceding remark.

mtest (diff2, order = 2)
Autocorrelation test of degree 2

data: democracy ~ lag(democracy) + lag(income) | lag(democracy, 2:99) |
normal = 0.88, p-value = 0.4

The hypothesis of no serial correlation is not rejected.

7.5 More Empirical Examples

There are many articles using GMM on panel data. We will here limit ourselves to a short descrip-
tion of those for whose the data are available in the plm and pder packages.

The study by Levine et al. (2000) tests for a causal relationship between the quality of the
financial system (which limits information asymmetries and facilitates transactions) and eco-
nomic growth. To this end, they estimate a model where economic growth is a function of
a number of control variables and of exogenous characteristics of the financial system. They
draw on a panel of 74 countries with 7 observations of 5-year periods from 1960 to 1995. The
log of the growth rate is regressed on the log of initial wealth and of three indicators of financial
system quality: the degree of liquidity of the financial system, the ratio of commercial banks’
to central bank deposits, and the ratio of outstanding credit to Gpp. The two GMM models -
difference and system - are estimated, and the three indicators turn out having a positive and
significant influence on growth, especially in the system case. Roodman (2009b) returns on
this study elaborating on the instruments proliferation problem, potentially leading to incor-
rect acceptance of the validity of moment conditions. In particular, in the original study the
p-value of the Hansen test of overidentifying restrictions is 0.97. Different specifications, more
parsimonious as far as the number of instruments is concerned, used by Roodman (2009b) yield
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much different results. In fact, the p-value is now 0.001 and the validity of the supplementary
restrictions of the system model is rejected. The data allowing to reproduce these results are
available as FinanceGrowth in the pder package.

Forbes (2000) is concerned with the effect of income inequality on economic growth. To this
end, a panel of 45 countries over 6 5-year periods from 1960 to 1995 is analyzed. Growth is esti-
mated as a function of the log of income per capita lagged by one period, of the Gini coefficient
lagged by one period, of the education level of male and female, and of the price level of invest-
ments. Various estimation methods are used, in particular the difference GMMm of Arellano and
Bond (1991). The main result of the study is that the sign of the Gini coefficient is positive and
significant at the 5% level. This result is against those of many cross-sectional studies suggesting
a negative relationship between inequality and economic growth. This study has been recon-
sidered by Roodman (2009b) in order to illustrate the pitfalls of using many weak instruments.
In fact, the autoregressive coefficient is near 1, and the number of instruments is very high (89,
against only 138 observations). Roodman (2009b) employs various other specifications with a
limited number of instruments, and in these cases the Gini coefficient is not significant any
more. These data are provided as InegGrowth in the pder package

Caselli etal. (1996) address the issue of countries’ economic growth, and in particular the phe-
nomenon of convergence. They start from the results obtained in many cross-sectional studies,
for the most part coming to the conclusion that countries converge tho their steady state at a
very low rate, generally in the region of 2-3%. Their point is that such studies suffer from two
specification problems: the first is neglecting the dynamic nature of the model, and the second
is not considering the possible endogeneity of explanatory variables. The authors apply the esti-
mator of Arellano and Bond (1991) to a panel of 93 countries and 6 5-year periods, 1965 to 1985.
They find a much higher convergence rate, in the order of 10%. Bond et al. (2001) indicate that
these results must be taken with caution in so far as the dependent variable is close to having a
unit root, and hence the instruments used are weak. They reestimate the same model using the
Blundell and Bond (1998) estimator and thus obtain a much lower convergence rate of about
2-4%. These data are provided as Solow in the pder package

In their seminal paper, Arellano and Bond (1991) used data on 140 British firms from 1976 to
1984 in order to estimate a labor demand equation. The covariates are two lags of the dependent
variable and, also including two lags, the salary rate, the capital stock, and the production level.
These data have been used in many further articles, in particular Blundell and Bond (1998),
Windmeijer (2005) and Roodman (2009a). They are available as Emp1UK in the plm package.

Alonso-Borrego and Arellano (1999) perform a study on similar data concerning 738 Spanish
firms over the period 1983-1990. A VAR model is used for employment and the salary rate. These
data are provided as Snmesp in the plm package.

Mairesse and Hall (1996), Blundell and Bond (2000) and Bond (2002) have estimated a
Cobb-Douglas production function over a panel of 509 American firms over the period
1982-1989. The explanatory variables, taken in logs, are the lagged dependent variable and the
two production factors (labor and capital) contemporaneous and lagged by one period. The
results by Mairesse and Hall (1996), obtained using the Arellano and Bond (1991) estimator,
are surprising: the hypothesis of constant returns to scale is rejected and the coefficient on
capital is small and not significant. Blundell and Bond (2000) show how these unsatisfactory
results are due to the variables used being near to having a unit root. In such cases, we know
that the difference GMM estimator yields bad results because the instruments are weak. The
system estimator instead yields more plausible results (hypothesis of constant returns to scale
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not rejected and significant coefficient on capital). These data are available as RDPer £ Comp in
the pder package.

Kessler et al. (2011) address the influence of inter-regional transfers within a federal State
on regional inequality. Their theoretical model predicts that, counterintuitively, such transfers
may aggravate inter-regional inequalities. They use data on 17 OECD countries over the period
1982-1999 and the Arellano and Bond (1991) estimator. The results actually point at an aggra-
vating effect of an increase in transfers on inter-regional inequality. These data are provided as
RegIneq in the pder package.
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Panel Time Series

8.1 Introduction

Panel time series methods were born to address the issues of “long” panels of possibly non-
stationary series, usually of macroeconomic nature. Such datasets, pooling together a sizable
number of time series from different countries (regions, firms) have become increasingly
common and are the main object of empirical research in many fields: development economics,
regional or political science to name a few; the most typical unit of observation being a country
or region within a reasonably large set of similar units and over at least two decades of either
yearly or quarterly data.

Unlike “large” panels, the emphasis is therefore not only on N-asymptotics but on both N and
T tending to infinity, either sequentially or jointly (a seminal paper in this respect is Phillips and
Moon, 1999). Specifying the order with which N and T diverge is essential for the properties
of estimators.

The dynamics holds a more important, often prominent place (see e.g. Pesaran and Smith,
1995; Eberhardt et al., 2013). Under cointegration, error correction specifications are often of
interest (see e.g. Holly et al., 2010). The assumption of parameter homogeneity is also often
questioned in this field, often leading to relaxing it in favor of heterogeneous specifications
where the coefficients of individual units are free to vary over the cross section. The parameter
of interest can then be either the whole population of individual ones or the cross-sectional
average thereof.

Lastly, the issue of cross-sectional correlation, which is assumed away in the case of dynamic
GMM estimators a la Arellano and Bond (1991), takes a central role in panel time series methods.
In fact, observations coming from countries of the world, or regions within one country or
continent, are more likely than not to be correlated in the cross section either by some spatial
process, whereby shocks spread to neighboring units because of proximity, or by the effect of
common factors.

For example, consider a dynamic error component model:

Yt = My + PYut-1 + ﬂxnt + Vit

where 7 is allowed to be correlated with x; for N — oo and fixed T, the oLs estimator of (p, )
is inconsistent because of the presence of the unobserved correlated effects 5. From Chapter 7,
we know that the within estimator for this model is in turn biased downward, the bias being
inversely proportional to T so that it becomes less severe as the available time dimension gets
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longer. If N and T both diverge, then for consistency T is needed to grow “fast enough” relative
to N, i.e., at a rate such that the limit of N /T is finite.

From a different viewpoint, if each time series in the panel is considered separately, as
T — o0, OLS are a consistent estimator for the individual parameters (p,, f,) so that sepa-
rately estimating, and then either averaging or pooling, the coefficients becomes a feasible
strategy.

More generally, the abundance of data along both dimensions in large N, large T panels opens
up possibilities and issues, other than the familiar ones of large, short panels: heterogeneity can
be considered, where coefficients are not fixed across individuals but are allowed to vary, either
freely or randomly around an average; nonstationarity, where the long time dimension allows to
address unit roots and cointegration; and cross-sectional dependence across individual units,
possibly due to common factors to which individual units react idiosyncratically.

8.2 Heterogeneous Coefficients

Long panels allow to estimate separate regressions for each unit. Hence it is natural to question
the assumption of parameter homogeneity (8, = f Vn, also called the pooling assumption) as
opposed to various kinds of heterogeneous specifications. This is a vast subject, which we will
keep as simple as possible here; in general it can be said that imposing the pooling restriction
reduces the variance of the pooled estimator but may introduce bias if these restrictions are
false (Baltagi et al., 2008). Moreover, the heterogeneous model is usually a generalization of
the homogeneous one so that estimating it may allow to test for the validity of the pooling
restriction.
The panel data model with individual heterogeneity:

Ve = A+ By + 1,4V,

generalizes the familiar individual effects model: here, all parameters vary across units, while in
the former only the intercept did. The decision “to pool or not to pool” spans a vast literature; it
is analyzed thoroughly by Baltagi et al. (2000) (see also Baltagi and Griffin, 1997; Baltagi et al.,
2003a) in a forecasting perspective. Summing up the results of a number of studies, Baltagi
et al. (2008) conclude that for forecasting purposes, the simplicity and stability of the pooled
estimators dominate the flexibility of the heterogeneous ones, but seen from other perspectives,
conclusions may reverse. It can be safely stated that data rich environments favor the latter,
while the appeal of pooling restrictions becomes higher the smaller the dataset.

8.2.1 Fixed Coefficients
The heterogeneous panel model is:
ynt =a+ ﬂnxnt + nn + Vnt (81)

where g, are individual-specific parameters and x,, is a vector of K explanatory variables.

If the pooling assumption is relaxed and one does not want to make any other assumption
about how the f, are generated, and if the T" dimension permits, one can simply estimate a
separate vector of coefficients for each regression.

Individual slope parameters f, can be estimated (T-consistently) by least squares as:

Borsn = X, X)Xy, (8.2)
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This can be accomplished by subsetting the data and running oLs; more efficient functionality
is provided in plm through the function pvem, leaving the mode 1 argument at the default value
of "within’.

8.2.2 Random Coefficients

Estimating separate regressions negates the advantages of panel datasets in that degrees of free-
dom are greatly reduced with respect to the pooled data. If g,s are treated as fixed, there will
be NK parameters to estimate with NT observations. Random coefficients specifications allow
instead for cross-sectional variability while still reaping the benefits of pooling.

8.2.2.1 The Swamy Estimator
Swamy (1970) proposed a model with all individual-specific coefficients. In this case, we have:

— ., T
Yut = VY Znt + Vit

where homoscedasticity of v is not assumed and y, ~ N(y,A), or 6, =y, —y ~ N(0, A). The
model is then rewritten as:
_ T
Y =7 znt + €t
with €,, = v,,, + 6, z,,. The model errors can be heteroscedastic (in particular because we did
not impose homoscedasticity of v) and the errors of each individual are correlated as containing
the same parameter vector 6,. For the #n—th individual, the error covariance is then:

Q, = E(e,e)) = El(v, + Z,5,)(v, +61ZN)]
v and 6 being uncorrelated by hypothesis, we have:
Q, =E(ee)) =021, + Z,AZ]

For the whole sample, Q = E(ee") is a block diagonal matrix, each block being equal to Q,,.

oLs estimation of this model is inefficient, not taking into account the heteroscedasticity and
the correlation of errors. The model can be efficiently estimated by generalized least squares
by computing Q%> and then applying oLs to the variables transformed by pre-multiplying
them by Q%5. Given that the latter is a block diagonal matrix, the same result is obtained by
pre-multiplying each individual’s data by the corresponding block ©,%°. The generalized least
squares method is clearly infeasible because Q, is unknown, but it can be made operational by
employing an estimate thereof from a consistent model. This amounts to estimating N 62 and
the elements of the A matrix, or in total N + K(K + 1)/2 parameters.

To this end, we start by estimating each individual model by oLs. We then have:

j;}’l = (ZJI—ZVI)_lzZyn = y}’l + (ZIZH)_lz}’lvn
A natural estimator of 62 is then:

T

6r=) &,/(T-K-1)

t

The estimates are then averaged:

1 N
N 2

1
Il
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The estimation of A is based on the expression 7, — 7, which, developing and regrouping
terms, can be written:

N
N z_ Trr \—177T 1 Try \=17T
PP =1+ (ZZ,) van—ﬁ;(ynﬂznzn) Z;v,)

N-1 N-1

1
= Ynt (Z;Zn)_lz;qrvn X7 Zym
N N N &
- ]%[Z(Zjnzm)_lzjnvm
m#n

The usefulness of this expression is in writing 7, — 7 as a linear combination of uncorrelated
random variates, which considerably simplifies the computation of the variance of 7, as all
covariances are zero. We then have:

s 3 N-1\° N-1\° -
B, -0 = (M) a+ (B2 ) ezl
N-1 1 _
+ =5 At z#“afn(zjnzm) 1
m#n

Finally, regrouping terms:

gy Ny N=250r) 0 LN bors
B, =P = T A4 T el 20 + iy LonZiZ)

We then have:
E (Zm - ?>2> =W-0a+ 22y 2ziz )+ S YAz

_ N-1 27Ty \-1
=(N-DA+ Tzn:an(znzn)

1 -~ =2\ _ 1 2, 7Trr \—1
E(m;(yn—y)>—A+K[;6n(ZnZn)

which gives the estimator of A:
Ao 1 5 2 _ 1 27T 7 -1
A=—m Zn‘,m -5 Zn‘,an(znzn)

Example 8.1 Random coefficient model — Dialysis data set
Caudill et al. (1995) examine the effect that certificate-of-need regulation by state health plan-
ning organizations has on the speed of diffusion of a medical technology, hemodialysis. More
specifically, they test the hypothesis that this regulation has slowed the rate of adoption of this
technology. They use a panel of 50 American states for 14 years (from 1977 to 1990). The degree
of adoption of the technology diffusion is measured as the ratio of the number of dialysis
machines in a particular state for a year divided by the number of machines for the last period
of observation. A logistic diffusion function is used for the response. Two covariates are used: a
time trend and a dummy variable that equals one for observations for which certificate-of-need
regulation is in effect, interacted with the time trend.

The Swamy (1970) model can be estimated with the pvem function, setting the model argu-
ment to ' random’.
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data("Dialysis", package = "pder")

rndcoef <- pvem(log(diffusion / (1 - diffusion)) ~ trend + trend:regulation,
Dialysis, model="random")

summary (rndcoef)

Oneway (individual) effect Random coefficients model

Call:
pvem (formula = log(diffusion/ (1 - diffusion)) ~ trend + trend:regulation,
data = Dialysis, model = "random")

Balanced Panel: n = 50, T = 14, N = 700

Residuals:

total sum of squares: 629.5
id time

0.4685 0.2659

Estimated mean of the coefficients:
Estimate Std. Error z-value Pr(>|z|)

(Intercept) -1.4266 0.1284 -11.11 =2@=1E ==
trend 0.3416 0.0260 13.15 <2@=1E FE
trend:regulation -0.0581 0.0237 -2.45 0.014 =*

Signif. codes:
0 '*¥%%! 0,001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1

Estimated variance of the coefficients:

(Intercept) trend trend:regulation
(Intercept) 0.6617 -0.0736 0.0398
trend -0.0736 0.0288 -0.0205
trend:regulation 0.0398 -0.0205 0.0179

Total Sum of Squares: 33900
Residual Sum of Squares: 642
Multiple R-Squared: 0.981

The results indicate that certificate-of-need regulation has slowed the diffusion of hemodi-
alyis technology, as the coefficient is significantly (at the 5% level) negative. The estimated
covariance matrix of the random coefficients is an element of the fitted model called "Delta";
the following command extracts the mean values of the three coefficients and their standard
deviations.

cbind (coef (rndcoef), stdev = sgrt(diag(rndcoefsbDelta)))
y stdev

(Intercept) -1.42656 0.8135

trend 0.34161 0.1697

trend:regulation -0.05806 0.1339

The random coefficients have large standard deviations: about half the mean for the trend
coefficient and about two times the mean for the regulation coefficients. These large values
justify the use of the random coefficient model.
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8.2.2.2 The Mean Groups Estimator

Under less restrictive parametric assumptions than those of the Swamy model, assuming only
exogeneity of the regressors and independently sampled errors, the average y can be estimated
by the simpler mean groups (MG) method

N
N 1 .
Yme = ﬁ ; YoLs.n (83)

and its dispersion, in a nonparametric fashion, through the empirical covariance of the
individual 7,:

N
N 1 N A A A
V(yMG) = N(N — 1) ;(yow,n - yMG)(yOLS,n - yMG)T (84)

which is in fact the simplified version of the Swamy covariance seen above. In the context
of the Swamy model, it is biased but T-consistent and, differently from the original, always
non-negative definite; as such, it has been suggested by Swamy (1970) himself as an alter-
native for cases when his parametric covariance is not. In general, it can be shown that the
MG estimator is a special case with equal GLs weighting of the Swamy estimator, to which it
converges as T grows sufficiently large (Hsiao and Pesaran, 2008). The function pmg performs
mean groups estimation by default (model="mg").

Example 8.2 Heterogeneous coefficients - HousePricesUS data set

Holly et al. (2010) analyze the long-run relationship between house prices and economic
fundamentals (per capita income, net borrowing cost and population growth) in a sample
of 49 US states over 29 years. The hypothesis of interest is whether house prices have an
income elasticity of one. Their specification allows for variable coefficients in the random
sense, as discussed above. The core of their model is the relationship between the logs of
the nonstationary variables house prices price and income income. Their initial approach
is to estimate a static specification by mean groups (MG). In the following we compare the
coefficients from the asymptotically equivalent Swamy and MG estimators:

data ("HousePricesUS", package = "pder")
swmod <- pvcm(log(price) 7 log(income), data = HousePricesUS, model= "random")
mgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "mg")
coefs <- cbind(coef (swmod), coef (mgmod))
dimnames (coefs) [[2]] <- c("Swamy", "MG")
coefs

Swamy MG

(Intercept) 3.8914 3.8498
log (income) 0.2867 0.3018

One can see that for T' = 29, the efficient Swamy estimator and the simpler MG are already
very close; moreover, both are statistically very far from one.

Dynamic Mean Groups Importantly, Pesaran and Smith (1995) consider the MG estimator in
dynamic models of the type

Yt = PuInt—1 + ¥ Zut + Vi (8.5)

and show that, unlike aggregated or pooled regressions, it provides consistent estimates of
both coefficients and standard errors. Considering the full parameter vector 8, = (p,,, v,),
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they observe that, while for fixed T the estimator 0, is biased of order 1/T, the individual
regressions (8.2) become consistent estimators of 6, as T diverges. Hence the MG estimator
of the average parameter vector 8 is consistent for both N and T — o (see the discussion in
Hsiao and Pesaran, 2008). Explicit calculation of the individual parameters’ covariance as in
(8.4) in turn provides a consistent estimate of V(7).

Example 8.3 dynamic MG estimation — RDSpillovers data set
In their analysis of the returns of own vs general R&D, Eberhardt et al. (2013) consider both
static and dynamic heterogeneous specifications in the production function of European firms.
In doing so, every country-industry is allowed to follow its own production function; individual
parameters are then averaged for the purpose of general inference. Static and dynamic specifi-
cations alike are considered.

In the following, we estimate both the static MG model (see their Table 7) and the dynamic
MG. As in the original paper, we include individual trends by specifying t rend =TRUE:

library ("texreg")

data ("RDSpillovers", package = "pder")

fm.rds <- 1lny ~ 1nl + 1lnk + lnrd

mg.rds <- pmg(fm.rds, RDSpillovers, trend = TRUE)

dmg.rds <- update(mg.rds, . ~ lag(lny) + .)
screenreg (list ('Static MG' = mg.rds, 'Dynamic MG'= dmg.rds), digits = 3)
Static MG Dynamic MG
(Intercept) 4.550 **%* 4.038 **x*
(0.841) (0.778)
1nl 0,566 @@ 0,307 ==
(0.086) (0.059)
1nk 0.117 0.020
(0.122) (0.085)
lnrd -0.058 -0.092
(0.079) (0.071)
trend 0.022 ** 0,023 @z
(0.008) (0.004)
lag(1lny) 0.223 **x
(0.034)
Num. obs 2637 2518

*** p < 0.001, ** p < 0.01, * p < 0.05

The lagged dependent variable turns out significant, although the autoregressive parameter’s
magnitude is modest. On the basis of the dynamic model, the authors proceed to calculate the
long-run coefficients with or without common factor restrictions (see comment to their Table
8). Here we only reproduce the computation of the long- run elasticity of production to own
R&D (which is the ratio of the coefficient of R&D to one minus the autoregressive coefficient),
and the estimation of its standard error, through a Taylor approximation, by the delta method.
With reference to a vector of K random variates, the function deltamethod from package
msm (Jackson, 2011) requires: a formula describing the transformation (here, x5/ (1-x2) as
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the coefficients on 1ag (1ny) and 1nrd are respectively 2nd and 5th); a vector of K estimates
for the means; and a K X K matrix of covariance estimates. For the latter two, here we provide
the coef .panelmodel and vcov.panelmodel of the dynamic model:

library ("msm")
b.lr <- coef(dmg.rds) ["1lnrd"]/ (1 - coef (dmg.rds) ["lag(lny)"])
SEb.lr <- deltamethod(” x5 / (1 - x2),
mean = coef (dmg.rds), cov = vcov(dmg.rds))

z.lr <- b.lr / SEb.lr
pval.lr <- 2 * pnorm(abs(z.lr), lower.tail = FALSE)
lr.1lnrd <- matrix(c(b.lr, SEb.lr, z.lr, pval.lr), nrow=1l)
dimnames (lr.1lnrd) <- list("lnrd (long run)", c("Est.", "SE", "z", "p.val"))
round (lr.lnrd, 3)

Est. SE z p.val
Inrd (long run) -0.118 0.091 -1.301 0.193

After obtaining the point estimate and standard error of the long-run coefficient, we compute
the t-statistic and the corresponding asymptotic p-value for the two-tailed test. The long-run
elasticity of production to own R&D from the dynamic MG model is not significant at any con-
ventional confidence level.!

8.2.3 Testing for Poolability

Heterogeneous estimators relax the assumption made in the error components model, which
imposes homogeneity of all model parameters (but the intercept) across individuals. Under
this assumption, one can estimate a single model for the whole sample, at most including
individual-specific constant terms. This restriction, which is usually called poolability, can be
tested by comparing the estimation results from the different approaches. Furthermore, one
can impose the further restriction of no individual-specific intercepts.

In the variable coefficients framework, unrestricted estimation consists in estimating by
oLs one different model for each individual. The sum of squared residuals is then: ¢,,é,,. For
this model, degrees of freedom are: N(T' — K — 1). The restricted model to compare to can be
either pooled oLs (€], .é,,s with NT — K — 1 degrees of freedom) or the within model (€]¢é,
with N(T — 1) — K degrees of freedom), depending on whether the absence of individual
effects is imposed or not. The test statistic is then (taking the within specification as the
restricted model):

véw =€y N(T - K = 1)

ey (N-DK

This takes the form of a well-known stability test (known as the Chow test) distributed under
H, as an F with (N — 1)K and N(T — K — 1) degrees of freedom.

The function performing this kind of test is called pooltest. One possible usage is to
provide two models, one estimated separately for each individual, and either an oLs or a
within model. In the first case, all parameters are supposed constant under H,,, including the
constant terms. The unrestricted model is estimated by the function pvcm. As seen above,

1 The authors report instead the results from a common factor-restricted model, reaching qualitatively similar
conclusions.
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Figure 8.1 Individual coefficients, HousePriceUS.

this function allows to estimate two different models, depending on the parameter model;
here, the appropriate value for this argument is ‘within’ (the other possible choice being
illustrated in the next section).

Example 8.4 Poolability test - HousePricesUS data set
Estimating the competing models for the HousePricesUS data, we have:

housep.np <- pvem(log(price) ~ log(income), data = HousePricesUS,
model = "within")

housep.pool <- plm(log(price) ~ log(income), data = HousePricesUS,
model = "pooling")

housep.within <- plm(log(price) ~ log(income), data = HousePricesUS,
model = "within")

As usual, the pvem function provides a coef . pvem method to retrieve individual coeffi-
cients. As a first assessment of their dispersion, in Figure 8.1 we display a histogram of the
distribution of either coefficient.

The summary.pvem method instead returns, for each coefficient, the synthetic statistics
usually produced by summary for a generic numeric vector:

summary (housep.np)

Oneway (individual) effect No-pooling model

Call:

pvem (formula = log(price) ~ log(income), data = HousePricesUS,
model = "within")

Balanced Panel: n = 49, T = 29, N = 1421
Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max .
-0.2790 -0.0699 -0.0058 0.0000 0.0647 0.3524
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Coefficients:
(Intercept) log (income)
Min. 3=0,295 Min. :-1.141

1st Qu.: 3.152 1st Qu.:-0.138

Median : 4.146 Median : 0.228
Mean 3.850 Mean : 0.302
3rd Qu.: 4.777 3rd Qu.: 0.661
Max. 6.911 Max. 2.037

Total Sum of Squares: 3870
Residual Sum of Squares: 13.7
Multiple R-Squared: 0.996

The stability test can then be performed supplying housep . np and either housep . pool
or housep.within to the test function, depending on whether we want to assume absence
of individual effects or not. Notice the different degrees of freedom.

pooltest (housep.pool, housep.np)
F statistic

data: log(price) ~ log(income)

F = 26, dfl = 96, df2 = 1300, p-value <2e-16
alternative hypothesis: unstability

pooltest (housep.within, housep.np)

F statistic

data: log(price) ~ log(income)
F = 16, dfl = 48, df2 = 1300, p-value <2e-16
alternative hypothesis: unstability

Coefficient stability is very strongly rejected, even in its weakest form (specific constants).
The same tests can be performed using a formula-data syntax, specifying the nature of the
restricted model through the model argument.

8.3 Cross-sectional Dependence and Common Factors

Dependence across individual units, or cross-sectional dependence, can take two main forms.
Either it depends on the relative position of units in (some) space, so that — according to the
so-called Tobler law — nearby units are “more related” than far away ones; or it depends on being
observed at the same time and thus being subject to the same set of common, global factors that
affect each unit to an extent that does not depend on distance.

The former kind of dependence is called spatial and is more appropriate to describe phe-
nomena that spill over from one unit to nearby ones through vicinity, such as the diffusion of a
disease or of know-how in the labor force or the alteration in cigarette sales from cross-border
smuggling. In this case, one does therefore often speak of local dependence; although in many
spatial models, effects do actually carry over across all spatial units, they in fact always do
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so in a distance-decaying fashion, whereby influence is strongest between the closest units.
In the characterization of Pesaran and Tosetti (2011), this kind of dependence is also dubbed
“cross-sectional weak dependence.”

The latter kind of dependence does instead not need units to be referenced in any space: the
relative position does not matter because correlation is assumed to stem from being exposed
to the same, cross-sectionally invariant common factors (the world interest rate, the price of
oil, the rate of technological progress, the stock market booms or busts, the price of homes in
some reference market). Common factors can well originate from one or more main locations
(think of a primary stock exchange, such as New York or London, setting prices that affect
all other peers worldwide) but the effect will not depend on distance. Because factor-related
dependence does typically not decrease with the distance between units, it is also called global
dependence. In the characterization of Pesaran and Tosetti (2011), it is named “cross-sectional
strong dependence.”

As can be seen from the examples, common factors can be observable or not: the case when
they are unobservable is of course the most interesting one. Most importantly, they can also be
correlated with the regressors included in the model so that if they are omitted because they are
unobservable, they will be a source of endogeneity and hence of inconsistency for estimators,
unless they are appropriately accounted for (for an assessment of the properties of panel time
series estimators under different omitted factors scenarios, see Coakley et al., 2006).

The first kind of dependence will be the subject of the chapter on spatial panels. In the follow-
ing, common factor induced correlation will be our primary concern; nevertheless, the methods
presented here are generally robust to spatial correlation as well.

8.3.1 The Common Factor Model
Consider the factor-augmented panel model
Vnt = 7’;;rzm + 5;1rft + €

where n =1, ..., N is the cross-sectional index and ¢t = 1, ..., T the time index. z,, isa K + 1
vector of observed, strictly exogenous regressors including a 1 and f, is a vector of unobserved,
cross-sectionally invariant common factors.

Such structure is capable of generating cross-sectional correlation in case of a similar, albeit
not identical, response across countries to modifications in the common factors, measured by
the factor loadings 6,.. The common factors are allowed to be correlated with the regressors, as
is most likely to be the case, so their effect comes both through factor loadings and through the
indirect effect on the observed regressors. The common factors are also allowed to be nonsta-
tionary. Moreover, the remainder error term ¢ is allowed to be spatially correlated as in

N
€t = P Z Wy €mn + Vit
m=1

where w,,, is the generic element of an N X N spatial weights matrix W in which nonzero ele-
ments correspond to pairs of spatially close observation units (e.g., regions sharing a common
border, or below a given distance threshold); so that each error is correlated with a weighted
average of the errors in close-by observations according to the parameter p.2

The two kinds of error dependence induced by omitted common factors and by spatial error
correlation have serious consequences on the properties of estimators if they are neglected.

2 This is known in the spatial econometrics literature as the spatial autoregressive model and will be covered in
Chapter 10.
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The former induces cross-sectional correlation of a pervasive type, not dying out with distance,
characterized by Pesaran and Tosetti (2011) as strong; moreover, if the omitted common fac-
tors are correlated with the regressors, the latter become endogenous and estimators become
inconsistent. The latter type of dependence, dubbed weak because it dies out with distance, has
less serious consequences on estimation but can still cause inefficiency (and hence inconsistent
standard errors and invalid inference); moreover, as discussed in the next section, it weakens
consistency in the particular case of spurious panel regression. Estimators able to control for the
strong kind of dependence, as it turns out, are consistent in the presence of weak dependence
as well.

In the special case of only one factor with uniform factor loadings 6, = 6 Vn, the com-
mon factor model becomes a time fixed effects model, which can be estimated either by
oLs with time dummies or by the appropriate within estimator, i.e., OLS on cross-sectionally
demeaned data.

8.3.2 Common Correlated Effects Augmentation

The principle of common correlated effects (CCE) augmentation of Pesaran (2006) is based on
the idea that, for large N, the factors f, can be approximated by cross-sectional averages of
the response and regressors. Following the original paper (see also Holly et al., 2010), consider
the model:

Ve = Oy + Bz + €y (8.6)

where both the (composite) error € and the regressors z are generated by linear combinations
of the unobserved, cross-sectionally invariant factors f:

€y = Vhf + €, (8.7)

z,=a,+0f,+v, (8.8)
Substituting (8.7) in (8.6) and combining the result with (8.8), we get:

z,=d,+Clf+v, (8.9)

where z,, = (y,,,,2,,) " and

T
ent + ﬂn Unt

v

nt

1 T
el D) ()
0 I Ay

Cn=( tw T )(;2)

Taking cross-section averages of (8.9),
z,=d+C'f,+7,
so that, if (CCT)™! is invertible, the common factors can be written as:

f,=(CCH'Cz,—d-7,)
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Ifas N — inf 7, - 0 and C > C, then
f,—(CCY'CE -d) 50

Following this line of reasoning, Pesaran (2006) shows that the cross-sectional averages of
the response (7,) and regressors (X,) are N-consistent estimators of the unobserved common
factors and can therefore be used as observable proxies thereof. Augmenting the regression
with these averages is known as the common correlated effects (CCE) principle. CCE estimators
can be used to consistently estimate the individual slope parameters g, by applying least squares

to the augmented regression
T T
ynt =, + dnt + ﬂnZnt +gn Wt + €t

where W, = (7, X,)".
The estimator for each individual slope coefficient can then be written compactly as

=(Z'MZ)ZI My,

JA/CC].:.,I’I
with M =1, — H{H"TH)™'HT, H contains: the T X (K + 1) matrix of cross-sectional averages
W, t =1, ... T; and a deterministic component comprising individual intercept and time trend
(Pesaran, 2006, p. 974). The average is then estimated by the MG method,

N
Fecome = = 27
CCEMG — x7 CCE,n
N n=1

This estimator is known as CCEMG, for “common correlated effects mean groups.”
The covariance matrix is estimated nonparametrically, on the basis of the empirical covari-
ance of the individual coefficients, just like in the MG case:

N
. 1 . . . o T
\Y = — E - - 8.10
(yCCEMG) N(N _ 1) nzl(yCCE,n yCCEMG)(yCCE,H J/CCEMG) ( )

Unlike other estimators, the CCE is (N-) consistent for any fixed, unknown number of possibly
nonstationary common factors. Being robust to strong forms of cross-sectional dependence,
the ccE estimator is also robust to weak ones such as spatial correlation (see Pesaran and
Tosetti, 2011). Moreover, the CCE strategy has proved most effective in a number of simulation
studies, e.g., Coakley et al. (2006), Pesaran and Tosetti (2011), Kapetanios et al. (2011).

Example 8.5 Common correlated effects MG — HousePricesUS data set

The function pmg will perform cCE augmentation in the context of the MG model, if the argu-
ment model is set to * cmg’. In their article, Holly et al. (2010) augment their model with
the cross-section averages in order to obtain a consistent estimate of the income elasticity of
house prices in the presence of common factors. Below we reproduce and compare their MG and
CCEMG results. The MG and CCEMG coefficients are substantially different; with cCE the income
elasticity turns out much higher and not significantly different from 1 any more, in line with
economic theory. summary . pmg explicitly outputs the coefficients and significance diagnos-
tics for the added cross-sectional averages, denoted with the suffix . bar. The coefficients on
the latter are not meaningful per se, but their joint significance can be seen as an informal test
for the presence of common factors.

library ("texreg")
cmgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "cmg")
screenreg (list (mg = mgmod, ccemg = cmgmod), digits = 3)
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mg ccemg
(Intercept) 3.850 *** -0.115
(0.204) (0.256)
log (income) 0.302 ** 1.135 ***
(0.093) (0.195)
y.bar 1.047 *x%*
(0.058)
log (income) .bar -1.195 ***
(0.199)
Num. obs 1421 1421

**%* p < 0.001, ** p < 0.01, * p < 0.05

8.3.2.1 cce Mean Groups vs. cce Pooled

Estimation by the cCE principle can be performed either leaving parameters g, free to vary,
as above, or imposing parameter homogeneity (but maintaining heterogeneity in intercepts,
factor loadings, and possibly time trends), which leads to the ccep (pooled) estimator

N 1N
becw =\ D, ZM2, ) Y Z1 My, (8.11)
n=1 n=1

and is to be preferred on efficiency grounds when the underlying assumption that g, = g is
reasonable. It must be observed that the cCeP estimator, although imposing f, = §, still allows
individual factor loadings 6, to differ.

The standard pooled or heterogeneous estimators can be seen an special cases of this more
general formulation where augmentation is eliminated or reduced: pooled oLs as cCEP with
M = I, individual fixed effects as cCEP with H containing only individual dummies. The mean
groups (MG) estimator can in turn be seen as CCEMG where M = I.

Example 8.6 ccCeEMG and CCEP — HousePricesUS data set

The function pcce estimates cCe models of either type by projection of the original regressors
on the matrix M; by default (model='mg’ ) one gets the CCEMG, if model='"p’ the ccep. This
is the only way to perform cCEP estimation, while CCEMG results from pcce will be equivalent
to those obtained through explicit augmentation with pmg, the only difference being that here
one cannot see the significance diagnostics for the added cross-sectional averages:

ccemgmod <- pcce(log(price) 7 log(income), data=HousePricesUS, model="mg")
summary (ccemgmod)
Common Correlated Effects model
Call:
pcce (formula = log(price) "~ log(income), data = HousePricesUS,
model = "mg")

Balanced Panel: n = 49, T = 29, N = 1421
Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.23744 -0.03549 0.00027 0.00000 0.03639 0.22423
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Coefficients:
Estimate Std. Error z-value Pr(>|z|)
log (income) 1.135 0.195 5.81 6.3e-09 ***
Signif. codes:
@ U=wel @001 Vel @.1L =T @05 ",0 @, VU 3
Total Sum of Squares: 47.2
Residual Sum of Squares: 5.66
HPY R-squared: 0.74

Holly et al. (2010) are interested in estimating the relationship between house prices and
income net of the influence of common factors under the pooled specification as well. To this
end, they estimate a homogeneous CCEP version of the baseline model:

ccepmod <- pcce(log(price) ~ log(income), data=HousePricesUS, model="p")
summary (ccepmod)
Common Correlated Effects model
Call:
pcce (formula = log(price) ~ log(income), data = HousePricesUS,
model = "p")

Balanced Panel: n = 49, T = 29, N = 1421

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.27883 -0.03928 -0.00209 0.00000 0.03927 0.29993

Coefficients:
Estimate Std. Error z-value Pr(>|z|)
log (income) 1.199 0.207 5790 70 2e - 019 *kx

Signif. codes:

0 '*¥*%%! 0.001 '**' Q.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 47.2

Residual Sum of Squares: 6.89

HPY R-squared: 0.696

The results from the two specifications are very close, as regards both the coefficients and the
standard errors thereof, which speaks in favor of imposing the pooling restriction.

8.3.2.2 Computing the ccer Variance
According to Pesaran (2006, 5.2), the variance of the cCEP estimator can be computed in
two different ways, depending on whether the assumption of parameter homogeneity is
imposed here as well (homogeneous estimator) or not (heterogeneous, or nonparametric,
estimator).

The heterogeneous version (Pesaran, 2006, Th. 3) is based again on the nonparametric esti-
mate of the individual coefficients’ covariance. Defining

N —_

ZTMZ
xpleM
N T

n=1
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and
N T w T i
.1 Tz, X X i ZTMz,
R= N-1 ; T (yCCE,Vl - yCCEMG)(yCCE,n - yCCEMG)TT
the estimator is
n | RPN
Vo) = 3 ¥~ RE (8.12)

This estimator is consistent under quite general conditions as regards the rate of growth of
N vs T and the distribution of individual parameters; it is the one that fares best in the original
papers’ simulation study and the one the author recommends to use. It is therefore the default
method in the pcce function.

Nevertheless, strictly speaking, (8.12) is not appropriate under complete homogeneity.
Pesaran (2006, Th. 4) presents an alternative, which is appropriate for large panels (i.e., if

T/N —0as (N, T) iR o). The latter, which is presented in detail in Pesaran (2006, p. 988), is

based on the nonparametric kernel-smoothed estimator of Newey and West (see 5.1.1.3) and
can be calculated using standard methods. Analogously, and again in large-N settings, the
familiar clustering estimator can be applied. In fact, M being idempotent, the CCEP estimator
in (8.11) can be seen as oLs on the transformed variables /MZ; hence methods for robust
covariances can be applied to pcce objects the same way they are to plm ones — e.g., those
representing a within model. From a software viewpoint, the pcce function is compliant with
both vcovNW and vcovHC.

Example 8.7 variance of the CCEP estimator — RDSpillovers data set

The main point in Eberhardt et al. (2013) is to control for cross-sectional R&D spillovers in
estimating the productivity of own R&D of any observation unit. To this end, they employ
cCE augmentation both in heterogeneous and in homogeneous flavors. Below we present the
CCEP estimates from their Table 5 with three alternative estimators for the standard errors:

ccep.rds <- pcce(fm.rds, RDSpillovers, model="p")
library (lmtest)

ccep.tab <- cbind(coeftest (ccep.rds) [, 1:2],
coeftest (ccep.rds, vcov = vcovNW) [, 21,
coeftest (ccep.rds, vcov = vcovHC) [, 2])

dimnames (ccep.tab) [[2]1] [2:4] <- c("Nonparam.", "vcovNW", "vcovHC")

round (ccep.tab, 3)
Estimate Nonparam. vcovNW vcovHC

Inl 0.562 0.088 0.031 0.045
1nk 0.289 0.161 0.045 0.077
Inrd 0.084 0.068 0.020 0.033

A priori, homogeneous variance estimators are relatively well-suited to this comparatively
large and short dataset, provided that the homogeneity assumption holds. From the results we
can instead see that the nonparametric standard errors are much more conservative, hinting at
pooling assumptions being too restrictive.

8.4 Nonstationarity and Cointegration

The time series dimension of “long” panel datasets raises the issue of possible nonstationarity
and cointegration. From an econometric viewpoint, if two (single) nonstationary time series



Panel Time Series

are cointegrated, then the least squares estimator of the regression parameter characterizing
the relationship is superconsistent and converges to the true value faster than its stationary
counterpart (Stock, 1987). If on the contrary they are nonstationary but not cointegrated, the
statistical relationship is spurious, and least squares estimates do not converge to their true val-
ues at all, while fit and significance diagnostics yield the false positive results famously discussed
by Granger and Newbold (1974).

In a panel time series context, there is one more dimension available for inference: the cross
section. Assuming cross-sectional independence, Phillips and Moon (1999) show that a spu-
rious panel data regression can still deliver a consistent estimate of long-run parameters. Yet
its convergence properties will be weaker than those of a cointegrating one: in particular, the
coefficients of a spurious panel regression will still converge to their true values, although at a

much slower rate \/ﬁ than that of a cointegrating panel, which is T\/]T[ .

This result depends on an assumption of cross-sectional independence. It is weakened if the
errors are cross-sectionally weakly correlated, for example if they follow a spatial process, and
can be expected to fail in presence of strong cross-sectional dependence, as would arise when
omitting to control for common factors (Phillips and Moon, 1999, pages 1091-1092). Both
pooled oLrs (Phillips and Sul, 2003) and mean groups estimators (Coakley et al., 2006) lose
their advantage in precision from pooling when cross-sectional dependence is present.

8.4.1 Unit Root Testing: Generalities

Detecting unit roots has become a central subject in macroeconometrics. The techniques
employed are adaptations from the time series literature to the panel case. We will begin by
reviewing the main results regarding time series.

Consider a variable y, generated by an autoregressive process of order one:

Y=Yt e
The vector of explanatory variables may contain an intercept, a linear trend, and different
explanatory variables. To keep things simple, in the following we will assume y = 0, so that y fol-
lows a “pure” autoregressive process. As regards the error (which in this context is often called
the innovation), we will assume that it has mean zero and standard deviation o. By recursive
substitution, one has:

Yo =P+ e+ T+ +pe, te,
If y, is deterministic and the ¢ are not correlated, the variance of y can be written:
V@) =@+ 02+ ..+ p+ Do?
If p # 1, we have:
1-pf 1
Vi = P o’ - o’
1-p 1-p
On the other hand, if p = 1, V(y,) = t6? so that the variance grows to infinity with #; the series
is then nonstationary and is said to have a unit root. The presence of unit roots poses various
problems, first and foremost that of spurious regressions. In the presence of a unit root, a series
presents a peculiar sort of trend that is not deterministic but stochastic, and the presence of such
trends in two series containing unit roots may induce an artificial correlation between them.
In Figure 8.2 we present two autoregressive series with respectively p = 0.2 and p = 1. We see
how in the former case the autoregressive process translates into correlation between successive
values of y,; in particular, if y,_; < 0 then y, is more likely to be negative than positive. However,
the curve representing the realization of the process crosses the horizontal axis frequently. On
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Figure 8.2 Autoregressive processes with different p parameters.

the other hand, in the case of a unit root, one can clearly detect the presence of a stochastic trend
(in this case, on the rise): y, only changes sign once, and most of its realizations are positive.

To illustrate the importance of the spurious regression problem, we perform a short sim-
ulation exercise; we draw two autoregressive series independently, regress one on the other,
and recover the t-statistic corresponding to the null hypothesis H, : f = 0. This hypothesis
is true by construction; therefore, in a normal context the t-statistic should not reject (i.e.,
be roughly less than 2) in 95% of cases. Let us begin by illustrating this result for p = 0.2. To
this end, we employ two functions: code generates an autoregressive series, t stat performs
OLS estimation, and recovers the t-statistic:

autoreg <- function(rho = 0.1, T = 100){
e <- rnorm(T)
for (t in 2:(T)) elt] <- el[t] + rho *e[t-1]
e
}
tstat <- function(rho = 0.1, T = 100) {
y <- autoreg(rho, T)
X <- autoreg(rho, T)
z <- lm(y 7 x)
coef (z) [2] / sqgrt(diag(vcov(z)) [2])

1
result <- c()
R <- 1000

for (i in 1:R) result <- c(result, tstat(rho = 0.2, T
quantile (result, c(0.025, 0.975))
2.5% 97.5%
-2.114 1.990
prop.table(table (abs (result) > 2))

40))

FALSE TRUE
0.943 0.057

We can see how the empirical quantiles are very close to their expected values and the share
of false positives is in the region of 5%. Let us now do the same with two series, each containing
a unit root:
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result <- c()
R <- 1000
for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))
quantile (result, c¢(0.025, 0.975))
2.5% 97.5%
-9.158 8.227
prop.table (table (abs (result) > 2))

FALSE TRUE
0.379 0.621

Judging by the usual t-statistic, in two thirds of cases one would conclude in favor of a signif-
icant relationship between our two independently generated variables.

It is therefore crucial to detect the presence of unit roots in time series data; otherwise, there
are considerable chances to obtain falsely significant results. To this end, it is simplest to write
the equation of the autoregressive process subtracting y,_; to both sides. One has then:

Ay, =(p—1)y,; +¢

The unit root test then becomes a zero restriction test for the coefficient associated to y,_;
in the model where the regressand is Ay,. One might want to use a classic t-statistic, obtained
dividing p — 1 by its standard error. Setting H; : p =1 vs H; : p < 1, one will then reject the
unit root hypothesis at the 5% level if the statistic is less than —1.64.

R <- 1000
T <- 100
result <- c()
for (i in 1:R){
y <- autoreg(rho=1, T=100)
Dy <- y[2:T] - y[1:(T-1)]
Ly <- y[1:(T-1)]
z <- 1lm(Dy ~ Ly)
result <- c(result, coef(z) [2] / sqgrt(diag(vcov(z)) [2]))

In Figure 8.3 we depict a histogram of the realizations of the t-statistic, superposing a normal
density curve:

One can easily see that employing classic inference procedures to detect the presence of unit
roots is unwarranted, as the t-statistic follows a distribution that is very far from the normal.
Employing the usual critical value of —1.64, one has here:

prop.table (table (result < -1.64))

FALSE TRUE
0.542 0.458

which leads to reject the true hypothesis of a unit root one half of the times. To perform
the Dickey-Fuller test, one needs specific critical values that are not those of the normal (or
the t) distribution. The test can be performed augmenting the auxiliary model with a constant
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Figure 8.3 Histogram of the Student statistic in case of a unit root.

and/or a deterministic trend; lags of Ay can also be added in order to clean out any possible
autocorrelation of e.

The regression between two series both containing a unit root is only appropriate if they
present a long-term structural relationship. One speaks then of co-integration. More precisely,
we will say that two variables x and y are cointegrated if there exists f such that:

y=a+px+e

where € is stationary, i.e., it does not have unit roots. A simple cointegration test can then be
performed as follows:

1) verify whether y and x have unit roots with a Dickey-Fuller test,

2) if they both do, then estimate a model of y on x and recover the residuals ¢,

3) do a Dickey-Fuller test on é: if the unit root hypothesis is rejected, then x and y are cointe-
grated and the regression of y on x is meaningful; otherwise, x and y are integrated but not
cointegrated, and the regression of y on x will be spurious.

8.4.2 First Generation Unit Root Testing

The classical test for unit roots is usually called ADF for “augmented Dickey-Fuller”. Many
extensions of this test have been proposed to adapt it to a panel data setting.

8.4.2.1 Preliminary Results
Some of these tests are obtained by applying separate ADF tests to every individual in the sam-
ple. To perform these preliminary tests, one shall choose the number of lags and the relevant set
of deterministic variables d,,,, which can be either d;, = @, d,, = 1 (an intercept), or ds, = 1,¢
(an intercept and a time trend).
Ln
Aynt = (pn - l)yn(t—l) + Z HnsAyn(t—s) + ar-l;mdmt m = 1’ 2’ 3 (813)

s=1

This choice can be based on a number of criteria:

e the Schwarz information criterion (sIc),
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e the Akaike information criterion (AIC),
e the Hall method, consisting in adding as many lags as there are significant ones.

The regression is performed on 7 — L, — 1 observations for each individual, which leads to
N x T in total, with T = T — (L — 1), L being the average number of lags. The variance of the
residuals for individual # is estimated by:

2 Zt_L +1 nt
€n d—f;q
with df, the degrees of freedom of the regression.

(8.14)

8.4.2.2 Levin-Lin-Chu Test

Levin et al. (2002) proposed the first panel unit root test. In order to perform it, one must run
two preliminary regressions: respectively, of Ay,, and of y,,_; as functionsof Ay,, . s=1,...L
and d,,,, obtaining two residual vectors denoted respectively by z,, and v,,_,).

These two residuals are then normalized dividing them by the estimated standard error
(equation 8.14). The estimator of p is obtained by regressing z,,/6, on v,, /6, for the whole
sample. Its standard deviation and t-statistic are denoted respectively by 6(p) and ¢, = 5/6(p).

The long-term variance of y, is estimated by:

= Z Aym +2 Z D l Z AY, DY,y s]

t 2+s

n

where K is the truncation lag parameter and wpg, are the sample covariance weights, which
depend on the Choice of kernel

Calling s,

individual and 5= Znsn the sample average thereof, Levin et al. (2002) show that the statistic:

_ Ar—A—D Ag A\ %
o t, — NT36; o-(p)/,tmT
2 O'* -
mT

is normally distributed under the null hypothesis of a unit root. H and o . can be found in
the original paper.

8.4.2.3 Im, Pesaran and Shin Test

One of the drawbacks of the Levin et al. (2002) test is that the alternative hypothesis holds that
p # 1, but at the same time it is the same for all individuals. The test proposed by Im et al.
(2003) (1ps) overtakes this limitation: the null hypothesis is still p = 1 for all individuals, but
the alternative is now that p can be different across individuals, provided that p, < 1 at least
for some of them. The 1Ps test takes the form of a simple average of the t-statistics for H,
(p — 1) = 0 from the individual ADF regressions (8.13):

= thn

The 1ps statistic follows a nonstandard distribution, and must be therefore compared with
values tabulated ad hoc. Alternatively, it can be standardized with mean and variance E(¢) and

V(?) given in the Im et al. (2003) paper. The test statistic is then M

NA6)
which, under the null of a unit root, is normally distributed.
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8.4.2.4 The Maddala and Wu Test

Maddala and Wu (1999) proposed a similar test, again not imposing homogeneity of p under
the alternative. Instead of the t-statistics, it is based on combining the N critical values p-value,,
obtained from the individual ADF tests. The test statistic is then simply:

N
P=-2 Z In p-value,,

n=1

and, under the null of a unit root for all N individuals, it is distributed as a y? with 2N degrees
of freedom.

Example 8.8 First generation unit root testing — HousePricesUS data set

The first-generation unit root tests can be computed using the purtest function. A
formula-data can be used to describe the variable for which the test has to be computed
and the deterministic covariates (0, 1 for an intercept, and trend for an intercept and a time
trend). The same description of the test to be computed can be performed using a pseries
and specifying the deterministic covariates using the exo argument.

We set below the 1ags argument to 2 for comparability across procedures, instead of leaving
the choice to one of the flexible procedures described above (e.g., by setting the 1ags argu-
mentto ‘Hall’ to select the lags using Hall (1994)’s method). We apply the test to the price
variable of the HousePricesUS data set.

data ("HousePricesUS", package = "pder")
price <- pdata.frame (HousePricesUS) $price
purtest (log(price), test = "levinlin", lags = 2, exo = "trend")

Levin-Lin-Chu Unit-Root Test (ex. var.: Individual
Intercepts and Trend)

data: log(price)
z = -1.3, p-value = 0.1
alternative hypothesis: stationarity

purtest (log(price), test = "madwu", lags = 2, exo = "trend")

Maddala-Wu Unit-Root Test (ex. var.: Individual
Intercepts and Trend)

data: log(price)
chisg = 100, df = 98, p-value = 0.4
alternative hypothesis: stationarity

purtest (log(price), test = "ips", lags = 2, exo = "trend")

Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual
Intercepts and Trend)

data: log(price)

z = 0.77, p-value = 0.8
alternative hypothesis: stationarity

The three tests strongly don’t reject the null hypothesis of unit root.



Panel Time Series

8.4.3 Second Generation Unit Root Testing

The above panel unit root tests do all rest on the hypothesis of absence of cross-sectional
correlation. When, after the turn of the millennium, the panel data literature started recog-
nizing how pervasive cross-sectional correlation is in applications and progressed toward the
development of consistent methods in its presence, the above assumption started to be seen as
too restrictive. The tests assuming no cross-sectional correlation became known under the col-
lective name of “first-generation” panel unit root tests, to distinguish them from the new breed
of testing procedures that was emerging. These new panel unit root tests, sharing the quality
of being consistent in the face of cross-sectional correlation, were dubbed “second generation”
to distinguish them from the former and are currently most often employed in applications.

The reference framework for cross-sectionally correlated panels is, as discussed above, the
common factor model. A number of cross-correlation-compliant panel unit root procedures
have been devised in this framework based on various defactoring procedures. One of the most
popular second-generation tests, due to Pesaran (2007), takes the approach of controlling for
the common factors, instead of trying to eliminate them; it does so in the cce framework,
by augmenting the auxiliary regressions through cross-sectional averages of the response and
regressors. The individual ADF regressions are augmented with the cross-sectional averages of
lagged levels and differences of the individual series:

LVI
Ay, = (0 = DYpe-1y + Z 0,158V =5y T Os1)AY; + 010 -1y
s=1
2,42
+ Y 08y, +a),d, (m=1273) (8.15)
s=L,+3

The individual ADF regressions are therefore denoted “cross-sectionally augmented ADF”
(cADE) regressions; the resulting individual CADF statistics can in principle be combined as
described above, forming the basis for either a “cross-sectionally augmented 1Ps” (c1PS) or a
Maddala-Wu test. However, the limiting distributions for the latter do not apply anymore in the
absence of cross-sectional independence; for this reason, Pesaran (2007) tabulated critical val-
ues for the cIps test for the three different cases where the auxiliary CADF regressions contain
an intercept, a deterministic trend, or none of the above.

Example 8.9 1pPs and cCIPS tests —- HousePricesUS data set

Holly et al. (2010) analyze the stationarity of their target variable, the house price index,
and of the regressors of their model using individual ADF tests. They do so only in order to
demonstrate the strong cross-sectional correlation remaining in the residuals of the individual
ADF regressions, which invalidates the use of the first-generation 1Ps test, and thus to motivate
their resorting to the cADF-based cips test. In fact, they do not show the result of an 1ps test
but only the regression diagnostics.

As every unit root test, the results are sensitive to the order of time series augmentation:
the more lags we add, the more confident we are to have effectively filtered out residual serial
correlation, but the less degrees of freedom, and hence the less power, we allow to the testing
procedure. They consider the first four augmentation orders: following them, below we repro-
duce the cp statistics and the average pairwise correlation coefficients j for the residuals of the
ADF regressions.’

Below we explicitly estimate the individual ADF regressions using the pmg function: the latter
outputs a pmg object from which the pcdtest function is able to retrieve the residuals as a

3 The results do not correspond exactly to the original paper: for an explanation see Millo (2015).
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pseries, so it can be directly applied specifying whether one wants the ¢ statistic (default)
or the pairwise correlation coefficients 5 (then test has to be setto ' rho"’).

tab5a <- matrix (NA, ncol = 4, nrow = 2)
tab5b <- matrix(NA, ncol = 4, nrow = 2)

for(i in 1:4) {

mymod <- pmg(diff (log(income)) ~ lag(log(income)) +
lag(diff (log(income)), 1:1),
data = HousePricesUS,
model = "mg", trend = TRUE)
tab5a[l, i] <- pcdtest (mymod, test = "rho")Sstatistic
tab5b[1l, i] <- pcdtest (mymod, test = "cd")S$statistic
1
for(i in 1:4) {
mymod <- pmg(diff (log(price)) ~ lag(log(price)) +
lag(diff (log(price)), 1:1i),

data=HousePricesUS,

model="mg", trend = TRUE)
tab5a[2, i] <- pcdtest (mymod, test = "rho")Sstatistic
tab5b[2, i] <- pcdtest (mymod, test = "cd")S$Sstatistic

tab5a <- round(tab5a, 3)
tab5b <- round (tab5b, 2)
dimnames (tab5a) <- list(c("income", "price"),
paste ("ADF (", 1:4, ")", sep=""))
dimnames (tab5b) <- dimnames (tab5a)

tab5a

ADF (1) ADF (2) ADF (3) ADF (4)
income 0.465 0.443 0.338 0.317
price 0.346 0.326 0.252 0.194
tab5b

ADF (1) ADF (2) ADF (3) ADF (4)
income 82.84 77.40 57.96 53.21
price 61.73 57.02 43.21 32.52

Residual cross-correlation is clearly apparent and motivates employing the cips test. In
the following we assess the order of integration of prices and income by testing the original
series and the differenced ones for unit roots. To do so, the dataset now contained in the
data.frame HousePricesUS has to be converted into a pdata.frame from which
the testing function cipstest will be able to retrieve the panel indices it needs. The
number of lags is left at the default value of 2. As for the deterministic component of
the cADF regressions, we allow for an intercept (type='drift’) in the original series;
for the sake of consistency, we then exclude it from the differenced one (type='none").
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php <- pdata.frame (HousePricesUS)
cipstest (log (phpS$price), type = "drift")

Pesaran's CIPS test for unit roots

data: log(phpS$price)

CIPS test = -2, lag order = 2, p-value = 0.1
alternative hypothesis: Stationarity
cipstest (diff (log(phpSprice)), type = "none")

Pesaran's CIPS test for unit roots

data: diff (log(phpS$Sprice))
CIPS test = -1.8, lag order = 2, p-value = 0.01
alternative hypothesis: Stationarity

The cips test does not reject a unit root for the original series, while it does for the dif-
ferenced one*. The conclusion is that the price index is integrated of order 1. The same (not
reported) happens for income, at which point the crucial issue is whether house prices and
income are cointegrated, or otherwise the regression of interest is spurious. A cIps test of the
regression residuals will help shed light on the issue: currently the cipstest function only
accepts pseries objects as arguments; hence, we extract residuals as a pseries through the
usual resid. ccep extractor function prior to feeding them to the unit root test. Given that
individual trends have been controlled for at the modeling stage and that by the very nature of
regression residuals, the series is not expected to contain a drift (intercept), we eliminate any
deterministic component from the CADF regressions by specifying type='none’:

cipstest (resid(ccemgmod), type="none")
Pesaran's CIPS test for unit roots

data: resid(ccemgmod)

CIPS test = -2.7, lag order = 2, p-value = 0.01
alternative hypothesis: Stationarity

cipstest (resid(ccepmod), type="none")

Pesaran's CIPS test for unit roots
data: resid(ccepmod)

CIPS test = -2.2, lag order = 2, p-value = 0.01
alternative hypothesis: Stationarity

The unit root hypothesis is rejected for both the residuals of the ccEMG and the ccep models.
The conclusion is that both models represent cointegrating regressions.

4 An exact p-value is not available because the test distribution is nonstandard; test results are compared to
tabulated critical values from Pesaran (2007), and the nearest significance level is reported, together with a warning.
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Count Data and Limited Dependent Variables

It is often the case in economics that the dependent variable is not continuous so that
OLS estimation is not appropriate. On the one hand, the response may be a count, i.e., it takes
only non-negative integer values. In this case, the most commonly used specifications are
the Poisson and the NegBin models. On the other hand, the response may exhibit limited
dependence. In this case, one can assume that there exists a continuous non-observable
variable called y*. The value of y* is not observed for some part of the domain or not observed
at all. The different cases are depicted in Figure 9.1:

o Figure 9.1a presents the case of a binomial variable (y = 0, 1), which indicates the position of
y* relative to a threshold y,

e Figure 9.1b presents the case of an ordinal variable (y = 0, 1, 2), which indicates the position
of y* relative to two thresholds y, and u,,

e Figure 9.1c presents the case of a left- truncated variable at y; on the right of i, we have
y = y*, observations characterized by y* < u are simply not available,

o Figure 9.1d presents the case of a left-censored variable at y; as for the truncated case, one
observes, on the right of i, y = y*. The sample contains observations for which y* < u, but
the corresponding values of y* are unobserved.

Some of these models belong to a broad category called “generalized linear models”. More
specifically, this concerns:

e the binomial model and especially two particular cases, the logit and the probit models,
o the Poisson model.

The Negbin model is also a generalized linear model if its supplementary parameter is a fixed
parameter and is not estimated.

In a cross-section context, both base R and several packages provide the relevant estimators,
using the maximum likelihood method:

probit, logit and Poisson models can be fitted using the glm function,

the NegBin model can be estimated using the glm.nb function of the MASS package,

the ordinal model can be fitted using the polr function of this same package,

the censored model can be estimated using the tobit function of the AER package or the
censReg function of the censReg package,

o the truncated model can be fitted using the t runcreg function of the truncreg package.

The pglm package provides similar estimators for panel data. It enables the estimation of
binomial and Poisson models and for convenience, also for Negbin and ordinal models, even if
strictly speaking these last two are not proper generalized linear models.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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(a) Binomial response (b) Ordinal model

y=y*

Y2
(c) Truncated response (d) Censored response

Figure 9.1 Limited dependent variable.

The pldv function of the plm package provides panel estimators for the case where the
response is either truncated or censored.

These models are often estimated using the maximum likelihood method, which requires to
make strong hypotheses concerning the distribution of the response. When these hypotheses
are not valid, except for very special cases, the estimator is no longer consistent.

This last is a very general drawback of maximum likelihood estimators, but there is also
another drawback that is specific to panel data. In linear models, individual effects can be
removed using an appropriate transformation (within or first differences) or can be directly
estimated. This is not the case for most of the models presented in this chapter; the individual
effects cannot be removed, and their estimation leads to the incidental parameter problem.

When N — +oo for fixed T, for the linear model, the estimation of individual effects is not
consistent, as the number of parameters to be estimated grows with N and the variance of the
estimators is constant. On the contrary, nevertheless, the estimator of the vector of parameters
of interest f is consistent.

Differently from the linear case, for most of the models reviewed in this chapter, when the
individual effects are estimated, their inconsistency “contaminates” the estimation of g, which
becomes inconsistent as well!. This incidental parameter problem leads to abandoning the fixed
effects models where the fixed effects are estimated in favor of three alternatives”:

e the random effects model, which is always usable: one first writes the individual effects’ con-
ditional probabilities and then computes the unconditional probabilities by integrating out
the individual effects, making a hypothesis about their distribution,

o afixed effects model, which uses the notion of sufficient statistic: for example, in a logit model,
the probability of being unemployed at period ¢ depends on the individual effect, and so
does the number of spells of unemployment for every period. By contrast, the ratio of this
probability, which is the probability to be unemployed in period ¢ knowing the total number
of periods for which the individual is unemployed, does not contain the individual effect.
This technique, which is not available for all the models reviewed, enables, like the within
transformation of the linear models, to get rid of the individual effects,

o for censored or truncated responses, the linear model can be consistently applied if some
observations are removed from the sample beforehand (one then speaks of a trimmed esti-
mator).

1 For an illustration of this phenomenon in the case of the logit estimator, see Hsiao (2003, pp. 194-195).
2 For a broad view of the estimation non-linear panel models, see Honoré (2002).
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In the next sections, we will present the three categories of models previously cited: binomial
and ordinal models, truncated and censored models, and count data models. For each of these
three sections, we will first briefly describe the estimators used with cross-sectional data. We
will then present the estimators appropriate for panel data. We will finally reproduce different
empirical examples of these models.

9.1 Binomial and Ordinal Models

9.1.1 Introduction

9.1.1.1 The Binomial Model
We consider a model for which the response is binomial, and we denote without loss of gener-
ality the two possible values 0 and 1. We then define a latent variable y* that is continuous on
the real line and is unobserved. The latent variable is linked to the observable binomial variable
y by the following rule of observation:
y>u=y=1
y'<u=y=0
The value of the latent variable is the sum of a linear combination of the covariates and an
error term. Without loss of generality, if y includes an intercept, we set u = 0.
y=y'z+e
The variance of ¢ is not identified; it can therefore be set to 1 or to any other arbitrary value.
Probabilities for the two possible values of the response are then:

P(y=0)=Pe < —y'2)
P(y=1)=P(e > -y'2)
Denoting by F the cumulative density of €, we then have:
P(y=0)=F(-r"2)
P(y=1)=1-F(~"2)
=F(y'2)

the last expression being valid if the density of € is symmetric. Denoting g = 2y — 1, which
equals —1, +1 for y = (0, 1), the probability of the outcome can be expressed in a compact form:

P(y) = F(qr"2) (9.1)

Two distributions are often used: the normal distribution:
€

E(e) = ®(e) = / L2

-0 \/ 271

which leads to the probit model, and the logistic distribution:

€

e
1+ef
which leads to the logit model.
For a sample of size N, the log-likelihood function is obtained by summing the logs of (9.1)
for all the observations:
N
InL = Z InF(q,r 2)

n=1

E(e) = Ale) =
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9.1.1.2 Ordered Models

An ordered model is a model for which the response can take J distinct values (with J > 2). The
construction of the model is very similar to the one of the binomial model. We consider a latent
variable, like before equal to the sum of a linear combination of the covariates and an error:

Yy =pfx+e
Denoting u = (4o, fiy, iy, .- » Hy) @ vector of parameters, with y; = —oco and y; = +oo, the rule
of observation for the different values of y is then:
y=1 S py < Px+e < p
y=2 & u <fx+te< u

y=J]-1& u_, < fla+e<
y=7] Sy < Plx+e< y

A A
T

Denoting by F the cumulative density of €, the probability for a given value j of y is:
Py, =)= F(M,‘ - ﬁTxn) - F(M,‘_l - ﬂTxn)

The probability of the outcome can be written:

]
PO, = X 10, = DIE(; — f7%,) = F(yy — BT ,)] 9.2)

j=1

For a sample of size N, the log-likelihood function is obtained by summing the logarithms of
(9.2) for all the observations:

N ]
InL =Y > 1, =NIF - p%,) = F(u_y — fx,)]

n=1 j=1

As for the binomial model, the most common choices for the distribution of ¢ are the normal
and the logistic distributions, which lead respectively to the ordered probit and logit models.

9.1.2 The Random Effects Model

For panel data, we now have repeated observations of y for the same individuals. The latent
variable is then defined by:

— ., T
y:t_y Znt+’1n+vnt

We assume as usual that the error can be written as the sum of an individual effect #, and an
idiosyncratic term v,,,. Two observations for the same individual are then correlated because
of the common term #,,. If the y vector contains an intercept, we can suppose, without loss of
generality, that E(n) = 0.

9.1.2.1 The Binomial Model
For a given value of #,,, the probability of the outcome for individual # at period ¢ is defined as
before:

PW, | 1) = F(@(r "2, +1,))
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Denoting ¥, = (¥,,1, Y2+ - - » Y1 )> the joint probability for all the periods for individual # is:

T
PO, | 1,) = [ F@ulr 2, + 1))
t=1

The unconditional probability is obtained by integrating out this expression for #. Assuming
that the distribution of # is normal with a standard deviation of ¢,, we obtain:

400 T 2
1 —os(x
po) = [ [1F@ 2+ e ) ay

o =1 2776,1

With the change of variable:

il =>dv= dn

U=

we obtain

400 T
P(,) = / [1F@.0 2 + V20,00e " dv
Vr)-w 5

There is no closed-form for this integrand, but it can be efficiently numerically approximated
using Gauss-Hermite quadrature. This method consists in evaluating the function for different
values of v (denoted v,) and computing a linear combination of these evaluations, with weights
denoted by w,. For a fixed number of evaluations R, the values of (v,, w,) are tabulated.

R T

1

P(y,) ~ NG > w, [T F@ulr 2 + V260,)) (9.3)
T r=1 t=1

and the log-likelihood function is obtained by summing over all the individuals the logarithm

of (9.3).

Example 9.1 random effects logit model — Reelection data set

Brender and Drazen (2008) studied the influence of fiscal policy on the reelection of politicians.
It is often suggested that, just before elections, politicians implement more expansionary fiscal
policies, i.e., they reduce taxes or increase public spending. A panel of 75 countries is used, with
a number of observations varying from 1 to 16. A subsample of these data is also considered
when the incumbent is a candidate to the next election (for the other observations, reelection
means that the incumbent political party wins the election). This subsample can be selected
using the dummy variable narrow. The response is reelect: it equals 1 in case of reelection
and 0 otherwise. The two main covariates are ddeftermand ddefey. Both variables measure
the change in the ratio of government balance (budget surplus) and GDP. The first one is the
difference between the two years prior to the elections and the two previous years. For the
second, this is the difference between the election year and the previous year. Control variables
include the growth rate of GDP gdppc and dummies for developing countries dev, for new
democracies and for majoritarian electoral systems maj. The Reelection data setis available
in the pder package.

data ("Reelection", package = "pder")

We first estimate the logit and probit models, with the glm function. This function uses
the same arguments as 1m, and a supplementary one called family, which indicates the
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distribution of the response, in our case the binomial distribution. The link between the
parameter of the distribution and the linear predictor f"x is indicated with the 1ink argu-
ment. The family argument can be either a character string (here ' binomial’), the name
of a function (here binomial) or a function call (here binomial ()). The last possibility is
the only one that allows to use a link that is not the default one. The logit model is obtained
with 1ink = "logit’ (the default), the probit model with 1ink=’probit’. The four
following commands all compute the logit model:

elect.l <- glm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj,
data = Reelection, family = "binomial", subset = narrow)

12 <- update(elect.l, family = binomial)

13 <- update(elect.l, family = binomial())

14 <- update(elect.l, family = binomial (1link = 'logit'))

while only the following command allows the estimation of the probit model:

elect.p <- update(elect.l, family = binomial (link = 'probit'))

The syntax of pglmis similar to glm. Like for p1m, there are different ways of describing the
structure of the sample:

e by providing a pdata . £rame to the data argument,

e by providing a data . frame and using the index argument,

e by only providing a data . frame if the first two columns of the data contain the individual
and the time indexes (which is the case for the Reelection data set).

The logit and probit random effects models are estimated below:

library ("pglm")
elect.pl <- pglm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj,

Reelection, family = binomial (link = 'logit'),
subset = narrow)
elect.pp <- update(elect.pl, family = binomial (link = 'probit'))

Estimation results are presented using the screenreg function of the texreg package:

library ("texreg")
screenreg (list (logit = elect.l, probit = elect.p,
plogit = elect.pl, pprobit = elect.pp),

digits = 3)
logit probit plogit pprobit
(Intercept) -1.328 *x -0.822 *xx* -1.537 *x* -0.942 *x
(0.410) (0.248) (0.489) (0.294)
ddefterm 14.413 8.381 14.086 8.223

(7.746) (4.685) (8.211) (4.853)
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ddefey 14.171 * ©§.555 = 13,793 = 8.339
(6.660) (4.039) (6.998) (4.257)
gdppc 17.017 =* 10.652 =* 19.380 * 12.076 **
(6.911) (4.198) (7.618) (4.602)
dev 0.822 * 0.504 * 0.893 * 0.541 *
(0.358) (0.218) (0.430) (0.258)
nd 0.683 0.425 0.810 0.495
(0.380) (0.232) (0.439) (0.264)
maj 0.768 * 0.472 * 0.847 * 0,515 =
(0.314) (0.192) (0.381) (0.230)
sigma 0.841 * -0.518 *
(0.346) (0.205)
AIC 343.708 343.851
BIC 368.497 368.640
Log Likelihood -164.854 -164.926 -163.435 -163.434
Deviance 329.708 329.851
Num. obs. 255 2455 255 255

*** p < 0.001, ** p < 0.01, * p < 0.05

The probability of being reelected is larger in developing and newly democratic countries
and for majoritarian electoral systems. The growth rate of GDP also has the predicted positive
effect on the probability of being reelected. The coefficients of the two fiscal policy covariates are
positive, which means that expansionary fiscal policies before elections do not have a systematic
positive effect on the probability of the incumbent being reelected. On the contrary, the results
indicate that voters tend to sanction such policies.

9.1.2.2 Ordered Models
The line of reasoning is very similar to that of binomial models. The joint probability for an
individual # for a given value of the individual effect is:

T ]
P, | n,) =[] D100 = DIFG; = B7%,, —n,) = F(u_y = BT %, = n,)]
=1 j=1
Assuming a normal distribution for the individual effects, the unconditional probability is:
J

400 T
P(y,) = / T2 100 = DUFG; = BT, — 1) = Flpyy = B, = m)]

=1 j=1

[s9)
1 -05

e (lv) dn

X
27[0',1

Using the same change of variable as previously, we obtain:

400 T ]

1
P(y,) = 1w =)
= [z

- t=1 j=1

X [F(u; = BT, — V20,0) = Fuy_y — f7%,, — V20,0)]
x e dv
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which can be approximated using Gauss-Hermite quadrature:
. &I
PO~ —=— > [ 2100 =)
\/;0',, r=1 t=1 j=1
X [F(4; — %, — V26,0,) = Fu_y — 7%, — V/20,0,)]
x e % dv

Example 9.2 random effects ordered model — Fairness data set

Raux et al. (2009) analyze the perceived fairness of different methods of demand rationing using
a survey in which individuals had to indicate their opinion on an ordinal scale concerning dif-
ferent rationing modes for parking places and for fast train seats. The response is answer and
takes integer values from O (very unfair) to 3 (very fair). The main covariate is a factor indicat-
ing the rationing mode: peak-load pricing peak, administrative rule admin, random allocation
lottery, additive supply addsupply, queuing queuing, moral rule moral, and compen-
sation rule compensation. The other covariates are dummies indicating that the rationing is
recurring or not recurring, that the individual has a diploma education and has a driving
license driving. The Fairness dataset is available in the pglm package.

data ("Fairness", package = "pglm")

We first use the polr function from the MASS package to estimate the ordered probit and
logit models. We restrict our attention to the rationing of parking places.

library ("MASS")
parking.ol <- polr(answer ~ recurring + driving + education + rule,

data = Fairness, subset = good == "parking",
Hess = TRUE, method = "logistic")
parking.op <- update (parking.ol, method = "probit™")

The “link” is indicated with the method argument and we set the Hess argument to TRUE
so that the Hessian, which is necessary to calculate the standard errors of the coefficients, is
computed.

We then estimate the random effects ordered models using pglm. The following details
should be remarked:

e the family argument is used, like for glm, and an ordinal function is added, which
allows, setting 1ink to either 'probit’ or 'logit’, the estimation of the probit and
the logit ordered models,

e the number of evaluations for the Gauss-Hermite quadrature method is indicated with the
argument R,

e the index is here mandatory, as the second column of Fairness is not the time index.

parking.opp <- pglm(as.numeric (answer) ~ recurring + driving + education + rule,
data = Fairness, subset = good == 'parking',
family = ordinal (link = 'probit'), R = 10, index = 'id’',

model = "random")
parking.olp <- update (parking.opp, family = ordinal (link = 'probit'))
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Results of the four models are presented using the screenreg function:

library ("texreg")

robit =
poprobit

parking.
= parking.opp) ,

op,

.044)
L237 ***
.060)
.280 ***
.079)
.061
.086)
.217 *
.085)
L1411 F**
.083)
L7331
.086)
.656 ***
.093)
.458 ***
.091)

.077
.059)
cABS ww
.080)
- I08
.105)
.066
.088)
c23E “w
.086)
o A2, WHE
.085)
.848 ***
.089)
837 W
.098)
627 W
.096)
c2BY W
.072)
OIS HeveEs
.038)
BIE Wi
.059)
.BAY www
.050)

.077
.059)
cAB5 ww
.080)
09
.105)
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.088)
- A3E F
.086)
o221, W
.085)
.848 ***
.089)
837 W
.098)
- 622 W
.096)
2B Wi
.072)
Q1Y v
.038)
BIE Wik
.059)
.BAY www
.050)

.814

.814

screenreg (list (ologit =
pologit =
digits = 3)
ologit
recurringyes -0
(0
drivingno 0
(0
educationno -0
(0
ruleadmin -0
(0
rulelottery 0
(0
ruleaddsupply 1
(0
rulequeuing 2
(0
rulemoral 4
(0
rulecompensation 4
(0
(Intercept)
mu_1
mu_2
sigma
AIC 5482
BIC 5553
Log Likelihood -2729
Deviance 5458
Num. obs. 2661
*%%* p < 0.001, ** p < 0.

9.1.3 The Conditional Logit Model

parking.ol, op
parking.olp,

oprob

120 -0
.075) (0
AL WL 0
.101) (0
S4B W -0
.138) (0
.133 -0
.144) (0
.330 * 0
.141) (0
28972 s 1
.143) (0
2973 WL 1
.152) (0
2597 W 2
.166) (0
2 AP W 2
.162) (0
722 5490
360 5561
361 -2733
722 5466
2661

01, * p < 0.05

The random effects model is consistent only if the individual effects are uncorrelated with the
covariates. If it is not the case, the conditional logit model can be used. It is well known in the
statistic literature and has been introduced in panel data econometrics by Chamberlain (1980).
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The general presentation of this model is quite complex, but the intuition of it can be
perceived using the special case where T' = 2. We denote Y, = y,; +¥,,. Only the individuals
for which Y, = 1 can be used to estimate the conditional logit model (more generally, only
individuals for which 0 < Y,, < T' may be used).

For a given period ¢, the probabilities for the two values of y,, are:

P(ym=0|r]n)= -

14ef T %nt+n
.
el xnt+in
P()/nt =1 | rln) T 1t et
or more generally:
eynt(ﬂTxnt+”r()
Py [ 1,) =

- 1 + ef ®utn,

If the idiosyncratic components of the errors are i.i.d., the joint probability for two observa-
tions is simply the product of P(y,; | 1,,) and P(y,,, | 1,,):

eynl(ﬁTxnl+”n)eyn2(ﬁTxn2+’1n)
1+ eﬁTxnl‘H?n)(l + eﬁTxnz‘H’ln)

or also, as one and only one of the two y,, equals 1:

P(ynl’ynZ | nn) =

ern BT %1 49,2 BT %y,

1+ eﬂTxnz‘H’ln)(l + eﬁTxn2+’1n)
eynlﬁTxrxl+yn2ﬁTxr12

P(ynl’y;ﬂ | nn) =

— o' 4
a1+ eﬂTxnl‘H'ln)(l + eﬂTxn2+”n) (9 )
The probability that ¥, = y,; +¥,, = 1 is equal to the sum of the probabilities of:
. . 07 X1+ 1
® V= 1 and V2 = 0, which is lieﬂTmMn 14ef mnatm
. . AT 2411y
® V= 0and In2 = 1, which is 14ef T on1+m X lie[’T**ﬂ“’” ’
which is therefore:
P(Y _ 1) _ eﬂTxnl‘H'ln + eﬂTxn2+”n
n (1 + eﬂTxnl‘H'ln)(l + eﬂTxnz‘HTn)
BT fTx
e nl e n2
= ¢ + (9.5)

(1 + ef™®atm)(1 + ef %nt)
Dividing (9.4) by (9.5), one finally obtains the joint probability of y,, and y,, given their sum:

e}’mﬂT’Cm"'ynzﬁTxnz

PW: Y | Y, =1 = s o (9.6)

This conditional probability is free of the individual effect and the likelihood that uses this
expression can therefore be considered as a fixed effects logit model. Note that there is no sim-
ilar estimator for the probit model.

Example 9.3 conditional logit model - MagazinePrices data set
Cecchetti (1986) analyzes price changes, with an application to magazines. His analysis is repli-
cated (and criticized) by Willis (2006). Price changes are costly for two reasons:

e changing prices induce administrative costs,
e in a monopolistic competition context, increasing prices will lead to a loss of customers.
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For these two reasons, there is a difference between the optimal price of a good for a given
period p?, and the actual price p,,. A price change will occur only if the gap between the two
becomes greater than a given threshold. More formally, the price will change if:

In 22 s e
pnt

K, is then the minimum relative gap between the optimal and the actual price that would
result in a price change. If the price changes, given the infrequency of price changes, the enter-
prise will set its new price above the optimal price, the relative difference being equal to /,.

Denote £, the last period when the price of good n has changed. For this period, we have:

P
In 2= = po.

nt,
Py, "

If the price doesn’t change in period ¢, we have p,, = p,; . Replacing in the previous equation,
we have:

In

Do _ . ¢ _po
- =AlnP, >k~ k), (9.7)

nt,

In the context of a simple monopolistic competition model, the demand function for the firm
and its cost function are:

(5:) x

St M
Ae”Ql w,

Qnt
C

nt

where X, is the demand faced by the whole industry, w, the factor price index, and p, the average
price in the industry.

Substituting the expression of demand in the cost function, writing the profit function, and
setting to zero the first derivative of profit with respect to price, we obtain the following price
function:

Inp), =by+bit+b,Inp, +b;InX, + b, Inw,

Writing the same price function for the period when the last price change occurred and sub-
tracting both equations, we get:

Alnp* . =a1(t—f,,)+a21n{7—t +a31n£ +6l41nﬂ
el )Z3 X wy,
Finally, denoting by T, = ¢t — ,, the time since the last price change, assuming an identical
variation 7,, of the average price of the industry and of the inputs and denoting by X, = In ;((f

tn

the demand variation for the whole industry since the last price change of enterprise n:

A lnp:ﬁn =a, T, +a,m, +aX,
Adding an error term to this expression and inserting it in equation (9.7), we obtain:
a T, + a,n,, + a X, +e,, > =

a,, =k, — h’, is aspecific term for enterprise # at period ¢, which represents the price change
policy. The probability of a price change can then be written:

P(ynt = 1) = P(ant + alTnt + AT + a3Xnt + ent) = F(dnt + a, Tnt + AT + ﬂng)

where F is the cumulative density of €, assumed to be logistic.
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Cecchetti (1986) assumes that a,, can be supposed constant for 3 consecutive years. In this
case, the period of observation being of 27 years, there are 9 different effects for each magazine.
We present below the results of 3 estimations that replicate Table 1 of Willis (2006).

We successively estimate a simple logit, a logit with magazine fixed effects for which the
effects are estimated (and therefore suffering from the incidental parameter problem), and
a conditional logit model (using the clogit function of the survival) where three-year
magazine fixed effects are removed. The MagazinePrices data set is available in the
pder package.

data ("MagazinePrices", package = "pder")
logitS <- glm(change ~ length + cuminf + cumsales, data = MagazinePrices,

subset = included == 1, family = binomial (1link = 'logit'))
logitD <- glm(change ~ length + cuminf + cumsales + magazine,

data = MagazinePrices,

subset = included == 1, family = binomial(link = 'logit'))
library ("survival™")
logitC <- clogit (change ~ length + cuminf + cumsales + strata(id),

data = MagazinePrices,

subset = included == 1)
library ("texreg")
screenreg(list (logit = logitS, "FE logit" = logitD,
"cond. logit" = logitC), omit.coef = "magazine")
logit FE logit cond. logit
(Intercept) -1.90 **x* -1.18 **
(0.14) (0.42)
length =0, 10 “% -0.07 * 1,02 “o@
(0.03) (0.03) (0.28)
cuminf 6,93 wow 8,683 o 19.20 *
(1.12) (1.25) (7.51)
cumsales -0.36 -1.14 7.60 *
(0.98) (1.06) (3.46)
AIC 1008.90 1028.35 173 .44
BIC 1028.63 1230.62
Log Likelihood -500.45 -473.18
Deviance 1000.90 946 .35
Num. obs. 1026 1026 1026
R"2 0.20
Max. R"2 0.32
Num. events 213
Missings 0

*** p < 0.001, ** p < 0.01, * p < 0.05

Note that the coefficient of the length of the period since the last price change has the
expected positive sign and is significant only for the conditional logit model.
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9.2 Censored or Truncated Dependent Variable

9.2.1 Introduction

It’s often the case in economics that the response is only observed on a certain range of values;
we then say that the dependent variable is truncated. For example:

o if the response is a proportion, it is necessarily left- truncated on 0 and right-truncated on 1,

e consumption for a good is necessarily positive and therefore left-truncated on 0,

o the demand for a sports event is necessarily lower or equal to the number of seats in the
stadium and is therefore right- truncated to this capacity.

From now on, we will consider the most common case, which is a 0 left truncation, but the
models we will present easily extend to the case of left or/and right truncations at any value.

As usual, we will assume that the dependent variable can be represented by a latent variable
y* that equals the sum of a linear combination of different covariates and an error term.

y*=J/TZ+€*

The observed response y equals y* if it is not in the truncated zone (i.e., here, if it’s strictly
positive) and equals the truncature (here, 0) otherwise.

y*<0=>y=0

Two kinds of samples can be used to estimate this model:

e a sample is truncated when only observations for which y > 0 are available (we therefore
don’t even know the values of the covariates x for observations for which y is in the truncation
zone),

e asample is censored when it consists of observations for which y* is either inside or outside
the truncation zone.

This latter case is particularly important in econometrics and leads to a model which is called
the tobit model (Tobin, 1958). From now, we’ll refer to the truncated model when the first kind
of sample is used and to the censored model for the second kind of sample.

We'll first analyze why applying a linear regression to a censored or a truncated model leads
to inconsistent estimators. We'll then present a non-parametric method that leads, removing
some specific observations, to a consistent estimator while making minimal hypotheses on the
model errors. We'll conclude this section with the maximum likelihood estimator, which relies
on the much stronger hypothesis of homoscedasticity and normal distribution.

9.2.2 The Ordinary Least Squares Estimator

Let f be the density of the distribution of e* which is supposed, without loss of generality as
long as the equation contains an intercept, to be of 0 expected value. We then have:

EG* |2)=y z+E(" |2)=7"2

If y* were observed, oLs would be a consistent estimator for y. This is not the case when we
only observe the truncated variable y. On the truncated sample, we have y* > 0, or ¢* > —y'z.
The distribution of € for the sample is then f(€)/P(e* > —yz), depicted by the dotted line in
Figure 9.2.
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7}/*
- y*ly*>0
P N -y ly* > 0&y* < 26T

P(y* < 0)

0 BTx 247x
T 0 ATx

Figure 9.2 Distribution of y* and ¢*.

The distribution of € is not symmetric around 0, and its expected value is positive, because
the left side of the distribution, corresponding to values of €* < —y 'z, is truncated. We there-
fore have:

E@y|xy>0)=EW* |xy">0)
=y z+E(" | € > —y'2)

e f_:ioz ef (e)de
- P(e* > —yT2)
which is, for a normal distribution:
P(y'2)
E 0)=y"
O lxy>0) =y 307
or, subtracting y " z:
P(r"2)

E(e | z) = E(¢* | z,¢* > —y2) =

O(yTz)
H(z) = ¢(2)/D(z) is known as the inverse mills ratio and is a decreasing function of its argument.
Computing the derivative with respect to one covariate x;, we obtain:
OE(e | z)

[T T T
o, ly z+ uly 2I(r 2)b;

which is negative if #, > 0,as u(y 'z) is the average of € for € > —y "z and is therefore greater than
—y7z. The oLs estimator computed on the truncated sample is therefore downward biased.
For the censored sample, we have y = 0 for censored observations. We then have:

E = P(e* < —y7T 0 + P(e* T T /_J;‘fzef(e)de
012 =Pe <X 0+ P > T2 x 1Tz + ST

+0oo

=P(e* > -y 2)(y " 2) +/ ef(e)de

Tz

=(r"2)2(r"2) + dlr'2)
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Whole sample Censored sample Truncated sample

-10 0 10 -10 0 10

Figure 9.3 oLs bias for the censored and the truncated samples.

where the last expression holds for a normal distribution. Subtracting y "z, we obtain the
expected value of the error of the censored model:

Ee|2=-[1-2F¢ 2l 2) +¢(r"2)
Computing once again the derivative with respect to a covariate x;, we have:
0E(e | 2) _
ox,

which, as previously, has the opposite sign of g, implying that the OLs estimator on the cen-
sored sample is downward biased.
The bias of the oLs estimator on censored and truncated samples is illustrated on Figure 9.3

~[1 - ¢(r"2)1pi

9.2.3 The Symmetrical Trimmed Estimator

The oLs estimator is inconsistent because the truncation leads to an asymmetric distribution
for the errors, for which the expected values depends on x. Powell (1986) proposes to restore
the symmetry by removing some observations.

9.2.3.1 Truncated Sample

In the case of the truncated sample, observations for which y* < 0, or ¢* < —y "z, are missing.
The symmetry may be restored by removing from the right side of the distribution, the observa-
tions for which y* > 2y Tz, or €* > y"z. The distributions of y* and ¢* are depicted by the dashed
line in Figure 9.2. In this case, we have:

EG|zy>0&y<2y'2) =E¢* | z,y* >0 & y* <2y'z)
=yTz+E(e*|—yTz<e*<yTz)
s / T2 ef(e)de
=v = +yTz
[ fexde
=]/Tz

A consistent estimator may be obtained using the normal conditions and restricting the sam-
ple to observations for which y < 2y7z. Denoting by 1(v) the function that is equal to 1 if v is
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true and O otherwise, we have:

N
Z 1(y, <2y 2)(y, — 7 z,)x, =0 (9.9)
n=1

These first-order conditions may be obtained by minimizing the function:

N

RN(y) = 2 <yn - max(%yn’ yTZn>2> (910)

n=1

In this case, all the observations for which y 7z, < 0 and those for which y, > 2y "z, have a
weight equal to %2 in the objective function and a zero weight in the first-order conditions. The
weight in the objective function ensures that fallacious solutions of the first-order conditions
like y = 0 are excluded.

9.2.3.2 Censored Sample
In the case of the censored sample, symmetry is restored by replacing y, by 2y 'z, when
¥, > 2y 'z, (as % is replaced by 0 when y* < —y"z,). We then have:

N
Z 1(y"z > 0)(max(y,,2y"z,) — 7" z,)x, = 0 (9.11)

n=1
These first-order conditions may be obtained by minimizing the following function:

N

1 2
N ): < n_ S/ n T n >
N7 Z:} Y maX<2y vz )
N
+ 310, > 2"z, ((%y>2 — max(0, yTzn)2> (9.12)
n=1

2
Observations for which y 'z, < 0 now have a weight equal to y; in the objective function and
a zero weight in the first-order conditions.

9.2.4 The Maximum Likelihood Estimator

If we can assume that the errors are normal and homoscedastic, a more efficient estimator is
the maximum likelihood estimator.

9.2.4.1 Truncated Sample
The maximum likelihood estimator for a truncated sample has been proposed by Hansman and
Wise (1976). The density of the distribution of y* is normal, with expected value equal to y 'z
and standard deviation o. We then have:
i} 1 y* _ YTZ
foH=-9 <—>
o o

The probability of y* being negative is: ®(—yz/6) = 1 — ®(y'z/0).

The density of the distribution of y, denoted f,, is the zero left-truncated distribution of y*:
We then have:

f+(y) =

SO 1 <y - rTZ> (0.13)

Py* > 0)  o®(yz/0) o
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The log-likelihood function is obtained by summing the logarithms of the density (9.13) for
the N observations in the sample:

N < 10, —7r'z,)
1nL=—Eln27t—Nlna—z [In<I>(yTzn/0')+§"G—2" (9.14)

n=1

9.2.4.2 Censored Sample
When the sample is censored, the distribution of y is a mix of a discrete and a continuous dis-
tribution. An observation for which y, = 0 enters the log-likelihood function as:

P(y:O):(D(—y—TZ) =1—¢<LTZ>

while for a positive observation, the contribution to the likelihood is the truncated normal
density:

fi) = —— ¢(y_y Z)

c®(yTz/0) o

times the probability that y be positive: ®(y"z/c). We finally get the log-likelihood function
(9.15):

N ]/TZ
InL=Y [1@” =0)ln{1—(l> <G—> }]

N T, )2
- Z [1% > 0) <% In(276?) + %%—Z“)] (9.15)

n=1

9.2.5 Fixed Effects Model

Honoré (1992) proposed a symmetrical trimmed estimator that is an extension of Powell
(1986)’s estimator to panel data. For now, we consider a panel with only two observations for
every individual and one covariate.

Yo =@+ BTx, + 0, + v,
y:z =a+ ﬁT‘an + nn + Vn2

The only hypothesis made concerning the errors v,; and v,, is that they are identically dis-
tributed. The symmetry hypothesis, which was required for the Powell (1986) estimator to be
consistent, is not necessary here.

9.2.5.1 Truncated Sample
For the truncated model, only observations for which y*, > 0 are available. Figure 9.4° presents
the distribution of y7, and y7..

With the hypotheses we've made, these two distributions only differ by their position, y*,
being centered on f'x,, + 7, and y*, on f"x,, + 1,. Because of the truncation, the two distri-
butions conditioned to the fact that the observation is in the sample (y, > 0), to the values
of the covariates (x,) and to that of the individual effect (3,) are more substantially differ-
ent. If f7Ax, = f7(x,, — x,,) > O (Figure 9.4a), the truncated part of the distribution of y*, is

3 Inspired by Hsiao (2003, pp. 246-247).
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- Y1 - — Yne
P Xny + 11 P AXy B Xno + iy
(@) T Ax,>0

*
Yn2

- - Ym -
*/}TAXn ﬂTXm + 1 /}T Xn2 * 1n

(b) pT Ax, <0
Figure 9.4 Distribution of y*. and of y*,.

larger than the one of y*,. However, identical distributions can be obtained by truncating y,
not at 0 (which is the selection rule of the sample) but at 7 Ax,,. In the case where TAx, < 0
(Figure 9.4b), y*  is similarly truncated at —f7 Ax,,.

We then obtain two identical conditional distributions for:

o ¥y |yt > 0,x,.m,and y%, | ¥, > BT Ax,,%,,,7, in the case when T Ax, > 0,
o ¥ 1 yE > =BT A%, x,,,1, and y¥, | %, > 0,%,,,7, in the case when fTAx, <0,

More generally, the observations that should be removed to restore symmetry are those for
which y,; > =T Ax, or y,, > T Ax,. This situation is depicted in Figure 9.5. When g7 Ax, >
0 (9.5a), the joint distribution of (y7,,y;,) is symmetric around the LL line which is the 45°
line with intercept T Ax, . Truncating at (y*, > 0) and (5, > T Ax, ), we obtain two symmetric

zones A, and B,. The probability of having y, = (y,;.7,,) in zones A, or B, is the same. This
result leads to a first-moment condition:

E[{1(y, € A,) —-1(, € B))}Ax,]=0 (9.16)
Moreover, by symmetry, in Figure 9.5a:

e the vertical distance between (y,,,,,) in zone A, on the LL line is Ay, — fT Ax,,
e the horizontal distance between (y,,,9,,) in B, and the LL’ line is —(Ay, — T Ax,),

which can be written as a second-moment condition:
E[{1(y, € A, UB))(Ay, — ,BTAxn)}Axn] =0 (9.17)

For a sample of size N, truncated as previously described, the sample analogues of the two
moment conditions (9.16) and (9.17) are:

N
Y 10 > =T Ax, & 3,5 > BT Ax,)sign(Ay, — T Ax,)Ax, =0 (9.18)

Zl= =z

=1
N
Y 10,y > =BT Ax, & 3,5 > f7Ax,)(Ay, — fTAx,)Ax, =0 (9.19)
n=1
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(9.18 and 9.19) are respectively the first-order conditions of the LAD and of the least squares
estimator. These first-order conditions may be obtained by maximizing:

N
ThB) = Y f(Ay, — BT Ax)1(,, > =BT Ax,.y,, > fT Ax,)
n=1

+f(ynl)1(ynl > _ﬁTAxn’yMZ < ﬁTAxn)
+f(yn2)1(ynl < _ﬁTA‘xn’yrﬂ > ﬂTAxn)

N
= D S WO Y BTAK,))

=1
with:
z; for z, <c
w(z),25,¢) =32, — 2z, — ¢ for —z;, <c<z,
zZ, for z; < —c
If f(x) =x% we obtain the trimmed least squares estimator; if f(x) =| x|, we obtain
the trimmed least absolute deviations estimator. Only the observations for which

1(y,; > —B"Ax, & y,, > BT Ax,) are included in the first-order conditions, the presence
of f(y,,) in the objective function excluding trivial solutions.

9.2.5.2 Censored Sample
For the censored sample, observations for which y,, = 0 are available, the observation rule for
¥, being:

Vo = max(yfll,O)
Y = max(y;,,0)

From Figure 9.5, we can see that not only A, and B, are symmetrical but also A, defined by
¥y < —BTAx,,y,, > BT Ax,) and B, defined by (y,; > —f"Ax,,y,, < BT Ax,).

Therefore, to restore symmetry for the censored sample, we have to get rid of the zone for
which y,; < —fTAx, and y,, < f' Ax, (the dotted zone on Figure 9.5).

The symmetry between A, and B, leads to the following moment condition:

E[{1(y, € A)) — 17, € By)}Ax,] =0 (9.20)
Moreover, for:

e y,in A,, the vertical distance to the limit of the zone is y,, — max(0, T Ax,),

e y,in A, the horizontal distance to the limit of the zone is y,, — max(0, T Ax,,)

which translates into the following moment condition:

E[{1(y, € A,)(¥,, — max(0, T Ax,)
1@y, € B,)(y,; — max(0, —fT Ax,)}Ax,] = 0

Using (9.16 and 9.20), we obtain:

(9.21)

E[{1(y, € A, UB,) — 1(y, €A, UB,)}Ax,] =0 (9.22)
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and using (9.17 et 9.21), we obtain:
E[{ 1(9,€A,UB)} (Ay,— ﬁTAxn)

+1(y, € A,) (9, — max(0, BT Ax,)) 9.23)
-1(y, € B,) (y,; — max(0, —f" Ax,))} ’
xXAx,] =0

The sample analogues to (9.22) are the first-order conditions of the following function:

N
T, = 2[1 — {1(y,; < max(0,—p"Ax,) & 1(y,, < max(0, " Ax,)}]
n=1

x| Ay, — T Ax, | (9.24)

which is the trimmed LAD estimator on the censored sample.
Finally, the sample equivalent of (9.23) are the first- order conditions of the following
function:

T, = Y, (max(y,y. f7Ax,) - max(y,,, —f" Ax,) - f7 Ax,)
n=1

—-2X l{ynl < _ﬂTAxn}(ynl + ﬁTAxn)ynZ
—2X1{y,, < BTAX, )y, — B AX )Y, (9.25)

which is the trimmed least squares estimator for the censored sample. The trimmed LAD
and least squares estimators have been extended to the case where the dependent variable is
two-sided censored or truncated by Alan et al. (2013).

Example 9.4 trimmed tobit model — LateBudgets data set

Andersen et al. (2012) study the late adoption of budgets. They use a panel of American states
for the 1988-2007 period, for which the date of budget adoption has been collected so that late
budget situations can be detected and, in this case, the number of days from the legal limit date
can be computed. Among the factors that may explain late budgets, the authors use:

o a shock to the fiscal climate, which is proxied by the annual change of unemployment rate
unempdiff,

o divided control over the state government: splitbranch is a dummy indicating that both
chambers are controlled by a different party than the governor’s and splitlegisa dummy
indicating that the two chambers are controlled by different parties.

e variables linked to the cost of a late budget: elcyear is a dummy for election years, dead-
lineisafactor with levels ("none", "soft", "hard") that indicates if there is a legal date
for the end of legislative works,

e shutdown indicates whether the state law dictates a shutdown of state government activities
in the event of a late budget, supmaj that budget adoption requires a super-majority,

o different covariates indicating political and legislative context: the fact that the governor is
newly elected newgov, the number of years since the incumbent governor took office gov -
exp, a dummy for a democrat governor demgov, a dummy indicating that the governor is
subject to a binding term limit 1ameduck, a 1-to-5 scale for full- vs. part-time legislatures,
where 1 corresponds to a part-time “citizen” legislature, and 5 corresponds to a full-time
professional legislature fulltimeleg, a dummy that indicates that the state law does not
allow a budget deficit to be carried over to the next fiscal year nocarry,

e several social and demographic covariates: population pop, the percentage of African Amer-
icans black, of college graduates graduate, of people older than 65 years elderly, of
children between 5 and 17 years old kids, and the response rate in the 1990 US census
censusrep, which is used as a proxy for social capital.
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In order to investigate whether change of the unemployment rate has an asymmetric effect
on budget adoption, two variables are created, indicating positive values of unemployment rise
unemprise and fall unempfall.

data ("LateBudgets", package = "pder")
LateBudgets$dayslatepos <- pmax(LateBudgets$dayslate, 0)
LateBudgets$divgov <- with(LateBudgets,

factor (splitbranch == "yes" |
splitleg == "yes",
labels = c("no", "yes")))

LateBudgets$unemprise <- pmax(LateBudgetsS$unempdiff, 0)

LateBudgetsS$Sunempfall <- - pmin(LateBudgetsSunempdiff, 0)

form <- dayslatepos ~ unemprise + unempfall + divgov + elecyear +
pop + fulltimeleg + shutdown + censusresp + endbalance + kids +
elderly + demgov + lameduck + newgov + govexp + nocarry +
supmaj + black + graduate

The model is estimated using the p1dv function, which has amodel argument with a default
value of ' £d’ (for first-difference), which in this context is the fixed effects model of Honoré
(1992). Two supplementary arguments can also be specified:

e objfun indicates whether one wants to minimize the sum of the least squares of the resid-
uals (" 1sqg’, the default value), or the sum of the absolute values of the residuals (" 1ad”),

e sample indicates if the sample is censored (’ censored’, the default value) or truncated
(" truncated’).

FEtobit <- pldv(form, LateBudgets)
summary (FEtobit)
Oneway (individual) effect First-Difference Model

Call:
pldv (formula = form, data = LateBudgets)

Unbalanced Panel: n = 48, T = 2-20, N = 730
Observations used in estimation: 682

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max .
-107.8 -15.1 5.2 7.6 26.4 168.5

Coefficients:

Estimate Std. Error t-value Pr(>|t|)
unemprise 9.042 10.944 0.83 0.409
unempfall -31.641 6.887 -4.59 5.2e-06 **x*
divgovyes 19.793 8.767 2.26 0.024 *
elecyear -24.505 10.190 -2.40 0.016 *
pop -0.683 2.512 -0.27 0.786
endbalance -3.856 62.829 -0.06 0.951
kids 0.774 4.547 0.17 0.865
elderly 60.880 2.669 22.81 < 2e-16 ***

demgovyes -6.371 6.770 -0.94 0.347
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lameduckyes -22.032 4.043 =545 7.,1le=0§ v
newgovyes 5.606 10.532 0.53 0.595
govexp 3.395 38.894 0.09 0.930

Signif. codes:

0 '"*#**! 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 328000

Residual Sum of Squares: 996000

R-Squared: 0.0255

Adj. R-Squared: 0.00953
F-statistic: -40.8339 on 11 and 670 DF, p-value: 1

As can be seen from the results, the economic situation influences the timing of budget adop-
tion. The effect is asymmetric, an increase of the unemployment rate having stronger impact
than a drop in the unemployment rate. Divided control over the government (measured by
divgov) has a significantly positive effect on late budget adoptions.

9.2.6 The Random Effects Model

The trimmed estimator has two useful features: it is robust to non-normality and heteroscedas-
ticity, on the one hand, and to correlation between the individual effects and the covariates, on
the other hand, the individual effects being wiped out by the first- difference transformation.
However, if the errors are normal and homoscedastic and if the individual effects are also nor-
mal and uncorrelated with the covariates, the maximum likelihood estimator is consistent and
more efficient.

For panel data with individual effects, the latent variable writes:

T
J’Z: =7 Znt+nn+vnt

9.2.6.1 Truncated Sample
The density of y,,, | z,,,, 1, is:

6\/

f+(ynt I Znt’ ”n) = BTx, +
6\/@ ( nt ’7;«1)

o-v

The joint density of y, =, ... ¥, is, assuming the independence of the errors:

f+@n|zn,nn>=ﬁ¢< =)

—_ % / 2
=1 ¢, ® <7sz+n,, > (5.26)

O-V

Assuming that the distribution of individual effects is normal with a standard deviation equal
to o,, the unconditional joint density is obtained by integrating out (9.26) for the individual
effects:

o T L)
L0, 1 z) = 1 /+ HM{“M (9.27)

n
&) _ YTz tn
271'5” =1 O-V(I) < Y 2w >

v
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, we obtain:

Using the change of variable v =

\fa
Vut= 2= 6\/5”>
2

40 T d)( o
fi, 1 x,) = NE / : ed, (9.28)

(}' z,,t0o, \[U)

which can be approximated by the Gauss-Hermite quadrature method:

ynt_]/Tznt_Url 20,
R T d)( pu

1
f+(yn I‘x;q)z - = wa
\/; o S Y 2,+0, V20,
o, —

The log-likelihood function for the truncated model is then simply obtained by summing the
logarithms of (9.29) for all individuals:

(9.29)

N
InL =Y Inf,(,|x, (9.30)
n=1

9.2.6.2 Censored Sample
In this case, the conditional distribution of y,, is either given by a probability or by a density:

In — 1y
g(ynt | Zpts nn) - _¢ <%> l(ynt > 0)

T2, +
+®<_M> 10, = 0)

v
Using a similar reasoning as for the truncated model, individual # contributes to the likeli-
hood with a product of probabilities and/or densities:

nt Tzn_ 2Ur

T r=1 tl

2
® <—”f+6#\/—v> 10y, = 0)} (9.31)

The log-likelihood function for the censored sample is obtained by summing over all the indi-
viduals the logarithm of (9.31):

N
InL =Y Ing(, |z, (9.32)
n=1

Example 9.5 random effects censored model — Donor data set

Landry et al. (2012) study the dynamic of behaviors of donors to public utility organizations
and more specifically to the “Center for Natural Hazards Research at East Carolina University”
(ECU). A first door-to-door campaign was realized in 2004. During this campaign, two kinds of
treatment were used: a standard “simply ask for money” treatment, called vcm, and a treatment
with a lottery with which potential donors can receive a gift. The second campaign took place
in 2006. Some of the donors of the first campaign had been solicited, and three treatments were
used, described in the factor variable treatment with three levels: "vem" for a “simply ask
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for money” treatment and "sgift" if a small gift (a bookmark) or "1gift" if a large gift (a
book) were given to the potential donors. The main objective of the article is to study whether
people who initially give to charities are more willing to give again than others. The response is
the amount of the gift; it is therefore left-censored at 0. In the article, the authors present results
of linear regressions with solicitors’ fixed effects. In the online appendix, the same equations
are estimated using a random effects tobit model. Two equations are estimated, both employing
treatment and a dummy for previous donors prcontr as explanatory variables, the second
adding an interaction term between the two.

data ("Donor", package = "pder")
library ("plm")
library ("texreg")

T3.1 <- plm(donation ~ treatment + prcontr, Donor, index = "id")
T3.2 <- plm(donation ~ treatment * prcontr - prcontr, Donor, index = "id")
T5.A <- pldv(donation ~ treatment + prcontr, Donor, index = "id",
model = "random", method = "bfgs")
T5.B <- pldv(donation ~ treatment * prcontr - prcontr, Donor, index = "id",
model = "random", method = "bfgs")
screenreg (list (OLS = T3.1l, Tobit = T5.A, OLS = T3.2, Tobit = T5.B),
reorder.coef = c(1:3, 7:9, 4:6))
OLS Tobit OLS Tobit
treatmentsgift -0.41 2.36 0.06 3.53
(0.61) (1.86) (0.66) (2.04)
treatmentlgift 1,79 @ GRISIGERAIALA 2,07 “ /RN GIGRRAIAL
(0.64) (1.93) (0.68) (2.08)
prcontryes 1.29 * 5.74 *x*
(0.59) (1.79)
treatmentvcm:prcontryes 3.14 *x* 10.78 **
(1.13) (3.41)
treatmentsgift:prcontryes 0.20 4.47
(0.95) (2.88)
treatmentlgift:prcontryes 1.05 3.23
(1.00) (3.01)
(Intercept) =15, 15 e =16 .05 &
(1.89) (1.97)
sd.nu 16.40 *** 163G Fw
(0.80) (0.80)
sd.eta 4,05 W 3.92 “w
(1.11) (1.10)
R"2 0.02 0.02
Adj. R"2 -0.02 -0.01
Num. obs. 1039 1039 1039 1039
Log Likelihood -1498.38 -1496.84

**% p < 0.001, ** p < 0.01, * p < 0.05
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The average gift (including censored observations) is 2.5$. The first column indicates that
previous donors give on average 1.3$ more. A large gift increases the donation by 1.8%, while
a small gift has no effect on donation. The third column distinguishes the treatment effect for
previous donors and the others. For the vem treatment, the gift of previous donors is much
larger (about 3$). On the contrary, there is no difference between previous donors and other
people when a gift is proposed by solicitors. The random effects tobit models are presented in
columns 2 and 4. The results are very similar but more difficult to interpret, as the expected
value of the response for the tobit model is:

Ey|z) =y z® <&> +o¢ <LTZ>
(o2 [0}

For example, for someone who didn’t give previously and who received the vcm treatment,
yTz = —15.13. With ¢ = 16.40, we obtain an expected donation of 1.57. For someone who made
adonation previously and who also received the vcm treatment, we have y 'z = —15.16 + 5.74 =
—9.42, and the expected donation is 2.88. The effect for previous donors is therefore equal to
2.88 — 1.57 = 1.31, which is very close to the linear regression coefficient.

9.3 CountData

We now consider the case where the response is a count. We will first briefly review the esti-
mation of count data models in a cross-sectional context, and then we will describe specific
estimators for panel data.

9.3.1 Introduction

The two most widely used models when the response is a count are the Poisson and the NegBin
models.

9.3.1.1 The Poisson Model
We first suppose that the response follows a Poisson distribution of parameter 6, (which is the
mean and the variance of the variable). Under this distributional assumption, the probability of
observing a value y, is:

e 00

P(,) =
Y

n*

Using the logarithmic link, the Poisson parameter is the exponential of the linear predictor:
0, = et
which leads to the following probability for observation n:
PG, | %,) = ey—‘]y
Taking the logarithm of this probability and summing over all individuals, we obtain the fol-
lowing log-likelihood function:

N N N
InL = —ZeyTZ+ Zysz,, - Zlnyn!
n=1 n=1

n=1
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9.3.1.2 The NegBin Model
Count data often exhibit excess dispersion, i.e., the variance is greater than the mean. In this
case, the NegBin model is more appropriate than the Poisson model.

Suppose that y, is a random variable that follows a Poisson distribution of parameter
0, = a,4, (with 4, = e’'% in the case of a logarithmic link), @, being a random variable.

The conditional probability of y,, is:

e e h(a, )
P X, — no_ n’'n
0 1%, 0) = = o

Let now suppose that «,, follows a gamma distribution. If f contains an intercept, the mean
of « is not identified and therefore a one-parameter distribution, which imposes a unit mean,
is chosen.

f(a) — 5—56_60[(15_1
IN0)

Integrating out this conditional probability using the density of a, we obtain:

+oo ,—ak; A Vi ')
P(y, | x,) = / @AY 8 sy,
0 ;! I'(0)
)

, ~ : 8, A, 7 Ty, +6,)
Wn'xﬂ—(man) (anm) I, + DG,

To understand the meaning of 6,, the first two moments of y, are computed. For a given value
of a,,, we have, as for the Poisson model: E(y, | &,) = V(y, | ,,) = 8, = a,,4,,. The unconditional
mean is E (a4,) = 4,, because the expected value of @ equals 1.

To compute the unconditional variance, the variance decomposition formula is applied:

1
)

V() =E(a4,) +V,(ad,) = 4, + — 4,
A general formula for §,, is:
12k

)
v

For k = 1, we get the Negbinl model, with §, = 4, /v and V(y,) = 4,(1 + v). In this case, the
variance is proportional to the mean.

For k = 2, we obtain the Negbin2 model, with §, = 1/v and V(y,) = 4, + vA%; here, the vari-
ance is a quadratic function of the mean.

9.3.2 Fixed Effects Model

Fixed effects Poisson and NegBin models are proposed by Hausman et al. (1984).

9.3.2.1 The Poisson Model
The fixed effects Poisson model is very specific, as it doesn’t suffer from the incidental parameter
problem and can therefore be obtained either by estimating the individual effects or by using a
sufficient statistic?.

In a panel context, the Poisson parameter for individual # in period ¢ is written:

-
ent = 1’],,,/1,” = nneﬂ ot

4 See Cameron and Trivedi (1998, chap. 9).
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which means that the individual effect is multiplicative. For a given value of the individual effect,
the probability of observing y,,, is:

—0_ nYnt —n A
e lnu@ e M m(nnﬁn )ynt
PO | %o 1,5 B) = y ,m = :

. Voue!

Let Y, = ZtT: 19 be the sum of all the values of the response for individual » and
A, = Zth 1 A, the sum of the Poisson parameters. A sum of Poisson variables follows a Poisson
distribution with parameter equal to the sum of the parameters of the summed variables. We
therefore have:

e\ (1, An)Yn

P(Y, | %,.1,. P) = Y (9.33)
Lety, = V1Y --- ¥, be the vector of values of y for individual #. We then have:
37 T oA Y T
20 1y ) = ot M O e Tl 4y (93

T T
thl ynt! Ht:l ynt!
Applying Bayes’ theorem, we obtain:

POy | %510, B) = P, | %015 B, Y )P(Y, | %, 1,0, B)

i.e., the joint probability of the components of y,, is the product of the conditional probability
of y, given Y, and the marginal distribution of Y,,. This conditional probability is:

Py, | %, 1, P)

PGy [ %110 B, Y,) = 50—

P(Y, | %,. 1. B)

which implies:

Y,! 1 A
PO, % 0., = <[] 0%

|
n  t=1 ynt'

(9.35)

As for the logit model, Y, is a sufficient statistic, which means that it allows to get rid of the
individual effects. Taking the logarithm of this expression and summing over all individuals, we
obtain the within Poisson model:

N T T
InL(y | %,8,Y) = ), (ln Y, =Y, In ) A+ D 0,Ind, —In ym!)> (9.36)
n=1 t=1 t=1

or:

n=1 t=1 t=1 ""nt

u A
x ) (Z ¥, In —t) (9.37)

T
n=1 \ =1 et At

As stated previously, the Poisson model is not affected by the incidental parameter prob-
lem, as the same estimator may be obtained by estimating the individual effects. To show this
result, we take the logarithm of the joint probability for the T observations of y for individual
n (equation 9.34), in order to obtain the log-likelihood function:

NP, | %, 7,0 B) = =1, D Ay + D 9,0 I, 4,) = Y Iny,,! (9.38)
t t L

N T T
A
InL@y | % p,Y) = 2 <ln Y- Zlnym! + zyntlnzT—m>
t=1
N
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The first-order condition for #, to maximize the log- likelihood function is:

olnP
. n=_zjnt+l2ynt=0
¢ 5

on,

PN
Ztint ’

Introducing this expression in (9.38) and summing over all 7, we obtain the concentrated
log-likelihood function:

A
nLconc(y | x’ﬁ) = 2 <_Yn + Yn In Yn + Zyntz—n/{ - Zlnynt!>
t"nt

which implies that: , =

n t

x 1 (9.39)
Z <Zy ! Zt 1 nt)

t=1

The two log-likelihood functions (9.37) and (9.39) are proportional, they therefore lead to
the same estimators of . Moreover, if a logarithmic link is chosen, we have: 4,, = ¢/'*. The
likelihood is in this case proportional to:

BTx Ynt
el xu
- =——
n=111e=1 Y

which is similar to the likelihood of a multinomial logit model for which N individuals must
choose one among L mutually exclusive alternatives. The difference is that in this latter model
¥, is either equal to 0 or to 1, and ),y,, = 1, as in our context each y,, is a natural integer.

9.3.2.2 Negbin Model
Hausman et al. (1984) also propose a fixed effects NegBin model. We just present below without
demonstration the joint probability for individual #:

T

H F(A + V) Ay, +1
w1 T4 )0 + 1) A, +Y,)

Py, | x,.0.Y,) = ( (9.40)

9.3.3 Random Effects Models

9.3.3.1 The Poisson Model

Hausman et al. (1984) also proposed a between and a random effects Poisson model, integrating
out the relevant probabilities (9.33 et 9.34 respectively). A gamma distribution hypothesis is
made for the individual effects, with the following density:

P b—-1
fx,a,b) = F(b) x

with
+o0
I'z) = / le7ldt
0

the gamma function. The expected value and the variance of x are respectively:

E(x) = é and V(x) = b
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If the model contains an intercept, the expected value is not identified and we can then
suppose, without restriction, that it is equal to 1, which implies a = b. We then obtain a gamma
distribution with one parameter (denoted §):

f(a) — 55 e—&aaéfl
I'(6)
Integrating out the conditional probabilities (9.33 and 9.34), we obtain the unconditional
probabilities for the between and the random effects models:
NS 55 T(Y,+6)
Y,! T(6) (A, + 8)Vat?
T ﬂ)’m

N 55 T(Y,+6)
V! T(6) (A, + 8)1+0

P, |z, P = / P(Y,,z,, av)f (@)da =
0

P(y,.x,,0) = / P@y,.x,, a, )f (@)da =
0

=1
which leads to the following log-likelihood functions:
N

InL(Y | z.y) = ), lYn In Y A, —InY,!+5Ins
t

n=1

—InT () +InT(Y, + 6)

T
— (Y, +6)In (Z Ay + 5)] (9.41)

t=1

=1

N
InL(y|z.y) = ), lZ(ym Ini, —Iny,")+8Ins
n t

—InI'(6) + InI'(Y,, + )

T
— (Y, +6)In <Z Ay + 5)] (9.42)

t=1

9.3.3.2 The NegBin Model

In addition to the Poisson model, Hausman et al. (1984) also proposed between and random
effects NegBin models. We just present below without demonstration the joint probability for
individual n.

(A, +Y,) T(a+bT(a+A)(b+Y,)

PO 120 1) = Sy + D @l BT @+ b+ A, +7,) 04
T@+bLa+ A G+Y) (4 T+,
PO %0 1) = O T @t b+ A1, <g TG +T0, + 1) G44)

Example 9.6 fixed effects NegBin model - GiantsShoulders data set

Furman and Stern (2011) assess the impact of a scientific institution, a biological resource cen-
ter, whose objective is to certify and disseminate knowledge, on knowledge accumulation. More
specifically, they are interested in the ACTT (American Type Culture Collection), which col-
lects, certifies, and distributes biological organisms. The authors are interested in the citations
of publications for which the results are hosted by the ACTT, and they try to estimate the causal
effect of ACTT hosting. There is an obvious selection problem, because it is natural to think
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that some of the best pieces of research will end up to be hosted by ACTT and that the same
would be heavily cited because of their quality even if they were not hosted by the ACTT.

In order to identify the causal effect of ACTT hosting on knowledge dissemination, the
authors use two strategies:

o the firstis that there is often a long lag between publication and hosting, and this lag is mostly
exogenous,

e the second consists in matching every hosted article to a similar (same journal, date, and
subject) non-hosted article.

The GiantsShoulders data set is available in the pder package.
data ("GiantsShoulders", package = "pder")

head (GiantsShoulders)
pair article brc pubyear brcyear year citations

1 184 1184 yes 1983 1994 1983 0
2 184 1184 yes 1983 1994 1984 31
3 184 1184 yes 1983 1994 1985 89
4 184 1184 yes 1983 1994 1986 105
5 184 1184 yes 1983 1994 1987 84
6 184 1184 yes 1983 1994 1988 75

The response is citations, the annual number of citations of the article. Each article is
identified by the variable art icle and by the pair of articles it belongs to pair. For each pair,
an article is hosted by the ATCC and the other is not, which is indicated by the variable brc.
Years of observation, publication, and hosting are indicated by the variables year, puyear,
and brcyear.

Figure 1 in Furman and Stern (2011), reproduced here in Figure 9.6, presents the average
number of citations for hosted and non-hosted articles as a function of publication age. It is
computed using the dplyr and the ggplot2 packages.

library ("dplyr")
library ("ggplot2")
GiantsShoulders <- mutate (GiantsShoulders, age = year - pubyear)
cityear <- summarise (group by (GiantsShoulders, brc, age),
cit = mean(citations, na.rm = TRUE))
ggplot (cityear, aes(age, cit)) + geom line (aes(lty = brc)) +
geom_point (aes (shape = brc)) + scale x continuous (limits = c(0, 20)

As can be seen, the number of citations increases the first year, to reach a maximum at about
the third or fourth year and then decreases. Figure 9.6 also shows that hosted articles are much
more cited that non-hosted articles.

To estimate the marginal causal effect of the hosting institution, two covariates are con-
structed for hosted articles:

e window is 1 around the hosting date, more precisely for a three-year period centered on the
hosting year,
e post brcis 1 for articles hosted for more than a year.

To reproduce the results exactly, we use annual fixed effects for years after 1979 and 5-year
effects for the 1970-74 and 1975-79 periods. We also introduce fixed effects for the age of the
articles (omitting the 31 years age dummy).
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Figure 9.6 Average annual citations by age, BRC versus control articles.
GiantsShoulders <- mutate (GiantsShoulders,
window = as.numeric( (brc == "yes") &
abs (brcyear - year) <= 1),
post_brc = as.numeric( (brc == "yes") &
year - brcyear > 1),
age = year - pubyear)
GiantsShoulderssage [GiantsShouldersSage == 31] <- 0
GiantsShoulderss$year [GiantsShouldersS$year %$in% 1970:1974] <- 1970
GiantsShoulderssSyear [GiantsShouldersSyear %$in% 1975:1979] <- 1975

In the two first columns, a linear model is estimated. The first model contains only age fixed

effects, and the second one add pairs and years fixed effects. The results are similar; the selection
effect of hosting is about 50% of more citations, and the marginal effect is 35% for the hosting

period and about 50% for latter years.

The other two columns present the results of the fixed effects NegBin model. Pair (column 3)
and article (column 4) fixed effects are alternatively used.

library ("pglm")
t3cl <- Im(log(l + citations) ~ brc + window + post_brc + factor (age),
data = GiantsShoulders)
t3c2 <- update(t3cl, . 7 .+ factor(pair) + factor(year))
t3c3 <- pglm(citations ~ brc + window + post brc + factor(age) + factor (year),
data = GiantsShoulders, index = "pair",
effect = "individual", model = "within", family = negbin)
t3c4 <- pglm(citations ~ window + post brc + factor(age) + factor(year),
data = GiantsShoulders, index = "article",
"individual", model = "within", family = negbin)

effect =
screenreg (list (t3c2, t3c3, t3c4),
custom.model .names = c("ols: age/year/pair-FE",
"NB:age/year/pair-FE",
"NB: age/year/article-FE"),
digits = 3)

omit.coef=" (factor) | (Intercept)"
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brc