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Preface

As many countries struggle to recover from the recent global financial crisis, one
thing clear is that we do not want to suffer another crisis like this in the future.
We must study the past in order to prevent future financial crisis. Financial data
of the past few years thus become important in empirical study. The primary
objective of the revision is to update the data used and to reanalyze the examples
so that one can better understand the properties of asset returns. At the same time,
we also witness many new developments in financial econometrics and financial
software packages. In particular, the Rmetrics now has many packages for analyzing
financial time series. The second goal of the revision is to include R commands and
demonstrations, making it possible and easier for readers to reproduce the results
shown in the book.

Collapses of big financial institutions during the crisis show that extreme events
occur in clusters; they are not independent. To deal with dependence in extremes,
I include the extremal index in Chapter 7 and discuss its impact on value at risk.
I also rewrite Chapter 7 to make it easier to understand and more complete. It
now contains the expected shortfall, or conditional value at risk, for measuring
finanical risk.

Substantial efforts are made to draw a balance between the length and cover-
age of the book. I do not include credit risk or operational risk in this revision
for three reasons. First, effective methods for assessing credit risk require further
study. Second, the data are not widely available. Third, the length of the book is
approaching my limit.

A brief summary of the added material in the third edition is:

1. To update the data used throughout the book.

2. To provide R commands and demonstrations. In some cases, R programs are
given.

3. To reanalyze many examples with updated observations.

4. To introduce skew distributions for volatility modeling in Chapter 3.

5. To investigate properties of recent high-frequency trading data and to add
applications of nonlinear duration models in Chapter 5.

xvii



xviii preface

6. To provide a unified approach to value at risk (VaR) via loss function, to
discuss expected shortfall (ES), or equivalently the conditional value at risk
(CVaR), and to introduce extremal index for dependence data in Chapter 7.

7. To discuss application of cointegration to pairs trading in Chapter 8.

8. To study applications of dynamic correlation models in Chapter 10.

I benefit greatly from constructive comments of many readers of the second
edition, including students, colleagues, and friends. I am indebted to them all. In
particular, I like to express my sincere thanks to Spencer Graves for creating the
FinTS package for R and Tom Doan of ESTIMA and Eugene Gath for careful
reading of the text. I also thank Kam Hamidieh for suggestions concerning new
topics for the revision. I also like to thank colleagues at Wiley, especially Jackie
Palmieri and Stephen Quigley, for their support. As always, the revision would not
be possible without the constant encouragement and unconditional love of my wife
and children. They are my motivation and source of energy. Part of my research
is supported by the Booth School of Business, University of Chicago.

Finally, the website for the book is:

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3.

Ruey S. Tsay

Booth School of Business, University of Chicago
Chicago, Illinois



Preface to the Second Edition

The subject of financial time series analysis has attracted substantial attention in
recent years, especially with the 2003 Nobel awards to Professors Robert Engle and
Clive Granger. At the same time, the field of financial econometrics has undergone
various new developments, especially in high-frequency finance, stochastic volatil-
ity, and software availability. There is a need to make the material more complete
and accessible for advanced undergraduate and graduate students, practitioners, and
researchers. The main goals in preparing this second edition have been to bring the
book up to date both in new developments and empirical analysis, and to enlarge
the core material of the book by including consistent covariance estimation under
heteroscedasticity and serial correlation, alternative approaches to volatility mod-
eling, financial factor models, state-space models, Kalman filtering, and estimation
of stochastic diffusion models.

The book therefore has been extended to 12 chapters and substantially revised
to include S-Plus commands and illustrations. Many empirical demonstrations and
exercises are updated so that they include the most recent data.

The two new chapters are Chapter 9, Principal Component Analysis and Factor
Models, and Chapter 11, State-Space Models and Kalman Filter. The factor mod-
els discussed include macroeconomic, fundamental, and statistical factor models.
They are simple and powerful tools for analyzing high-dimensional financial data
such as portfolio returns. Empirical examples are used to demonstrate the appli-
cations. The state-space model and Kalman filter are added to demonstrate their
applicability in finance and ease in computation. They are used in Chapter 12 to
estimate stochastic volatility models under the general Markov chain Monte Carlo
(MCMC) framework. The estimation also uses the technique of forward filtering
and backward sampling to gain computational efficiency.

A brief summary of the added material in the second edition is:

1. To update the data used throughout the book.

2. To provide S-Plus commands and demonstrations.

xix



xx preface to the second edition

3. To consider unit-root tests and methods for consistent estimation of the
covariance matrix in the presence of conditional heteroscedasticity and serial
correlation in Chapter 2.

4. To describe alternative approaches to volatility modeling, including use of
high-frequency transactions data and daily high and low prices of an asset in
Chapter 3.

5. To give more applications of nonlinear models and methods in Chapter 4.

6. To introduce additional concepts and applications of value at risk in
Chapter 7.

7. To discuss cointegrated vector AR models in Chapter 8.

8. To cover various multivariate volatility models in Chapter 10.

9. To add an effective MCMC method for estimating stochastic volatility models
in Chapter 12.

The revision benefits greatly from constructive comments of colleagues, friends,
and many readers of the first edition. I am indebted to them all. In particular, I
thank J. C. Artigas, Spencer Graves, Chung-Ming Kuan, Henry Lin, Daniel Peña,
Jeff Russell, Michael Steele, George Tiao, Mark Wohar, Eric Zivot, and students
of my MBA classes on financial time series for their comments and discussions
and Rosalyn Farkas for editorial assistance. I also thank my wife and children for
their unconditional support and encouragements. Part of my research in financial
econometrics is supported by the National Science Foundation, the High-Frequency
Finance Project of the Institute of Economics, Academia Sinica, and the Graduate
School of Business, University of Chicago.

Finally, the website for the book is:

gsbwww.uchicago.edu/fac/ruey.tsay/teaching/fts2.

Ruey S. Tsay

University of Chicago
Chicago, Illinois



Preface to the First Edition

This book grew out of an MBA course in analysis of financial time series that I have
been teaching at the University of Chicago since 1999. It also covers materials of
Ph.D. courses in time series analysis that I taught over the years. It is an introductory
book intended to provide a comprehensive and systematic account of financial
econometric models and their application to modeling and prediction of financial
time series data. The goals are to learn basic characteristics of financial data,
understand the application of financial econometric models, and gain experience in
analyzing financial time series.

The book will be useful as a text of time series analysis for MBA students with
finance concentration or senior undergraduate and graduate students in business,
economics, mathematics, and statistics who are interested in financial econometrics.
The book is also a useful reference for researchers and practitioners in business,
finance, and insurance facing value at risk calculation, volatility modeling, and
analysis of serially correlated data.

The distinctive features of this book include the combination of recent devel-
opments in financial econometrics in the econometric and statistical literature. The
developments discussed include the timely topics of value at risk (VaR), high-
frequency data analysis, and Markov chain Monte Carlo (MCMC) methods. In
particular, the book covers some recent results that are yet to appear in academic
journals; see Chapter 6 on derivative pricing using jump diffusion with closed-form
formulas, Chapter 7 on value at risk calculation using extreme value theory based on
a nonhomogeneous two-dimensional Poisson process, and Chapter 9 on multivariate
volatility models with time-varying correlations. MCMC methods are introduced
because they are powerful and widely applicable in financial econometrics. These
methods will be used extensively in the future.

Another distinctive feature of this book is the emphasis on real examples and
data analysis. Real financial data are used throughout the book to demonstrate
applications of the models and methods discussed. The analysis is carried out by
using several computer packages; the SCA (the Scientific Computing Associates)
for building linear time series models, the RATS (regression analysis for time series)

xxi



xxii preface to the first edition

for estimating volatility models, and the S-Plus for implementing neural networks
and obtaining postscript plots. Some commands required to run these packages
are given in appendixes of appropriate chapters. In particular, complicated RATS
programs used to estimate multivariate volatility models are shown in Appendix
A of Chapter 9. Some Fortran programs written by myself and others are used
to price simple options, estimate extreme value models, calculate VaR, and carry
out Bayesian analysis. Some data sets and programs are accessible from the World
Wide Web at http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts.

The book begins with some basic characteristics of financial time series data in
Chapter 1. The other chapters are divided into three parts. The first part, consisting
of Chapters 2 to 7, focuses on analysis and application of univariate financial time
series. The second part of the book covers Chapters 8 and 9 and is concerned with
the return series of multiple assets. The final part of the book is Chapter 10, which
introduces Bayesian inference in finance via MCMC methods.

A knowledge of basic statistical concepts is needed to fully understand the book.
Throughout the chapters, I have provided a brief review of the necessary statistical
concepts when they first appear. Even so, a prerequisite in statistics or business
statistics that includes probability distributions and linear regression analysis is
highly recommended. A knowledge of finance will be helpful in understanding the
applications discussed throughout the book. However, readers with advanced back-
ground in econometrics and statistics can find interesting and challenging topics in
many areas of the book.

An MBA course may consist of Chapters 2 and 3 as a core component, followed
by some nonlinear methods (e.g., the neural network of Chapter 4 and the applica-
tions discussed in Chapters 5–7 and 10). Readers who are interested in Bayesian
inference may start with the first five sections of Chapter 10.

Research in financial time series evolves rapidly and new results continue to
appear regularly. Although I have attempted to provide broad coverage, there are
many subjects that I do not cover or can only mention in passing.

I sincerely thank my teacher and dear friend, George C. Tiao, for his guid-
ance, encouragement, and deep conviction regarding statistical applications over the
years. I am grateful to Steve Quigley, Heather Haselkorn, Leslie Galen, Danielle
LaCouriere, and Amy Hendrickson for making the publication of this book pos-
sible, to Richard Smith for sending me the estimation program of extreme value
theory, to Bonnie K. Ray for helpful comments on several chapters, to Steve Kou
for sending me his preprint on jump diffusion models, to Robert E. McCulloch for
many years of collaboration on MCMC methods, to many students in my courses
on analysis of financial time series for their feedback and inputs, and to Jeffrey
Russell and Michael Zhang for insightful discussions concerning analysis of high-
frequency financial data. To all these wonderful people I owe a deep sense of
gratitude. I am also grateful for the support of the Graduate School of Business,
University of Chicago and the National Science Foundation. Finally, my heartfelt
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thanks to my wife, Teresa, for her continuous support, encouragement, and under-
standing; to Julie, Richard, and Vicki for bringing me joy and inspirations; and to
my parents for their love and care.

R. S. T.

Chicago, Illinois





C H A P T E R 1

Financial Time Series
and Their Characteristics

Financial time series analysis is concerned with the theory and practice of asset
valuation over time. It is a highly empirical discipline, but like other scientific
fields theory forms the foundation for making inference. There is, however, a
key feature that distinguishes financial time series analysis from other time series
analysis. Both financial theory and its empirical time series contain an element of
uncertainty. For example, there are various definitions of asset volatility, and for a
stock return series, the volatility is not directly observable. As a result of the added
uncertainty, statistical theory and methods play an important role in financial time
series analysis.

The objective of this book is to provide some knowledge of financial time
series, introduce some statistical tools useful for analyzing these series, and gain
experience in financial applications of various econometric methods. We begin
with the basic concepts of asset returns and a brief introduction to the processes
to be discussed throughout the book. Chapter 2 reviews basic concepts of linear
time series analysis such as stationarity and autocorrelation function, introduces
simple linear models for handling serial dependence of the series, and discusses
regression models with time series errors, seasonality, unit-root nonstationarity, and
long-memory processes. The chapter also provides methods for consistent estima-
tion of the covariance matrix in the presence of conditional heteroscedasticity and
serial correlations. Chapter 3 focuses on modeling conditional heteroscedasticity
(i.e., the conditional variance of an asset return). It discusses various econometric
models developed recently to describe the evolution of volatility of an asset return
over time. The chapter also discusses alternative methods to volatility modeling,
including use of high-frequency transactions data and daily high and low prices of
an asset. In Chapter 4, we address nonlinearity in financial time series, introduce
test statistics that can discriminate nonlinear series from linear ones, and discuss
several nonlinear models. The chapter also introduces nonparametric estimation

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
Copyright  2010 John Wiley & Sons, Inc.

1
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methods and neural networks and shows various applications of nonlinear models
in finance. Chapter 5 is concerned with analysis of high-frequency financial data, the
effects of market microstructure, and some applications of high-frequency finance.
It shows that nonsynchronous trading and bid–ask bounce can introduce serial cor-
relations in a stock return. It also studies the dynamic of time duration between
trades and some econometric models for analyzing transactions data. In Chapter 6,
we introduce continuous-time diffusion models and Ito’s lemma. Black–Scholes
option pricing formulas are derived, and a simple jump diffusion model is used
to capture some characteristics commonly observed in options markets. Chapter 7
discusses extreme value theory, heavy-tailed distributions, and their application to
financial risk management. In particular, it discusses various methods for calculat-
ing value at risk and expected shortfall of a financial position. Chapter 8 focuses
on multivariate time series analysis and simple multivariate models with empha-
sis on the lead–lag relationship between time series. The chapter also introduces
cointegration, some cointegration tests, and threshold cointegration and applies the
concept of cointegration to investigate arbitrage opportunity in financial markets,
including pairs trading. Chapter 9 discusses ways to simplify the dynamic struc-
ture of a multivariate series and methods to reduce the dimension. It introduces
and demonstrates three types of factor model to analyze returns of multiple assets.
In Chapter 10, we introduce multivariate volatility models, including those with
time-varying correlations, and discuss methods that can be used to reparameterize
a conditional covariance matrix to satisfy the positiveness constraint and reduce the
complexity in volatility modeling. Chapter 11 introduces state-space models and
the Kalman filter and discusses the relationship between state-space models and
other econometric models discussed in the book. It also gives several examples
of financial applications. Finally, in Chapter 12, we introduce some Markov chain
Monte Carlo (MCMC) methods developed in the statistical literature and apply
these methods to various financial research problems, such as the estimation of
stochastic volatility and Markov switching models.

The book places great emphasis on application and empirical data analysis.
Every chapter contains real examples and, in many occasions, empirical character-
istics of financial time series are used to motivate the development of econometric
models. Computer programs and commands used in data analysis are provided
when needed. In some cases, the programs are given in an appendix. Many real
data sets are also used in the exercises of each chapter.

1.1 ASSET RETURNS

Most financial studies involve returns, instead of prices, of assets. Campbell, Lo,
and MacKinlay (1997) give two main reasons for using returns. First, for average
investors, return of an asset is a complete and scale-free summary of the investment
opportunity. Second, return series are easier to handle than price series because
the former have more attractive statistical properties. There are, however, several
definitions of an asset return.
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Let Pt be the price of an asset at time index t . We discuss some definitions of
returns that are used throughout the book. Assume for the moment that the asset
pays no dividends.

One-Period Simple Return
Holding the asset for one period from date t − 1 to date t would result in a simple
gross return:

1 + Rt = Pt

Pt−1
or Pt = Pt−1(1 + Rt). (1.1)

The corresponding one-period simple net return or simple return is

Rt = Pt

Pt−1
− 1 = Pt − Pt−1

Pt−1
. (1.2)

Multiperiod Simple Return
Holding the asset for k periods between dates t − k and t gives a k-period simple
gross return:

1 + Rt [k] = Pt

Pt−k

= Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k

= (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1)

=
k−1∏
j=0

(1 + Rt−j ).

Thus, the k-period simple gross return is just the product of the k one-period simple
gross returns involved. This is called a compound return. The k-period simple net
return is Rt [k] = (Pt − Pt−k)/Pt−k.

In practice, the actual time interval is important in discussing and comparing
returns (e.g., monthly return or annual return). If the time interval is not given,
then it is implicitly assumed to be one year. If the asset was held for k years, then
the annualized (average) return is defined as

Annualized {Rt [k]} =
k−1∏

j=0

(1 + Rt−j )

1/k

− 1.

This is a geometric mean of the k one-period simple gross returns involved and
can be computed by

Annualized {Rt [k]} = exp

1

k

k−1∑
j=0

ln(1 + Rt−j )

 − 1,
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where exp(x) denotes the exponential function and ln(x) is the natural logarithm
of the positive number x. Because it is easier to compute arithmetic average than
geometric mean and the one-period returns tend to be small, one can use a first-order
Taylor expansion to approximate the annualized return and obtain

Annualized {Rt [k]} ≈ 1

k

k−1∑
j=0

Rt−j . (1.3)

Accuracy of the approximation in Eq. (1.3) may not be sufficient in some applica-
tions, however.

Continuous Compounding
Before introducing continuously compounded return, we discuss the effect of com-
pounding. Assume that the interest rate of a bank deposit is 10% per annum and
the initial deposit is $1.00. If the bank pays interest once a year, then the net value
of the deposit becomes $1(1 + 0.1) = $1.1 one year later. If the bank pays inter-
est semiannually, the 6-month interest rate is 10%/2 = 5% and the net value is
$1(1 + 0.1/2)2 = $1.1025 after the first year. In general, if the bank pays interest
m times a year, then the interest rate for each payment is 10%/m and the net value
of the deposit becomes $1(1 + 0.1/m)m one year later. Table 1.1 gives the results
for some commonly used time intervals on a deposit of $1.00 with interest rate of
10% per annum. In particular, the net value approaches $1.1052, which is obtained
by exp(0.1) and referred to as the result of continuous compounding. The effect of
compounding is clearly seen.

In general, the net asset value A of continuous compounding is

A = C exp(r × n), (1.4)

where r is the interest rate per annum, C is the initial capital, and n is the number
of years. From Eq. (1.4), we have

C = A exp(−r × n), (1.5)

TABLE 1.1 Illustration of Effects of Compounding: Time Interval Is 1 Year and
Interest Rate Is 10% per Annum

Type Number of Payments Interest Rate per Period Net Value

Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471
Weekly 52 0.1/52 $1.10506
Daily 365 0.1/365 $1.10516
Continuously ∞ $1.10517
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which is referred to as the present value of an asset that is worth A dollars n

years from now, assuming that the continuously compounded interest rate is r per
annum.

Continuously Compounded Return
The natural logarithm of the simple gross return of an asset is called the continu-
ously compounded return or log return:

rt = ln(1 + Rt) = ln
Pt

Pt−1
= pt − pt−1, (1.6)

where pt = ln(Pt ). Continuously compounded returns rt enjoy some advantages
over the simple net returns Rt . First, consider multiperiod returns. We have

rt [k] = ln(1 + Rt [k]) = ln[(1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1)]

= ln(1 + Rt) + ln(1 + Rt−1) + · · · + ln(1 + Rt−k+1)

= rt + rt−1 + · · · + rt−k+1.

Thus, the continuously compounded multiperiod return is simply the sum of con-
tinuously compounded one-period returns involved. Second, statistical properties
of log returns are more tractable.

Portfolio Return
The simple net return of a portfolio consisting of N assets is a weighted average
of the simple net returns of the assets involved, where the weight on each asset is
the percentage of the portfolio’s value invested in that asset. Let p be a portfolio
that places weight wi on asset i. Then the simple return of p at time t is Rp,t =∑N

i=1 wiRit , where Rit is the simple return of asset i.
The continuously compounded returns of a portfolio, however, do not have the

above convenient property. If the simple returns Rit are all small in magnitude, then
we have rp,t ≈ ∑N

i=1 wirit , where rp,t is the continuously compounded return of
the portfolio at time t . This approximation is often used to study portfolio returns.

Dividend Payment
If an asset pays dividends periodically, we must modify the definitions of asset
returns. Let Dt be the dividend payment of an asset between dates t − 1 and t and Pt

be the price of the asset at the end of period t . Thus, dividend is not included in Pt .
Then the simple net return and continuously compounded return at time t become

Rt = Pt + Dt

Pt−1
− 1, rt = ln(Pt + Dt) − ln(Pt−1).

Excess Return
Excess return of an asset at time t is the difference between the asset’s return and
the return on some reference asset. The reference asset is often taken to be riskless
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such as a short-term U.S. Treasury bill return. The simple excess return and log
excess return of an asset are then defined as

Zt = Rt − R0t , zt = rt − r0t , (1.7)

where R0t and r0t are the simple and log returns of the reference asset, respectively.
In the finance literature, the excess return is thought of as the payoff on an arbitrage
portfolio that goes long in an asset and short in the reference asset with no net
initial investment.

Remark. A long financial position means owning the asset. A short position
involves selling an asset one does not own. This is accomplished by borrowing the
asset from an investor who has purchased it. At some subsequent date, the short
seller is obligated to buy exactly the same number of shares borrowed to pay back
the lender. Because the repayment requires equal shares rather than equal dollars,
the short seller benefits from a decline in the price of the asset. If cash dividends are
paid on the asset while a short position is maintained, these are paid to the buyer
of the short sale. The short seller must also compensate the lender by matching
the cash dividends from his own resources. In other words, the short seller is also
obligated to pay cash dividends on the borrowed asset to the lender. �

Summary of Relationship
The relationships between simple return Rt and continuously compounded (or log)
return rt are

rt = ln(1 + Rt), Rt = ert − 1.

If the returns Rt and rt are in percentages, then

rt = 100 ln

(
1 + Rt

100

)
, Rt = 100

(
ert /100 − 1

)
.

Temporal aggregation of the returns produces

1 + Rt [k] = (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1),

rt [k] = rt + rt−1 + · · · + rt−k+1.

If the continuously compounded interest rate is r per annum, then the relationship
between present and future values of an asset is

A = C exp(r × n), C = A exp(−r × n).

Example 1.1. If the monthly log return of an asset is 4.46%, then the corre-
sponding monthly simple return is 100[exp(4.46/100) − 1] = 4.56%. Also, if the
monthly log returns of the asset within a quarter are 4.46%, −7.34%, and 10.77%,
respectively, then the quarterly log return of the asset is (4.46 − 7.34 + 10.77)% =
7.89%.
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1.2 DISTRIBUTIONAL PROPERTIES OF RETURNS

To study asset returns, it is best to begin with their distributional properties.
The objective here is to understand the behavior of the returns across assets
and over time. Consider a collection of N assets held for T time periods, say,
t = 1, . . . , T . For each asset i, let rit be its log return at time t . The log returns
under study are {rit ; i = 1, . . . , N; t = 1, . . . , T }. One can also consider the sim-
ple returns {Rit ; i = 1, . . . , N; t = 1, . . . , T } and the log excess returns {zit ; i =
1, . . . , N; t = 1, . . . , T }.

1.2.1 Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions and the
moment equations of a random variable. Let Rk be the k-dimensional Euclidean
space. A point in Rk is denoted by x ∈ Rk . Consider two random vectors
X = (X1, . . . , Xk)

′ and Y = (Y1, . . . , Yq)
′. Let P (X ∈ A,Y ∈ B) be the proba-

bility that X is in the subspace A ⊂ Rk and Y is in the subspace B ⊂ Rq . For
most of the cases considered in this book, both random vectors are assumed to be
continuous.

Joint Distribution
The function

FX,Y (x, y; θ) = P (X ≤ x,Y ≤ y; θ),

where x ∈ Rp, y ∈ Rq , and the inequality ≤ is a component-by-component oper-
ation, is a joint distribution function of X and Y with parameter θ . Behavior of X

and Y is characterized by FX,Y (x, y; θ). If the joint probability density function
fx,y(x, y; θ) of X and Y exists, then

FX,Y (x, y; θ) =
∫ x

−∞

∫ y

−∞
fx,y(w, z; θ) dz dw.

In this case, X and Y are continuous random vectors.

Marginal Distribution
The marginal distribution of X is given by

FX(x; θ) = FX,Y (x,∞, · · · ,∞; θ).

Thus, the marginal distribution of X is obtained by integrating out Y . A similar
definition applies to the marginal distribution of Y .

If k = 1, X is a scalar random variable and the distribution function becomes

FX(x) = P (X ≤ x; θ),
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which is known as the cumulative distribution function (CDF) of X. The CDF of a
random variable is nondecreasing [i.e., FX(x1) ≤ FX(x2) if x1 ≤ x2] and satisfies
FX(−∞) = 0 and FX(∞) = 1. For a given probability p, the smallest real number
xp such that p ≤ FX(xp) is called the 100pth quantile of the random variable X.
More specifically,

xp = inf
x

{x|p ≤ FX(x)}.

We use the CDF to compute the p value of a test statistic in the book.

Conditional Distribution
The conditional distribution of X given Y ≤ y is given by

FX|Y≤y(x; θ) = P (X ≤ x,Y ≤ y; θ)

P (Y ≤ y; θ)
.

If the probability density functions involved exist, then the conditional density of
X given Y = y is

fx|y(x; θ) = fx,y(x, y; θ)

fy(y; θ)
, (1.8)

where the marginal density function fy(y; θ) is obtained by

fy(y; θ) =
∫ ∞

−∞
fx,y(x, y; θ) dx.

From Eq. (1.8), the relation among joint, marginal, and conditional distributions is

fx,y(x, y; θ) = fx|y(x; θ) × fy(y; θ). (1.9)

This identity is used extensively in time series analysis (e.g., in maximum-
likelihood estimation). Finally, X and Y are independent random vectors if and
only if fx|y(x; θ) = fx(x; θ). In this case, fx,y(x, y; θ) = fx(x; θ)fy(y; θ).

Moments of a Random Variable
The �th moment of a continuous random variable X is defined as

m′
� = E(X�) =

∫ ∞

−∞
x�f (x) dx,

where E stands for expectation and f (x) is the probability density function of X.
The first moment is called the mean or expectation of X. It measures the central
location of the distribution. We denote the mean of X by µx . The �th central
moment of X is defined as

m� = E[(X − µx)
�] =

∫ ∞

−∞
(x − µx)

�f (x) dx
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provided that the integral exists. The second central moment, denoted by σ 2
x , mea-

sures the variability of X and is called the variance of X. The positive square root,
σx , of variance is the standard deviation of X. The first two moments of a random
variable uniquely determine a normal distribution. For other distributions, higher
order moments are also of interest.

The third central moment measures the symmetry of X with respect to its mean,
whereas the fourth central moment measures the tail behavior of X. In statistics,
skewness and kurtosis , which are normalized third and fourth central moments
of X, are often used to summarize the extent of asymmetry and tail thickness.
Specifically, the skewness and kurtosis of X are defined as

S(x) = E

[
(X − µx)

3

σ 3
x

]
, K(x) = E

[
(X − µx)

4

σ 4
x

]
.

The quantity K(x) − 3 is called the excess kurtosis because K(x) = 3 for a nor-
mal distribution. Thus, the excess kurtosis of a normal random variable is zero.
A distribution with positive excess kurtosis is said to have heavy tails, implying
that the distribution puts more mass on the tails of its support than a normal distri-
bution does. In practice, this means that a random sample from such a distribution
tends to contain more extreme values. Such a distribution is said to be leptokur-
tic. On the other hand, a distribution with negative excess kurtosis has short tails
(e.g., a uniform distribution over a finite interval). Such a distribution is said to be
platykurtic.

In application, skewness and kurtosis can be estimated by their sample counter-
parts. Let {x1, . . . , xT } be a random sample of X with T observations. The sample
mean is

µ̂x = 1

T

T∑
t=1

xt , (1.10)

the sample variance is

σ̂ 2
x = 1

T − 1

T∑
t=1

(xt − µ̂x)
2, (1.11)

the sample skewness is

Ŝ(x) = 1

(T − 1)σ̂ 3
x

T∑
t=1

(xt − µ̂x)
3, (1.12)

and the sample kurtosis is

K̂(x) = 1

(T − 1)σ̂ 4
x

T∑
t=1

(xt − µ̂x)
4. (1.13)
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Under the normality assumption, Ŝ(x) and K̂(x) − 3 are distributed asymptoti-
cally as normal with zero mean and variances 6/T and 24/T , respectively; see
Snedecor and Cochran (1980, p. 78). These asymptotic properties can be used to
test the normality of asset returns. Given an asset return series {r1, . . . , rT }, to
test the skewness of the returns, we consider the null hypothesis H0 : S(r) = 0
versus the alternative hypothesis Ha : S(r) �= 0. The t-ratio statistic of the sample
skewness in Eq. (1.12) is

t = Ŝ(r)√
6/T

.

The decision rule is as follows. Reject the null hypothesis at the α significance
level, if |t |>Zα/2, where Zα/2 is the upper 100(α/2)th quantile of the standard
normal distribution. Alternatively, one can compute the p value of the test statistic
t and reject H0 if and only if the p value is less than α.

Similarly, one can test the excess kurtosis of the return series using the hypothe-
ses H0 : K(r) − 3 = 0 versus Ha : K(r) − 3 �= 0. The test statistic is

t = K̂(r) − 3√
24/T

,

which is asymptotically a standard normal random variable. The decision rule is to
reject H0 if and only if the p value of the test statistic is less than the significance
level α. Jarque and Bera (1987) (JB) combine the two prior tests and use the test
statistic

JB = Ŝ2(r)

6/T
+ [K̂(r) − 3]2

24/T
,

which is asymptotically distributed as a chi-squared random variable with 2 degrees
of freedom, to test for the normality of rt . One rejects H0 of normality if the p

value of the JB statistic is less than the significance level.

Example 1.2. Consider the daily simple returns of the International Business
Machines (IBM) stock used in Table 1.2. The sample skewness and kurtosis of
the returns are parts of the descriptive (or summary) statistics that can be obtained
easily using various statistical software packages. Both R and S-Plus are used in
the demonstration, where d-ibm3dx7008.txt is the data file name. Note that in
R the kurtosis denotes excess kurtosis. From the output, the excess kurtosis is high,
indicating that the daily simple returns of IBM stock have heavy tails. To test the
symmetry of return distribution, we use the test statistic

t = 0.0614√
6/9845

= 0.0614

0.0247
= 2.49,

which gives a p value of about 0.013, indicating that the daily simple returns of
IBM stock are significantly skewed to the right at the 5% level.
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TABLE 1.2 Descriptive Statistics for Daily and Monthly Simple and Log Returns of
Selected Indexes and Stocksa

Standard Excess
Security Start Size Mean Deviation Skewness Kurtosis Minimum Maximum

Daily Simple Returns (%)
SP 70/01/02 9845 0.029 1.056 −0.73 22.81 −20.47 11.58
VW 70/01/02 9845 0.040 1.004 −0.62 18.02 −17.13 11.52
EW 70/01/02 9845 0.076 0.814 −0.77 17.08 −10.39 10.74
IBM 70/01/02 9845 0.040 1.693 0.06 9.92 −22.96 13.16
Intel 72/12/15 9096 0.108 2.891 −0.15 6.13 −29.57 26.38
3M 670/01/02 9845 0.045 1.482 −0.36 13.34 −25.98 11.54
Microsoft 86/03/14 5752 0.123 2.359 −0.13 9.92 −30.12 19.57
Citi-Grp 86/10/30 5592 0.067 2.602 1.80 55.25 −26.41 57.82

Daily Log Returns (%)

SP 70/01/02 9845 0.023 1.062 −1.17 30.20 −22.90 10.96
VW 70/01/02 9845 0.035 1.008 −0.94 21.56 −18.80 10.90
EW 70/01/02 9845 0.072 0.816 −1.00 17.76 −10.97 10.20
IBM 70/01/02 9845 0.026 1.694 −0.27 12.17 −26.09 12.37
Intel 72/12/15 9096 0.066 2.905 −0.54 7.81 −35.06 23.41
3M 70/01/02 9845 0.034 1.488 −0.78 20.57 −30.08 10.92
Microsoft 86/03/14 5752 0.095 2.369 −0.63 14.23 −35.83 17.87
Citi-Grp 86/10/30 5592 0.033 2.575 0.22 33.19 −30.66 45.63

Monthly Simple Returns (%)

SP 26/01 996 0.58 5.53 0.32 9.47 −29.94 42.22
VW 26/01 996 0.89 5.43 0.15 7.69 −29.01 38.37
EW 26/01 996 1.22 7.40 1.52 14.94 −31.28 66.59
IBM 26/01 996 1.35 7.15 0.44 3.43 −26.19 47.06
Intel 73/01 432 2.21 12.85 0.32 2.70 −44.87 62.50
3M 46/02 755 1.24 6.45 0.22 0.98 −27.83 25.80
Microsoft 86/04 273 2.62 11.08 0.66 1.96 −34.35 51.55
Citi-Grp 86/11 266 1.17 9.75 −0.47 1.77 −39.27 26.08

Monthly Log Returns (%)

SP 26/01 996 0.43 5.54 −0.52 7.93 −35.58 35.22
VW 26/01 996 0.74 5.43 −0.58 6.85 −34.22 32.47
EW 26/01 996 0.96 7.14 0.25 8.55 −37.51 51.04
IBM 26/01 996 1.09 7.03 −0.07 2.62 −30.37 38.57
Intel 73/01 432 1.39 12.80 −0.55 3.06 −59.54 48.55
3M 46/02 755 1.03 6.37 −0.08 1.25 −32.61 22.95
Microsoft 86/04 273 2.01 10.66 0.10 1.59 −42.09 41.58
Citi-Grp 86/11 266 0.68 10.09 −1.09 3.76 −49.87 23.18

aReturns are in percentages and the sample period ends on December 31, 2008. The statistics are defined
in eqs. (1.10)–(1.13), and VW, EW and SP denote value-weighted, equal-weighted, and S&P composite
index.
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R Demonstration
In the following program code > is the prompt character and % denotes explana-

tion:

> library(fBasics) % Load the package fBasics.
> da=read.table("d-ibm3dx7008.txt",header=T) % Load the data.
% header=T means 1st row of the data file contains
% variable names. The default is header=F, i.e., no names.

> dim(da) % Find size of the data: 9845 rows and 5 columns.
[1] 9845 5
> da[1,] % See the first row of the data

Date rtn vwretd ewretd sprtrn % column names
1 19700102 0.000686 0.012137 0.03345 0.010211

> ibm=da[,2] % Obtain IBM simple returns
> sibm=ibm*100 % Percentage simple returns

> basicStats(sibm) % Compute the summary statistics
sibm

nobs 9845.000000 % Sample size
NAs 0.000000 % Number of missing values
Minimum -22.963000
Maximum 13.163600
1. Quartile -0.857100 % 25th percentile
3. Quartile 0.883300 % 75th percentile
Mean 0.040161 % Sample mean
Median 0.000000 % Sample median
Sum 395.387600 % Sum of the percentage simple returns
SE Mean 0.017058 % Standard error of the sample mean
LCL Mean 0.006724 % Lower bound of 95% conf.

% interval for mean
UCL Mean 0.073599 % Upper bound of 95% conf.

% interval for mean
Variance 2.864705 % Sample variance
Stdev 1.692544 % Sample standard error
Skewness 0.061399 % Sample skewness
Kurtosis 9.916359 % Sample excess kurtosis.

% Alternatively, one can use individual commands as follows:
> mean(sibm)
[1] 0.04016126
> var(sibm)
[1] 2.864705
> sqrt(var(sibm)) % Standard deviation
[1] 1.692544
> skewness(sibm)
[1] 0.06139878
attr(,"method")
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[1] "moment"
> kurtosis(sibm)
[1] 9.91636
attr(,"method")
[1] "excess"

% Simple tests
> s1=skewness(sibm)
> t1=s1/sqrt(6/9845) % Compute test statistic
> t1
[1] 2.487093
> pv=2*(1-pnorm(t1)) % Compute p-value.
> pv
[1] 0.01287919

% Turn to log returns in percentages
> libm=log(ibm+1)*100
> t.test(libm) % Test mean being zero.

One Sample t-test
data: libm
t = 1.5126, df = 9844, p-value = 0.1304
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.007641473 0.059290531

% The result shows that the hypothesis of zero expected return
% cannot be rejected at the 5% or 10% level.

> normalTest(libm,method=’jb’) % Normality test
Title:
Jarque - Bera Normality Test

Test Results:
STATISTIC:

X-squared: 60921.9343
P VALUE:

Asymptotic p Value: < 2.2e-16
% The result shows the normality for log-return is rejected.

S-Plus Demonstration
In the following program code > is the prompt character and % marks explanation:

> module(finmetrics) % Load the Finmetrics module.
> da=read.table("d-ibm3dx7008.txt",header=T) % Load data.
> dim(da) % Obtain the size of the data set.
[1] 9845 5
> da[1,] % See the first row of the data

Date rtn vwretd ewretd sprtrn
1 19700102 0.000686 0.012137 0.03345 0.010211
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> sibm=da[,2]*100 % Obtain percentage simple returns of
% IBM stock.

> summaryStats(sibm) % Obtain summary statistics

Sample Quantiles:
min 1Q median 3Q max

-22.96 -0.8571 0 0.8833 13.16
Sample Moments:

mean std skewness kurtosis
0.04016 1.693 0.06141 12.92

Number of Observations: 9845
% simple tests
> s1=skewness(sibm) % Compute skewness
> t=s1/sqrt(6/9845) % Perform test of skewness
> t
[1] 2.487851
> pv=2*(1-pnorm(t)) % Calculate p-value.
> pv
[1] 0.01285177

> libm=log(da[,2]+1)*100 % Turn to log-return
> t.test(libm) % Test expected return being zero.

One-sample t-Test
data: libm
t = 1.5126, df = 9844, p-value = 0.1304
alternative hypothesis: mean is not equal to 0
95 percent confidence interval:
-0.007641473 0.059290531

> normalTest(libm,method=’jb’) % Normality test
Test for Normality: Jarque-Bera
Null Hypothesis: data is normally distributed

Test Stat 60921.93
p.value 0.00

Dist. under Null: chi-square with 2 degrees of freedom
Total Observ.: 9845

Remark. In S-Plus, kurtosis is the regular kurtosis, not excess kurtosis. That
is, S-Plus does not subtract 3 from the sample kurtosis. Also, in many cases R and
S-Plus use the same commands. �

1.2.2 Distributions of Returns

The most general model for the log returns {rit ; i = 1, . . . , N; t = 1, . . . , T } is its
joint distribution function:

Fr(r11, . . . , rN1; r12, . . . , rN2; . . . ; r1T , . . . , rNT ; Y ; θ), (1.14)
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where Y is a state vector consisting of variables that summarize the environment
in which asset returns are determined and θ is a vector of parameters that uniquely
determines the distribution function Fr(·). The probability distribution Fr(·) gov-
erns the stochastic behavior of the returns rit and Y . In many financial studies, the
state vector Y is treated as given and the main concern is the conditional distri-
bution of {rit } given Y . Empirical analysis of asset returns is then to estimate the
unknown parameter θ and to draw statistical inference about the behavior of {rit }
given some past log returns.

The model in Eq. (1.14) is too general to be of practical value. However, it
provides a general framework with respect to which an econometric model for
asset returns rit can be put in a proper perspective.

Some financial theories such as the capital asset pricing model (CAPM) of
Sharpe (1964) focus on the joint distribution of N returns at a single time index
t (i.e., the distribution of {r1t , . . . , rNt }). Other theories emphasize the dynamic
structure of individual asset returns (i.e., the distribution of {ri1, . . . , riT } for a
given asset i). In this book, we focus on both. In the univariate analysis of Chapters
2–7, our main concern is the joint distribution of {rit }Tt=1 for asset i. To this end,
it is useful to partition the joint distribution as

F(ri1, . . . , riT ; θ) = F(ri1)F (ri2|ri1) · · ·F(riT |ri,T−1, . . . , ri1)

= F(ri1)

T∏
t=2

F(rit |ri,t−1, . . . , ri1), (1.15)

where, for simplicity, the parameter θ is omitted. This partition highlights the
temporal dependencies of the log return rit . The main issue then is the specification
of the conditional distribution F(rit |ri,t−1, ·), in particular, how the conditional
distribution evolves over time. In finance, different distributional specifications
lead to different theories. For instance, one version of the random-walk hypothesis
is that the conditional distribution F(rit |ri,t−1, . . . , ri1) is equal to the marginal
distribution F(rit ). In this case, returns are temporally independent and, hence, not
predictable.

It is customary to treat asset returns as continuous random variables, especially
for index returns or stock returns calculated at a low frequency, and use their
probability density functions. In this case, using the identity in Eq. (1.9), we can
write the partition in Eq. (1.15) as

f (ri1, . . . , riT ; θ) = f (ri1; θ)

T∏
t=2

f (rit |ri,t−1, . . . , ri1; θ). (1.16)

For high-frequency asset returns, discreteness becomes an issue. For example, stock
prices change in multiples of a tick size on the New York Stock Exchange (NYSE).
The tick size was 1

8 of a dollar before July 1997 and was 1
16 of a dollar from July

1997 to January 2001. Therefore, the tick-by-tick return of an individual stock listed
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on the NYSE is not continuous. We discuss high-frequency stock price changes
and time durations between price changes later in Chapter 5.

Remark. On August 28, 2000, the NYSE began a pilot program with 7 stocks
priced in decimals and the American Stock Exchange (AMEX) began a pilot pro-
gram with 6 stocks and two options classes. The NYSE added 57 stocks and 94
stocks to the program on September 25 and December 4, 2000, respectively. All
NYSE and AMEX stocks started trading in decimals on January 29, 2001. �

Equation (1.16) suggests that conditional distributions are more relevant than
marginal distributions in studying asset returns. However, the marginal distributions
may still be of some interest. In particular, it is easier to estimate marginal distribu-
tions than conditional distributions using past returns. In addition, in some cases,
asset returns have weak empirical serial correlations, and, hence, their marginal
distributions are close to their conditional distributions.

Several statistical distributions have been proposed in the literature for the
marginal distributions of asset returns, including normal distribution, lognormal dis-
tribution, stable distribution, and scale mixture of normal distributions. We briefly
discuss these distributions.

Normal Distribution
A traditional assumption made in financial study is that the simple returns {Rit |t =
1, . . . , T } are independently and identically distributed as normal with fixed mean
and variance. This assumption makes statistical properties of asset returns tractable.
But it encounters several difficulties. First, the lower bound of a simple return is
−1. Yet the normal distribution may assume any value in the real line and, hence,
has no lower bound. Second, if Rit is normally distributed, then the multiperiod
simple return Rit [k] is not normally distributed because it is a product of one-period
returns. Third, the normality assumption is not supported by many empirical asset
returns, which tend to have a positive excess kurtosis.

Lognormal Distribution
Another commonly used assumption is that the log returns rt of an asset are inde-
pendent and identically distributed (iid) as normal with mean µ and variance σ 2.
The simple returns are then iid lognormal random variables with mean and variance
given by

E(Rt) = exp

(
µ + σ 2

2

)
− 1, Var(Rt ) = exp(2µ + σ 2)[exp(σ 2) − 1]. (1.17)

These two equations are useful in studying asset returns (e.g., in forecasting using
models built for log returns). Alternatively, let m1 and m2 be the mean and variance
of the simple return Rt , which is lognormally distributed. Then the mean and
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variance of the corresponding log return rt are

E(rt ) = ln

[
m1 + 1√

1 + m2/(1 + m1)2

]
, Var(rt ) = ln

[
1 + m2

(1 + m1)2

]
.

Because the sum of a finite number of iid normal random variables is normal,
rt [k] is also normally distributed under the normal assumption for {rt }. In addition,
there is no lower bound for rt , and the lower bound for Rt is satisfied using
1 + Rt = exp(rt ). However, the lognormal assumption is not consistent with all
the properties of historical stock returns. In particular, many stock returns exhibit
a positive excess kurtosis.

Stable Distribution
The stable distributions are a natural generalization of normal in that they are sta-
ble under addition, which meets the need of continuously compounded returns rt .
Furthermore, stable distributions are capable of capturing excess kurtosis shown
by historical stock returns. However, nonnormal stable distributions do not have
a finite variance, which is in conflict with most finance theories. In addition, sta-
tistical modeling using nonnormal stable distributions is difficult. An example of
nonnormal stable distributions is the Cauchy distribution, which is symmetric with
respect to its median but has infinite variance.

Scale Mixture of Normal Distributions
Recent studies of stock returns tend to use scale mixture or finite mixture of normal
distributions. Under the assumption of scale mixture of normal distributions, the log
return rt is normally distributed with mean µ and variance σ 2 [i.e., rt ∼ N(µ, σ 2)].
However, σ 2 is a random variable that follows a positive distribution (e.g., σ−2

follows a gamma distribution). An example of finite mixture of normal distribu-
tions is

rt ∼ (1 − X)N(µ, σ 2
1 ) + XN(µ, σ 2

2 ),

where X is a Bernoulli random variable such that P (X = 1) = α and P (X = 0) =
1 − α with 0 < α < 1, σ 2

1 is small, and σ 2
2 is relatively large. For instance, with

α = 0.05, the finite mixture says that 95% of the returns follow N(µ, σ 2
1 ) and 5%

follow N(µ, σ 2
2 ). The large value of σ 2

2 enables the mixture to put more mass at the
tails of its distribution. The low percentage of returns that are from N(µ, σ 2

2 ) says
that the majority of the returns follow a simple normal distribution. Advantages
of mixtures of normal include that they maintain the tractability of normal, have
finite higher order moments, and can capture the excess kurtosis. Yet it is hard to
estimate the mixture parameters (e.g., the α in the finite-mixture case).

Figure 1.1 shows the probability density functions of a finite mixture of normal,
Cauchy, and standard normal random variable. The finite mixture of normal is
(1 − X)N(0, 1) + X × N(0, 16) with X being Bernoulli such that P (X = 1) =
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Figure 1.1 Comparison of finite mixture, stable, and standard normal density functions.

0.05, and the density function of Cauchy is

f (x) = 1

π(1 + x2)
, −∞ < x < ∞.

It is seen that the Cauchy distribution has fatter tails than the finite mixture of
normal, which, in turn, has fatter tails than the standard normal.

1.2.3 Multivariate Returns

Let r t = (r1t , . . . , rNt )
′ be the log returns of N assets at time t . The multivariate

analyses of Chapters 8 and 10 are concerned with the joint distribution of {r t }Tt=1.
This joint distribution can be partitioned in the same way as that of Eq. (1.15).
The analysis is then focused on the specification of the conditional distribution
function F(r t |r t−1, . . . , r1, θ). In particular, how the conditional expectation and
conditional covariance matrix of r t evolve over time constitute the main subjects
of Chapters 8 and 10.

The mean vector and covariance matrix of a random vector X = (X1, . . . , Xp)

are defined as

E(X) = µx = [E(X1), . . . , E(Xp)]
′,

Cov(X) = �x = E[(X − µx)(X − µx)
′],



distributional properties of returns 19

provided that the expectations involved exist. When the data {x1, . . . , xT } of X

are available, the sample mean and covariance matrix are defined as

µ̂x = 1

T

T∑
t=1

x t , �̂x = 1

T − 1

T∑
t=1

(x t − µ̂x)(x t − µ̂x)
′.

These sample statistics are consistent estimates of their theoretical counterparts pro-
vided that the covariance matrix of X exists. In the finance literature, multivariate
normal distribution is often used for the log return r t .

1.2.4 Likelihood Function of Returns

The partition of Eq. (1.15) can be used to obtain the likelihood function of the
log returns {r1, . . . , rT } of an asset, where for ease in notation the subscript i is
omitted from the log return. If the conditional distribution f (rt |rt−1, . . . , r1, θ) is
normal with mean µt and variance σ 2

t , then θ consists of the parameters in µt and
σ 2
t , and the likelihood function of the data is

f (r1, . . . , rT ; θ) = f (r1; θ)

T∏
t=2

1√
2πσt

exp

[−(rt − µt)
2

2σ 2
t

]
, (1.18)

where f (r1; θ) is the marginal density function of the first observation r1. The value
of θ that maximizes this likelihood function is the maximum-likelihood estimate
(MLE) of θ . Since the log function is monotone, the MLE can be obtained by
maximizing the log-likelihood function,

ln f (r1, . . . , rT ; θ) = ln f (r1; θ) − 1

2

T∑
t=2

[
ln(2π) + ln(σ 2

t ) + (rt − µt)
2

σ 2
t

]
,

which is easier to handle in practice. The log-likelihood function of the data can
be obtained in a similar manner if the conditional distribution f (rt |rt−1, . . . , r1; θ)

is not normal.

1.2.5 Empirical Properties of Returns

The data used in this section are obtained from the Center for Research in Secu-
rity Prices (CRSP) of the University of Chicago. Dividend payments, if any, are
included in the returns. Figure 1.2 shows the time plots of monthly simple returns
and log returns of IBM stock from January 1926 to December 2008. A time plot
shows the data against the time index. The upper plot is for the simple returns.
Figure 1.3 shows the same plots for the monthly returns of value-weighted market
index. As expected, the plots show that the basic patterns of simple and log returns
are similar.
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Figure 1.2 Time plots of monthly returns of IBM stock from January 1926 to December 2008. Upper
panel is for simple returns, and lower panel is for log returns.
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Figure 1.3 Time plots of monthly returns of value-weighted index from January 1926 to December
2008. Upper panel is for simple returns, and lower panel is for log returns.
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Table 1.2 provides some descriptive statistics of simple and log returns for
selected U.S. market indexes and individual stocks. The returns are for daily and
monthly sample intervals and are in percentages. The data spans and sample sizes
are also given in Table 1.2. From the table, we make the following observations.
(a) Daily returns of the market indexes and individual stocks tend to have high
excess kurtoses. For monthly series, the returns of market indexes have higher
excess kurtoses than individual stocks. (b) The mean of a daily return series is close
to zero, whereas that of a monthly return series is slightly larger. (c) Monthly returns
have higher standard deviations than daily returns. (d) Among the daily returns,
market indexes have smaller standard deviations than individual stocks. This is in
agreement with common sense. (e) The skewness is not a serious problem for both
daily and monthly returns. (f) The descriptive statistics show that the difference
between simple and log returns is not substantial.

Figure 1.4 shows the empirical density functions of monthly simple and log
returns of IBM stock from 1926 to 2008. Also shown, by a dashed line, in each
graph is the normal probability density function evaluated by using the sample
mean and standard deviation of IBM returns given in Table 1.2. The plots indicate
that the normality assumption is questionable for monthly IBM stock returns. The
empirical density function has a higher peak around its mean, but fatter tails than
that of the corresponding normal distribution. In other words, the empirical density
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Figure 1.4 Comparison of empirical and normal densities for monthly simple and log returns of IBM
stock. Sample period is from January 1926 to December 2008. Left plot is for simple returns and right
plot for log returns. Normal density, shown by the dashed line, uses sample mean and standard deviation
given in Table 1.2.
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function is taller and skinnier, but with a wider support than the corresponding
normal density.

1.3 PROCESSES CONSIDERED

Besides the return series, we also consider the volatility process and the behavior of
extreme returns of an asset. The volatility process is concerned with the evolution
of conditional variance of the return over time. This is a topic of interest because, as
shown in Figures 1.2 and 1.3, the variabilities of returns vary over time and appear
in clusters. In application, volatility plays an important role in pricing options and
risk management. By extremes of a return series, we mean the large positive or
negative returns. Table 1.2 shows that the minimum and maximum of a return series
can be substantial. The negative extreme returns are important in risk management,
whereas positive extreme returns are critical to holding a short position. We study
properties and applications of extreme returns, such as the frequency of occurrence,
the size of an extreme, and the impacts of economic variables on the extremes, in
Chapter 7.

Other financial time series considered in the book include interest rates, exchange
rates, bond yields, and quarterly earning per share of a company. Figure 1.5 shows
the time plots of two U.S. monthly interest rates. They are the 10-year and 1-year
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Figure 1.5 Time plots of monthly U.S. interest rates from April 1953 to February 2009: (a) 10-year
Treasury constant maturity rate and (b) 1-year maturity rate.
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Figure 1.6 Time plot of daily exchange rate between U.S. dollar and Japanese yen from January 4,
2000, to March 27, 2009: (a) exchange rate and (b) changes in exchange rate.

Treasury constant maturity rates from April 1954 to February 2009. As expected,
the two interest rates moved in unison, but the 1-year rates appear to be more
volatile. Figure 1.6 shows the daily exchange rate between the U.S. dollar and the
Japanese yen from January 4, 2000, to March 27, 2009. From the plot, the exchange
rate encountered occasional big changes in the sampling period. Table 1.3 provides
some descriptive statistics for selected U.S. financial time series. The monthly bond
returns obtained from CRSP are Fama bond portfolio returns from January 1952 to
December 2008. The interest rates are obtained from the Federal Reserve Bank of
St. Louis. The weekly 3-month Treasury bill rate started on January 8, 1954, and
the 6-month rate started on December 12, 1958. Both series ended on March 27,
2009. For the interest rate series, the sample means are proportional to the time to
maturity, but the sample standard deviations are inversely proportional to the time
to maturity. For the bond returns, the sample standard deviations are positively
related to the time to maturity, whereas the sample means remain stable for all
maturities. Most of the series considered have positive excess kurtoses.

With respect to the empirical characteristics of returns shown in Table 1.2,
Chapters 2–4 focus on the first four moments of a return series and Chapter 7 on
the behavior of minimum and maximum returns. Chapters 8 and 10 are concerned
with moments of and the relationships between multiple asset returns, and Chapter 5
addresses properties of asset returns when the time interval is small. An introduction
to mathematical finance is given in Chapter 6.
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TABLE 1.3 Descriptive Statistics of Selected U.S. Financial Time Seriesa

Standard Excess
Maturity Mean Deviation Skewness Kurtosis Minimum Maximum

Monthly Bond Returns: Jan. 1952 to Dec. 2008 , T = 684
1–12 months 0.45 0.35 2.47 13.14 −0.40 3.52
12–24 months 0.49 0.67 1.88 15.44 −2.94 6.85
24–36 months 0.52 0.98 1.37 12.92 −4.90 9.33
48–60 months 0.53 1.40 0.60 4.83 −5.78 10.06
61–120 months 0.55 1.69 0.65 4.79 −7.35 10.92

Monthly Treasury Rates: April 1953 to February 2009 , T = 671

1 year 5.59 2.98 1.02 1.32 0.44 16.72
3 years 5.98 2.85 0.95 0.95 1.07 16.22
5 years 6.19 2.77 0.97 0.82 1.52 15.93
10 years 6.40 2.69 0.95 0.61 2.29 15.32

Weekly Treasury Bill Rates: End on March 27, 2009 .

3 months 5.07 2.82 1.08 1.80 0.02 16.76
6 months 5.52 2.73 0.99 1.53 0.20 15.76

aThe data are in percentages. The weekly 3-month Treasury bill rate started from January 8, 1954, and
the 6-month rate started from December 12, 1958. The sample sizes for Treasury bill rates are 2882
and 2625, respectively. Data sources are given in the text.

APPENDIX: R PACKAGES

R is a free software available from http://www.r-project.org. One can click CRAN
on its Web page to select a nearby CRAN Mirror to download and install the
software and selected packages. For financial time series analysis, the Rmetrics of
Diethelm Wuertz and his associates have produced many useful packages, including
fBasics, timeSeries, fGarch, etc. We use many functions of these packages in
this book. Further information concerning installing R and the commands used can
be found either on the Web page of this book or on the author’s teaching Web page.

R and S-Plus are objective-oriented software. They enable users to create many
objects. For instance, one can use the command ts to create a time series object.
Treating time series data as a time series object in R has some advantages, but
it requires some learning to get used to it. It is, however, not necessary to create
a time series object in R to perform the analyses discussed in this book. As an
illustration, consider the monthly simple returns to the General Motors stock from
January 1975 to December 2008; see Exercise 1.2. The data have 408 observations.
The following R commands are used to illustrate the points:

> da=read.table("m-gm3dx7508.txt",header=T) % Load data
> gm=da[,2] % Column 2 contains GM stock returns
> gm1=ts(gm,frequency=12,start=c(1975,1))
% Creates a ts object.
> par(mfcol=c(2,1)) % Put two plots on a page.
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Figure 1.7 Time plots of monthly simple returns to General Motors stock from January 1975 to
December 2008: (a) and (b) are without and with time series object, respectively.

> plot(gm,type=’l’)
> plot(gm1,type=’l’)
> acf(gm,lag=24)
> acf(gm1,lag=24)

In the ts command, frequency = 12 says that the time unit is year and there
are 12 equally spaced observations in each time unit, and start = c(1975,1) means
the starting time is January 1975. Frequency and start are the two basic arguments
needed in R to create a time series object. For further details, please use help(ts)
in R to obtain details of the command. Here gm1 is a time series object in R, but
gm is not. Figures 1.7 and 1.8 show, respectively, the time plot and autocorrelation
function (ACF) of the returns of GM stock. In each figure, the upper plot is pro-
duced without using time series object, whereas the lower plot is produced by a
time series object. The upper and lower plots are identical except for the horizontal
label. For the time plot, the time series object uses calendar time to label the x

axis, which is preferred. On the other hand, for the ACF plot, the time series object
uses fractions of time unit in the label, not the commonly used time lags.

EXERCISES

1.1. Consider the daily stock returns of American Express (AXP), Caterpillar
(CAT), and Starbucks (SBUX) from January 1999 to December 2008. The
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Figure 1.8 Sample ACFs of the monthly simple returns to General Motors stock from January 1975
to December 2008: (a) and (b) are without and with time series object, respectively.

data are simple returns given in the file d-3stocks9908.txt (date, axp, cat,
sbux).

(a) Express the simple returns in percentages. Compute the sample mean,
standard deviation, skewness, excess kurtosis, minimum, and maximum
of the percentage simple returns.

(b) Transform the simple returns to log returns.

(c) Express the log returns in percentages. Compute the sample mean, stan-
dard deviation, skewness, excess kurtosis, minimum, and maximum of the
percentage log returns.

(d) Test the null hypothesis that the mean of the log returns of each stock is
zero. That is, perform three separate tests. Use 5% significance level to
draw your conclusion.

1.2. Answer the same questions as in Exercise 1.1 but using monthly stock returns
for General Motors (GM), CRSP value-weighted index (VW), CRSP equal-
weighted index (EW), and S&P composite index from January 1975 to Decem-
ber 2008. The returns of the indexes include dividend distributions. Data file
is m-gm3dx7508.txt (date, gm, vw, ew, sp).

1.3. Consider the monthly stock returns of S&P composite index from January
1975 to December 2008 in Exercise 1.2. Answer the following questions:

(a) What is the average annual log return over the data span?
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(b) Assume that there were no transaction costs. If one invested $1.00 on the
S&P composite index at the beginning of 1975, what was the value of the
investment at the end of 2008?

1.4. Consider the daily log returns of American Express stock from January 1999
to December 2008 as in Exercise 1.1. Use the 5% significance level to perform
the following tests: (a) Test the null hypothesis that the skewness measure of
the returns is zero. (b) Test the null hypothesis that the excess kurtosis of the
returns is zero.

1.5. Daily foreign exchange rates (spot rates) can be obtained from the Federal
Reserve Bank in Chicago. The data are the noon buying rates in New York City
certified by the Federal Reserve Bank of New York. Consider the exchange
rates between the U.S. dollar and the Canadian dollar, euro, U.K. pound, and
the Japanese yen from January 4, 2000, to March 27, 2009. The data are
also on the Web. (a) Compute the daily log return of each exchange rate.
(b) Compute the sample mean, standard deviation, skewness, excess kurtosis,
minimum, and maximum of the log returns of each exchange rate. (c) Discuss
the empirical characteristics of the log returns of exchange rates. (d) Obtain a
density plot of the daily long returns of dollar–euro exchange rate.
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C H A P T E R 2

Linear Time Series Analysis
and Its Applications

In this chapter, we discuss basic theories of linear time series analysis, introduce
some simple econometric models useful for analyzing financial data, and apply the
models to financial time series such as asset returns. Discussions of the concepts are
brief with emphasis on those relevant to financial applications. Understanding the
simple time series models introduced here will go a long way to better appreciate
the more sophisticated financial econometric models of the later chapters. There
are many time series textbooks available. For basic concepts of linear time series
analysis, see Box, Jenkins, and Reinsel (1994, Chapters 2 and 3) and Brockwell
and Davis (1996, Chapters 1–3).

Treating an asset return (e.g., log return rt of a stock) as a collection of random
variables over time, we have a time series {rt }. Linear time series analysis provides
a natural framework to study the dynamic structure of such a series. The theories
of linear time series discussed include stationarity, dynamic dependence, autocor-
relation function, modeling, and forecasting. The econometric models introduced
include (a) simple autoregressive (AR) models, (b) simple moving-average (MA)
models, (b) mixed autoregressive moving-average (ARMA) models, (c) seasonal
models, (d) unit-root nonstationarity, (e) regression models with time series errors,
and (f) fractionally differenced models for long-range dependence. For an asset
return rt , simple models attempt to capture the linear relationship between rt and
information available prior to time t . The information may contain the historical
values of rt and the random vector Y in Eq. (1.14), which describes the eco-
nomic environment under which the asset price is determined. As such, correlation
plays an important role in understanding these models. In particular, correlations
between the variable of interest and its past values become the focus of linear
time series analysis. These correlations are referred to as serial correlations or
autocorrelations . They are the basic tool for studying a stationary time series.

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
Copyright  2010 John Wiley & Sons, Inc.
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2.1 STATIONARITY

The foundation of time series analysis is stationarity. A time series {rt } is said to
be strictly stationary if the joint distribution of (rt1 , . . . , rtk ) is identical to that of
(rt1+t , . . . , rtk+t ) for all t , where k is an arbitrary positive integer and (t1, . . . , tk) is
a collection of k positive integers. In other words, strict stationarity requires that the
joint distribution of (rt1 , . . . , rtk ) is invariant under time shift. This is a very strong
condition that is hard to verify empirically. A weaker version of stationarity is often
assumed. A time series {rt } is weakly stationary if both the mean of rt and the
covariance between rt and rt−� are time invariant, where � is an arbitrary integer.
More specifically, {rt } is weakly stationary if (a) E(rt ) = µ, which is a constant,
and (b) Cov(rt , rt−�) = γ�, which only depends on �. In practice, suppose that we
have observed T data points {rt |t = 1, . . . , T }. The weak stationarity implies that
the time plot of the data would show that the T values fluctuate with constant
variation around a fixed level. In applications, weak stationarity enables one to
make inference concerning future observations (e.g., prediction).

Implicitly, in the condition of weak stationarity, we assume that the first two
moments of rt are finite. From the definitions, if rt is strictly stationary and its
first two moments are finite, then rt is also weakly stationary. The converse is
not true in general. However, if the time series rt is normally distributed, then
weak stationarity is equivalent to strict stationarity. In this book, we are mainly
concerned with weakly stationary series.

The covariance γ� = Cov(rt , rt−�) is called the lag-� autocovariance of rt . It has
two important properties: (a) γ0 = Var(rt ) and (b) γ−� = γ�. The second property
holds because Cov(rt , rt−(−�)) = Cov(rt−(−�), rt ) = Cov(rt+�, rt ) = Cov(rt1 , rt1−�),
where t1 = t + �.

In the finance literature, it is common to assume that an asset return series is
weakly stationary. This assumption can be checked empirically provided that a
sufficient number of historical returns are available. For example, one can divide
the data into subsamples and check the consistency of the results obtained across
the subsamples.

2.2 CORRELATION AND AUTOCORRELATION FUNCTION

The correlation coefficient between two random variables X and Y is defined as

ρx,y = Cov(X, Y )√
Var(X)Var(Y )

= E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

,

where µx and µy are the mean of X and Y, respectively, and it is assumed that the
variances exist. This coefficient measures the strength of linear dependence between
X and Y , and it can be shown that −1 ≤ ρx,y ≤ 1 and ρx,y = ρy,x . The two random
variables are uncorrelated if ρx,y = 0. In addition, if both X and Y are normal
random variables, then ρx,y = 0 if and only if X and Y are independent. When the
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sample {(xt , yt )}Tt=1 is available, the correlation can be consistently estimated by
its sample counterpart

ρ̂x,y =
∑T

t=1(xt − x̄)(yt − ȳ)√∑T
t=1(xt − x̄)2

∑T
t=1(yt − ȳ)2

,

where x̄ = ∑T
t=1 xt/T and ȳ = ∑T

t=1 yt/T are the sample mean of X and Y ,
respectively.

Autocorrelation Function (ACF)
Consider a weakly stationary return series rt . When the linear dependence between
rt and its past values rt−i is of interest, the concept of correlation is generalized
to autocorrelation. The correlation coefficient between rt and rt−� is called the
lag-� autocorrelation of rt and is commonly denoted by ρ�, which under the weak
stationarity assumption is a function of � only. Specifically, we define

ρ� = Cov(rt , rt−�)√
Var(rt )Var(rt−�)

= Cov(rt , rt−�)

Var(rt )
= γ�

γ0
, (2.1)

where the property Var(rt ) = Var(rt−�) for a weakly stationary series is used. From
the definition, we have ρ0 = 1, ρ� = ρ−�, and −1 ≤ ρ� ≤ 1. In addition, a weakly
stationary series rt is not serially correlated if and only if ρ� = 0 for all �> 0.

For a given sample of returns {rt }Tt=1, let r̄ be the sample mean (i.e., r̄ =∑T
t=1 rt/T ). Then the lag-1 sample autocorrelation of rt is

ρ̂1 =
∑T

t=2(rt − r̄)(rt−1 − r̄)∑T
t=1(rt − r̄)2

.

Under some general conditions, ρ̂1 is a consistent estimate of ρ1. For example, if
{rt } is an independent and identically distributed (iid) sequence and E(r2

t ) < ∞,
then ρ̂1 is asymptotically normal with mean zero and variance 1/T ; see Brockwell
and Davis (1991, Theorem 7.2.2). This result can be used in practice to test the
null hypothesis H0 : ρ1 = 0 versus the alternative hypothesis Ha : ρ1 �= 0. The test
statistic is the usual t ratio, which is

√
T ρ̂1 and follows asymptotically the standard

normal distribution. The null hypothesis H0 is rejected if the t ratio is large in
magnitude or, equivalently, the p value of the t ratio is small, say less than 0.05.
In general, the lag-� sample autocorrelation of rt is defined as

ρ̂� =
∑T

t=�+1(rt − r̄)(rt−� − r̄)∑T
t=1(rt − r̄)2

, 0 ≤ � < T − 1. (2.2)

If {rt } is an iid sequence satisfying E(r2
t ) < ∞, then ρ̂� is asymptotically normal

with mean zero and variance 1/T for any fixed positive integer �. More generally,
if rt is a weakly stationary time series satisfying rt = µ + ∑q

i=0 ψiat−i , where
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ψ0 = 1 and {aj } is a sequence of iid random variables with mean zero, then ρ̂� is
asymptotically normal with mean zero and variance (1 + 2

∑q

i=1 ρ
2
i )/T for �>q.

This is referred to as Bartlett’s formula in the time series literature; see Box,
Jenkins, and Reinsel (1994). For more information about the asymptotic distribution
of sample autocorrelations, see Fuller (1976, Chapter 6) and Brockwell and Davis
(1991, Chapter 7).

Testing Individual ACF
For a given positive integer �, the previous result can be used to test H0 : ρ� = 0
vs. Ha : ρ� �= 0. The test statistic is

t ratio = ρ̂�√
(1 + 2

∑�−1
i=1 ρ̂2

i )/T

.

If {rt } is a stationary Gaussian series satisfying ρj = 0 for j > �, the t ratio
is asymptotically distributed as a standard normal random variable. Hence, the
decision rule of the test is to reject H0 if |t ratio|>Zα/2, where Zα/2 is the
100(1 − α/2)th percentile of the standard normal distribution. For simplicity, many
software packages use 1/T as the asymptotic variance of ρ̂� for all � �= 0. They
essentially assume that the underlying time series is an iid sequence.

In finite samples, ρ̂� is a biased estimator of ρ�. The bias is in the order of
1/T , which can be substantial when the sample size T is small. In most financial
applications, T is relatively large so that the bias is not serious.

Portmanteau Test
Financial applications often require to test jointly that several autocorrelations of
rt are zero. Box and Pierce (1970) propose the Portmanteau statistic

Q∗(m) = T

m∑
�=1

ρ̂2
�

as a test statistic for the null hypothesis H0 : ρ1 = · · · = ρm = 0 against the alter-
native hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . , m}. Under the assumption that
{rt } is an iid sequence with certain moment conditions, Q∗(m) is asymptotically a
chi-squared random variable with m degrees of freedom.

Ljung and Box (1978) modify the Q∗(m) statistic as below to increase the power
of the test in finite samples,

Q(m) = T (T + 2)
m∑

�=1

ρ̂2
�

T − �
. (2.3)

The decision rule is to reject H0 if Q(m)>χ2
α , where χ2

α denotes the 100(1 − α)th
percentile of a chi-squared distribution with m degrees of freedom. Most software
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packages will provide the p value of Q(m). The decision rule is then to reject H0

if the p value is less than or equal to α, the significance level.
In practice, the choice of m may affect the performance of the Q(m) statistic.

Several values of m are often used. Simulation studies suggest that the choice of
m ≈ ln(T ) provides better power performance. This general rule needs modification
in analysis of seasonal time series for which autocorrelations with lags at multiples
of the seasonality are more important.

The statistics ρ̂1, ρ̂2, . . . defined in Eq. (2.2) is called the sample autocorrela-
tion function (ACF) of rt . It plays an important role in linear time series analysis.
As a matter of fact, a linear time series model can be characterized by its ACF,
and linear time series modeling makes use of the sample ACF to capture the lin-
ear dynamic of the data. Figure 2.1 shows the sample autocorrelation functions
of monthly simple and log returns of IBM stock from January 1926 to Decem-
ber 2008. The two sample ACFs are very close to each other, and they suggest
that the serial correlations of monthly IBM stock returns are very small, if any.
The sample ACFs are all within their two standard error limits, indicating that
they are not significantly different from zero at the 5% level. In addition, for the
simple returns, the Ljung–Box statistics give Q(5) = 3.37 and Q(10) = 13.99,
which correspond to p values of 0.64 and 0.17, respectively, based on chi-squared
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Figure 2.1 Sample autocorrelation functions of monthly (a) simple returns and (b) log returns of
IBM stock from January 1926 to December 2008. In each plot, two horizontal dashed lines denote two
standard error limits of sample ACF.
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Figure 2.2 Sample autocorrelation functions of monthly (a) simple returns and (b) log returns of value-
weighted index of U.S. markets from January 1926 to December 2008. In each plot, two horizontal
dashed lines denote two standard error limits of sample ACF.

distributions with 5 and 10 degrees of freedom. For the log returns, we have
Q(5) = 3.52 and Q(10) = 13.39 with p values 0.62 and 0.20, respectively. The
joint tests confirm that monthly IBM stock returns have no significant serial corre-
lations. Figure 2.2 shows the same for the monthly returns of the value-weighted
index from the Center for Research in Security Prices (CRSP), at the University
of Chicago. There are some significant serial correlations at the 5% level for both
return series. The Ljung–Box statistics give Q(5) = 29.71 and Q(10) = 39.55 for
the simple returns and Q(5) = 28.38 and Q(10) = 36.16 for the log returns. The
p values of these four test statistics are all less than 0.0001, suggesting that monthly
returns of the value-weighted index are serially correlated. Thus, the monthly mar-
ket index return seems to have stronger serial dependence than individual stock
returns.

In the finance literature, a version of the capital asset pricing model (CAPM)
theory is that the return {rt } of an asset is not predictable and should have no auto-
correlations. Testing for zero autocorrelations has been used as a tool to check the
efficient market assumption. However, the way by which stock prices are deter-
mined and index returns are calculated might introduce autocorrelations in the
observed return series. This is particularly so in analysis of high-frequency financial
data. We discuss some of these issues, such as bid–ask bounce and nonsynchronous
trading, in Chapter 5.
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R Demonstration
The following output has been edited and % denotes explanation:

> da=read.table("m-ibm3dx2608.txt",header=T) % Load data
> da[1,] % Check the 1st row of the data

date rtn vwrtn ewrtn sprtn
1 19260130 -0.010381 0.000724 0.023174 0.022472
> sibm=da[,2] % Get the IBM simple returns
> Box.test(sibm,lag=5,type=’Ljung’) % Ljung-Box statistic Q(5)

Box-Ljung test

data: sibm
X-squared = 3.3682, df = 5, p-value = 0.6434

> libm=log(sibm+1) % Log IBM returns
> Box.test(libm,lag=5,type=’Ljung’)

Box-Ljung test

data: libm
X-squared = 3.5236, df = 5, p-value = 0.6198

S-Plus Demonstration
Output edited.

> module(finmetrics)
> da=read.table("m-ibm3dx2608.txt",header=T) % Load data
> da[1,] % Check the 1st row of the data

date rtn vwrtn ewrtn sprtn
1 19260130 -0.010381 0.000724 0.023174 0.022472
> sibm=da[,2] % Get IBM simple returns
> autocorTest(sibm,lag=5) % Ljung-Box Q(5) test

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation
Test Statistics:
Test Stat 3.3682
p.value 0.6434

Dist. under Null: chi-square with 5 degrees of freedom
Total Observ.: 996

> libm=log(sibm+1) % IBM log returns
> autocorTest(libm,lag=5)

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation
Test Statistics:
Test Stat 3.5236
p.value 0.6198
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2.3 WHITE NOISE AND LINEAR TIME SERIES

White Noise
A time series rt is called a white noise if {rt } is a sequence of independent and
identically distributed random variables with finite mean and variance. In particular,
if rt is normally distributed with mean zero and variance σ 2, the series is called a
Gaussian white noise. For a white noise series, all the ACFs are zero. In practice,
if all sample ACFs are close to zero, then the series is a white noise series. Based
on Figures 2.1 and 2.2, the monthly returns of IBM stock are close to white noise,
whereas those of the value-weighted index are not.

The behavior of sample autocorrelations of the value-weighted index returns
indicates that for some asset returns it is necessary to model the serial dependence
before further analysis can be made. In what follows, we discuss some simple time
series models that are useful in modeling the dynamic structure of a time series.
The concepts presented are also useful later in modeling volatility of asset returns.

Linear Time Series
A time series rt is said to be linear if it can be written as

rt = µ +
∞∑
i=0

ψiat−i , (2.4)

where µ is the mean of rt , ψ0 = 1, and {at } is a sequence of iid random variables
with mean zero and a well-defined distribution (i.e., {at } is a white noise series). It
will be seen later that at denotes the new information at time t of the time series
and is often referred to as the innovation or shock at time t . In this book, we are
mainly concerned with the case where at is a continuous random variable. Not
all financial time series are linear, however. We study nonlinearity and nonlinear
models in Chapter 4.

For a linear time series in Eq. (2.4), the dynamic structure of rt is governed by
the coefficients ψi , which are called the ψ weights of rt in the time series literature.
If rt is weakly stationary, we can obtain its mean and variance easily by using the
independence of {at } as

E(rt ) = µ, Var(rt ) = σ 2
a

∞∑
i=0

ψ2
i , (2.5)

where σ 2
a is the variance of at . Because Var(rt ) < ∞, {ψ2

i } must be a convergent
sequence, that is, ψ2

i → 0 as i → ∞. Consequently, for a stationary series, impact
of the remote shock at−i on the return rt vanishes as i increases.

The lag-� autocovariance of rt is

γ� = Cov(rt , rt−�) = E

( ∞∑
i=0

ψiat−i

) ∞∑
j=0

ψjat−�−j
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= E

 ∞∑
i,j=0

ψiψjat−iat−�−j


=

∞∑
j=0

ψj+�ψjE(a2
t−�−j ) = σ 2

a

∞∑
j=0

ψjψj+�. (2.6)

Consequently, the ψ weights are related to the autocorrelations of rt as follows:

ρ� = γ�

γ0
=

∑∞
i=0 ψiψi+�

1 + ∑∞
i=1 ψ

2
i

, � ≥ 0, (2.7)

where ψ0 = 1. Linear time series models are econometric and statistical models
used to describe the pattern of the ψ weights of rt . For a weakly stationary time
series, ψi → 0 as i → ∞ and, hence, ρ� converges to zero as � increases. For asset
returns, this means that, as expected, the linear dependence of current return rt on
the remote past return rt−� diminishes for large �.

2.4 SIMPLE AR MODELS

The fact that the monthly return rt of CRSP value-weighted index has a statistically
significant lag-1 autocorrelation indicates that the lagged return rt−1 might be useful
in predicting rt . A simple model that makes use of such predictive power is

rt = φ0 + φ1rt−1 + at , (2.8)

where {at } is assumed to be a white noise series with mean zero and variance
σ 2
a . This model is in the same form as the well-known simple linear regression

model in which rt is the dependent variable and rt−1 is the explanatory variable.
In the time series literature, model (2.8) is referred to as an autoregressive (AR)
model of order 1 or simply an AR(1) model. This simple model is also widely
used in stochastic volatility modeling when rt is replaced by its log volatility; see
Chapters 3 and 12.

The AR(1) model in Eq. (2.8) has several properties similar to those of the
simple linear regression model. However, there are some significant differences
between the two models, which we discuss later. Here it suffices to note that an
AR(1) model implies that, conditional on the past return rt−1, we have

E(rt |rt−1) = φ0 + φ1rt−1, Var(rt |rt−1) = Var(at ) = σ 2
a .

That is, given the past return rt−1, the current return is centered around φ0 + φ1rt−1

with standard deviation σa . This is a Markov property such that conditional on rt−1,
the return rt is not correlated with rt−i for i > 1. Obviously, there are situations
in which rt−1 alone cannot determine the conditional expectation of rt and a more
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flexible model must be sought. A straightforward generalization of the AR(1) model
is the AR(p) model:

rt = φ0 + φ1rt−1 + · · · + φprt−p + at , (2.9)

where p is a nonnegative integer and {at } is defined in Eq. (2.8). This model
says that the past p variables rt−i (i = 1, . . . , p) jointly determine the conditional
expectation of rt given the past data. The AR(p) model is in the same form as
a multiple linear regression model with lagged values serving as the explanatory
variables.

2.4.1 Properties of AR Models

For effective use of AR models, it pays to study their basic properties. We discuss
properties of AR(1) and AR(2) models in detail and give the results for the general
AR(p) model.

AR(1) Model
We begin with the sufficient and necessary condition for weak stationarity of the
AR(1) model in Eq. (2.8). Assuming that the series is weakly stationary, we have
E(rt ) = µ, Var(rt ) = γ0, and Cov(rt , rt−j ) = γj , where µ and γ0 are constant and
γj is a function of j , not t . We can easily obtain the mean, variance, and autocor-
relations of the series as follows. Taking the expectation of Eq. (2.8) and because
E(at ) = 0, we obtain

E(rt ) = φ0 + φ1E(rt−1).

Under the stationarity condition, E(rt ) = E(rt−1) = µ and hence

µ = φ0 + φ1µ or E(rt ) = µ = φ0

1 − φ1
.

This result has two implications for rt . First, the mean of rt exists if φ1 �= 1.
Second, the mean of rt is zero if and only if φ0 = 0. Thus, for a stationary AR(1)
process, the constant term φ0 is related to the mean of rt via φ0 = (1 − φ1)µ and
φ0 = 0 implies that E(rt ) = 0.

Next, using φ0 = (1 − φ1)µ, the AR(1) model can be rewritten as

rt − µ = φ1(rt−1 − µ) + at . (2.10)

By repeated substitutions, the prior equation implies that

rt − µ = at + φ1at−1 + φ2
1at−2 + · · ·

=
∞∑
i=0

φi
1at−i . (2.11)
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This equation expresses an AR(1) model in the form of Eq. (2.4) with ψi = φi
1.

Thus, rt − µ is a linear function of at−i for i ≥ 0. Using this property and the
independence of the series {at }, we obtain E[(rt − µ)at+1] = 0. By the stationarity
assumption, we have Cov(rt−1, at ) = E[(rt−1 − µ)at ] = 0. This latter result can
also be seen from the fact that rt−1 occurred before time t and at does not depend
on any past information. Taking the square, then the expectation of Eq. (2.10), we
obtain

Var(rt ) = φ2
1Var(rt−1) + σ 2

a ,

where σ 2
a is the variance of at , and we make use of the fact that the covariance

between rt−1 and at is zero. Under the stationarity assumption, Var(rt ) = Var(rt−1),
so that

Var(rt ) = σ 2
a

1 − φ2
1

provided that φ2
1 < 1. The requirement of φ2

1 < 1 results from the fact that the
variance of a random variable is bounded and nonnegative. Consequently, the weak
stationarity of an AR(1) model implies that −1 < φ1 < 1, that is, |φ1| < 1. Yet if
|φ1| < 1, then by Eq. (2.11) and the independence of the {at } series, we can show
that the mean and variance of rt are finite and time invariant; see Eq. (2.5). In
addition, by Eq. (2.6), all the autocovariances of rt are finite. Therefore, the AR(1)
model is weakly stationary. In summary, the necessary and sufficient condition for
the AR(1) model in Eq. (2.8) to be weakly stationary is |φ1| < 1.

Using φ0 = (1 − φ1)µ, one can rewrite a stationary AR(1) model as

rt = (1 − φ1)µ + φ1rt−1 + at .

This model is often used in the finance literature with φ1 measuring the persistence
of the dynamic dependence of an AR(1) time series.

Autocorrelation Function of an AR(1) Model
Multiplying Eq. (2.10) by at , using the independence between at and rt−1, and
taking expectation, we obtain

E[at (rt − µ)] = φ1E[at (rt−1 − µ)] + E(a2
t ) = E(a2

t ) = σ 2
a ,

where σ 2
a is the variance of at . Multiplying Eq. (2.10) by rt−� − µ, taking expec-

tation, and using the prior result, we have

γ� =
{
φ1γ1 + σ 2

a if � = 0

φ1γ�−1 if �> 0,
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where we use γ� = γ−�. Consequently, for a weakly stationary AR(1) model in
Eq. (2.8), we have

Var(rt ) = γ0 = σ 2

1 − φ2
1

and γ� = φ1γ�−1, for �> 0.

From the latter equation, the ACF of rt satisfies

ρ� = φ1ρ�−1, for �> 0.

Because ρ0 = 1, we have ρ� = φ�
1. This result says that the ACF of a weakly

stationary AR(1) series decays exponentially with rate φ1 and starting value ρ0 = 1.
For a positive φ1, the plot of ACF of an AR(1) model shows a nice exponential
decay. For a negative φ1, the plot consists of two alternating exponential decays
with rate φ2

1 . Figure 2.3 shows the ACF of two AR(1) models with φ1 = 0.8 and
φ1 = −0.8.

AR(2) Model
An AR(2) model assumes the form

rt = φ0 + φ1rt−1 + φ2rt−2 + at . (2.12)
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Figure 2.3 Autocorrelation function of an AR(1) model: (a) for φ1 = 0.8 and (b) for φ1 = −0.8.
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Using the same technique as that of the AR(1) case, we obtain

E(rt ) = µ = φ0

1 − φ1 − φ2

provided that φ1 + φ2 �= 1. Using φ0 = (1 − φ1 − φ2)µ, we can rewrite the AR(2)
model as

(rt − µ) = φ1(rt−1 − µ) + φ2(rt−2 − µ) + at .

Multiplying the prior equation by (rt−� − µ), we have

(rt−� − µ)(rt − µ) = φ1(rt−� − µ)(rt−1 − µ)

+ φ2(rt−� − µ)(rt−2 − µ) + (rt−� − µ)at .

Taking expectation and using E[(rt−� − µ)at ] = 0 for �> 0, we obtain

γ� = φ1γ�−1 + φ2γ�−2, for �> 0.

This result is referred to as the moment equation of a stationary AR(2) model.
Dividing the above equation by γ0, we have the property

ρ� = φ1ρ�−1 + φ2ρ�−2, for �> 0, (2.13)

for the ACF of rt . In particular, the lag-1 ACF satisfies

ρ1 = φ1ρ0 + φ2ρ−1 = φ1 + φ2ρ1.

Therefore, for a stationary AR(2) series rt , we have ρ0 = 1,

ρ1 = φ1

1 − φ2

ρ� = φ1ρ�−1 + φ2ρ�−2, � ≥ 2.

The result of Eq. (2.13) says that the ACF of a stationary AR(2) series satisfies the
second-order difference equation

(1 − φ1B − φ2B
2)ρ� = 0,

where B is called the back-shift operator such that Bρ� = ρ�−1. This difference
equation determines the properties of the ACF of a stationary AR(2) time series.
It also determines the behavior of the forecasts of rt . In the time series literature,
some people use the notation L instead of B for the back-shift operator. Here
L stands for lag operator. For instance, Lrt = rt−1 and Lψk = ψk−1.
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Corresponding to the prior difference equation, there is a second-order polyno-
mial equation:

1 − φ1x − φ2x
2 = 0. (2.14)

Solutions of this equation are

x =
φ1 ±

√
φ2

1 + 4φ2

−2φ2
.

In the time series literature, inverses of the two solutions are referred to as the
characteristic roots of the AR(2) model. Denote the two characteristic roots by
ω1 and ω2. If both ωi are real valued, then the second-order difference equation
of the model can be factored as (1 − ω1B)(1 − ω2B) and the AR(2) model can
be regarded as an AR(1) model operates on top of another AR(1) model. The
ACF of rt is then a mixture of two exponential decays. If φ2

1 + 4φ2 < 0, then ω1

and ω2 are complex numbers (called a complex-conjugate pair ), and the plot of
ACF of rt would show a picture of damping sine and cosine waves. In business and
economic applications, complex characteristic roots are important. They give rise to
the behavior of business cycles. It is then common for economic time series models
to have complex-valued characteristic roots. For an AR(2) model in Eq. (2.12) with
a pair of complex characteristic roots, the average length of the stochastic cycles is

k = 2π

cos−1[φ1/(2
√−φ2)]

,

where the cosine inverse is stated in radians. If one writes the complex solutions
as a ± bi, where i = √−1, then we have φ1 = 2a, φ2 = −(a2 + b2), and

k = 2π

cos−1(a/
√
a2 + b2)

,

where
√
a2 + b2 is the absolute value of a ± bi. See Example 2.1 for an illustration.

Figure 2.4 shows the ACF of four stationary AR(2) models. Part (b) is the ACF
of the AR(2) model (1 − 0.6B + 0.4B2)rt = at . Because φ2

1 + 4φ2 = 0.36 + 4 ×
(−0.4) = −1.24 < 0, this particular AR(2) model contains two complex charac-
teristic roots, and hence its ACF exhibits damping sine and cosine waves. The
other three AR(2) models have real-valued characteristic roots. Their ACFs decay
exponentially.

Example 2.1. As an illustration, consider the quarterly growth rate of U.S.
real gross national product (GNP), seasonally adjusted, from the second quarter
of 1947 to the first quarter of 1991. This series shown in Figure 2.5 is also used
in Chapter 4 as an example of nonlinear economic time series. Here we simply
employ an AR(3) model for the data. Denoting the growth rate by rt , we can use
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Figure 2.4 Autocorrelation function of an AR(2) model: (a) φ1 = 1.2 and φ2 = −0.35, (b) φ1 = 0.6
and φ2 = −0.4, (c) φ1 = 0.2 and φ2 = 0.35, and (d) φ1 = −0.2 and φ2 = 0.35.

the model building procedure of the next subsection to estimate the model. The
fitted model is

rt = 0.0047 + 0.348rt−1 + 0.179rt−2 − 0.142rt−3 + at , σ̂a = 0.0097. (2.15)

Rewriting the model as

rt − 0.348rt−1 − 0.179rt−2 + 0.142rt−3 = 0.0047 + at ,

we obtain a corresponding third-order difference equation

1 − 0.348B − 0.179B2 + 0.141B3 = 0,

which can be factored approximately as

(1 + 0.521B)(1 − 0.869B + 0.274B2) = 0.

The first factor (1 + 0.521B) shows an exponentially decaying feature of the GNP
growth rate. Focusing on the second-order factor 1 − 0.869B − (−0.274)B2 = 0,
we have φ2

1 + 4φ2 = 0.8692 + 4(−0.274) = −0.341 < 0. Therefore, the second
factor of the AR(3) model confirms the existence of stochastic business cycles
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Figure 2.5 Time plot of growth rate of U.S. quarterly real GNP from 1947.II to 1991.I. Data are
seasonally adjusted and in percentages.

in the quarterly growth rate of U.S. real GNP. This is reasonable as the U.S.
economy went through expansion and contraction periods. The average length of
the stochastic cycles is approximately

k = 2(3.14159)

cos−1[φ1/(2
√−φ2)]

= 10.62 quarters,

which is about 3 years. If one uses a nonlinear model to separate U.S. economy
into “expansion” and “contraction” periods, the data show that the average duration
of contraction periods is about three quarters and that of expansion periods is about
3 years; see the analysis in Chapter 4. The average duration of 10.62 quarters is
a compromise between the two separate durations. The periodic feature obtained
here is common among growth rates of national economies. For example, similar
features can be found for many OECD (Organization for Economic Cooperation
and Development) countries.

R Demonstration
The R demonstration for Example 2.1, where % denotes explanation, follows:

> gnp=scan(file=’dgnp82.txt’) % Load data
% To create a time-series object

> gnp1=ts(gnp,frequency=4,start=c(1947,2))
> plot(gnp1)
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> points(gnp1,pch=’*’)

> m1=ar(gnp,method=’’mle’’) % Find the AR order
> m1$order % An AR(3) is selected based on AIC
[1] 3
> m2=arima(gnp,order=c(3,0,0)) % Estimation
> m2
Call:
arima(x = gnp, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept

0.3480 0.1793 -0.1423 0.0077
s.e. 0.0745 0.0778 0.0745 0.0012

sigma^2 estimated as 9.427e-05: log likelihood=565.84,
aic=-1121.68

% In R, ‘‘intercept’’ denotes the mean of the series.
% Therefore, the constant term is obtained below:
> (1-.348-.1793+.1423)*0.0077
[1] 0.0047355
> sqrt(m2$sigma2) % Residual standard error
[1] 0.009709322

> p1=c(1,-m2$coef[1:3]) % Characteristic equation
> roots=polyroot(p1) % Find solutions
> roots
[1] 1.590253+1.063882i -1.920152+0.000000i 1.590253-1.063882i
> Mod(roots) % Compute the absolute values of the solutions
[1] 1.913308 1.920152 1.913308
% To compute average length of business cycles:

> k=2*pi/acos(1.590253/1.913308)
> k
[1] 10.65638

Stationarity
The stationarity condition of an AR(2) time series is that the absolute values of
its two characteristic roots are less than 1, that is, its two characteristic roots
are less than 1 in modulus. Equivalently, the two solutions of the characteristic
equation are greater than 1 in modulus. Under such a condition, the recursive
equation in (2.13) ensures that the ACF of the model converges to 0 as the
lag � increases. This convergence property is a necessary condition for a sta-
tionary time series. In fact, the condition also applies to the AR(1) model where
the polynomial equation is 1 − φ1x = 0. The characteristic root is w = 1/x = φ1,
which must be less than 1 in modulus for rt to be stationary. As shown before,
ρ� = φ�

1 for a stationary AR(1) model. The condition implies that ρ� → 0 as
� → ∞.
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AR(p) Model
The results of the AR(1) and AR(2) models can readily be generalized to the
general AR(p) model in Eq. (2.9). The mean of a stationary series is

E(rt ) = φ0

1 − φ1 − · · · − φp

provided that the denominator is not zero. The associated characteristic equation
of the model is

1 − φ1x − φ2x
2 − · · · − φpx

p = 0.

If all the solutions of this equation are greater than 1 in modulus, then the series
rt is stationary. Again, inverses of the solutions are the characteristic roots of the
model. Thus, stationarity requires that all characteristic roots are less than 1 in
modulus. For a stationary AR(p) series, the ACF satisfies the difference equation

(1 − φ1B − φ2B
2 − · · · − φpB

p)ρ� = 0, for �> 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of
damping sine and cosine patterns and exponential decays depending on the nature
of its characteristic roots.

2.4.2 Identifying AR Models in Practice

In application, the order p of an AR time series is unknown. It must be specified
empirically. This is referred to as the order determination (or order specification)
of AR models, and it has been extensively studied in the time series literature. Two
general approaches are available for determining the value of p. The first approach
is to use the partial autocorrelation function, and the second approach uses some
information criteria.

Partial Autocorrelation Function (PACF)
The PACF of a stationary time series is a function of its ACF and is a useful
tool for determining the order p of an AR model. A simple, yet effective way to
introduce PACF is to consider the following AR models in consecutive orders:

rt = φ0,1 + φ1,1rt−1 + e1t ,

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2t ,

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3t ,

rt = φ0,4 + φ1,4rt−1 + φ2,4rt−2 + φ3,4rt−3 + φ4,4rt−4 + e4t ,

...
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where φ0,j , φi,j , and {ejt } are, respectively, the constant term, the coefficient of
rt−i , and the error term of an AR(j ) model. These models are in the form of a
multiple linear regression and can be estimated by the least-squares method. As a
matter of fact, they are arranged in a sequential order that enables us to apply the
idea of partial F test in multiple linear regression analysis. The estimate φ̂1,1 of
the first equation is called the lag-1 sample PACF of rt . The estimate φ̂2,2 of the
second equation is the lag-2 sample PACF of rt . The estimate φ̂3,3 of the third
equation is the lag-3 sample PACF of rt , and so on.

From the definition, the lag-2 PACF φ̂2,2 shows the added contribution of rt−2

to rt over the AR(1) model rt = φ0 + φ1rt−1 + e1t . The lag-3 PACF shows the
added contribution of rt−3 to rt over an AR(2) model, and so on. Therefore, for
an AR(p) model, the lag-p sample PACF should not be zero, but φ̂j,j should be
close to zero for all j >p. We make use of this property to determine the order
p. For a stationary Gaussian AR(p) model, it can be shown that the sample PACF
has the following properties:

• φ̂p,p converges to φp as the sample size T goes to infinity.
• φ̂�,� converges to zero for all �>p.
• The asymptotic variance of φ̂�,� is 1/T for �>p.

These results say that, for an AR(p) series, the sample PACF cuts off at
lag p.

As an example, consider the monthly simple returns of CRSP value-weighted
index from January 1926 to December 2008. Table 2.1 gives the first 12 lags of
sample PACF of the series. With T = 996, the asymptotic standard error of the
sample PACF is approximately 0.032. Therefore, using the 5% significant level,
we identify an AR(3) or AR(9) model for the data (i.e., p = 3 or 9). If the 1%
significant level is used, we specify an AR(3) model.

As another example, Figure 2.6 shows the PACF of the GNP growth rate series
of Example 2.1. The two dotted lines of the plot denote the approximate two
standard error limits ±(2/

√
176). The plot suggests an AR(3) model for the data

because the first three lags of sample PACF appear to be large.

TABLE 2.1 Sample Partial Autocorrelation Function and Some Information
Criteria for the Monthly Simple Returns of CRSP Value-Weighted Index from
January 1926 to December 2008
p 1 2 3 4 5 6
PACF 0.115 −0.030 −0.102 0.033 0.062 −0.050
AIC −5.838 −5.837 −5.846 −5.845 −5.847 −5.847
BIC −5.833 −5.827 −5.831 −5.825 −5.822 −5.818
p 7 8 9 10 11 12
PACF 0.031 0.052 0.063 0.005 −0.005 0.011
AIC −5.846 −5.847 −5.849 −5.847 −5.845 −5.843
BIC −5.812 −5.807 −5.805 −5.798 −5.791 −5.784
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Figure 2.6 Sample partial autocorrelation function of U.S. quarterly real GNP growth rate from 1947.II
to 1991.I. Dotted lines give approximate pointwise 95% confidence interval.

Information Criteria
There are several information criteria available to determine the order p of an AR
process. All of them are likelihood based. For example, the well-known Akaike
information criterion (AIC) (Akaike, 1973) is defined as

AIC = −2

T
ln(likelihood) + 2

T
× (number of parameters), (2.16)

where the likelihood function is evaluated at the maximum-likelihood estimates
and T is the sample size. For a Gaussian AR(�) model, AIC reduces to

AIC(�) = ln(σ̃ 2
� ) + 2�

T

where σ̃ 2
� is the maximum-likelihood estimate of σ 2

a , which is the variance of at ,
and T is the sample size; see Eq. (1.18). The first term of the AIC in Eq. (2.16)
measures the goodness of fit of the AR(�) model to the data, whereas the second
term is called the penalty function of the criterion because it penalizes a candidate
model by the number of parameters used. Different penalty functions result in
different information criteria.

Another commonly used criterion function is the Schwarz–Bayesian information
criterion (BIC). For a Gaussian AR(�) model, the criterion is

BIC(�) = ln(σ̃ 2
� ) + � ln(T )

T
.
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The penalty for each parameter used is 2 for AIC and ln(T ) for BIC. Thus, com-
pared with AIC, BIC tends to select a lower AR model when the sample size is
moderate or large.

Selection Rule
To use AIC to select an AR model in practice, one computes AIC(�) for � =
0, . . . , P , where p is a prespecified positive integer and selects the order k that has
the minimum AIC value. The same rule applies to BIC.

Table 2.1 also gives the AIC and BIC for p = 1, . . . , 12. The AIC values are
close to each other with minimum −5.849 occurring at p = 9, suggesting that an
AR(9) model is preferred by the criterion. The BIC, on the other hand, attains
its minimum value −5.833 at p = 1 with −5.831 as a close second at p = 3.
Thus, the BIC selects an AR(1) model for the value-weighted return series. This
example shows that different approaches or criteria to order determination may
result in different choices of p. There is no evidence to suggest that one approach
outperforms the other in a real application. Substantive information of the problem
under study and simplicity are two factors that also play an important role in
choosing an AR model for a given time series.

Again, consider the growth rate series of U.S. quarterly real GNP of
Example 2.1. The AIC obtained from R also identifies an AR(3) model. Note that
the AIC value of the ar command in R has been adjusted so that the minimum
AIC is zero.

> gnp=scan(file=’q-gnp4791.txt’)
> ord=ar(gnp,method=’’mle’’)
> ord$aic
[1] 27.847 2.742 1.603 0.000 0.323 2.243
[7] 4.052 6.025 5.905 7.572 7.895 9.679

> ord$order
[1] 3

Parameter Estimation
For a specified AR(p) model in Eq. (2.9), the conditional least-squares method,
which starts with the (p + 1)th observation, is often used to estimate the parameters.
Specifically, conditioning on the first p observations, we have

rt = φ0 + φ1rt−1 + · · · + φprt−p + at , t = p + 1, . . . , T ,

which is in the form of a multiple linear regression and can be estimated by the
least-squares method. Denote the estimate of φi by φ̂i . The fitted model is

r̂t = φ̂0 + φ̂1rt−1 + · · · + φ̂prt−p,

and the associated residual is

ât = rt − r̂t .
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The series {ât } is called the residual series , from which we obtain

σ̂ 2
a =

∑T
t=p+1 â

2
t

T − 2p − 1
.

If the conditional-likelihood method is used, the estimates of φi remain unchanged,
but the estimate of σ 2

a becomes σ̃ 2
a = σ̂ 2

a × (T − 2p − 1)/(T − p). In some pack-
ages, σ̃ 2

a is defined as σ̂ 2
a × (T − 2p − 1)/T . For illustration, consider an AR(3)

model for the monthly simple returns of the value-weighted index in Table 2.1.
The fitted model is

rt = 0.0091 + 0.116rt−1 − 0.019rt−2 − 0.104rt−3 + ât , σ̂a = 0.054.

The standard errors of the coefficients are 0.002, 0.032, 0.032, and 0.032, respec-
tively. Except for the lag-2 coefficient, all parameters are statistically significant at
the 1% level.

For this example, the AR coefficients of the fitted model are small, indicating that
the serial dependence of the series is weak, even though it is statistically significant
at the 1% level. The significance of φ̂0 of the entertained model implies that the
expected mean return of the series is positive. In fact, µ̂ = 0.0091/(1 − 0.116 +
0.019 + 0.104) = 0.009, which is small but has an important long-term implication.
It implies that the long-term return of the index can be substantial. Using the
multiperiod simple return defined in Chapter 1, the average annual simple gross
return is [

∏996
t=1(1 + Rt)]12/996 − 1 ≈ 0.093. In other words, the monthly simple

returns of the CRSP value-weighted index grew about 9.3% per annum from 1926
to 2008, supporting the common belief that equity market performs well in the
long term. A one-dollar investment at the beginning of 1926 would be worth about
$1593 at the end of 2008.

> vw=read.table(’m-ibm3dx.txt’,header=T)[,3]
> t1=prod(vw+1)
> t1
[1] 1592.953
> t1^(12/996)-1
[1] 0.0929

Model Checking
A fitted model must be examined carefully to check for possible model inadequacy.
If the model is adequate, then the residual series should behave as a white noise.
The ACF and the Ljung–Box statistics in Eq. (2.3) of the residuals can be used to
check the closeness of ât to a white noise. For an AR(p) model, the Ljung–Box
statistic Q(m) follows asymptotically a chi-squared distribution with m − g degrees
of freedom, where g denotes the number of AR coefficients used in the model. The
adjustment in the degrees of freedom is made based on the number of constraints
added to the residuals ât from fitting the AR(p) to an AR(0) model. If a fitted
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model is found to be inadequate, it must be refined. For instance, if some of the
estimated AR coefficients are not significantly different from zero, then the model
should be simplified by trying to remove those insignificant parameters. If residual
ACF shows additional serial correlations, then the model should be extended to
take care of those correlations.

Remark. Most time series packages do not adjust the degrees of freedom when
applying the Ljung–Box statistics Q(m) to a residual series. This is understandable
when m ≤ g. �

Consider the residual series of the fitted AR(3) model for the monthly value-
weighted simple returns. We have Q(12) = 16.35 with a p value 0.060 based on
its asymptotic chi-squared distribution with 9 degrees of freedom. Thus, the null
hypothesis of no residual serial correlation in the first 12 lags is barely not rejected
at the 5% level. However, since the lag-2 AR coefficient is not significant at the
5% level, one can refine the model as

rt = 0.0088 + 0.114rt−1 − 0.106rt−3 + at , σ̂a = 0.0536,

where all the estimates are now significant at the 1% level. The residual series
gives Q(12) = 16.83 with a p value 0.078 (based on χ2

10). The model is adequate
in modeling the dynamic linear dependence of the data.

R Demonstration
In the following R demonstration, % denotes an explanation:

> vw=read.table(’m-ibm3dx2608.txt’,header=T)[,3]
> m3=arima(vw,order=c(3,0,0))
> m3
Call:
arima(x = vw, order = c(3, 0, 0))

Coefficients:
ar1 ar2 ar3 intercept

0.1158 -0.0187 -0.1042 0.0089
s.e. 0.0315 0.0317 0.0317 0.0017

sigma^2 estimated as 0.002875: log likelihood=1500.86,
aic=-2991.73

> (1-.1158+.0187+.1042)*mean(vw) % Compute
the intercept phi(0).

[1] 0.00896761
> sqrt(m3$sigma2) % Compute standard error of residuals
[1] 0.0536189

> Box.test(m3$residuals,lag=12,type=’Ljung’)
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Box-Ljung test

data: m3$residuals % R uses 12 degrees of freedom

X-squared = 16.3525, df = 12, p-value = 0.1756

> pv=1-pchisq(16.35,9) % Compute p-value using 9 degrees
of freedom

> pv
[1] 0.05992276
% To fix the AR(2) coef to zero:

> m3=arima(vw,order=c(3,0,0),fixed=c(NA,0,NA,NA))
% The subcommand ’fixed’ is used to fix parameter values,
% where NA denotes estimation and 0 means fixing the

parameter to 0.
% The ordering of the parameters can be found using m3$coef.

> m3
Call:
arima(x = vw, order = c(3, 0, 0), fixed = c(NA, 0, NA, NA))

Coefficients:
ar1 ar2 ar3 intercept

0.1136 0 -0.1063 0.0089
s.e. 0.0313 0 0.0315 0.0017

sigma^2 estimated as 0.002876: log likelihood=1500.69,
aic=-2993.38

> (1-.1136+.1063)*.0089 % Compute phi(0)
[1] 0.00883503
> sqrt(m3$sigma2) % Compute residual standard error
[1] 0.05362832

> Box.test(m3$residuals,lag=12,type=’Ljung’)

Box-Ljung test

data: m3$residuals
X-squared = 16.8276, df = 12, p-value = 0.1562

> pv=1-pchisq(16.83,10)
> pv
[1] 0.0782113

S-Plus Demonstration
The following S-Plus output has been edited:

> vw=read.table(’m-ibm3dx2608.txt’,header=T)[,3]
> ar3=OLS(vw ar(3))



simple ar models 53

> summary(ar3)
Call:
OLS(formula = vw ~ ar(3))

Residuals:
Min 1Q Median 3Q Max

-0.2863 -0.0263 0.0034 0.0297 0.3689

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0091 0.0018 5.1653 0.0000
lag1 0.1148 0.0316 3.6333 0.0003
lag2 -0.0188 0.0318 -0.5894 0.5557
lag3 -0.1043 0.0318 -3.2763 0.0011

Regression Diagnostics:
R-Squared 0.0246

Adjusted R-Squared 0.0216
Durbin-Watson Stat 1.9913

Residual Diagnostics:
Stat P-Value

Jarque-Bera 1656.3928 0.0000
Ljung-Box 50.1279 0.0087

Residual standard error: 0.05375 on 989 degrees of freedom

> autocorTest(ar3$residuals,lag=12)

Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation

Test Statistics:
Test Stat 16.5668
p.value 0.1666 % S-Plus uses 12 degrees of freedom

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 993

> 1-pchisq(16.57,9) % Compute p-value with 9 degrees
of freedom

[1] 0.05589128

2.4.3 Goodness of Fit

A commonly used statistic to measure goodness of fit of a stationary model is the
R square (R2) defined as

R2 = 1 − residual sum of squares

total sum of squares
.
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For a stationary AR(p) time series model with T observations {rt |t = 1, . . . , T },
the measure becomes

R2 = 1 −
∑T

t=p+1 â
2
t∑T

t=p+1(rt − r̄)2
,

where r̄ = ∑T
t=p+1 rt/(T − p). It is easy to show that 0 ≤ R2 ≤ 1. Typically, a

larger R2 indicates that the model provides a closer fit to the data. However, this is
only true for a stationary time series. For the unit-root nonstationary series discussed
later in this chapter, R2 of an AR(1) fit converges to one when the sample size
increases to infinity, regardless of the true underlying model of rt .

For a given data set, it is well known that R2 is a nondecreasing function of
the number of parameters used. To overcome this weakness, an adjusted R2 is
proposed, which is defined as

Adj − R2 = 1 − variance of residuals

variance of rt

= 1 − σ̂ 2
a

σ̂ 2
r

,

where σ̂ 2
r is the sample variance of rt . This new measure takes into account the

number of parameters used in the fitted model. However, it is no longer between
0 and 1.

2.4.4 Forecasting

Forecasting is an important application of time series analysis. For the AR(p)
model in Eq. (2.9), suppose that we are at the time index h and are interested
in forecasting rh+�, where � ≥ 1. The time index h is called the forecast origin
and the positive integer � is the forecast horizon . Let r̂h(�) be the forecast of rh+�

using the minimum squared error loss function. In other words, the forecast r̂k(�)
is chosen such that

E{[rh+� − r̂h(�)]
2|Fh} ≤ min

g
E[(rh+� − g)2|Fh],

where g is a function of the information available at time h (inclusive), that is,
a function of Fh. We referred to r̂h(�) as the �-step ahead forecast of rt at the
forecast origin h. Let Fh be the collection of information available at the forecast
origin h.

1-Step-Ahead Forecast
From the AR(p) model, we have

rh+1 = φ0 + φ1rh + · · · + φprh+1−p + ah+1.
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Under the minimum squared error loss function, the point forecast of rh+1 given
Fh is the conditional expectation

r̂h(1) = E(rh+1|Fh) = φ0 +
p∑

i=1

φirh+1−i ,

and the associated forecast error is

eh(1) = rh+1 − r̂h(1) = ah+1.

Consequently, the variance of the 1-step-ahead forecast error is Var[eh(1)] =
Var(ah+1) = σ 2

a . If at is normally distributed, then a 95% 1-step-ahead interval
forecast of rh+1 is r̂h(1) ± 1.96 × σa . For the linear model in Eq. (2.4), at+1 is also
the 1-step-ahead forecast error at the forecast origin t . In the econometric literature,
at+1 is referred to as the shock to the series at time t + 1.

In practice, estimated parameters are often used to compute point and interval
forecasts. This results in a conditional forecast because such a forecast does not
take into consideration the uncertainty in the parameter estimates. In theory, one
can consider parameter uncertainty in forecasting, but it is much more involved. A
natural way to consider parameter and model uncertainty in forecasting is Bayesian
forecasting with Markov chan Monte Carlo (MCMC) methods. See Chapter 12 for
further discussion. For simplicity, we assume that the model is given in this chapter.
When the sample size used in estimation is sufficiently large, then the conditional
forecast is close to the unconditional one.

2-Step-Ahead Forecast
Next consider the forecast of rh+2 at the forecast origin h. From the AR(p) model,
we have

rh+2 = φ0 + φ1rh+1 + · · · + φprh+2−p + ah+2.

Taking conditional expectation, we have

r̂h(2) = E(rh+2|Fh) = φ0 + φ1r̂h(1) + φ2rh + · · · + φprh+2−p

and the associated forecast error

eh(2) = rh+2 − r̂h(2) = φ1[rh+1 − r̂h(1)] + ah+2 = ah+2 + φ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + φ2
1)σ

2
a . Interval forecasts

of rh+2 can be computed in the same way as those for rh+1. It is interesting to
see that Var[eh(2)] ≥ Var[eh(1)], meaning that as the forecast horizon increases
the uncertainty in forecast also increases. This is in agreement with common sense
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that we are more uncertain about rh+2 than rh+1 at the time index h for a linear
time series.

Multistep-Ahead Forecast
In general, we have

rh+� = φ0 + φ1rh+�−1 + · · · + φprh+�−p + ah+�.

The �-step-ahead forecast based on the minimum squared error loss function is the
conditional expectation of rh+� given Fh, which can be obtained as

r̂h(�) = φ0 +
p∑

i=1

φi r̂h(� − i),

where it is understood that r̂h(i) = rh+i if i ≤ 0. This forecast can be computed
recursively using forecasts r̂h(i) for i = 1, . . . , � − 1. The �-step-ahead forecast
error is eh(�) = rh+� − r̂h(�). It can be shown that for a stationary AR(p) model,
r̂h(�) converges to E(rt ) as � → ∞, meaning that for such a series long-term point
forecast approaches its unconditional mean. This property is referred to as the mean
reversion in the finance literature. For an AR(1) model, the speed of mean reversion
is measured by the half-life defined as � = ln(0.5)/ ln(|φ1|). The variance of the
forecast error then approaches the unconditional variance of rt . Note that for an
AR(1) model in (2.8), let xt = rt − E(rt ) be the mean-adjusted series. It is easy to
see that the �-step-ahead forecast of xh+� at the forecast orign h is x̂h(�) = φ�

1xh.
The half-life is the forecast horizon such that x̂h(�) = 1

2xh. That is, φ�
1 = 1

2 . Thus,
� = ln(0.5)/ ln(|φ1|).

Table 2.2 contains the 1-step- to 12-step ahead forecasts and the standard errors
of the associated forecast errors at the forecast origin 984 for the monthly simple
return of the value-weighted index using an AR(3) model that was reestimated
using the first 984 observations. The fitted model is

rt = 0.0098 + 0.1024rt−1 − 0.0201rt−2 − 0.1090rt−3 + at ,

where σ̂a = 0.054. The actual returns of 2008 are also given in Table 2.2. Because
of the weak serial dependence in the series, the forecasts and standard deviations
of forecast errors converge to the sample mean and standard deviation of the data
quickly. For the first 984 observations, the sample mean and standard error are
0.0095 and 0.0540, respectively.

Figure 2.7 shows the corresponding out-of-sample prediction plot for the
monthly simple return series of the value-weighted index. The forecast origin
t = 984 corresponds to December 2007. The prediction plot includes the two
standard error limits of the forecasts and the actual observed returns for 2008.
The forecasts and actual returns are marked by ◦ and •, respectively. From the
plot, except for the return of October 2008, all actual returns are within the 95%
prediction intervals.
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TABLE 2.2 Multistep Ahead Forecasts of an AR(3) Model for Monthly Simple
Returns of CRSP Value-Weighted Index
Step 1 2 3 4 5 6
Forecast 0.0076 0.0161 0.0118 0.0099 0.0089 0.0093
Std. Error 0.0534 0.0537 0.0537 0.0540 0.0540 0.0540
Actual −0.0623 −0.0220 −0.0105 0.0511 0.0238 −0.0786
Step 7 8 9 10 11 12
Forecast 0.0095 0.0097 0.0096 0.0096 0.0096 0.0096
Std. Error 0.0540 0.0540 0.0540 0.0540 0.0540 0.0540
Actual −0.0132 0.0110 −0.0981 −0.1847 −0.0852 0.0215
aThe forecast origin is h = 984.
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Figure 2.7 Plot of 1- to 12-step-ahead out-of-sample forecasts for monthly simple returns of CRSP
value-weighted index. Forecast origin is t = 984, which is December 2007. Forecasts are denoted by
“o” and actual observations by “•”. Two dashed lines denote two standard error limits of the forecasts.

2.5 SIMPLE MA MODELS

We now turn to another class of simple models that are also useful in model-
ing return series in finance. These models are the moving-average (MA) models.
As is shown in Chapter 5, the bid–ask bounce in stock trading may introduce
an MA(1) structure in a return series. There are several ways to introduce MA
models. One approach is to treat the model as a simple extension of white noise
series. Another approach is to treat the model as an infinite-order AR model with
some parameter constraints. We adopt the second approach.
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There is no particular reason, but simplicity, to assume a priori that the order
of an AR model is finite. We may entertain, at least in theory, an AR model with
infinite order as

rt = φ0 + φ1rt−1 + φ2rt−2 + · · · + at .

However, such an AR model is not realistic because it has infinite many parameters.
One way to make the model practical is to assume that the coefficients φi’s satisfy
some constraints so that they are determined by a finite number of parameters. A
special case of this idea is

rt = φ0 − θ1rt−1 − θ2
1 rt−2 − θ3

1 rt−3 − · · · + at , (2.17)

where the coefficients depend on a single parameter θ1 via φi = −θ i
1 for i ≥ 1. For

the model in Eq. (2.17) to be stationary, θ1 must be less than 1 in absolute value;
otherwise, θ i

1 and the series will explode. Because |θ1| < 1, we have θ i
1 → 0 as

i → ∞. Thus, the contribution of rt−i to rt decays exponentially as i increases.
This is reasonable as the dependence of a stationary series rt on its lagged value
rt−i , if any, should decay over time.

The model in Eq. (2.17) can be rewritten in a rather compact form. To see this,
rewrite the model as

rt + θ1rt−1 + θ2
1 rt−2 + · · · = φ0 + at . (2.18)

The model for rt−1 is then

rt−1 + θ1rt−2 + θ2
1 rt−3 + · · · = φ0 + at−1. (2.19)

Multiplying Eq. (2.19) by θ1 and subtracting the result from Eq. (2.18), we obtain

rt = φ0(1 − θ1) + at − θ1at−1,

which says that except for the constant term rt is a weighted average of shocks at
and at−1. Therefore, the model is called an MA model of order 1 or MA(1) model
for short. The general form of an MA(1) model is

rt = c0 + at − θ1at−1 or rt = c0 + (1 − θ1B)at , (2.20)

where c0 is a constant and {at } is a white noise series. Similarly, an MA(2) model
is in the form

rt = c0 + at − θ1at−1 − θ2at−2, (2.21)

and an MA(q) model is

rt = c0 + at − θ1at−1 − · · · − θqat−q, (2.22)

or rt = c0 + (1 − θ1B − · · · − θqB
q)at , where q > 0.
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2.5.1 Properties of MA Models

Again, we focus on the simple MA(1) and MA(2) models. The results of MA(q)
models can easily be obtained by the same techniques.

Stationarity
Moving-average models are always weakly stationary because they are finite linear
combinations of a white noise sequence for which the first two moments are time
invariant. For example, consider the MA(1) model in Eq. (2.20). Taking expectation
of the model, we have

E(rt ) = c0,

which is time invariant. Taking the variance of Eq. (2.20), we have

Var(rt ) = σ 2
a + θ2

1σ
2
a = (1 + θ2

1 )σ
2
a ,

where we use the fact that at and at−1 are uncorrelated. Again, Var(rt ) is time
invariant. The prior discussion applies to general MA(q) models, and we obtain
two general properties. First, the constant term of an MA model is the mean of the
series [i.e., E(rt ) = c0]. Second, the variance of an MA(q) model is

Var(rt ) = (1 + θ2
1 + θ2

2 + · · · + θ2
q )σ

2
a .

Autocorrelation Function
Assume for simplicity that c0 = 0 for an MA(1) model. Multiplying the model by
rt−�, we have

rt−�rt = rt−�at − θ1rt−�at−1.

Taking expectation, we obtain

γ1 = −θ1σ
2
a and γ� = 0, for �> 1.

Using the prior result and the fact that Var(rt ) = (1 + θ2
1 )σ

2
a , we have

ρ0 = 1, ρ1 = −θ1

1 + θ2
1

, ρ� = 0, for �> 1.

Thus, for an MA(1) model, the lag-1 ACF is not zero, but all higher order ACFs
are zero. In other words, the ACF of an MA(1) model cuts off at lag 1. For the
MA(2) model in Eq. (2.21), the autocorrelation coefficients are

ρ1 = −θ1 + θ1θ2

1 + θ2
1 + θ2

2

, ρ2 = −θ2

1 + θ2
1 + θ2

2

, ρ� = 0, for �> 2.

Here the ACF cuts off at lag 2. This property generalizes to other MA models. For
an MA(q) model, the lag-q ACF is not zero, but ρ� = 0 for �>q. Consequently,
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an MA(q) series is only linearly related to its first q-lagged values and hence is a
“finite-memory” model.

Invertibility
Rewriting a zero-mean MA(1) model as at = rt + θ1at−1, one can use repeated
substitutions to obtain

at = rt + θ1rt−1 + θ2
1 rt−2 + θ3

1 rt−3 + · · · .

This equation expresses the current shock at as a linear combination of the present
and past returns. Intuitively, θj

1 should go to zero as j increases because the remote
return rt−j should have very little impact on the current shock, if any. Consequently,
for an MA(1) model to be plausible, we require |θ1| < 1. Such an MA(1) model
is said to be invertible. If |θ1| = 1, then the MA(1) model is noninvertible. See
Section 2.6.5 for further discussion on invertibility.

2.5.2 Identifying MA Order

The ACF is useful in identifying the order of an MA model. For a time series rt
with ACF ρ�, if ρq �= 0, but ρ� = 0 for �>q, then rt follows an MA(q) model.

Figure 2.8 shows the time plot of monthly simple returns of the CRSP equal-
weighted index from January 1926 to December 2008 and the sample ACF of the
series. The two dashed lines shown on the ACF plot denote the two standard error
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Figure 2.8 Time plot and sample autocorrelation function of monthly simple returns of CRSP equal-
weighted index from January 1926 to December 2008.
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limits. It is seen that the series has significant ACF at lags 1, 3, and 9. There are
some marginally significant ACF at higher lags, but we do not consider them here.
Based on the sample ACF, the following MA(9) model

rt = c0 + at − θ1at−1 − θ3at−3 − θ9at−9

is identified for the series. Note that, unlike the sample PACF, sample ACF provides
information on the nonzero MA lags of the model.

2.5.3 Estimation

Maximum-likelihood estimation is commonly used to estimate MA models. There
are two approaches for evaluating the likelihood function of an MA model. The
first approach assumes that the initial shocks (i.e., at for t ≤ 0) are zero. As such,
the shocks needed in likelihood function calculation are obtained recursively from
the model, starting with a1 = r1 − c0 and a2 = r2 − c0 + θ1a1. This approach is
referred to as the conditional-likelihood method and the resulting estimates the
conditional maximum-likelihood estimates. The second approach treats the initial
shocks at , t ≤ 0, as additional parameters of the model and estimate them jointly
with other parameters. This approach is referred to as the exact-likelihood method .
The exact-likelihood estimates are preferred over the conditional ones, especially
when the MA model is close to being noninvertible. The exact method, however,
requires more intensive computation. If the sample size is large, then the two types
of maximum-likelihood estimates are close to each other. For details of conditional-
and exact-likelihood estimates of MA models, readers are referred to Box, Jenkins,
and Reinsel (1994) or Chapter 8.

For illustration, consider the monthly simple return series of the CRSP equal-
weighted index and the specified MA(9) model. The conditional maximum-
likelihood method produces the fitted model

rt = 0.012 + at + 0.189at−1 − 0.121at−3 + 0.122at−9, σ̂a = 0.0714, (2.23)

where standard errors of the coefficient estimates are 0.003, 0.031, 0.031, and
0.031, respectively. The Ljung–Box statistics of the residuals give Q(12) = 17.5
with a p value 0.041, which is based on an asymptotic chi-squared distribution
with 9 degrees of freedom. The model needs some refinements in modeling the
linear dynamic dependence of the data. The p value would be 0.132 if 12 degrees
of freedom are used. The exact maximum-likelihood method produces the fitted
model

rt = 0.012 + at + 0.191at−1 − 0.120at−3 + 0.123at−9, σ̂a = 0.0714, (2.24)

where standard errors of the estimates are 0.003, 0.031, 0.031, and 0.031, respec-
tively. The Ljung–Box statistics of the residuals give Q(12) = 17.6. The corre-
sponding p values are 0.040 and 0.128, respectively, when the degrees of freedom
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are 9 and 12. Again, this fitted model is only marginally adequate. Comparing
models (2.23) and (2.24), we see that for this particular instance, the difference
between the conditional- and exact-likelihood methods is negligible.

2.5.4 Forecasting Using MA Models

Forecasts of an MA model can easily be obtained. Because the model has finite
memory, its point forecasts go to the mean of the series quickly. To see this, assume
that the forecast origin is h and let Fh denote the information available at time h.
For the 1-step-ahead forecast of an MA(1) process, the model says

rh+1 = c0 + ah+1 − θ1ah.

Taking the conditional expectation, we have

r̂h(1) = E(rh+1|Fh) = c0 − θ1ah,

eh(1) = rh+1 − r̂h(1) = ah+1.

The variance of the 1-step-ahead forecast error is Var[eh(1)] = σ 2
a . In practice,

the quantity ah can be obtained in several ways. For instance, assume that a0 = 0,
then a1 = r1 − c0, and we can compute at for 2 ≤ t ≤ h recursively by using at =
rt − c0 + θ1at−1. Alternatively, it can be computed by using the AR representation
of the MA(1) model; see Section 2.6.5. Of course, at is the residual series of a
fitted MA(1) model. Thus, ah is readily available from the estimation.

For the 2-step-ahead forecast from the equation

rh+2 = c0 + ah+2 − θ1ah+1,

we have

r̂h(2) = E(rh+2|Fh) = c0,

eh(2) = rh+2 − r̂h(2) = ah+2 − θ1ah+1.

The variance of the forecast error is Var[eh(2)] = (1 + θ2
1 )σ

2
a , which is the variance

of the model and is greater than or equal to that of the 1-step-ahead forecast error.
The prior result shows that for an MA(1) model the 2-step-ahead forecast of the
series is simply the unconditional mean of the model. This is true for any forecast
origin h. More generally, r̂h(�) = c0 for � ≥ 2. In summary, for an MA(1) model,
the 1-step-ahead point forecast at the forecast origin h is c0 − θ1ah and the multistep
ahead forecasts are c0, which is the unconditional mean of the model. If we plot
the forecasts r̂h(�) versus �, we see that the forecasts form a horizontal line after
one step. Thus, for MA(1) models, mean reverting only takes one time period.

Similarly, for an MA(2) model, we have

rh+� = c0 + ah+� − θ1ah+�−1 − θ2ah+�−2,
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from which we obtain

r̂h(1) = c0 − θ1ah − θ2ah−1,

r̂h(2) = c0 − θ2ah,

r̂h(�) = c0, for �> 2.

Thus, the multistep-ahead forecasts of an MA(2) model go to the mean of the series
after two steps. The variances of forecast errors go to the variance of the series
after two steps. In general, for an MA(q) model, multistep-ahead forecasts go to
the mean after the first q steps.

Table 2.3 gives some out-of-sample forecasts of an MA(9) model in the form of
Eq. (2.24) for the monthly simple returns of the equal-weighted index at the forecast
origin h = 986 (February 2008). The model parameters are reestimated using
the first 986 observations. The sample mean and standard error of the estimation
subsample are 0.0128 and 0.0736, respectively. As expected, the table shows that
(a) the 10-step-ahead forecast is the sample mean, and (b) the standard deviations
of the forecast errors converge to the standard deviation of the series as the forecast
horizon increases. In this particular case, the point forecasts deviate substantially
from the observed returns because of the worldwide financial crisis caused by the
subprime mortgage problem and the collapse of Lehman Brothers.

Summary
A brief summary of AR and MA models is in order. We have discussed the fol-
lowing properties:

• For MA models, ACF is useful in specifying the order because ACF cuts off
at lag q for an MA(q) series.

• For AR models, PACF is useful in order determination because PACF cuts
off at lag p for an AR(p) process.

• An MA series is always stationary, but for an AR series to be stationary, all
of its characteristic roots must be less than 1 in modulus.

TABLE 2.3 Out-of-Sample Forecast Performance of an MA(9) Model for Monthly
Simple Returns of CRSP Equal-Weighted Indexa

Step 1 2 3 4 5
Forecast 0.0043 0.0136 0.0150 0.0144 0.0120
Std. Error 0.0712 0.0724 0.0729 0.0729 0.0729
Actual −0.0260 0.0312 0.0322 −0.0871 −0.0010
Step 6 7 8 9 10
Forecast 0.0019 0.0122 0.0056 0.0085 0.0128
Std. Error 0.0729 0.0729 0.0729 0.0729 0.0734
Actual 0.0141 −0.1209 −0.2060 −0.1366 0.0431
aThe forecast origin is February 2008 With h = 986. The model is estimated by the exact maximum-
likelihood method.
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• For a stationary series, the multistep-ahead forecasts converge to the mean of
the series, and the variances of forecast errors converge to the variance of the
series as the forecast horizon increases.

2.6 SIMPLE ARMA MODELS

In some applications, the AR or MA models discussed in the previous sections
become cumbersome because one may need a high-order model with many param-
eters to adequately describe the dynamic structure of the data. To overcome this
difficulty, the autoregressive moving-average (ARMA) models are introduced; see
Box, Jenkins, and Reinsel (1994). Basically, an ARMA model combines the ideas
of AR and MA models into a compact form so that the number of parameters used
is kept small, achieving parsimony in parameterization. For the return series in
finance, the chance of using ARMA models is low. However, the concept of ARMA
models is highly relevant in volatility modeling. As a matter of fact, the generalized
autoregressive conditional heteroscedastic (GARCH) model can be regarded as an
ARMA model, albeit nonstandard, for the a2

t series; see Chapter 3 for details. In
this section, we study the simplest ARMA(1,1) model.

A time series rt follows an ARMA(1,1) model if it satisfies

rt − φ1rt−1 = φ0 + at − θ1at−1, (2.25)

where {at } is a white noise series. The left-hand side of the Eq. (2.25) is the AR
component of the model and the right-hand side gives the MA component. The
constant term is φ0. For this model to be meaningful, we need φ1 �= θ1; otherwise,
there is a cancellation in the equation and the process reduces to a white noise series.

2.6.1 Properties of ARMA(1,1) Models

Properties of ARMA(1,1) models are generalizations of those of AR(1) models
with some minor modifications to handle the impact of the MA(1) component. We
start with the stationarity condition. Taking expectation of Eq. (2.25), we have

E(rt ) − φ1E(rt−1) = φ0 + E(at ) − θ1E(at−1).

Because E(ai) = 0 for all i, the mean of rt is

E(rt ) = µ = φ0

1 − φ1

provided that the series is weakly stationary. This result is exactly the same as that
of the AR(1) model in Eq. (2.8).

Next, assuming for simplicity that φ0 = 0, we consider the autocovariance func-
tion of rt . First, multiplying the model by at and taking expectation, we have

E(rtat ) = E(a2
t ) − θ1E(atat−1) = E(a2

t ) = σ 2
a . (2.26)
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Rewriting the model as

rt = φ1rt−1 + at − θ1at−1

and taking the variance of the prior equation, we have

Var(rt ) = φ2
1Var(rt−1) + σ 2

a + θ2
1σ

2
a − 2φ1θ1E(rt−1at−1).

Here we make use of the fact that rt−1 and at are uncorrelated. Using Eq. (2.26),
we obtain

Var(rt ) − φ2
1Var(rt−1) = (1 − 2φ1θ1 + θ2

1 )σ
2
a .

Therefore, if the series rt is weakly stationary, then Var(rt ) = Var(rt−1) and we
have

Var(rt ) = (1 − 2φ1θ1 + θ2
1 )σ

2
a

1 − φ2
1

.

Because the variance is positive, we need φ2
1 < 1 (i.e., |φ1| < 1). Again, this is

precisely the same stationarity condition as that of the AR(1) model.
To obtain the autocovariance function of rt , we assume φ0 = 0 and multiply the

model in Eq. (2.25) by rt−� to obtain

rt rt−� − φ1rt−1rt−� = at rt−� − θ1at−1rt−�.

For � = 1, taking expectation and using Eq. (2.26) for t − 1, we have

γ1 − φ1γ0 = −θ1σ
2
a ,

where γ� = Cov(rt , rt−�). This result is different from that of the AR(1) case for
which γ1 − φ1γ0 = 0. However, for � = 2 and taking expectation, we have

γ2 − φ1γ1 = 0,

which is identical to that of the AR(1) case. In fact, the same technique yields

γ� − φ1γ�−1 = 0, for �> 1. (2.27)

In terms of ACF, the previous results show that for a stationary ARMA(1,1) model

ρ1 = φ1 − θ1σ
2
a

γ0
, ρ� = φ1ρ�−1, for �> 1.
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Thus, the ACF of an ARMA(1,1) model behaves very much like that of an AR(1)
model except that the exponential decay starts with lag 2. Consequently, the ACF
of an ARMA(1,1) model does not cut off at any finite lag.

Turning to PACF, one can show that the PACF of an ARMA(1,1) model does
not cut off at any finite lag either. It behaves very much like that of an MA(1)
model except that the exponential decay starts with lag 2 instead of lag 1.

In summary, the stationarity condition of an ARMA(1,1) model is the same as
that of an AR(1) model, and the ACF of an ARMA(1,1) exhibits a similar pattern
like that of an AR(1) model except that the pattern starts at lag 2.

2.6.2 General ARMA Models

A general ARMA(p, q) model is in the form

rt = φ0 +
p∑

i=1

φirt−i + at −
q∑

i=1

θiat−i ,

where {at } is a white noise series and p and q are nonnegative integers. The AR
and MA models are special cases of the ARMA(p, q) model. Using the back-shift
operator, the model can be written as

(1 − φ1B − · · · − φpB
p)rt = φ0 + (1 − θ1B − · · · − θqB

q)at . (2.28)

The polynomial 1 − φ1B − · · · − φpB
p is the AR polynomial of the model. Sim-

ilarly, 1 − θ1B − · · · − θqB
q is the MA polynomial. We require that there are no

common factors between the AR and MA polynomials; otherwise the order (p, q)

of the model can be reduced. Like a pure AR model, the AR polynomial intro-
duces the characteristic equation of an ARMA model. If all of the solutions of the
characteristic equation are less than 1 in absolute value, then the ARMA model is
weakly stationary. In this case, the unconditional mean of the model is E(rt ) =
φ0/(1 − φ1 − · · · − φp).

2.6.3 Identifying ARMA Models

The ACF and PACF are not informative in determining the order of an ARMA
model. Tsay and Tiao (1984) propose a new approach that uses the extended auto-
correlation function (EACF) to specify the order of an ARMA process. The basic
idea of EACF is relatively simple. If we can obtain a consistent estimate of the AR
component of an ARMA model, then we can derive the MA component. From the
derived MA series, we can use ACF to identify the order of the MA component.

The derivation of EACF is relatively involved; see Tsay and Tiao (1984) for
details. Yet the function is easy to use. The output of EACF is a two-way table,
where the rows correspond to AR order p and the columns to MA order q. The
theoretical version of EACF for an ARMA(1,1) model is given in Table 2.4. The
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TABLE 2.4 Theoretical EACF Table for an ARMA(1,1) Model, Where X Denotes
Nonzero, O Denotes Zero, and * Denotes Either Zero or Nonzeroa

MA

AR 0 1 2 3 4 5 6 7

0 X X X X X X X X
1 X O O O O O O O
2 * X O O O O O O
3 * * X O O O O O
4 * * * X O O O O
5 * * * * X O O O

aThis latter category does not play any role in identifying the order (1,1).

key feature of the table is that it contains a triangle of O with the upper left vertex
located at the order (1,1). This is the characteristic we use to identify the order of
an ARMA process. In general, for an ARMA(p, q) model, the triangle of O will
have its upper left vertex at the (p, q) position.

For illustration, consider the monthly log stock returns of the 3M Company from
February 1946 to December 2008. There are 755 observations. The return series
and its sample ACF are shown in Figure 2.9. The ACF indicates that there are
no significant serial correlations in the data at the 1% level. Table 2.5 shows the
sample EACF and a corresponding simplified table for the series. The simplified
table is constructed by using the following notation:

1. X denotes that the absolute value of the corresponding EACF is greater than
or equal to 2/

√
T , which is twice of the asymptotic standard error of the

EACF.

2. O denotes that the corresponding EACF is less than 2/
√
T in modulus.

The simplified table exhibits a triangular pattern of O with its upper left vertex
at the order (p, q) = (0, 0). A few exceptions of X appear when q = 2, 5, 9, and
11. However, the EACF table shows that the values of sample ACF corresponding
to those X are around 0.08 or 0.09. These ACFs are only slightly greater than
2/

√
755 = 0.073. Indeed, if 1% critical value is used, those X would become O in

the simplified EACF table. Consequently, the EACF suggests that the monthly log
returns of 3M stock follow an ARMA(0,0) model (i.e., a white noise series). This
is in agreement with the result suggested by the sample ACF in Figure 2.9.

The information criteria discussed earlier can also be used to select ARMA(p, q)
models. Typically, for some prespecified positive integers P and Q, one computes
AIC (or BIC) for ARMA(p, q) models, where 0 ≤ p ≤ P and 0 ≤ q ≤ Q, and
selects the model that gives the minimum AIC (or BIC). This approach requires
maximum-likelihood estimation of many models and in some cases may encounter
the difficulty of overfitting in estimation.
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Figure 2.9 Time plot and sample autocorrelation function of monthly log stock returns of 3M Company
from February 1946 to December 2008.

Once an ARMA(p, q) model is specified, its parameters can be estimated by
either the conditional or exact-likelihood method. In addition, the Ljung–Box statis-
tics of the residuals can be used to check the adequacy of a fitted model. If the
model is correctly specified, then Q(m) follows asymptotically a chi-squared dis-
tribution with m − g degrees of freedom, where g denotes the number of AR or
MA coefficients fitted in the model.

2.6.4 Forecasting Using an ARMA Model

Like the behavior of ACF, forecasts of an ARMA(p, q) model have similar char-
acteristics as those of an AR(p) model after adjusting for the impacts of the MA
component on the lower horizon forecasts. Denote the forecast origin by h and
the available information by Fh. The 1-step-ahead forecast of rh+1 can be easily
obtained from the model as

r̂h(1) = E(rh+1|Fh) = φ0 +
p∑

i=1

φirh+1−i −
q∑

i=1

θiah+1−i ,

and the associated forecast error is eh(1) = rh+1 − r̂h(1) = ah+1. The variance of
1-step-ahead forecast error is Var[eh(1)] = σ 2

a . For the �-step-ahead forecast, we
have

r̂h(�) = E(rh+�|Fh) = φ0 +
p∑

i=1

φi r̂h(� − i) −
q∑

i=1

θiah(� − i),
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TABLE 2.5 Sample Extended Autocorrelation Function and a Simplified Table for
the Monthly Log Returns of 3M Stock from February 1946 to December 2008

Sample Extended Autocorrelation Function

MA Order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 −0.06 −0.04 −0.08 −0.00 0.02 0.08 0.01 0.01 −0.03 −0.08 0.05 0.09 −0.01
1 −0.47 0.01 −0.07 −0.02 0.00 0.08 −0.03 0.00 −0.01 −0.07 0.04 0.09 −0.02
2 −0.38 −0.35 −0.07 0.02 −0.01 0.08 0.03 0.01 0.00 −0.03 0.02 0.04 0.04
3 −0.18 0.14 0.38 −0.02 0.00 0.04 −0.02 0.02 −0.00 −0.03 0.02 0.01 0.04
4 0.42 0.03 0.45 −0.01 0.00 0.00 −0.01 0.03 0.01 0.00 0.02 −0.00 0.01
5 −0.11 0.21 0.45 0.01 0.20 −0.01 −0.00 0.04 −0.01 −0.01 0.03 0.01 0.03
6 −0.21 −0.25 0.24 0.31 0.17 −0.04 −0.00 0.04 −0.01 −0.03 0.01 0.01 0.04

Simplified EACF Table

MA Order: q

p 0 1 2 3 4 5 6 7 8 9 10 11 12

0 O O X O O X O O O X O X O
1 X O O O O X O O O O O X O
2 X X O O O X O O O O O O O
3 X X X O O O O O O O O O O
4 X O X O O O O O O O O O O
5 X X X O X O O O O O O O O
6 X X X X X O O O O O O O O

where it is understood that r̂h(� − i) = rh+�−i if � − i ≤ 0 and ah(� − i) = 0 if
� − i > 0 and ah(� − i) = ah+�−i if � − i ≤ 0. Thus, the multistep-ahead forecasts
of an ARMA model can be computed recursively. The associated forecast error is

eh(�) = rh+� − r̂h(�),

which can be computed easily via a formula to be given in Eq. (2.34).

2.6.5 Three Model Representations for an ARMA Model

In this section, we briefly discuss three model representations for a stationary
ARMA(p, q) model. The three representations serve three different purposes.
Knowing these representations can lead to a better understanding of the model. The
first representation is the ARMA(p, q) model in Eq. (2.28). This representation
is compact and useful in parameter estimation. It is also useful in computing
recursively multistep-ahead forecasts of rt ; see the discussion in the last section.
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For the other two representations, we use long division of two polynomials.
Given two polynomials φ(B) = 1 − ∑p

i=1 φiB
i and θ(B) = 1 − ∑q

i=1 θiB
i , we

can obtain, by long division, that

θ(B)

φ(B)
= 1 + ψ1B + ψ2B

2 + · · · ≡ ψ(B) (2.29)

and

φ(B)

θ(B)
= 1 − π1B − π2B

2 − · · · ≡ π(B). (2.30)

For instance, if φ(B) = 1 − φ1B and θ(B) = 1 − θ1B, then

ψ(B) = 1 − θ1B

1 − φ1B
= 1 + (φ1 − θ1)B + φ1(φ1 − θ1)B

2 + φ2
1(φ1 − θ1)B

3 + · · · ,

π(B) = 1 − φ1B

1 − θ1B
= 1 − (φ1 − θ1)B − θ1(φ1 − θ1)B

2 − θ2
1 (φ1 − θ1)B

3 − · · · .

From the definition, ψ(B)π(B) = 1. Making use of the fact that Bc = c for any
constant (because the value of a constant is time invariant), we have

φ0

θ(1)
= φ0

1 − θ1 − · · · − θq
and

φ0

φ(1)
= φ0

1 − φ1 − · · · − φp

.

AR Representation
Using the result of long division in Eq. (2.30), the ARMA(p, q) model can be
written as

rt = φ0

1 − θ1 − · · · − θq
+ π1rt−1 + π2rt−2 + π3rt−3 + · · · + at . (2.31)

This representation shows the dependence of the current return rt on the past
returns rt−i , where i > 0. The coefficients {πi} are referred to as the π weights of
an ARMA model. To show that the contribution of the lagged value rt−i to rt is
diminishing as i increases, the πi coefficient should decay to zero as i increases. An
ARMA(p, q) model that has this property is said to be invertible. For a pure AR
model, θ(B) = 1 so that π(B) = φ(B), which is a finite-degree polynomial. Thus,
πi = 0 for i >p, and the model is invertible. For other ARMA models, a sufficient
condition for invertibility is that all the zeros of the polynomial θ(B) are greater
than unity in modulus. For example, consider the MA(1) model rt = (1 − θ1B)at .
The zero of the first-order polynomial 1 − θ1B is B = 1/θ1. Therefore, an MA(1)
model is invertible if |1/θ1|> 1. This is equivalent to |θ1| < 1.

From the AR representation in Eq. (2.31), an invertible ARMA(p, q) series rt
is a linear combination of the current shock at and a weighted average of the past
values. The weights decay exponentially for more remote past values.
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MA Representation
Again, using the result of long division in Eq. (2.29), an ARMA(p, q) model can
also be written as

rt = µ + at + ψ1at−1 + ψ2at−2 + · · · = µ + ψ(B)at , (2.32)

where µ = E(rt ) = φ0/(1 − φ1 − · · · − φp). This representation shows explicitly
the impact of the past shock at−i (i > 0) on the current return rt . The coefficients
{ψi} are referred to as the impulse response function of the ARMA model. For
a weakly stationary series, the ψi coefficients decay exponentially as i increases.
This is understandable as the effect of shock at−i on the return rt should diminish
over time. Thus, for a stationary ARMA model, the shock at−i does not have
a permanent impact on the series. If φ0 �= 0, then the MA representation has a
constant term, which is the mean of rt [i.e., φ0/(1 − φ1 − · · · − φp)].

The MA representation in Eq. (2.32) is also useful in computing the variance
of a forecast error. At the forecast origin h, we have the shocks ah, ah−1, . . ..
Therefore, the �-step-ahead point forecast is

r̂h(�) = µ + ψ�ah + ψ�+1ah−1 + · · · , (2.33)

and the associated forecast error is

eh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1.

Consequently, the variance of �-step-ahead forecast error is

Var[eh(�)] = (1 + ψ2
1 + · · · + ψ2

�−1)σ
2
a , (2.34)

which, as expected, is a nondecreasing function of the forecast horizon �.
Finally, the MA representation in Eq. (2.32) provides a simple proof of mean

reversion of a stationary time series. The stationarity implies that ψi approaches
zero as i → ∞. Therefore, by Eq. (2.33), we have r̂h(�) → µ as � → ∞. Because
r̂h(�) is the conditional expectation of rh+� at the forecast origin h, the result
says that in the long term the return series is expected to approach its mean,
that is, the series is mean reverting. Furthermore, using the MA representation in
Eq. (2.32), we have Var(rt ) = (1 + ∑∞

i=1 ψ
2
i )σ

2
a . Consequently, by Eq. (2.34), we

have Var[eh(�)] → Var(rt ) as � → ∞. The speed by which r̂h(�) approaches µ

determines the speed of mean reverting.

2.7 UNIT-ROOT NONSTATIONARITY

So far we have focused on return series that are stationary. In some studies, interest
rates, foreign exchange rates, or the price series of an asset are of interest. These
series tend to be nonstationary. For a price series, the nonstationarity is mainly
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due to the fact that there is no fixed level for the price. In the time series lit-
erature, such a nonstationary series is called unit-root nonstationary time series.
The best known example of unit-root nonstationary time series is the random-walk
model.

2.7.1 Random Walk

A time series {pt } is a random walk if it satisfies

pt = pt−1 + at , (2.35)

where p0 is a real number denoting the starting value of the process and {at } is a
white noise series. If pt is the log price of a particular stock at date t , then p0 could
be the log price of the stock at its initial public offering (IPO) (i.e., the logged IPO
price). If at has a symmetric distribution around zero, then conditional on pt−1,
pt has a 50–50 chance to go up or down, implying that pt would go up or down
at random. If we treat the random-walk model as a special AR(1) model, then the
coefficient of pt−1 is unity, which does not satisfy the weak stationarity condition
of an AR(1) model. A random-walk series is, therefore, not weakly stationary, and
we call it a unit-root nonstationary time series.

The random-walk model has widely been considered as a statistical model for
the movement of logged stock prices. Under such a model, the stock price is not
predictable or mean reverting. To see this, the 1-step-ahead forecast of model (2.35)
at the forecast origin h is

p̂h(1) = E(ph+1|ph, ph−1, . . .) = ph,

which is the log price of the stock at the forecast origin. Such a forecast has no
practical value. The 2-step-ahead forecast is

p̂h(2) = E(ph+2|ph, ph−1, . . .) = E(ph+1 + ah+2|ph, ph−1, . . .)

= E(ph+1|ph, ph−1, . . .) = p̂h(1) = ph,

which again is the log price at the forecast origin. In fact, for any forecast horizon
�> 0, we have

p̂h(�) = ph.

Thus, for all forecast horizons, point forecasts of a random-walk model are simply
the value of the series at the forecast origin. Therefore, the process is not mean
reverting.

The MA representation of the random-walk model in Eq. (2.35) is

pt = at + at−1 + at−2 + · · · .
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This representation has several important practical implications. First, the �-step-
ahead forecast error is

eh(�) = ah+� + · · · + ah+1,

so that Var[eh(�)] = �σ 2
a , which diverges to infinity as � → ∞. The length of an

interval forecast of ph+� will approach infinity as the forecast horizon-increases.
This result says that the usefulness of point forecast p̂h(�) diminishes as � increases,
which again implies that the model is not predictable. Second, the unconditional
variance of pt is unbounded because Var[eh(�)] approaches infinity as � increases.
Theoretically, this means that pt can assume any real value for a sufficiently large t .
For the log price pt of an individual stock, this is plausible. Yet for market indexes,
negative log price is very rare if it happens at all. In this sense, the adequacy of a
random-walk model for market indexes is questionable. Third, from the represen-
tation, ψi = 1 for all i. Thus, the impact of any past shock at−i on pt does not
decay over time. Consequently, the series has a strong memory as it remembers all
of the past shocks. In economics, the shocks are said to have a permanent effect
on the series. The strong memory of a unit-root time series can be seen from the
sample ACF of the observed series. The sample ACFs are all approaching 1 as the
sample size increases.

2.7.2 Random Walk with Drift

As shown by empirical examples considered so far, the log return series of a market
index tends to have a small and positive mean. This implies that the model for the
log price is

pt = µ + pt−1 + at , (2.36)

where µ = E(pt − pt−1) and {at } is a zero-mean white noise series. The constant
term µ of model (2.36) is very important in financial study. It represents the time
trend of the log price pt and is often referred to as the drift of the model. To see
this, assume that the initial log price is p0. Then we have

p1 = µ + p0 + a1,

p2 = µ + p1 + a2 = 2µ + p0 + a2 + a1,

...

pt = tµ + p0 + at + at−1 + · · · + a1.

The last equation shows that the log price consists of a time trend tµ and a
pure random-walk process

∑t
i=1 ai . Because Var(

∑t
i=1 ai) = tσ 2

a , where σ 2
a is the

variance of at , the conditional standard deviation of pt is
√
tσa , which grows at a

slower rate than the conditional expectation of pt . Therefore, if we graph pt against
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the time index t , we have a time trend with slope µ. A positive slope µ implies
that the log price eventually goes to infinity. In contrast, a negative µ implies that
the log price would converge to −∞ as t increases. Based on the above discussion,
it is then not surprising to see that the log return series of the CRSP value- and
equal-weighted indexes have a small, but statistically significant, positive mean.

To illustrate the effect of the drift parameter on the price series, we consider the
monthly log stock returns of the 3M Company from February 1946 to December
2008. As shown by the sample EACF in Table 2.5, the series has no significant
serial correlation. The series thus follows the simple model

rt = 0.0103 + at , σ̂a = 0.0637, (2.37)

where 0.0103 is the sample mean of rt and has a standard error 0.0023. The mean
of the monthly log returns of 3M stock is, therefore, significantly different from
zero at the 1% level. As a matter of fact, the one-sample test of zero mean shows
a t ratio of 4.44 with a p value close to 0. We use the log return series to construct
two log price series, namely

pt =
t∑

i=1

ri and p∗
t =

t∑
i=1

ai,

where ai is the mean-corrected log return in Eq. (2.37) (i.e., at = rt − 0.0103).
The pt is the log price of 3M stock, assuming that the initial log price is zero
(i.e., the log price of January 1946 was zero). The p∗

t is the corresponding log
price if the mean of log returns was zero. Figure 2.10 shows the time plots of
pt and p∗

t as well as a straight line yt = 0.0103 × t + 1946, where t is the time
sequence of the returns and 1946 is the starting year of the stock. From the plots,
the importance of the constant 0.0103 in Eq. (2.37) is evident. In addition, as
expected, it represents the slope of the upward trend of pt .

Interpretation of the Constant Term
From the previous discussions, it is important to understand the meaning of a
constant term in a time series model. First, for an MA(q) model in Eq. (2.22), the
constant term is simply the mean of the series. Second, for a stationary AR(p) model
in Eq. (2.9) or ARMA(p, q) model in Eq. (2.28), the constant term is related to
the mean via µ = φ0/(1 − φ1 − · · · − φp). Third, for a random walk with drift, the
constant term becomes the time slope of the series. These different interpretations
for the constant term in a time series model clearly highlight the difference between
dynamic and usual linear regression models.

Another important difference between dynamic and regression models is shown
by an AR(1) model and a simple linear regression model,

rt = φ0 + φ1rt−1 + at and yt = β0 + β1xt + at .

For the AR(1) model to be meaningful, the coefficient φ1 must satisfy |φ1| ≤ 1.
However, the coefficient β1 can assume any fixed real number.



unit-root nonstationarity 75

•••••
•••••
•••••••••
••••••••
••••••••••
•••••••
••••••
••••••
••
•••••••
••••••••••••••••••••••••

••••
••••••
•••••••
••••••
•••••••••
••••••••••••••

•••••••••••••••
••••
••••
••••••••
•••••
•••••••••
•••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••
•••••••
••••••••
•••••••••••••

••••••••••••••••••••••••••••••••
••••••
••••••••
••••••••••••••••••

••••••••••••••
••••••
•••••••••
•••••••••••••••••••••••••••••

•••••••••••••••••••••••••••
•••••••••••••••••••••••

••••
•••••••••••••••••••••••••••••••••••

••••
••••••••••
•••••••
••
••••••••••••••••••

••••••••••••••
•••••••••••
•••••••••••••••••••••

••••••••••••••••••••••••••
•••••••••••••

••••••
•••••••
••••••••••••••••••••••

••••••••••••••••••••
••••••••••••••••

•••••••••••••••
•••••
•••••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••

Year

ln
(p

ric
e)

1950 1960 1970 1980 1990 2000 2010

0
2

4
6

8

ooooo
ooooo
oooooooooooo
oooooooooooooooooooo

oooooooo
oooooo
ooo
oooooooooooooooooooooooooooooooooo

oooooooooooo
ooooooo
ooooooooo
oooooooooooooo

ooooooooooooooooo
ooooo
ooooooooo
ooooo
ooooooooo
ooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooo
oooooooooooo
ooooooooooooooooooooooooooooooooo

o
oooooo
ooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooo

ooooooooooo
ooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
oooooooo
oooooooooooooooooooooo

oooooooooooooooooooo
oooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Figure 2.10 Time plots of log prices for 3M stock from February 1946 to December 2008, assuming
that log price of January 1946 was zero. The “o” line is for log price without time trend. Straight line
is yt = 0.0103 × t + 1946.

2.7.3 Trend-Stationary Time Series

A closely related model that exhibits linear trend is the trend-stationary time series
model,

pt = β0 + β1t + rt ,

where rt is a stationary time series, for example, a stationary AR(p) series. Here pt

grows linearly in time with rate β1 and hence can exhibit behavior similar to that of
a random-walk model with drift. However, there is a major difference between the
two models. To see this, suppose that p0 is fixed. The random-walk model with drift
assumes the mean E(pt ) = p0 + µt and variance Var(pt ) = tσ 2

a , both of them are
time dependent. On the other hand, the trend-stationary model assumes the mean
E(pt ) = β0 + β1t , which depends on time, and variance Var(pt ) = Var(rt ), which
is finite and time invariant. The trend-stationary series can be transformed into a
stationary one by removing the time trend via a simple linear regression analysis.
For analysis of trend-stationary time series, see the method of Section 2.9.

2.7.4 General Unit-Root Nonstationary Models

Consider an ARMA model. If one extends the model by allowing the AR poly-
nomial to have 1 as a characteristic root, then the model becomes the well-known
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autoregressive integrated moving-average (ARIMA) model. An ARIMA model is
said to be unit-root nonstationary because its AR polynomial has a unit root. Like
a random-walk model, an ARIMA model has strong memory because the ψi coef-
ficients in its MA representation do not decay over time to zero, implying that the
past shock at−i of the model has a permanent effect on the series. A conventional
approach for handling unit-root nonstationarity is to use differencing .

Differencing
A time series yt is said to be an ARIMA(p, 1, q) process if the change series
ct = yt − yt−1 = (1 − B)yt follows a stationary and invertible ARMA(p, q) model.
In finance, price series are commonly believed to be nonstationary, but the log
return series, rt = ln(Pt ) − ln(Pt−1), is stationary. In this case, the log price series
is unit-root nonstationary and hence can be treated as an ARIMA process. The
idea of transforming a nonstationary series into a stationary one by considering
its change series is called differencing in the time series literature. More formally,
ct = yt − yt−1 is referred to as the first differenced series of yt . In some scientific
fields, a time series yt may contain multiple unit roots and needs to be differenced
multiple times to become stationary. For example, if both yt and its first differenced
series ct = yt − yt−1 are unit-root nonstationary, but st = ct − ct−1 = yt − 2yt−1 +
yt−2 is weakly stationary, then yt has double unit roots, and st is the second
differenced series of yt . In addition, if st follows an ARMA(p, q) model, then yt
is an ARIMA(p, 2, q) process. For such a time series, if st has a nonzero mean,
then yt has a quadratic time function and the quadratic time coefficient is related
to the mean of st . The seasonally adjusted series of U.S. quarterly gross domestic
product implicit price deflator might have double unit roots. However, the mean
of the second differenced series is not significantly different from zero; see the
Exercises of this chapter. Box, Jenkins, and Reinsel (1994) discuss many properties
of general ARIMA models.

2.7.5 Unit-Root Test

To test whether the log price pt of an asset follows a random walk or a random
walk with drift, we employ the models

pt = φ1pt−1 + et (2.38)

pt = φ0 + φ1pt−1 + et , (2.39)

where et denotes the error term, and consider the null hypothesis H0 : φ1 = 1
versus the alternative hypothesis Ha : φ1 < 1. This is the well-known unit-root
testing problem; see Dickey and Fuller (1979). A convenient test statistic is the
t ratio of the least-squares (LS) estimate of φ1 under the null hypothesis. For
Eq. (2.38), the LS method gives

φ̂1 =
∑T

t=1 pt−1pt∑T
t=1 p

2
t−1

, σ̂ 2
e =

∑T
t=1(pt − φ̂1pt−1)

2

T − 1
,
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where p0 = 0 and T is the sample size. The t ratio is

DF ≡ t ratio = φ̂1 − 1

std(φ̂1)
=

∑T
t=1 pt−1et

σ̂e

√∑T
t=1 p

2
t−1

,

which is commonly referred to as the Dickey–Fuller (DF) test. If {et } is a white
noise series with finite moments of order slightly greater than 2, then the DF statistic
converges to a function of the standard Brownian motion as T → ∞; see Chan and
Wei (1988) and Phillips (1987) for more information. If φ0 is zero but Eq. (2.39)
is employed anyway, then the resulting t ratio for testing φ1 = 1 will converge to
another nonstandard asymptotic distribution. In either case, simulation is used to
obtain critical values of the test statistics; see Fuller (1976, Chapter 8) for selected
critical values. Yet if φ0 �= 0 and Eq. (2.39) is used, then the t ratio for testing
φ1 = 1 is asymptotically normal. However, large sample sizes are needed for the
asymptotic normal distribution to hold. Standard Brownian motion is introduced in
Chapter 6.

For many economic time series, ARIMA(p, d, q) models might be more appro-
priate than the simple model in Eq. (2.39). In the econometric literature, AR(p)
models are often used. Denote the series by xt . To verify the existence of a unit
root in an AR(p) process, one may perform the test H0 : β = 1 vs. Ha : β < 1
using the regression

xt = ct + βxt−1 +
p−1∑
i=1

φi xt−i + et , (2.40)

where ct is a deterministic function of the time index t and xj = xj − xj−1 is the
differenced series of xt . In practice, ct can be zero or a constant or ct = ω0 + ω1t .
The t ratio of β̂ − 1,

ADF-test = β̂ − 1

std(β̂)
,

where β̂ denotes the least-squares estimate of β, is the well-known augmented
Dickey–Fuller (ADF) unit-root test. Note that because of the first differencing,
Eq. (2.40) is equivalent to an AR(p) model with deterministic function ct . Equation
(2.40) can also be rewritten as

xt = ct + βcxt−1 +
p−1∑
i=1

φixt−i + et ,

where βc = β − 1. One can then test the equivalent hypothesis H0 : βc = 0 vs.
Ha : βc < 0.



78 linear time series analysis and its applications

Year

ln
(G

D
P

)

1950 1960 1970 1980 1990 2000 2010

6
7

8
9

(a)

Lag

A
C

F

0 5 10 15

0.
0

0.
4

0.
8

Year

di
ff(

l-g
dp

)

1950 1960 1970 1980 1990 2000 2010−0
.0

2
0.

0
0.

02
0.

04
0.

06

(c)

(b)
Lag

0 5 10 15

(d)

P
ar

tia
l A

C
F

−0
.1

0.
1

0.
3

Figure 2.11 Log series of U.S. quarterly GDP from 1947.I to 2008.IV: (a) time plot of logged GDP
series, (b) sample ACF of log GDP data, (c) time plot of first differenced series, and (d) sample PACF
of differenced series.

Example 2.2. Consider the log series of U.S. quarterly GDP from 1947.I to
2008.IV. The series exhibits an upward trend, showing the growth of the U.S.
economy, and has high sample serial correlations; see the lower left panel of
Figure 2.11. The first differenced series, representing the growth rate of U.S.
GDP and also shown in Figure 2.11, seems to vary around a fixed mean level,
even though the variability appears to be smaller in recent years. To confirm the
observed phenomenon, we apply the ADF unit-root test to the log series. Based
on the sample PACF of the differenced series shown in Figure 2.11, we choose
p = 10. Other values of p are also used, but they do not alter the conclusion of
the test. With p = 10, the ADF test statistic is −1.701 with a p value 0.4297, indi-
cating that the unit-root hypothesis cannot be rejected. From the attached S-Plus
output, β̂ = 1 + β̂c = 1 − 0.0008 = 0.9992.

R Demonstration

> library(fUnitRoots)
> da=read.table("q-gdp4708.txt",header=T)
> gdp=log(da[,4])
> m1=ar(diff(gdp),method=’mle’)
> m1$order
[1] 10
> adfTest(gdp,lags=10,type=c("c"))
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Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 10
STATISTIC:
Dickey-Fuller: -1.6109
P VALUE: 0.4569

S-Plus Demonstration
The following output has been edited:

> adft=unitroot(gdp,trend=’c’,method=’adf’,lags=10)
> summary(adft)

Test for Unit Root: Augmented DF Test
Null Hypothesis: there is a unit root

Type of Test: t-test
Test Statistic: -1.701

P-value: 0.4297

Coefficients:
Value Std. Error t value Pr(>|t|)

lag1 -0.0008 0.0005 -1.7006 0.0904
lag2 0.3799 0.0659 5.7637 0.0000
lag3 0.1883 0.0696 2.7047 0.0074
...
lag10 0.1784 0.0637 2.8023 0.0055

constant 0.0134 0.0045 2.9636 0.0034

Regression Diagnostics:
R-Squared 0.2877

Adjusted R-Squared 0.2564
Durbin-Watson Stat 1.9940

Residual standard error: 0.009318 on 234 degrees of freedom

As another example, consider the log series of the S&P 500 index from Jan-
uary 3, 1950, to April 16, 2008, for 14,462 observations. The series is shown in
Figure 2.12. Testing for a unit root in the index is relevant if one wishes to verify
empirically that the Index follows a random walk with drift. To this end, we use
ct = ω0 + ω1t in applying the ADF test. Furthermore, we choose p = 15 based
on the sample PACF of the first differenced series. The resulting test statistic is
−1.998 with a p value 0.602. Thus, the unit-root hypothesis cannot be rejected
at any reasonable significance level. The constant term is statistically significant,
whereas the estimate of the time trend is not at the usual 5% level. The latter is
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Figure 2.12 Time plot of logarithm of daily S&P 500 index from January 3, 1950, to April 16, 2008.

significant at the 10% level, however. In summary, for the period from January
1950 to April 2008, the log series of the S&P 500 index contains a unit root and
a positive drift, but there is no strong evidence of a time trend.

R Demonstration

> library(fUnitRoots)
> da=read.table("d-sp55008.txt",header=T)
> sp5=log(da[,7])
> m2=ar(diff(sp5),method=’mle’)
> m2$order
[1] 2
> adfTest(sp5,lags=2,type=("ct"))

Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 2
STATISTIC:
Dickey-Fuller: -2.0179
P VALUE: 0.5708

> adfTest(sp5,lags=15,type=("ct"))
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Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 15
STATISTIC:
Dickey-Fuller: -1.9946
P VALUE: 0.5807

S-Plus Demonstration
The following output has been edited:

> adft=unitroot(sp5,method=’adf’,trend=’ct’,lags=15)
> summary(adft)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root
Type of Test: t-test

Test Statistic: -1.998
P-value: 0.602

Coefficients:
Value Std. Error t value Pr(>|t|)

lag1 -0.0005 0.0003 -1.9977 0.0458
lag2 0.0722 0.0083 8.7374 0.0000
lag3 -0.0386 0.0083 -4.6532 0.0000
lag4 -0.0071 0.0083 -0.8548 0.3927
...

lag15 0.0133 0.0083 1.6122 0.1069
constant 0.0019 0.0008 2.3907 0.0168

time 0.0020 0.0011 1.8507 0.0642

Regression Diagnostics:
R-Squared 0.0081

Adjusted R-Squared 0.0070
Durbin-Watson Stat 1.9995

Residual standard error: 0.008981 on 14643 degrees of freedom

2.8 SEASONAL MODELS

Some financial time series such as quarterly earnings per share of a company
exhibits certain cyclical or periodic behavior. Such a time series is called a sea-
sonal time series . Figure 2.13(a) shows the time plot of quarterly earnings per share
of Johnson & Johnson from the first quarter of 1960 to the last quarter of 1980.
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Figure 2.13 Time plots of quarterly earnings per share of Johnson & Johnson from 1960 to 1980:
(a) observed earnings and (b) log earnings.

The data obtained from Shumway and Stoffer (2000) possess some special char-
acteristics. In particular, the earnings grew exponentially during the sample period
and had a strong seasonality. Furthermore, the variability of earnings increased
over time. The cyclical pattern repeats itself every year so that the periodicity of
the series is 4. If monthly data are considered (e.g., monthly sales of Wal-Mart
stores), then the periodicity is 12. Seasonal time series models are also useful in
pricing weather-related derivatives and energy futures because most environmental
time series exhibit strong seasonal behavior.

Analysis of seasonal time series has a long history. In some applications, sea-
sonality is of secondary importance and is removed from the data, resulting in a
seasonally adjusted time series that is then used to make inference. The procedure
to remove seasonality from a time series is referred to as seasonal adjustment . Most
economic data published by the U.S. government are seasonally adjusted (e.g., the
growth rate of gross domestic product and the unemployment rate). In other appli-
cations such as forecasting, seasonality is as important as other characteristics of
the data and must be handled accordingly. Because forecasting is a major objective
of financial time series analysis, we focus on the latter approach and discuss some
econometric models that are useful in modeling seasonal time series.

2.8.1 Seasonal Differencing

Figure 2.13(b) shows the time plot of log earnings per share of Johnson & Johnson.
We took the log transformation for two reasons. First, it is used to handle the
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exponential growth of the series. Indeed, the plot confirms that the growth is linear
in the log scale. Second, the transformation is used to stablize the variability of
the series. Again, the increasing pattern in variability of Figure 2.13(a) disappears
in the new plot. Log transformation is commonly used in analysis of financial
and economic time series. In this particular instance, all earnings are positive so
that no adjustment is needed before taking the transformation. In some cases,
one may need to add a positive constant to every data point before taking the
transformation.

Denote the log earnings by xt . The upper left panel of Figure 2.14 shows the sam-
ple ACF of xt , which indicates that the quarterly log earnings per share has strong
serial correlations. A conventional method to handle such strong serial correlations
is to consider the first differenced series of xt [i.e., xt = xt − xt−1 = (1 − B)xt ].
The lower left plot of Figure 2.14 gives the sample ACF of xt . The ACF is strong
when the lag is a multiple of periodicity 4. This is a well-documented behav-
ior of sample ACF of a seasonal time series. Following the procedure of Box,
Jenkins, and Reinsel (1994, Chapter 9), we take another difference of the data,
that is,

4(xt ) = (1 − B4)xt = xt − xt−4 = xt − xt−1 − xt−4 + xt−5.
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Figure 2.14 Sample ACF of log series of quarterly earnings per share of Johnson & Johnson from
1960 to 1980. (a) log earnings, (b) first differenced series, (c) seasonally differenced series, and (d)
series with regular and seasonal differencing.
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The operation 4 = (1 − B4) is called a seasonal differencing . In general, for a
seasonal time series yt with periodicity s, seasonal differencing means

syt = yt − yt−s = (1 − Bs)yt .

The conventional difference yt = yt − yt−1 = (1 − B)yt is referred to as the
regular differencing . The lower right plot of Figure 2.14 shows the sample ACF
of 4 xt , which has a significant negative ACF at lag 1 and a marginal negative
correlation at lag 4. For completeness, Figure 2.14 also gives the sample ACF of
the seasonally differenced series 4xt .

2.8.2 Multiplicative Seasonal Models

The behavior of the sample ACF of (1 − B4)(1 − B)xt in Figure 2.14 is common
among seasonal time series. It led to the development of the following special
seasonal time series model:

(1 − Bs)(1 − B)xt = (1 − θB)(1 − �Bs)at , (2.41)

where s is the periodicity of the series, at is a white noise series, |θ | < 1, and
|�| < 1. This model is referred to as the airline model in the literature; see Box,
Jenkins, and Reinsel (1994, Chapter 9). It has been found to be widely applicable
in modeling seasonal time series. The AR part of the model simply consists of the
regular and seasonal differences, whereas the MA part involves two parameters.
Focusing on the MA part (i.e., on the model),

wt = (1 − θB)(1 − �Bs)at = at − θat−1 − �at−s + θ�at−s−1,

where wt = (1 − Bs)(1 − B)xt and s > 1. It is easy to obtain that E(wt) = 0 and

Var(wt ) = (1 + θ2)(1 + �2)σ 2
a ,

Cov(wt , wt−1) = −θ(1 + �2)σ 2
a ,

Cov(wt , wt−s+1) = θ�σ 2
a ,

Cov(wt , wt−s) = −�(1 + θ2)σ 2
a ,

Cov(wt , wt−s−1) = θ�σ 2
a ,

Cov(wt , wt−�) = 0, for � �= 0, 1, s − 1, s, s + 1.

Consequently, the ACF of the wt series is given by

ρ1 = −θ

1 + θ2
, ρs = −�

1 + �2
, ρs−1 = ρs+1 = ρ1ρs = θ�

(1 + θ2)(1 + �2)
,
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and ρ� = 0 for �> 0 and � �= 1, s − 1, s, s + 1. For example, if wt is a quarterly
time series, then s = 4 and for �> 0, the ACF ρ� is nonzero at lags 1, 3, 4, and
5 only.

It is interesting to compare the prior ACF with those of the MA(1) model
yt = (1 − θB)at and the MA(s) model zt = (1 − �Bs)at . The ACF of yt and zt
series are

ρ1(y) = −θ

1 + θ2
and ρ�(y) = 0, �> 1,

ρs(z) = −�

1 + �2
and ρ�(z) = 0, �> 0, �= s.

We see that (i) ρ1 = ρ1(y), (ii) ρs = ρs(z), and (iii) ρs−1 = ρs+1 = ρ1(y) × ρs(z).
Therefore, the ACF of wt at lags (s − 1) and (s + 1) can be regarded as the
interaction between lag-1 and lag-s serial dependence, and the model of wt is
called a multiplicative seasonal MA model. In practice, a multiplicative seasonal
model says that the dynamics of the regular and seasonal components of the series
are approximately orthogonal.

The model

wt = (1 − θB − �Bs)at , (2.42)

where |θ | < 1 and |�| < 1, is a nonmultiplicative seasonal MA model. It is easy
to see that for the model in Eq. (2.42), ρs+1 = 0. A multiplicative model is more
parsimonious than the corresponding nonmultiplicative model because both models
use the same number of parameters, but the multiplicative model has more nonzero
ACFs.

Example 2.3. In this example we apply the airline model to the log series of
quarterly earnings per share of Johnson & Johnson from 1960 to 1980. Based on
the exact-likelihood method, the fitted model is

(1 − B)(1 − B4)xt = (1 − 0.678B)(1 − 0.314B4)at , σ̂a = 0.089,

where standard errors of the two MA parameters are 0.080 and 0.101, respectively.
The Ljung–Box statistics of the residuals show Q(12) = 10.0 with a p value of
0.44. The model appears to be adequate.

To illustrate the forecasting performance of the prior seasonal model, we rees-
timate the model using the first 76 observations and reserve the last 8 data points
for forecasting evaluation. We compute 1-step- to 8-step-ahead forecasts and their
standard errors of the fitted model at the forecast origin h = 76. An antilog trans-
formation is taken to obtain forecasts of earnings per share using the relationship
between normal and lognormal distributions given in Chapter 1. Figure 2.15 shows
the forecast performance of the model, where the observed data are in solid line,
point forecasts are shown by dots, and the dashed lines show 95% interval fore-
casts. The forecasts show a strong seasonal pattern and are close to the observed
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Figure 2.15 Out-of-sample point and interval forecasts for quarterly earnings of Johnson & Johnson.
Forecast origin is fourth quarter of 1978. In plot, solid line shows actual observations, dots represent
point forecasts, and dashed lines show 95% interval forecasts.

data. Finally, for an alternative approach to modeling the quarterly earnings data,
see Example 11.3.

When the seasonal pattern of a time series is stable over time (e.g., close to a
deterministic function), dummy variables may be used to handle the seasonality.
This approach is taken by some analysts. However, deterministic seasonality is a
special case of the multiplicative seasonal model discussed before. Specifically,
if � = 1, then model (2.41) contains a deterministic seasonal component. Con-
sequently, the same forecasts are obtained by using either dummy variables or a
multiplicative seasonal model when the seasonal pattern is deterministic. Yet use of
dummy variables can lead to inferior forecasts if the seasonal pattern is not deter-
ministic. In practice, we recommend that the exact-likelihood method should be
used to estimate a multiplicative seasonal model, especially when the sample size is
small or when there is the possibility of having a deterministic seasonal component.

Example 2.4. To demonstrate deterministic seasonal behavior, consider the
monthly simple returns of the CRSP Decile 1 Index from January 1970 to December
2008 for 468 observations. The series is shown in Figure 2.16(a), and the time plot
does not show any clear pattern of seasonality. However, the sample ACF of the
return series shown in Figure 2.16(b) contains significant lags at 12, 24, and 36 as
well as lag 1. If seasonal ARMA models are entertained, a model in the form

(1 − φ1B)(1 − φ12B
12)Rt = (1 − θ12B

12)at
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Figure 2.16 Monthly simple returns of CRSP Decile 1 index from January 1970 to December 2008:
(a) time plot of the simple returns, (b) sample ACF of simple returns, (c) time plot of simple returns
after adjusting for January effect, and (d) sample ACF of adjusted simple returns.

is identified, where Rt denotes the monthly simple return. Using the conditional-
likelihood method, the fitted model is

(1 − 0.18B)(1 − 0.87B12)Rt = (1 − 0.74B12)at , σ̃a = 0.069.

See the attached SCA (Scientific Computing Associates) output below. The esti-
mates of the seasonal AR and MA coefficients are of similar magnitude. If the
exact-likelihood method is used, we have

(1 − 0.188B)(1 − 0.951B12)Rt = (1 − 0.997B12)at , σ̃a = 0.063.

The cancellation between seasonal AR and MA factors is clearly seen. This high-
lights the usefulness of using the exact-likelihood method and, the estimation result
suggests that the seasonal behavior might be deterministic. To further confirm this
assertion, we define the dummy variable for January, that is,

Jant =
{

1 if t is January,

0 otherwise,

and employ the simple linear regression

Rt = β0 + β1Jant + et .
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The fitted model is Rt = 0.0029 + 0.1253Jant + et , where the standard errors of
the estimates are 0.0033 and 0.0115, respectively. The right panel of Figure 2.16
shows the time plot and sample ACF of the residual series of the prior simple linear
regression. From the sample ACF, serial correlations at lags 12, 24, and 36 largely
disappear, suggesting that the seasonal pattern of the Decile 1 returns has been
successfully removed by the January dummy variable. Consequently, the seasonal
behavior in the monthly simple return of Decile 1 is mainly due to the January
effect .

R Demonstration
The following output has been edited and % denotes explanation:

> da=read.table("m-deciles08.txt",header=T)
> d1=da[,2]
> jan=rep(c(1,rep(0,11)),39) % Create January dummy.
> m1=lm(d1 jan)
> summary(m1)
Call:
lm(formula = d1 ~ jan)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.002864 0.003333 0.859 0.391
jan 0.125251 0.011546 10.848 <2e-16 ***
---

Residual standard error: 0.06904 on 466 degrees of freedom
Multiple R-squared: 0.2016, Adjusted R-squared: 0.1999

> m2=arima(d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),
+ period=12))
> m2
Coefficients:

ar1 sar1 sma1 intercept
0.1769 0.9882 -0.9144 0.0118

s.e. 0.0456 0.0093 0.0335 0.0129

sigma^2 estimated as 0.004717: log likelihood=584.07,
aic=-1158.14

> tsdiag(m2,gof=36) % plot not shown.

> m2=arima(d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),
+ period=12),include.mean=F)
> m2
Call:
arima(x=d1,order=c(1,0,0),seasonal=list(order=c(1,0,1),

period=12),include.mean = F)
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Coefficients:
ar1 sar1 sma1

0.1787 0.9886 -0.9127 % Slightly differ from those of SCA.
s.e. 0.0456 0.0089 0.0335

sigma^2 estimated as 0.00472: log likelihood=583.68,
aic=-1159.36

SCA Demonstration
The following output has been edited:

input date,dec1,d2,d9,d10. file ’m-deciles08.txt’.
--

tsm m1. model (1)(12)dec1=(12)noise.
--

estim m1. hold resi(r1). % Conditional MLE estimation

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- M1
--------------------------------------------------------------
VAR TYPE OF ORIGINAL DIFFERENCING

VARIABLE OR CENTERED

DEC1 RANDOM ORIGINAL NONE
--------------------------------------------------------------
PAR. VAR. NUM./ FACTOR ORDER CONS- VALUE STD T
LABEL NAME DENOM. TRAINT ERROR VALUE

1 D1 MA 1 12 NONE .7388 .0488 15.14
2 D1 AR 1 1 NONE .1765 .0447 3.95
3 D1 AR 2 12 NONE .8698 .0295 29.49

EFFECTIVE NUMBER OF OBSERVATIONS . . 455
R-SQUARE . . . . . . . . . . . . . . 0.199
RESIDUAL STANDARD ERROR. . . . . . . 0.689906E-01
RESIDUAL STANDARD ERROR. . . . . . . 0.705662E-01
– –

estim m1. method exact. hold resi(r1) % Exact MLE estimation

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- M1
--------------------------------------------------------------
VAR. TYPE OF ORIGINAL DIFFERENCING

VAR. OR CENTERED

DEC1 RANDOM ORIGINAL NONE
--------------------------------------------------------------
PAR. VARI. NUM./ FACTOR ORDER CONS- VALUE STD T
LABEL NAME DENOM. TRAINT ERROR VALUE

1 D1 MA 1 12 NONE .9968 .0150 66.31
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2 D1 AR 1 1 NONE .1884 .0448 4.21
3 D1 AR 2 12 NONE .9505 .0070 135.46

EFFECTIVE NUMBER OF OBSERVATIONS . . 455
R-SQUARE . . . . . . . . . . . . . . 0.328
RESIDUAL STANDARD ERROR. . . . . . . 0.631807E-01

2.9 REGRESSION MODELS WITH TIME SERIES ERRORS

In many applications, the relationship between two time series is of major interest.
An obvious example is the market model in finance that relates the excess return
of an individual stock to that of a market index. The term structure of interest rates
is another example in which the time evolution of the relationship between interest
rates with different maturities is investigated. These examples lead naturally to the
consideration of a linear regression in the form

yt = α + βxt + et , (2.43)

where yt and xt are two time series and et denotes the error term. The least-
squares (LS) method is often used to estimate model (2.43). If {et } is a white noise
series, then the LS method produces consistent estimates. In practice, however, it
is common to see that the error term et is serially correlated. In this case, we have
a regression model with time series errors, and the LS estimates of α and β may
not be consistent.

A regression model with time series errors is widely applicable in economics
and finance, but it is one of the most commonly misused econometric models
because the serial dependence in et is often overlooked. It pays to study the model
carefully.

We introduce the model by considering the relationship between two U.S. weekly
interest rate series:

1. r1t : the 1-year Treasury constant maturity rate

2. r3t : the 3-year Treasury constant maturity rate

Both series have 2467 observations from January 5, 1962, to April 10, 2009,
and are measured in percentages. The series are obtained from the Federal
Reserve Bank of St Louis. Strictly speaking, we should model the two interest
series jointly using multivariate time series analysis in Chapter 8. However, for
simplicity, we focus here on regression-type analysis and ignore the issue of
simultaneity.

Figure 2.17 shows the time plots of the two interest rates with a solid line
denoting the 1-year rate and a dashed line the 3-year rate. Figure 2.18(a) plots r1t

versus r3t , indicating that, as expected, the two interest rates are highly correlated.
A naive way to describe the relationship between the two interest rates is to use
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Figure 2.17 Time plots of U.S. weekly interest rates (in percentages) from January 5, 1962, to April
10, 2009. Solid line is Treasury 1-year constant maturity rate and dashed line Treasury 3-year constant
maturity rate.

the simple model r3t = α + βr1t + et . This results in a fitted model

r3t = 0.832 + 0.930r1t + et , σ̂e = 0.523 (2.44)

with R2 = 96.5% , where the standard errors of the two coefficients are 0.024 and
0.004, respectively. Model (2.44) confirms the high correlation between the two
interest rates. However, the model is seriously inadequate, as shown by Figure 2.19,
which gives the time plot and ACF of its residuals. In particular, the sample ACF
of the residuals is highly significant and decays slowly, showing the pattern of
a unit-root nonstationary time series. The behavior of the residuals suggests that
marked differences exist between the two interest rates. Using the modern econo-
metric terminology, if one assumes that the two interest rate series are unit-root
nonstationary, then the behavior of the residuals of Eq. (2.44) indicates that the two
interest rates are not cointegrated ; see Chapter 8 for discussion of cointegration.
In other words, the data fail to support the hypothesis that there exists a long-term
equilibrium between the two interest rates. In some sense, this is not surprising
because the pattern of “inverted yield curve” did occur during the data span. By
inverted yield curve we mean the situation under which interest rates are inversely
related to their time to maturities.

The unit-root behavior of both interest rates and the residuals of Eq. (2.44) leads
to the consideration of the change series of interest rates. Let
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Figure 2.18 Scatterplots of U.S. weekly interest rates from January 5, 1962, to April 10, 2009:
(a) 3-year rate vs. 1-year rate and (b) changes in 3-year rate vs. changes in 1-year rate.

1. c1t = r1t − r1,t−1 = (1 − B)r1t for t ≥ 2: changes in the 1-year interest rate

2. c3t = r3t − r3,t−1 = (1 − B)r3t for t ≥ 2: changes in the 3-year interest rate

and consider the linear regression c3t = βc1t + et . Figure 2.20 shows time plots of
the two change series, whereas Figure 2.18(b) provides a scatterplot between them.
The change series remain highly correlated with a fitted linear regression model
given by

c3t = 0.792c1t + et , σ̂e = 0.0690, (2.45)

with R2 = 82.5%. The standard error of the coefficient is 0.0073. This model
further confirms the strong linear dependence between interest rates. Figure 2.21
shows the time plot and sample ACF of the residuals of Eq. (2.45). Once again,
the ACF shows some significant serial correlations in the residuals, but magnitudes
of the correlations are much smaller. This weak serial dependence in the residuals
can be modeled by using the simple time series models discussed in the previous
sections, and we have a linear regression with time series errors.

The main objective of this section is to discuss a simple approach for building a
linear regression model with time series errors. The approach is straightforward. We
employ a simple time series model discussed in this chapter for the residual series
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Figure 2.19 Residual series of linear regression (2.44) for two U.S. weekly interest rates: (a) time
plot and (b) sample ACF.

and estimate the whole model jointly. For illustration, consider the simple linear
regression in Eq. (2.45). Because residuals of the model are serially correlated, we
shall identify a simple ARMA model for the residuals. From the sample ACF of
the residuals shown in Figure 2.21, we specify an MA(1) model for the residuals
and modify the linear regression model to

c3t = βc1t + et , et = at − θ1at−1, (2.46)

where {at } is assumed to be a white noise series. In other words, we simply use
an MA(1) model, without the constant term, to capture the serial dependence in
the error term of Eq. (2.45). The resulting model is a simple example of linear
regression with time series errors. In practice, more elaborated time series models
can be added to a linear regression equation to form a general regression model
with time series errors.

Estimating a regression model with time series errors was not easy before the
advent of modern computers. Special methods such as the Cochrane–Orcutt estima-
tor have been proposed to handle the serial dependence in the residuals; see Greene
(2003, p. 273). By now, the estimation is as easy as that of other time series mod-
els. If the time series model used is stationary and invertible, then one can estimate
the model jointly via the maximum-likelihood method. This is the approach we
take by using either the SCA or R package. R and S-Plus demonstrations are given



94 linear time series analysis and its applications

Year

C
ha

ng
e

C
ha

ng
e

1970 1980 1990 2000 2010

1970 1980 1990 2000 2010

−1
.5

−0
.5

0.
5

1.
5

(a)

Year

−1
.0

0.
0

1.
0

(b)

Figure 2.20 Time plots of change series of U.S. weekly interest rates from January 12, 1962, to April
10, 2009: (a) changes in Treasury 1-year constant maturity rate and (b) changes in Treasury 3-year
constant maturity rate.

later. For the U.S. weekly interest rate data, the fitted version of model (2.46) is

c3t = 0.794c1t + et , et = at + 0.1823at−1, σ̂a = 0.0678, (2.47)

with R2 = 83.1%. The standard errors of the parameters are 0.0075 and 0.0196,
respectively. The model no longer has a significant lag-1 residual ACF, even though
some minor residual serial correlations remain at lags 4, 6, and 7. The incremental
improvement of adding additional MA parameters at lags 4, 6, and 7 to the residual
equation is small and the result is not reported here.

Comparing the models in Eqs. (2.44), (2.45), and (2.47), we make the following
observations. First, the high R2 96.5% and coefficient 0.930 of model (2.44) are
misleading because the residuals of the model show strong serial correlations.
Second, for the change series, R2 and the coefficient of c1t of models (2.45) and
(2.47) are close. In this particular instance, adding the MA(1) model to the change
series only provides a marginal improvement. This is not surprising because the
estimated MA coefficient is small numerically, even though it is statistically highly
significant. Third, the analysis demonstrates that it is important to check residual
serial dependence in linear regression analysis.
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Figure 2.21 Residual series of linear regression (2.45) for two change series of U.S. weekly interest
rates: (a) time plot and (b) sample ACF.

From Eq. (2.47), the model shows that the two weekly interest rate series are
related as

r3t = r3,t−1 + 0.794(r1t − r1,t−1) + at + 0.182at−1.

The interest rates are concurrently and serially correlated.

R Demonstration
The following output has been edited.

> r1=read.table("w-gs1yr.txt",header=T)[,4]
> r3=read.table("w-gs3yr.txt",header=T)[,4]
> m1=lm(r3 r1)
> summary(m1)
Call:
lm(formula = r3 ~ r1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept ) 0.83214 0.02417 34.43 <2e-16 ***
r1 0.92955 0.00357 260.40 <2e-16 ***
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---
Residual standard error: 0.5228 on 2465 degrees of freedom
Multiple R-squared: 0.9649, Adjusted R-squared: 0.9649

> plot(m1$residuals,type=’l’)
> acf(m1$residuals,lag=36)
> c1=diff(r1)
> c3=diff(r3)
> m2=lm(c3 -1+c1)
> summary(m2)
Call:
lm(formula = c3 ~ -1 + c1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
c1 0.791935 0.007337 107.9 <2e-16 ***
---
Residual standard error: 0.06896 on 2465 degrees of freedom
Multiple R-squared: 0.8253, Adjusted R-squared: 0.8253

> acf(m2$residuals,lag=36)

> m3=arima(c3,order=c(0,0,1),xreg=c1,include.mean=F)
> m3
Call:
arima(x = c3, order = c(0, 0, 1), xreg = c1, include.mean = F)
Coefficients:

ma1 c1
0.1823 0.7936

s.e. 0.0196 0.0075

sigma^2 estimated as 0.0046: log likelihood=3136.62,
aic=-6267.23

>
> rsq=(sum(c3^2)-sum(m3$residuals^2))/sum(c3^2)
> rsq
[1] 0.8310077

Summary
We outline a general procedure for analyzing linear regression models with time
series errors:

1. Fit the linear regression model and check serial correlations of the
residuals.

2. If the residual series is unit-root nonstationary, take the first difference of
both the dependent and explanatory variables. Go to step 1. If the residual
series appears to be stationary, identify an ARMA model for the residuals
and modify the linear regression model accordingly.
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3. Perform a joint estimation via the maximum-likelihood method and check
the fitted model for further improvement.

To check the serial correlations of residuals, we recommend that the Ljung–Box
statistics be used instead of the Durbin–Watson (DW) statistic because the latter
only considers the lag-1 serial correlation. There are cases in which serial depen-
dence in residuals appears at higher order lags. This is particularly so when the
time series involved exhibits some seasonal behavior.

Remark. For a residual series et with T observations, the Durbin–Watson
statistic is

DW =
∑T

t=2(et − et−1)
2∑T

t=1 e
2
t

.

Straightforward calculation shows that DW ≈ 2(1 − ρ̂1), where ρ̂1 is the lag-1 ACF
of {et }. �

In S-Plus, regression models with time series errors can be analyzed by the
command OLS (ordinary least squares) if the residuals assume an AR model.
Also, to identify a lagged variable, the command is tslag, for example, y =
tslag(r,1). For the interest rate series, the relevant commands follow, where %
denotes explanation of the command:

> r1t=read.table("w-gs1yr.txt",header=T)[,4] %load data
> r3t=read.table("w-gs3yr.txt",header=T)[,4]
> fit=OLS(r3t~r1t) % fit the first regression
> summary(fit)
> c3t=diff(r3t) % take difference
> c1t=diff(r1t)
> fit1=OLS(c3t~c1t) % fit second regression
> summary(fit1)
> fit2=OLS(c3t~c1t+tslag(c3t,1)+tslag(c1t,1), na.rm=T)
> summary(fit2)

See the output in the next section for more information.

2.10 CONSISTENT COVARIANCE MATRIX ESTIMATION

Consider again the regression model in Eq. (2.43). There may exist situations in
which the error term et has serial correlations and/or conditional heteroscedasticity,
but the main objective of the analysis is to make inference concerning the regression
coefficients α and β. See Chapter 3 for discussion of conditional heteroscedasticity.
In situations under which the OLS estimates of the coefficients remain consistent,
methods are available to provide consistent estimate of the covariance matrix of
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the coefficient estimates. Two such methods are widely used. The first method is
called the heteroscedasticity consistent (HC) estimator; see Eicker (1967) and White
(1980). The second method is called the heteroscedasticity and autocorrelation
consistent (HAC) estimator; see Newey and West (1987).

For ease in discussion, we shall rewrite the regression model as

yt = x ′
tβ + et , t = 1, . . . , T , (2.48)

where yt is the dependent variable, x t = (x1t , . . . , xkt )
′ is a k-dimensional vector

of explanatory variables including constant, and β = (β1, . . . , βk)
′ is the parameter

vector. Here c′ denotes the transpose of the vector c. The LS estimate of β and
the associate covariance matrix are

β̂ =
[

T∑
t=1

x tx
′
t

]−1 T∑
t=1

x t yt , Cov(β̂) = σ 2
e

[
T∑

t=1

x tx
′
t

]−1

,

where σ 2
e is the variance of et and is estimated by the variance of the residuals of the

regression. In the presence of serial correlations or conditional heteroscedasticity,
the prior covariance matrix estimator is inconsistent, often resulting in inflating the
t ratios of β̂.

The estimator of White (1980) is

Cov(β̂)HC =
[

T∑
t=1

x tx
′
t

]−1 [ T∑
t=1

ê2
t x tx

′
t

][
T∑

t=1

x tx
′
t

]−1

, (2.49)

where êt = yt − x ′
t β̂ is the residual at time t . The estimator of Newey and West

(1987) is

Cov(β̂)HAC =
[

T∑
t=1

xtx
′
t

]−1

ĈHAC

[
T∑

t=1

xtx
′
t

]−1

, (2.50)

where

ĈHAC =
T∑

t=1

ê2
t x tx

′
t +

�∑
j=1

wj

T∑
t=j+1

(x t êtet−jx
′
t−j + x t−j êt−j êtx

′
t ),

where � is a truncation parameter and wj is a weight function such as the Bartlett
weight function defined by

wj = 1 − j

� + 1
.
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Other weight functions can also be used. Newey and West (1987) suggest choosing
� to be the integer part of 4(T /100)2/9. This estimator essentially uses a nonpara-
metric method to estimate the covariance matrix of {∑T

t=1 êtx t }.
For illustration, we employ the first differenced interest rate series in Eq. (2.45).

The t ratio of the coefficient of c1t is 107.91 if both serial correlation and het-
eroscedasticity in the residuals are ignored, it becomes 48.44 when the HC estimator
is used, and it reduces to 39.92 when the HAC estimator is used. The S-Plus demon-
stration below also uses a regression that includes lagged values c1,t−1 and c3,t−1

as regressors to take care of serial correlations in the residuals. One can also apply
the HC or HAC estimator to the fitted model to refine the t ratios of the coefficient
estimates.

S-Plus Demonstration
The following output has been edited and % denotes explanation:

> module(finmetrics)
> r1=read.table("w-gs1yr.txt",header=T)[,4] % Load data
> r3=read.table("w-gs3yr.txt",header=T)[,4]
> c1=diff(r1) % Take 1st difference
> c3=diff(r3)

> reg.fit=OLS(c3~c1) % Fit a simple linear regression.
> summary(reg.fit)
Call:
OLS(formula = c3 ~ c1)

Residuals:
Min 1Q Median 3Q Max

-0.4246 -0.0358 -0.0012 0.0347 0.4892

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0001 0.0014 -0.0757 0.9397
c1 0.7919 0.0073 107.9063 0.0000

Regression Diagnostics:
R-Squared 0.8253

Adjusted R-Squared 0.8253
Durbin-Watson Stat 1.6456

Residual Diagnostics:
Stat P-Value

Jarque-Bera 1644.6146 0.0000
Ljung-Box 230.0477 0.0000

Residual standard error: 0.06897 on 2464 degrees of freedom

> summary(reg.fit,correction="white") % Use HC the estimator
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Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0001 0.0014 -0.0757 0.9396
c1 0.7919 0.0163 48.4405 0.0000

> summary(reg.fit,correction="nw") % Use the HAC estimator

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0001 0.0016 -0.0678 0.9459
c1 0.7919 0.0198 39.9223 0.0000

% Below, fit a regression model with time series errors.
> reg.ts=OLS(c3~c1+tslag(c3,1)+tslag(c1,1),na.rm=T)
> summary(reg.ts)
Call:
OLS(formula = c3 ~ c1 + tslag(c3, 1)+tslag(c1, 1), na.rm = T)

Residuals:
Min 1Q Median 3Q Max

-0.4481 -0.0355 -0.0008 0.0341 0.4582

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -0.0001 0.0014 -0.0636 0.9493
c1 0.7971 0.0077 103.6320 0.0000

tslag(c3, 1) 0.1766 0.0198 8.9057 0.0000
tslag(c1, 1) -0.1580 0.0174 -9.0583 0.0000

Regression Diagnostics:
R-Squared 0.8312

Adjusted R-Squared 0.8310
Durbin-Watson Stat 1.9865

Residual Diagnostics:
Stat P-Value

Jarque-Bera 1620.5090 0.0000
Ljung-Box 131.6048 0.0000

Residual standard error: 0.06785 on 2461 degrees of freedom

Let β̂j be the j th element of β̂. When k > 1, the HC variance of β̂j in
Eq. (2.49) can be obtained by using an auxiliary regression. Let x−j,t be the
(k − 1)-dimensional vector obtained by removing the element xjt from x t .
Consider the auxiliary regression

xjt = x ′
−j,tγ + vt , t = 1, . . . , T . (2.51)
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Let v̂t be the least-squares residual of this auxiliary regression. It can be shown
that

Var(β̂j )HC =
∑T

t=1 ê
2
t v̂

2
t(∑T

t=1 v̂
2
t

)2 ,

where êt is the residual of original regression in Eq. (2.48). The auxiliary regression
is simply a step taken to achieve orthogonality between v̂t and the rest of the
regressors so that the formula in Eq. (2.49) can be simplified.

2.11 LONG-MEMORY MODELS

We have discussed that for a stationary time series the ACF decays exponentially to
zero as lag increases. Yet for a unit-root nonstationary time series, it can be shown
that the sample ACF converges to 1 for all fixed lags as the sample size increases;
see Chan and Wei (1988) and Tiao and Tsay (1983). There exist some time series
whose ACF decays slowly to zero at a polynomial rate as the lag increases. These
processes are referred to as long-memory time series. One such example is the
fractionally differenced process defined by

(1 − B)dxt = at , −0.5 < d < 0.5, (2.52)

where {at } is a white noise series. Properties of model (2.52) have been widely
studied in the literature (e.g., Hosking, 1981). We now summarize some of these
properties:

1. If d < 0.5, then xt is a weakly stationary process and has the infinite MA
representation

xt = at +
∞∑
i=1

ψiat−i with ψk

= d(1 + d) · · · (k − 1 + d)

k!
= (k + d − 1)!

k!(d − 1)!
.

2. If d >−0.5, then xt is invertible and has the infinite AR representation

xt =
∞∑
i=1

πixt−i + at with πk

= −d(1 − d) · · · (k − 1 − d)

k!
= (k − d − 1)!

k!(−d − 1)!
.
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3. For −0.5 < d < 0.5, the ACF of xt is

ρk = d(1 + d) · · · (k − 1 + d)

(1 − d)(2 − d) · · · (k − d)
, k = 1, 2, . . . .

In particular, ρ1 = d/(1 − d) and

ρk ≈ (−d)!

(d − 1)!
k2d−1 as k → ∞.

4. For −0.5 < d < 0.5, the PACF of xt is φk,k = d/(k − d) for k = 1, 2, . . . .

5. For −0.5 < d < 0.5, the spectral density function f (ω) of xt , which is the
Fourier transform of the ACF of xt , satisfies

f (ω) ∼ ω−2d, as ω → 0, (2.53)

where ω ∈ [0, 2π ] denotes the frequency.

Of particular interest here is the behavior of ACF of xt when d < 0.5. The property
says that ρk ∼ k2d−1, which decays at a polynomial, instead of exponential, rate.
For this reason, such an xt process is called a long-memory time series. A special
characteristic of the spectral density function in Eq. (2.53) is that the spectrum
diverges to infinity as ω → 0. However, the spectral density function of a stationary
ARMA process is bounded for all ω ∈ [0, 2π ].

Earlier we used the binomial theorem for noninteger powers

(1 − B)d =
∞∑
k=0

(−1)k
(

d

k

)
Bk,

(
d

k

)
= d(d − 1) · · · (d − k + 1)

k!
.

If the fractionally differenced series (1 − B)dxt follows an ARMA(p, q) model,
then xt is called an ARFIMA(p, d, q) process, which is a generalized ARIMA
model by allowing for noninteger d.

In practice, if the sample ACF of a time series is not large in magnitude,
but decays slowly, then the series may have long memory. As an illustration,
Figure 2.22 shows the sample ACFs of the absolute series of daily simple returns
for the CRSP value- and equal-weighted indexes from January 2, 1970, to Decem-
ber 31, 2008. The ACFs are relatively small in magnitude but decay very slowly;
they appear to be significant at the 5% level even after 300 lags. For more informa-
tion about the behavior of sample ACF of absolute return series, see Ding, Granger,
and Engle (1993). For the pure fractionally differenced model in Eq. (2.52), one
can estimate d using either a maximum-likelihood method or a regression method
with logged periodogram at the lower frequencies. Finally, long-memory models
have attracted some attention in the finance literature in part because of the work
on fractional Brownian motion in the continuous-time models.
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Figure 2.22 Sample autocorrelation function of absolute series of daily simple returns for CRSP
value- and equal-weighted indexes: (a) value-weighted index return and (b) equal-weighted index return.
Sample period is from January 2, 1970, to December 31, 2008.

APPENDIX: SOME SCA COMMANDS

In this appendix, we give the SCA commands used in Section 2.9. The 1-year
maturity interest rates are in the file w-gs1yr.txt and the 3-year rates are in the
file w-gs3yr.txt.

-- load the data into SCA, denote the data by rate1 and rate3.
input year,mom,day,rate1. file ‘w-gs1yr.txt’
--
input year,mon,day,rate3. file ‘w-gs3yr.txt’
-- specify a simple linear regression model.
tsm m1. model rate3=b0+(b1)rate1+noise.
-- estimate the specified model and store residual in r1.
estim m1. hold resi(r1).
-- compute 10 lags of residual acf.
acf r1. maxl 10.
-- difference the two series, denote the new series by c1t

and c3t
diff old rate1,rate3. new c1t, c3t. compress.
-- specify a linear regression model for the differenced data
tsm m2. model c3t=h0+(h1)c1t+noise.
-- estimation
estim m2. hold resi(r2).
-- compute residual acf.
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acf r2. maxl 10.
-- specify a regression model with time series errors.
tsm m3. model c3t=g0+(g1)c1t+(1)noise.
-- estimate the model using the exact likelihood method.
estim m3. method exact. hold resi(r3).
-- compute residual acf.
acf r3. maxl 10.
-- refine the model to include more MA lags.
tsm m4. model c3t=g0+(g1)c1t+(1,4,6,7)noise.
-- estimation
estim m4. method exact. hold resi(r4).
-- compute residual acf.
acf r4. maxl 10.
-- exit SCA
stop

EXERCISES

If not specifically specified, use 5% significance level to draw conclusions in the
exercises.

2.1. Suppose that the simple return of a monthly bond index follows the MA(1)
model

Rt = at + 0.2at−1, σa = 0.025.

Assume that a100 = 0.01. Compute the 1-step- and 2-step-ahead forecasts
of the return at the forecast origin t = 100. What are the standard devia-
tions of the associated forecast errors? Also compute the lag-1 and lag-2
autocorrelations of the return series.

2.2. Suppose that the daily log return of a security follows the model

rt = 0.01 + 0.2rt−2 + at ,

where {at } is a Gaussian white noise series with mean zero and variance 0.02.
What are the mean and variance of the return series rt? Compute the lag-1
and lag-2 autocorrelations of rt . Assume that r100 = −0.01, and r99 = 0.02.
Compute the 1- and 2-step-ahead forecasts of the return series at the forecast
origin t = 100. What are the associated standard deviations of the forecast
errors?

2.3. Consider the monthly U.S. unemployment rate from January 1948 to March
2009 in the file m-unrate.txt. The data are seasonally adjusted and
obtained from the Federal Reserve Bank of St Louis. Build a time series
model for the series and use the model to forecast the unemployment rate
for the April, May, June, and July of 2009. In addition, does the fitted
model imply the existence of business cycles? Why? (Note that there are
more than one model fits the data well. You only need an adequate model.)
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2.4. Consider the monthly simple returns of the Decile 1, Decile 2, Decile 9, and
Decile 10 of NYSE/AMEX/NASDAQ based on market capitalization. The
data span is from January 1970 to December 2008, and the data are obtained
from CRSP.

(a) For the return series of Decile 2 and Decile 10, test the null hypothesis
that the first 12 lags of autocorrelations are zero at the 5% level. Draw
your conclusion.

(b) Build an ARMA model for the return series of Decile 2. Perform model
checking and write down the fitted model.

(c) Use the fitted ARMA model to produce 1- to 12-step-ahead forecasts of
the series and the associated standard errors of forecasts.

2.5. Consider the daily simple returns of IBM stock from 1970 to 2008 in the
file d-ibm3dx7008.txt. Compute the first 100 lags of ACF of the absolute
series of daily simple returns of IBM stock. Is there evidence of long-range
dependence? Why?

2.6. Consider the demand of electricity of a manufacturing sector in the United
States. The data are logged, denote the demand of a fixed day of each month,
and are in power6.txt. Build a time series model for the series and use the
fitted model to produce 1- to 24-step-ahead forecasts.

2.7. Consider the daily simple returns of IBM stock, CRSP value-weighted index,
CRSP equal-weighted index, and the S&P composite index from January
1980 to December 2008. The index returns include dividend distributions.
The data file is d-ibm3dxwkdays8008.txt, which has 12 columns. The
columns are (year, month, day, IBM, VW, EW, SP, M, T, W, H, F), where M,
T, W, R, and F denotes indicator variables for Monday to Friday, respectively.
Use a regression model to study the effects of trading days on the equal-
weighted index returns. What is the fitted model? Are the weekday effects
significant in the returns at the 5% level? Use the HAC estimator of the
covariance matrix to obtain the t ratio of regression estimates. Does the
HAC estimator change the conclusion of weekday effects? Are there serial
correlations in the regression residuals? If yes, build a regression model with
time series error to study weekday effects.

2.8. Consider the data set of the previous question, but focus on the daily simple
returns of the S&P composite index. Perform the necessary data analysis
and statistical tests using the 5% significance level to answer the following
questions:

(a) Is there any weekday effect on the daily simple returns of the S&P com-
posite index? You may employ a linear regression model to answer this
question. Estimate the model, check its validity, and test the hypothesis
that there is no Friday effect. Draw your conclusion.

(b) Check the residual serial correlations using Q(12) statistic. Are there any
significant serial correlations in the residuals? If yes, build a regression
model with time series errors for the data.
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2.9. Now consider similar questions of the previous exercise for the IBM stock
returns.
(a) Is there any weekday effect on the daily simple returns of IBM stock?

Estimate your model and test the hypothesis that there is no Friday effect.
Draw your conclusion.

(b) Are there serial correlations in the residuals? Use Q(12) to perform the
test. Draw your conclusion.

(c) Refine the above model by using the technique of regression model with
time series errors. In there a significant weekday effect based on the
refined model?

2.10. Consider the weekly yields of Moody’s Aaa and Baa seasoned bonds from
January 5, 1962, to April 10, 2009. The data are obtained from the Federal
Reserve Bank of St Louis. Weekly yields are averages of daily yields. Obtain
the summary statistics (sample mean, standard deviation, skewness, excess
kurtosis, minimum, and maximum) of the two yield series. Are the bond
yields skewed? Do they have heavy tails? Answer the questions using 5%
significance level.

2.11. Consider the monthly Aaa bond yields of the prior problem. Build a time
series model for the series.

2.12. Again, consider the two bond yield series, that is, Aaa and Baa. What is the
relationship between the two series? To answer this question, build a time
series model using yields of Aaa bonds as the dependent variable and yields
of Baa bonds as independent variable.

2.13. Consider the monthly log returns of CRSP equal-weighted index from Jan-
uary 1962 to December 1999 for 456 observations. You may obtain the data
from CRSP directly or from the file m-ew6299.txt on the Web.
(a) Build an AR model for the series and check the fitted model.

(b) Build an MA model for the series and check the fitted model.

(c) Compute 1- and 2-step-ahead forecasts of the AR and MA models built
in the previous two questions.

(d) Compare the fitted AR and MA models.

2.14. This problem is concerned with the dynamic relationship between the spot
and futures prices of the S&P 500 index. The data file sp5may.dat has
three columns: log(futures price), log(spot price), and cost-of-carry (×100).
The data were obtained from the Chicago Mercantile Exchange for the S&P
500 stock index in May 1993 and its June futures contract. The time interval
is 1 minute (intraday). Several authors used the data to study index futures
arbitrage. Here we focus on the first two columns. Let ft and st be the
log prices of futures and spot, respectively. Consider yt = ft − ft−1 and
xt = st − st−1. Build a regression model with time series errors between {yt }
and {xt }, with yt being the dependent variable.
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2.15. The quarterly gross domestic product implicit price deflator is often used
as a measure of inflation. The file q-gdpdef.txt contains the data for the
United States from the first quarter of 1947 to the last quarter of 2008. Data
format is year, month, day, and deflator. The data are seasonally adjusted
and equal to 100 for year 2000. Build an ARIMA model for the series and
check the validity of the fitted model. Use the fitted model to predict the
inflation for each quarter of 2009. The data are obtained from the Federal
Reserve Bank of St Louis.
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C H A P T E R 3

Conditional Heteroscedastic Models

The objective of this chapter is to study some methods and econometric models
available in the literature for modeling the volatility of an asset return. The models
are referred to as conditional heteroscedastic models.

Volatility is an important factor in options trading. Here volatility means the
conditional standard deviation of the underlying asset return. Consider, for example,
the price of a European call option , which is a contract giving its holder the right,
but not the obligation, to buy a fixed number of shares of a specified common
stock at a fixed price on a given date. The fixed price is called the strike price
and is commonly denoted by K . The given date is called the expiration date. The
important time duration here is the time to expiration (measured in years), and we
denote it by �. The well-known Black–Scholes option pricing formula states that
the price of such a call option is

ct = Pt�(x) − Ke−r��(x − σt

√
�), and x = ln(Pt/K) + r�

σt

√
�

+ 1

2
σt

√
�,

(3.1)

where Pt is the current price of the underlying stock, r is the continuously com-
pounded risk-free interest rate, σt is the annualized conditional standard deviation
of the log return of the specified stock, and �(x) is the cumulative distribution
function of the standard normal random variable evaluated at x. A derivation of
the formula is given in Chapter 6. The formula has several nice interpretations,
but it suffices to say here that the conditional standard deviation of the log return
of the underlying stock plays an important role. This volatility evolves over time.
If the holder can exercise her right any time on or before the expiration date, then
the option is called an American call option .

Volatility has many other financial applications. As discussed in Chapter 7,
volatility modeling provides a simple approach to calculating value at risk of a
financial position in risk management. It plays an important role in asset allocation
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under the mean-variance framework. Furthermore, modeling the volatility of a
time series can improve the efficiency in parameter estimation and the accuracy in
interval forecast. Finally, the volatility index of a market has recently become a
financial instrument. The VIX volatility index compiled by the Chicago Board of
Option Exchange (CBOE) started to trade in futures on March 26, 2004.

The univariate volatility models discussed in this chapter include the autoregres-
sive conditional heteroscedastic (ARCH) model of Engle (1982), the generalized
ARCH (GARCH) model of Bollerslev (1986), the exponential GARCH (EGARCH)
model of Nelson (1991), the threshold GARCH (TGARCH) model of Glosten,
Jagannathan, and Runkle (1993) and Zakoian (1994), the conditional heteroscedas-
tic autoregressive moving-average (CHARMA) model of Tsay (1987), the random
coefficient autoregressive (RCA) model of Nicholls and Quinn (1982), and the
stochastic volatility (SV) models of Melino and Turnbull (1990), Taylor (1994),
Harvey, Ruiz, and Shephard (1994), and Jacquier, Polson, and Rossi (1994). We
also discuss advantages and weaknesses of each volatility model and show some
applications of the models. Multivariate volatility models, including those with
time-varying correlations, are discussed in Chapter 10. The chapter also discusses
some alternative approaches to volatility modeling in Section 3.15, including use
of daily high and low prices of an asset.

3.1 CHARACTERISTICS OF VOLATILITY

A special feature of stock volatility is that it is not directly observable. For example,
consider the daily log returns of IBM stock. The daily volatility is not directly
observable from the return data because there is only one observation in a trading
day. If intraday data of the stock, such as 10-minute returns, are available, then one
can estimate the daily volatility. See Section 3.15. The accuracy of such an estimate
deserves a careful study, however. For example, stock volatility consists of intraday
volatility and overnight volatility with the latter denoting variation between trading
days. The high-frequency intraday returns contain only very limited information
about the overnight volatility. The unobservability of volatility makes it difficult
to evaluate the forecasting performance of conditional heteroscedastic models. We
discuss this issue later.

In options markets, if one accepts the idea that the prices are governed by an
econometric model such as the Black–Scholes formula, then one can use the price
to obtain the “implied” volatility. Yet this approach is often criticized for using a
specific model, which is based on some assumptions that might not hold in practice.
For instance, from the observed prices of a European call option, one can use the
Black–Scholes formula in Eq. (3.1) to deduce the conditional standard deviation
σt . The resulting value of σt is called the implied volatility of the underlying stock.
However, this implied volatility is derived under the assumption that the price of
the underlying asset follows a geometric Brownian motion. It might be different
from the actual volatility. Experience shows that implied volatility of an asset return
tends to be larger than that obtained by using a GARCH type of volatility model.
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This might be due to the risk premium for volatility or to the way daily returns are
calculated. The VIX of CBOE is an implied volatility.

Although volatility is not directly observable, it has some characteristics that are
commonly seen in asset returns. First, there exist volatility clusters (i.e., volatility
may be high for certain time periods and low for other periods). Second, volatil-
ity evolves over time in a continuous manner—that is, volatility jumps are rare.
Third, volatility does not diverge to infinity—that is, volatility varies within some
fixed range. Statistically speaking, this means that volatility is often stationary.
Fourth, volatility seems to react differently to a big price increase or a big price
drop, referred to as the leverage effect. These properties play an important role
in the development of volatility models. Some volatility models were proposed
specifically to correct the weaknesses of the existing ones for their inability to
capture the characteristics mentioned earlier. For example, the EGARCH model
was developed to capture the asymmetry in volatility induced by big “positive”
and “negative” asset returns.

3.2 STRUCTURE OF A MODEL

Let rt be the log return of an asset at time index t . The basic idea behind volatility
study is that the series {rt } is either serially uncorrelated or with minor lower order
serial correlations, but it is a dependent series. For illustration, consider the monthly
log stock returns of Intel Corporation from January 1973 to December 2008 shown
in Figure 3.1. Figure 3.2(a) shows the sample ACF of the log return series,
which suggests no significant serial correlations except for a minor one at lag 7.
Figure 3.2(c) shows the sample ACF of the absolute log returns (i.e., |rt |), whereas
Figure 3.2(b) shows the sample ACF of the squared log returns r2

t . These two plots
clearly suggest that the monthly log returns are not serially independent. Combin-
ing the three plots, it seems that the log returns are indeed serially uncorrelated but
dependent. Volatility models attempt to capture such dependence in the return series.

To put the volatility models in proper perspective, it is informative to consider
the conditional mean and variance of rt given Ft−1; that is,

µt = E(rt |Ft−1), σ 2
t = Var(rt |Ft−1) = E[(rt − µt)

2|Ft−1], (3.2)

where Ft−1 denotes the information set available at time t − 1. Typically, Ft−1

consists of all linear functions of the past returns. As shown by the empirical
examples of Chapter 2 and Figure 3.2, serial dependence of a stock return series rt
is weak if it exists at all. Therefore, the equation for µt in (3.2) should be simple,
and we assume that rt follows a simple time series model such as a stationary
ARMA(p, q) model with some explanatory variables. In other words, we entertain
the model

rt = µt + at , µt =
p∑

i=1

φiyt−i −
q∑

i=1

θiat−i , yt = rt − φ0 −
k∑

i=1

βixit , (3.3)
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Figure 3.1 Time plot of monthly log returns of Intel stock from January 1973 to December 2008.
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Figure 3.2 Sample ACF and PACF of various functions of monthly log stock returns of Intel Corpo-
ration from January 1973 to December 2008: (a) ACF of the log returns, (b) ACF of the squared log
returns, (c) ACF of the absolute log returns, and (d) PACF of the squared log returns.
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for rt , where k, p, and q are nonnegative integers, and xit are explanatory variables.
Here yt is simply a notation representing the adjusted return series after removing
the effect of explanatory variables.

Model (3.3) illustrates a possible financial application of the regression model
with time series errors of Chapter 2. The order (p, q) of an ARMA model may
depend on the frequency of the return series. For example, daily returns of a market
index often show some minor serial correlations, but monthly returns of the index
may not contain any significant serial correlation. The explanatory variables xt in
Eq. (3.3) are flexible. For example, a dummy variable can be used for the Mondays
to study the effect of the weekend on daily stock returns. In the capital asset pricing
model (CAPM), the mean equation of rt can be written as rt = φ0 + βrm,t + at ,
where rm,t denotes the market return.

Combining Eqs. (3.2) and (3.3), we have

σ 2
t = Var(rt |Ft−1) = Var(at |Ft−1). (3.4)

The conditional heteroscedastic models of this chapter are concerned with the
evolution of σ 2

t . The manner under which σ 2
t evolves over time distinguishes one

volatility model from another.
Conditional heteroscedastic models can be classified into two general categories.

Those in the first category use an exact function to govern the evolution of σ 2
t ,

whereas those in the second category use a stochastic equation to describe σ 2
t .

The GARCH model belongs to the first category, whereas the stochastic volatility
model is in the second category.

Throughout the book, at is referred to as the shock or innovation of an asset
return at time t and σt is the positive square root of σ 2

t . The model for µt in Eq.
(3.3) is referred to as the mean equation for rt and the model for σ 2

t is the volatility
equation for rt . Therefore, modeling conditional heteroscedasticity amounts to aug-
menting a dynamic equation, which governs the time evolution of the conditional
variance of the asset return, to a time series model.

3.3 MODEL BUILDING

Building a volatility model for an asset return series consists of four steps:

1. Specify a mean equation by testing for serial dependence in the data and, if
necessary, building an econometric model (e.g., an ARMA model) for the
return series to remove any linear dependence.

2. Use the residuals of the mean equation to test for ARCH effects.

3. Specify a volatility model if ARCH effects are statistically significant, and
perform a joint estimation of the mean and volatility equations.

4. Check the fitted model carefully and refine it if necessary.
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For most asset return series, the serial correlations are weak, if any. Thus,
building a mean equation amounts to removing the sample mean from the data if
the sample mean is significantly different from zero. For some daily return series, a
simple AR model might be needed. In some cases, the mean equation may employ
some explanatory variables such as an indicator variable for weekend or January
effects.

In what follows, we use R (both with and without OX) and S-Plus in empirical
illustrations. Other software packages (e.g., Eviews, SCA, and RATS) can also be
used.

3.3.1 Testing for ARCH Effect

For ease in notation, let at = rt − µt be the residuals of the mean equation. The
squared series a2

t is then used to check for conditional heteroscedasticity, which
is also known as the ARCH effects. Two tests are available. The first test is to
apply the usual Ljung–Box statistics Q(m) to the {a2

t } series; see McLeod and Li
(1983). The null hypothesis is that the first m lags of ACF of the a2

t series are zero.
The second test for conditional heteroscedasticity is the Lagrange multiplier test
of Engle (1982). This test is equivalent to the usual F statistic for testing αi = 0
(i = 1, . . . , m) in the linear regression

a2
t = α0 + α1a

2
t−1 + · · · + αma

2
t−m + et , t = m + 1, . . . , T ,

where et denotes the error term, m is a prespecified positive integer, and T is
the sample size. Specifically, the null hypothesis is H0 : α1 = · · · = αm = 0. Let
SSR0 = ∑T

t=m+1(a
2
t − ω̄)2, where ω̄ = (1/T )

∑T
t=1 a

2
t is the sample mean of a2

t ,
and SSR1 = ∑T

t=m+1 ê
2
t , where êt is the least-squares residual of the prior linear

regression. Then we have

F = (SSR0 − SSR1)/m

SSR1/(T − 2m − 1)
,

which is asymptotically distributed as a chi-squared distribution with m degrees of
freedom under the null hypothesis. The decision rule is to reject the null hypothesis
if F >χ2

m(α), where χ2
m(α) is the upper 100(1 − α)th percentile of χ2

m, or the
p value of F is less than α, type-I error.

To demonstrate, we consider the monthly log stock returns of Intel Corporation
from 1973 to 2008; see Example 3.1. The series does not have significant serial
correlations so that it can be directly used to test for the ARCH effect. Indeed,
the Q(m) statistics of the return series give Q(12) = 18.26 with a p value of
0.11, confirming no serial correlations in the data. On the other hand, the Lagrange
multiplier test shows strong ARCH effects with test statistic F ≈ 53.62, the p

value of which is close to zero. The Ljung–Box statistics of the at series also
shows strong ARCH effects with Q(12) = 89.85, the p value of which is close to
zero.
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S-Plus Demonstration
Denote the return series by intc. Note that the command archTest applies
directly to the at series, not to a2

t .

> da=read.table("m-intc7308.txt",header=T)
> intc=log(da[,2]+1)
> autocorTest(intc,lag=12)
Test for Autocorrelation: Ljung-Box
Null Hypothesis: no autocorrelation

Test Statistics:
Test Stat 18.2635 p.value 0.1079

Dist. under Null: chi-square with 12 degrees of freedom
Total Observ.: 432

> archTest(intc,lag=12)
Test for ARCH Effects: LM Test
Null Hypothesis: no ARCH effects

Test Statistics:
Test Stat 53.6197 p.value 0.0000

Dist. under Null: chi-square with 12 degrees of freedom

R Demonstration

> da=read.table("m-intc7308.txt",header=T)
> intc=log(da[,2]+1)
> Box.test(intc,lag=12,type=’Ljung’)

Box-Ljung test

data: intc
X-squared = 18.2635, df = 12, p-value = 0.1079

> at=intc-mean(intc)
> Box.test(at^2,lag=12,type=’Ljung’)

Box-Ljung test

data: at^2
X-squared = 89.8509, df = 12, p-value = 5.274e-14

3.4 THE ARCH MODEL

The first model that provides a systematic framework for volatility modeling
is the ARCH model of Engle (1982). The basic idea of ARCH models is that
(a) the shock at of an asset return is serially uncorrelated, but dependent, and
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(b) the dependence of at can be described by a simple quadratic function of its
lagged values. Specifically, an ARCH(m) model assumes that

at = σtεt , σ 2
t = α0 + α1a

2
t−1 + · · · + αma

2
t−m, (3.5)

where {εt } is a sequence of independent and identically distributed (iid) random
variables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. The coeffi-
cients αi must satisfy some regularity conditions to ensure that the unconditional
variance of at is finite. In practice, εt is often assumed to follow the standard
normal or a standardized Student-t or a generalized error distribution.

From the structure of the model, it is seen that large past squared shocks {a2
t−i}mi=1

imply a large conditional variance σ 2
t for the innovation at . Consequently, at tends

to assume a large value (in modulus). This means that, under the ARCH framework,
large shocks tend to be followed by another large shock. Here I use the word
tend because a large variance does not necessarily produce a large realization. It
only says that the probability of obtaining a large variate is greater than that of
a smaller variance. This feature is similar to the volatility clusterings observed in
asset returns.

The ARCH effect also occurs in other financial time series. Figure 3.3 shows
the time plots of (a) the percentage changes in Deutsche mark/U.S. dollar exchange
rate measured in 10-minute intervals from June 5, 1989, to June 19, 1989, for 2488
observations, and (b) the squared series of the percentage changes. Big percentage
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Figure 3.3 (a) Time plot of 10-minute returns of exchange rate between Deutsche mark and U.S.
dollar from June 5, 1989, to June 19, 1989, and (b) the squared returns.
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Figure 3.4 (a) Sample autocorrelation function of return series of mark/dollar exchange rate and (b)
sample partial autocorrelation function of squared returns.

changes occurred occasionally, but there were certain stable periods. Figure 3.4(a)
shows the sample ACF of the percentage change series. Clearly, the series has no
serial correlation. Figure 3.4(b) shows the sample PACF of the squared series of
percentage change. It is seen that there are some big spikes in the PACF. Such
spikes suggest that the percentage changes are not serially independent and have
some ARCH effects.

Remark. Some authors use ht to denote the conditional variance in Eq. (3.5).
In this case, the shock becomes at = √

htεt . �

3.4.1 Properties of ARCH Models

To understand the ARCH models, it pays to carefully study the ARCH(1) model

at = σtεt , σ 2
t = α0 + α1a

2
t−1,

where α0 > 0 and α1 ≥ 0. First, the unconditional mean of at remains zero because

E(at ) = E[E(at |Ft−1)] = E[σtE(εt )] = 0.
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Second, the unconditional variance of at can be obtained as

Var(at ) = E(a2
t ) = E[E(a2

t |Ft−1)]

= E(α0 + α1a
2
t−1) = α0 + α1E(a2

t−1).

Because at is a stationary process with E(at ) = 0, Var(at ) = Var(at−1) = E(a2
t−1).

Therefore, we have Var(at ) = α0 + α1Var(at ) and Var(at ) = α0/(1 − α1). Since the
variance of at must be positive, we require 0 ≤ α1 < 1. Third, in some applications,
we need higher order moments of at to exist and, hence, α1 must also satisfy some
additional constraints. For instance, to study its tail behavior, we require that the
fourth moment of at is finite. Under the normality assumption of εt in Eq. (3.5),
we have

E(a4
t |Ft−1) = 3[E(a2

t |Ft−1)]
2 = 3(α0 + α1a

2
t−1)

2.

Therefore,

E(a4
t ) = E[E(a4

t |Ft−1)] = 3E(α0 + α1a
2
t−1)

2 = 3E
(
α2

0 + 2α0α1a
2
t−1 + α2

1a
4
t−1

)
.

If at is fourth-order stationary with m4 = E(a4
t ), then we have

m4 = 3[α2
0 + 2α0α1Var(at ) + α2

1m4]

= 3α2
0

(
1 + 2

α1

1 − α1

)
+ 3α2

1m4.

Consequently,

m4 = 3α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

.

This result has two important implications: (a) since the fourth moment of at
is positive, we see that α1 must also satisfy the condition 1 − 3α2

1 > 0; that is,
0 ≤ α2

1 < 1
3 ; and (b) the unconditional kurtosis of at is

E(a4
t )

[Var(at )]2
= 3

α2
0(1 + α1)

(1 − α1)(1 − 3α2
1)

× (1 − α1)
2

α2
0

= 3
1 − α2

1

1 − 3α2
1

> 3.

Thus, the excess kurtosis of at is positive and the tail distribution of at is heavier
than that of a normal distribution. In other words, the shock at of a conditional
Gaussian ARCH(1) model is more likely than a Gaussian white noise series to
produce “outliers.” This is in agreement with the empirical finding that “outliers”
appear more often in asset returns than that implied by an iid sequence of normal
random variates.

These properties continue to hold for general ARCH models, but the formulas
become more complicated for higher order ARCH models. The condition αi ≥ 0 in
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Eq. (3.5) can be relaxed. It is a condition to ensure that the conditional variance σ 2
t

is positive for all t . In fact, a natural way to achieve positiveness of the conditional
variance is to rewrite an ARCH(m) model as

at = σtεt , σ 2
t = α0 + A′

m,t−1�Am,t−1, (3.6)

where Am,t−1 = (at−1, . . . , at−m)
′ and � is an m × m nonnegative definite matrix.

The ARCH(m) model in Eq. (3.5) requires � to be diagonal. Thus, Engle’s model
uses a parsimonious approach to approximate a quadratic function. A simple way to
achieve Eq. (3.6) is to employ a random-coefficient model for at ; see the CHARMA
and RCA models discussed later.

3.4.2 Weaknesses of ARCH Models

The advantages of ARCH models include properties discussed in the previous
section. The model also has some weaknesses:

1. The model assumes that positive and negative shocks have the same effects
on volatility because it depends on the square of the previous shocks. In
practice, it is well known that the price of a financial asset responds differently
to positive and negative shocks.

2. The ARCH model is rather restrictive. For instance, α2
1 of an ARCH(1) model

must be in the interval [0, 1
3 ] if the series has a finite fourth moment. The

constraint becomes complicated for higher order ARCH models. In practice,
it limits the ability of ARCH models with Gaussian innovations to capture
excess kurtosis.

3. The ARCH model does not provide any new insight for understanding the
source of variations of a financial time series. It merely provides a mechanical
way to describe the behavior of the conditional variance. It gives no indication
about what causes such behavior to occur.

4. ARCH models are likely to overpredict the volatility because they respond
slowly to large isolated shocks to the return series.

3.4.3 Building an ARCH Model

Among volatility models, specifying an ARCH model is relatively easy. Details
are given below.

Order Determination
If an ARCH effect is found to be significant, one can use the PACF of a2

t to
determine the ARCH order. Using PACF of a2

t to select the ARCH order can be
justified as follows. From the model in Eq. (3.5), we have

σ 2
t = α0 + α1a

2
t−1 + · · · + αma

2
t−m.
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For a given sample, a2
t is an unbiased estimate of σ 2

t . Therefore, we expect that a2
t

is linearly related to a2
t−1, . . . , a

2
t−m in a manner similar to that of an autoregressive

model of order m. Note that a single a2
t is generally not an efficient estimate of

σ 2
t , but it can serve as an approximation that could be informative in specifying

the order m.
Alternatively, define ηt = a2

t − σ 2
t . It can be shown that {ηt } is an uncorrelated

series with mean 0. The ARCH model then becomes

a2
t = α0 + α1a

2
t−1 + · · · + αma

2
t−m + ηt ,

which is in the form of an AR(m) model for a2
t , except that {ηt } is not an iid series.

From Chapter 2, PACF of a2
t is a useful tool to determine the order m. Because

{ηt } are not identically distributed, the least-squares estimates of the prior model
are consistent but not efficient. The PACF of a2

t may not be effective when the
sample size is small.

Estimation
Several likelihood functions are commonly used in ARCH estimation, depending on
the distributional assumption of εt . Under the normality assumption, the likelihood
function of an ARCH(m) model is

f (a1, . . . , aT |α) = f (aT |FT−1)f (aT−1|FT −2) · · · f (am+1|Fm)f (a1, · · · , am|α)

=
T∏

t=m+1

1√
2πσ 2

t

exp

(
− a2

t

2σ 2
t

)
× f (a1, . . . , am|α),

where α = (α0, α1, . . . , αm)
′ and f (a1, . . . , am|α) is the joint probability density

function of a1, . . . , am. Since the exact form of f (a1, . . . , am|α) is complicated,
it is commonly dropped from the prior likelihood function, especially when the
sample size is sufficiently large. This results in using the conditional-likelihood
function

f (am+1, . . . , aT |α, a1, . . . , am) =
T∏

t=m+1

1√
2πσ 2

t

exp

(
− a2

t

2σ 2
t

)
,

where σ 2
t can be evaluated recursively. We refer to estimates obtained by maximiz-

ing the prior likelihood function as the conditional maximum-likelihood estimates
(MLEs) under normality.

Maximizing the conditional-likelihood function is equivalent to maximizing its
logarithm, which is easier to handle. The conditional log-likelihood function is

�(am+1, . . . , aT |α, a1, . . . , am) =
T∑

t=m+1

[
−1

2
ln(2π) − 1

2
ln(σ 2

t ) − 1

2

a2
t

σ 2
t

]
.
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Since the first term ln(2π) does not involve any parameters, the log-likelihood
function becomes

�(am+1, . . . , aT |α, a1, . . . , am) = −
T∑

t=m+1

[
1

2
ln(σ 2

t ) + 1

2

a2
t

σ 2
t

]
,

where σ 2
t = α0 + α1a

2
t−1 + · · · + αma

2
t−m can be evaluated recursively.

In some applications, it is more appropriate to assume that εt follows a
heavy-tailed distribution such as a standardized Student-t distribution. Let xv be a
Student-t distribution with v degrees of freedom. Then Var(xv) = v/(v − 2) for
v > 2, and we use εt = xv/

√
v/(v − 2). The probability density function of εt is

f (εt |v) = �[(v + 1)/2]

�(v/2)
√
(v − 2)π

(
1 + ε2

t

v − 2

)−(v+1)/2

, v > 2, (3.7)

where �(x) is the usual gamma function (i.e., �(x) = ∫ ∞
0 yx−1e−y dy). Using

at = σtεt , we obtain the conditional-likelihood function of at as

f (am+1, . . . , aT |α, Am) =
T∏

t=m+1

�[(v + 1)/2]

�(v/2)
√
(v − 2)π

1

σt

[
1 + a2

t

(v − 2)σ 2
t

]−(v+1)/2

,

where v > 2 and Am = (a1, a2, . . . , am). We refer to the estimates that maximize the
prior likelihood function as the conditional MLEs under t distribution. The degrees
of freedom of the t distribution can be specified a priori or estimated jointly with
other parameters. A value between 4 and 8 is often used if it is prespecified.

If the degrees of freedom v of the Student-t distribution is prespecified, then
the conditional log-likelihood function is

�(am+1, . . . , aT |α, Am) = −
T∑

t=m+1

[
v + 1

2
ln

(
1 + a2

t

(v − 2)σ 2
t

)
+ 1

2
ln(σ 2

t )

]
.

(3.8)

If one wishes to estimate v jointly with other parameters, then the log-likelihood
function becomes

�(am+1, . . . , aT |α, v, Am) = (T − m)

{
ln

[
�

(
v + 1

2

)]
− ln

[
�
(v

2

)]
− 0.5 ln[(v − 2)π ]

}
+ �(am+1, . . . , aT |α, Am),

where the second term is given in Eq. (3.8).
Besides fat tails, empirical distributions of asset returns may also be skewed.

To handle this additional characteristic of asset returns, the Student-t distribution
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has been modified to become a skew-Student-t distribution. There are multiple ver-
sions of skew-Student-t distribution, but we shall adopt the approach of Fernández
and Steel (1998), which can introduce skewness into any continuous unimodal and
symmetric (with respect to 0) univariate distribution. Specifically, for the innova-
tion εt of an ARCH process, Lambert and Laurent (2001) apply the Fernández and
Steel method to the standardized Student-t distribution in Eq. (3.7) to obtain a stan-
dardized skew-Student-t distribution. The resulting probability density function is

g(εt |ξ, v) =


2

ξ + 1
ξ

�f [ξ(�εt + ω)|v] if εt < −ω/�,

2

ξ + 1
ξ

�f [(�εt + ω)/ξ |v] if εt ≥ −ω/�,

(3.9)

where f (·) is the probability density function (pdf) of the standardized Student-t
distribution in Eq. (3.7), ξ is the skewness parameter, v > 2 is the degrees of
freedom, and the parameters � and ω are given below:

� = �[(v − 1)/2]
√
v − 2√

π�(v/2)
(ξ − 1

ξ
), �2 = (ξ 2 + 1

ξ 2
− 1) − � 2.

In Eq. (3.9), ξ 2 is equal to the ratio of probability masses above and below the
mode of the distribution and, hence, it is a measure of the skewness.

Finally, εt may assume a generalized error distribution (GED) with probability
density function

f (x) = v exp(− 1
2 |x/λ|v)

λ2(1+1/v)�(1/v)
, −∞ < x < ∞, 0 < v ≤ ∞, (3.10)

where �(·) is the gamma function and λ = [2(−2/v)�(1/v)/�(3/v)]1/2. This dis-
tribution reduces to a Gaussian distribution if v = 2, and it has heavy tails when
v < 2. The conditional log-likelihood function �(am+1, . . . , aT |α,Am) can easily
be obtained.

Remark. Skew Student-t , skew normal, and skew GED distributions are avail-
able in the fGarch package of Rmetrics. The commands are sstd, snorm, and
sged, respectively. See the R demonstration below for an example. �

Model Checking
For a properly specified ARCH model, the standardized residuals

ãt = at

σt

form a sequence of iid random variables. Therefore, one can check the adequacy
of a fitted ARCH model by examining the series {ãt }. In particular, the Ljung–Box
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statistics of ãt can be used to check the adequacy of the mean equation and that
of ã2

t can be used to test the validity of the volatility equation. The skewness,
kurtosis, and quantile-to-quantile plot (i.e., QQ plot) of {ãt } can be used to check
the validity of the distribution assumption. Many residual plots are available in
S-Plus for model checking.

Forecasting
Forecasts of the ARCH model in Eq. (3.5) can be obtained recursively as those
of an AR model. Consider an ARCH(m) model. At the forecast origin h, the
1-step-ahead forecast of σ 2

h+1 is

σ 2
h (1) = α0 + α1a

2
h + · · · + αma

2
h+1−m.

The 2-step-ahead forecast is

σ 2
h (2) = α0 + α1σ

2
h (1) + α2a

2
h + · · · + αma

2
h+2−m,

and the �-step-ahead forecast for σ 2
h+� is

σ 2
h (�) = α0 +

m∑
i=1

αiσ
2
h (� − i), (3.11)

where σ 2
h (� − i) = a2

h+�−i if � − i ≤ 0.

3.4.4 Some Examples

In this section, we illustrate ARCH modeling by considering two examples.

Example 3.1. We first apply the modeling procedure to build a simple ARCH
model for the monthly log returns of Intel stock. The sample ACF and PACF
of the squared returns in Figure 3.2 clearly show the existence of conditional
heteroscedasticity. This is confirmed by the ARCH test shown in Section 3.3.1,
and we proceed to identify the order of an ARCH model. The sample PACF in
Figure 3.2(d) indicates that an ARCH(3) model might be appropriate. Consequently,
we specify the model

rt = µ + at , at = σtεt , σ 2
t = α0 + α1a

2
t−1 + α2a

2
t−2 + α3a

2
t−3

for the monthly log returns of Intel stock. Assuming that εt are iid standard normal,
we obtain the fitted model

rt = 0.0122 + at , σ 2
t = 0.0106 + 0.2131a2

t−1 + 0.0770a2
t−2 + 0.0599a2

t−3,

where the standard errors of the parameters are 0.0057, 0.0010, 0.0757, 0.0480,
and 0.0688, respectively; see the output below. While the estimates meet the gen-
eral requirement of an ARCH(3) model, the estimates of α2 and α3 appear to be
statistically nonsignificant at the 5% level. Therefore, the model can be simplified.
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S-Plus Demonstration
The following output has been edited and % marks explanation:

> module(finmetrics)
> da=read.table("m-intc7308.txt",header=T)
> intc=log(da[,2]+1)
> arch3.fit=garch(intc∼1,∼garch(3,0))
> summary(arch3.fit)
garch(formula.mean = intc ∼ 1, formula.var = ∼ garch(3, 0))

Mean Equation: structure(.Data = intc ∼ 1, class = "for-
mula")
Conditional Variance Equation:structure(.Data=∼garch(3,0),..)
Conditional Distribution: gaussian
--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.01216 0.0056986 2.1341 0.033402
A 0.01058 0.0009643 10.9739 0.000000

ARCH(1) 0.21307 0.0756708 2.8157 0.005093
ARCH(2) 0.07698 0.0480170 1.6032 0.109638
ARCH(3) 0.05988 0.0688081 0.8703 0.384628
--------------------------------------------------------------
> arch1=garch(intc∼1,∼garch(1,0))
> summary(arch1)
garch(formula.mean = intc ∼ 1, formula.var = ∼ garch(1, 0))

Conditional Distribution: gaussian
--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.01261 0.0052624 2.397 1.695e-02
A 0.01113 0.0009971 11.164 0.000e+00

ARCH(1) 0.35602 0.0761267 4.677 3.912e-06
--------------------------------------------------------------
AIC(3) = -570.0179, BIC(3) = -557.8126

Ljung-Box test for standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

14.26 0.2844 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

32.11 0.001329 12
> stres=arch1$residuals/arch1$sigma.t %standardized residuals
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> autocorTest(stres,lag=10)
Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation
Test Statistics:
Test Stat 12.6386, p.value 0.2446

Dist. under Null: chi-square with 10 degrees of freedom
> archTest(stres,lag=10)
Test for ARCH Effects: LM Test

Null Hypothesis: no ARCH effects
Test Statistics:
Test Stat 14.7481, p.value 0.1415

Dist. under Null: chi-square with 10 degrees of freedom
> arch1$asymp.sd %Obtain unconditional standard error

[1] 0.1314698
> plot(arch1) % Obtain various plots, including the

% fitted volatility series.

Dropping the two nonsignificant parameters, we obtain the model

rt = 0.0126 + at , σ 2
t = 0.0111 + 0.3560a2

t−1, (3.12)

where the standard errors of the parameters are 0.0053, 0.0010, and 0.0761, respec-
tively. All the estimates are highly significant. Figure 3.5 shows the standardized
residuals {ãt } and the sample ACF of some functions of {ãt }. The Ljung–Box
statistics of standardized residuals give Q(10) = 12.64 with a p value of 0.24
and those of {ã2

t } give Q(10) = 14.75 with a p value of 0.14. See the output.
Consequently, the ARCH(1) model in Eq. (3.12) is adequate for describing the
conditional heteroscedasticity of the data at the 5% significance level.

The ARCH(1) model in Eq. (3.12) has some interesting properties. First, the
expected monthly log return for Intel stock is about 1.26%, which is remarkable,
especially since the data span includes the period after the Internet bubble. Sec-
ond, α̂2

1 = 0.3562 < 1
3 so that the unconditional fourth moment of the monthly

log return of Intel stock exists. Third, the unconditional standard deviation of rt
is

√
0.0111/(1 − 0.356) ≈ 0.1315. Finally, the ARCH(1) model can be used to

predict the monthly volatility of Intel stock returns.

t Innovation
For comparison, we also fit an ARCH(1) model with Student-t innovations to the
series. The resulting model is

rt = 0.0169 + at , σ 2
t = 0.0120 + 0.2845a2

t−1, (3.13)
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Figure 3.5 Model checking statistics of Gaussian ARCH(1) model in Eq. (3.12) for monthly log
returns of Intel stock from January 1973 to December 2008: Parts (a), (b), and (c) show sample ACF
of standardized residuals, their squared series, and absolute series, respectively; part (d) is time plot of
standardized residuals.

where the standard errors of the parameters are 0.0053, 0.0017, and 0.1120, respec-
tively. The estimated degrees of freedom is 6.01 with standard error 1.50. All the
estimates are significant at the 5% level. The unconditional standard deviation
of at is

√
0.0120/(1 − 0.2845) ≈ 0.1295, which is close to that obtained under

normality. The Ljung–Box statistics of the standardized residuals give Q(12) =
14.88 with a p value of 0.25, confirming that the mean equation is adequate.
However, the Ljung–Box statistics for the squared standardized residuals show
Q(12) = 35.42 with a p value of 0.0004. The volatility equation is inadequate
at the 1% level. Further analysis shows that Q(10) = 15.90 with a p value
of 0.10 for the squared standardized residuals. The inadequancy of the volatility
equation is due to a large lag-12 ACF (ρ12 = 0.188) of the squared standardized
residuals.

Comparing models (3.12) and (3.13), we see that (a) using a heavy-tailed distri-
bution for εt reduces the ARCH coefficient, and (b) the difference between the two
models is small for this particular instance. Finally, a more appropriate conditional
heteroscedastic model for the monthly log returns of Intel stock is a GARCH(1,1)
model, which is discussed in the next section.
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S-Plus Demonstration
Note the following output with t innovations:

> arch1t=garch(intc∼1,∼garch(1,0),cond.dist="t")
> summary(arch1t)
Call:
garch(formula.mean=intc∼1,formula.var=∼garch(1,0),

cond.dist="t")

Mean Equation: structure(.Data = intc ∼ 1, class = "formula")
Cond. Variance Equation:structure(.Data=∼ garch(1,0), ...)
Cond. Distribution: t
with estimated parameter 6.012769 and standard error 1.502179

--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.01688 0.005288 3.193 1.512e-03
A 0.01195 0.001667 7.169 3.345e-12

ARCH(1) 0.28445 0.111998 2.540 1.145e-02
--------------------------------------------------------------
AIC(4) = -597.3379, BIC(4) = -581.0642

Ljung-Box test for standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

14.88 0.2482 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

35.42 0.0004014 12

Remark. In S-Plus, the command garch allows for several conditional distri-
butions. They are specified by cond.dist = ‘‘t’’ or ‘‘ged’’. The default
is Gaussian. The R output is given below. The estimates are close to those of
S-Plus. �

R Demonstration
The following output uses the fGarch package with command garchFit and %
denotes explanation:

> da=read.table("m-intc7308.txt",header=T)
> library(fGarch) % Load the package
> intc=log(da[,2]+1)
> m1=garchFit(intc∼garch(1,0),data=intc,trace=F)
> summary(m1) % Obtain results



128 conditional heteroscedastic models

Title:
GARCH Modelling

Call:
garchFit(formula=intc∼garch(1,0), data=intc, trace=F)

Mean and Variance Equation: data ∼ garch(1, 0) [data = intc]
Conditional Distribution: norm

Coefficient(s):
mu omega alpha1

0.012637 0.011195 0.379492

Std. Errors:
based on Hessian

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 0.012637 0.005428 2.328 0.01990 *
omega 0.011195 0.001239 9.034 < 2e-16 ***
alpha1 0.379492 0.115534 3.285 0.00102 **
---
Log Likelihood:
288.0589 normalized: 0.6668031

Standardised Residuals Tests: %Model checking
Statistic p-Value

Jarque-Bera Test R Chi^2 137.919 0
Shapiro-Wilk Test R W 0.9679255 4.025172e-08
Ljung-Box Test R Q(10) 12.54002 0.2505382
Ljung-Box Test R Q(15) 21.33508 0.1264607
Ljung-Box Test R Q(20) 23.19679 0.2792354
Ljung-Box Test R^2 Q(10) 16.0159 0.09917815
Ljung-Box Test R^2 Q(15) 36.08022 0.001721296
Ljung-Box Test R^2 Q(20) 37.43683 0.01036728
LM Arch Test R TR^2 26.57744 0.008884587

Information Criterion Statistics:
AIC BIC SIC HQIC

-1.319717 -1.291464 -1.319813 -1.308563

> predict(m1,5) % Obtain 1 to 5-step predictions
meanForecast meanError standardDeviation

1 0.01263656 0.1278609 0.1098306
2 0.01263656 0.1278609 0.1255897
3 0.01263656 0.1278609 0.1310751
4 0.01263656 0.1278609 0.1330976
5 0.01263656 0.1278609 0.1338571
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% The next command fits a GARCH(1,1) model
> m2=garchFit(intc∼garch(1,1),data=intc,trace=F)
> summary(m2) % output edited.
Coefficient(s):

mu omega alpha1 beta1
0.01073352 0.00095445 0.08741989 0.85118414

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 0.0107335 0.0055289 1.941 0.05222 .
omega 0.0009544 0.0003989 2.392 0.01674 *
alpha1 0.0874199 0.0269810 3.240 0.00120 **
beta1 0.8511841 0.0393702 21.620 < 2e-16 ***
---
Standardised Residuals Tests:

Statistic p-Value
Jarque-Bera Test R Chi^2 165.5740 0
Shapiro-Wilk Test R W 0.9712087 1.626824e-07
Ljung-Box Test R Q(10) 8.267633 0.6027128
Ljung-Box Test R Q(15) 14.42612 0.4934871
Ljung-Box Test R Q(20) 15.13331 0.7687297
Ljung-Box Test R^2 Q(10) 0.9891848 0.9998363
Ljung-Box Test R^2 Q(15) 11.36596 0.7262473
Ljung-Box Test R^2 Q(20) 12.68143 0.8906302
LM Arch Test R TR^2 10.70199 0.5546164

% The next command fits an ARCH(1) model with Student-t dist.
> m3=garchFit(intc∼garch(1,0),data=intc,trace=F,

cond.dist=’std’)
> summary(m3) % Output shortened.

Call:
garchFit(formula=intc∼garch(1,0), data=intc, cond.dist="std",

trace = F)
Mean and Variance Equation: data ∼ garch(1, 0) [data = intc]
Conditional Distribution: std % Student-t distribution

Coefficient(s):
mu omega alpha1 shape

0.016731 0.011939 0.285320 6.015195

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 0.016731 0.005302 3.155 0.001603 **
omega 0.011939 0.001603 7.449 9.4e-14 ***
alpha1 0.285320 0.110607 2.580 0.009892 **
shape 6.015195 1.562620 3.849 0.000118 ***
% Degrees of freedom
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% The next command fits an ARCH(1) model with skew
%Student-t dist.
> m4=garchFit(intc∼garch(1,0),data=intc,cond.dist=’sstd’,

trace=F)
% Next, fit an ARMA(1,0)+GARCH(1,1) model with
% Gaussian noises.
> m5=garchFit(intc∼arma(1,0)+garch(1,1),data=intc,trace=F)

R Demonstration
The following output was generated with Ox and G@RCH4.2 package and %
denotes explanation:

> source("garchoxfit_R.txt")
% In G@RCH package, an ARCH(1) model is specified as
% GARCH(0,1).
> m1=garchOxFit(formula.mean=∼arma(0,0),

formula.var=∼garch(0,1), series=intc)
% ** SPECIFICATIONS **
Dependent variable : X
Mean Equation : ARMA (0, 0) model.
No regressor in the mean
Variance Equation : GARCH (0, 1) model.
No regressor in the variance
The distribution is a Gauss distribution.

Maximum Likelihood Estimation(Std.Errors based on 2nd deriv.)
Coefficient Std.Error t-value t-prob

Cst(M) 0.012630 0.0054130 2.333 0.0201
Cst(V) 0.011129 0.0012355 9.007 0.0000
ARCH(Alpha1) 0.387223 0.11688 3.313 0.0010

% ** TESTS **
Q-Statistics on Standardized Residuals
Q(10)=12.4952 [0.2532785], Q(20)=23.1210 [0.2828934]

H0: No serial correlation ==> Accept H0 when prob. is High.
------------
Q-Statistics on Squared Standardized Residuals
--> P-values adjusted by 1 degree(s) of freedom
Q(10)=15.7849 [0.0715122], Q( 20)=37.0238 [0.0078807]

------------
ARCH 1-10 test: F(10,410)= 1.4423 [0.1592]
------------
% Apply Student-t distribution
> m2=garchOxFit(formula.mean=∼arma(0,0),

formula.var=∼garch(0,1),
series=intc,cond.dist="t")

% ** SPECIFICATIONS **
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Dependent variable : X
Mean Equation : ARMA (0, 0) model.
No regressor in the mean
Variance Equation : GARCH (0, 1) model.
No regressor in the variance
The distribution is a Student distribution, with 6.02272 df.

Maximum Likelihood Estimation(Std.Errors based on 2nd deriv.)
Coefficient Std.Error t-value t-prob

Cst(M) 0.016702 0.0052934 3.155 0.0017
Cst(V) 0.011870 0.0015969 7.433 0.0000
ARCH(Alpha1) 0.292318 0.11223 2.605 0.0095
Student(DF) 6.022723 1.5663 3.845 0.0001
** TESTS **
Q-Statistics on Standardized Residuals
Q(10)=13.0837 [0.2190281], Q(20)=24.0724 [0.2392436]

------------
Q-Statistics on Squared Standardized Residuals
--> P-values adjusted by 1 degree(s) of freedom
Q(10)=18.6982 [0.0278845], Q( 20)=41.7182 [0.0019343]

Example 3.2. Consider the percentage changes of the exchange rate between
mark and dollar in 10-minute intervals. The data are shown in Figure 3.3(a). As
shown in Figure 3.4(a), the series has no serial correlations. However, the sample
PACF of the squared series a2

t shows some big spikes, especially at lags 1 and 3.
There are some large PACF at higher lags, but the lower order lags tend to be more
important. Following the procedure discussed in the previous section, we specify an
ARCH(3) model for the series. Using the conditional Gaussian likelihood function,
we obtain the fitted model rt = 0.0018 + σtεt and

σ 2
t = 0.22 × 10−2 + 0.322a2

t−1 + 0.074a2
t−2 + 0.093a2

t−3,

where all the estimates in the volatility equation are statistically significant at the 5%
significant level, and the standard errors of the parameters are 0.47 × 10−6, 0.017,
0.016, and 0.014, respectively. Model checking, using the standardized residual ãt ,
indicates that the model is adequate.

3.5 THE GARCH MODEL

Although the ARCH model is simple, it often requires many parameters to ade-
quately describe the volatility process of an asset return. For instance, consider the
monthly excess returns of S&P 500 index of Example 3.3. An ARCH(9) model is
needed for the volatility process. Some alternative model must be sought. Boller-
slev (1986) proposes a useful extension known as the generalized ARCH (GARCH)
model. For a log return series rt , let at = rt − µt be the innovation at time t . Then
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at follows a GARCH(m, s) model if

at = σtεt , σ 2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j , (3.14)

where again {εt } is a sequence of iid random variables with mean 0 and variance
1.0, α0 > 0, αi ≥ 0, βj ≥ 0, and

∑max(m,s)
i=1 (αi + βi) < 1. Here it is understood that

αi = 0 for i >m and βj = 0 for j > s. The latter constraint on αi + βi implies
that the unconditional variance of at is finite, whereas its conditional variance σ 2

t

evolves over time. As before, εt is often assumed to follow a standard normal
or standardized Student-t distribution or generalized error distribution. Equation
(3.14) reduces to a pure ARCH(m) model if s = 0. The αi and βj are referred to
as ARCH and GARCH parameters, respectively.

To understand properties of GARCH models, it is informative to use the fol-
lowing representation. Let ηt = a2

t − σ 2
t so that σ 2

t = a2
t − ηt . By plugging σ 2

t−i =
a2
t−i − ηt−i (i = 0, . . . , s) into Eq. (3.14), we can rewrite the GARCH model as

a2
t = α0 +

max(m,s)∑
i=1

(αi + βi)a
2
t−i + ηt −

s∑
j=1

βjηt−j . (3.15)

It is easy to check that {ηt } is a martingale difference series [i.e., E(ηt ) = 0 and
cov(ηt , ηt−j ) = 0 for j ≥ 1]. However, {ηt } in general is not an iid sequence.
Equation (3.15) is an ARMA form for the squared series a2

t . Thus, a GARCH
model can be regarded as an application of the ARMA idea to the squared series
a2
t . Using the unconditional mean of an ARMA model, we have

E(a2
t ) = α0

1 − ∑max(m,s)
i=1 (αi + βi)

provided that the denominator of the prior fraction is positive.
The strengths and weaknesses of GARCH models can easily be seen by focusing

on the simplest GARCH(1,1) model with

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1. (3.16)

First, a large a2
t−1 or σ 2

t−1 gives rise to a large σ 2
t . This means that a large a2

t−1 tends
to be followed by another large a2

t , generating, again, the well-known behavior
of volatility clustering in financial time series. Second, it can be shown that if
1 − 2α2

1 − (α1 + β1)
2 > 0, then

E(a4
t )

[E(a2
t )]2

= 3[1 − (α1 + β1)
2]

1 − (α1 + β1)2 − 2α2
1

> 3.
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Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1)
process is heavier than that of a normal distribution. Third, the model provides a
simple parametric function that can be used to describe the volatility evolution.

Forecasts of a GARCH model can be obtained using methods similar to those
of an ARMA model. Consider the GARCH(1,1) model in Eq. (3.16) and assume
that the forecast origin is h. For 1-step-ahead forecast, we have

σ 2
h+1 = α0 + α1a

2
h + β1σ

2
h ,

where ah and σ 2
h are known at the time index h. Therefore, the 1-step-ahead forecast

is

σ 2
h (1) = α0 + α1a

2
h + β1σ

2
h .

For multistep-ahead forecasts, we use a2
t = σ 2

t ε
2
t and rewrite the volatility equation

in Eq. (3.16) as

σ 2
t+1 = α0 + (α1 + β1)σ

2
t + α1σ

2
t (ε

2
t − 1).

When t = h + 1, the equation becomes

σ 2
h+2 = α0 + (α1 + β1)σ

2
h+1 + α1σ

2
h+1(ε

2
h+1 − 1).

Since E(ε2
h+1 − 1|Fh) = 0, the 2-step-ahead volatility forecast at the forecast origin

h satisfies the equation

σ 2
h (2) = α0 + (α1 + β1)σ

2
h (1).

In general, we have

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (� − 1), �> 1. (3.17)

This result is exactly the same as that of an ARMA(1,1) model with AR polynomial
1 − (α1 + β1)B. By repeated substitutions in Eq. (3.17), we obtain that the �-step-
ahead forecast can be written as

σ 2
h (�) = α0[1 − (α1 + β1)

�−1]

1 − α1 − β1
+ (α1 + β1)

�−1σ 2
h (1).

Therefore,

σ 2
h (�) → α0

1 − α1 − β1
, as � → ∞

provided that α1 + β1 < 1. Consequently, the multistep-ahead volatility forecasts of
a GARCH(1,1) model converge to the unconditional variance of at as the forecast
horizon increases to infinity provided that Var(at ) exists.
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The literature on GARCH models is enormous; see Bollerslev, Chou, and Kroner
(1992), Bollerslev, Engle, and Nelson (1994), and the references therein. The model
encounters the same weaknesses as the ARCH model. For instance, it responds
equally to positive and negative shocks. In addition, recent empirical studies of
high-frequency financial time series indicate that the tail behavior of GARCH
models remains too short even with standardized Student-t innovations. For further
information about kurtosis of GARCH models, see Section 3.16.

3.5.1 An Illustrative Example

The modeling procedure of ARCH models can also be used to build a GARCH
model. However, specifying the order of a GARCH model is not easy. Only
lower order GARCH models are used in most applications, say, GARCH(1,1),
GARCH(2,1), and GARCH(1,2) models. The conditional maximum-likelihood
method continues to apply provided that the starting values of the volatility {σ 2

t }
are assumed to be known. Consider, for instance, a GARCH(1,1) model. If σ 2

1 is
treated as fixed, then σ 2

t can be computed recursively for a GARCH(1,1) model.
In some applications, the sample variance of at serves as a good starting value
of σ 2

1 . The fitted model can be checked by using the standardized residual ãt =
at/σt and its squared process.

Example 3.3. In this example, we consider the monthly excess returns of
S&P 500 index starting from 1926 for 792 observations. The series is shown in
Figure 3.6. Denote the excess return series by rt . Figure 3.7 shows the sample ACF
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Figure 3.6 Time series plot of monthly excess returns of S&P 500 index from 1926 to 1991.
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Figure 3.7 (a) Sample ACF of monthly excess returns of S&P 500 index and (b) sample PACF of
squared monthly excess returns. Sample period is from 1926 to 1991.

of rt and the sample PACF of r2
t . The rt series has some serial correlations at lags

1 and 3, but the key feature is that the PACF of r2
t shows strong linear dependence.

If an MA(3) model is entertained, we obtain

rt = 0.0062 + at + 0.0944at−1 − 0.1407at−3, σ̂a = 0.0576

for the series, where all of the coefficients are significant at the 5% level. However,
for simplicity, we use instead an AR(3) model

rt = φ1rt−1 + φ2rt−2 + φ3rt−3 + β0 + at .

The fitted AR(3) model, under the normality assumption, is

rt = 0.088rt−1 − 0.023rt−2 − 0.123rt−3 + 0.0066 + at , σ̂ 2
a = 0.00333. (3.18)

For the GARCH effects, we use the GARCH(1,1) model

at = σtεt , σ 2
t = α0 + β1σ

2
t−1 + α1a

2
t−1.

A joint estimation of the AR(3)–GARCH(1,1) model gives
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rt = 0.0078 + 0.032rt−1 − 0.029rt−2 − 0.008rt−3 + at ,

σ 2
t = 0.000084 + 0.1213a2

t−1 + 0.8523σ 2
t−1.

From the volatility equation, the implied unconditional variance of at is

0.000084

1 − 0.8523 − 0.1213
= 0.00317,

which is close to that of Eq. (3.18). However, t ratios of the parameters in the
mean equation suggest that all three AR coefficients are insignificant at the 5%
level. Therefore, we refine the model by dropping all AR parameters. The refined
model is

rt = 0.0076 + at , σ 2
t = 0.000086 + 0.1216a2

t−1 + 0.8511σ 2
t−1. (3.19)

The standard error of the constant in the mean equation is 0.0015, whereas those
of the parameters in the volatility equation are 0.000024, 0.0197, and 0.0190,
respectively. The unconditional variance of at is 0.000086/(1 − 0.8511 − 0.1216)
= 0.00314. This is a simple stationary GARCH(1,1) model. Figure 3.8 shows the
estimated volatility process, σt , and the standardized shocks ãt = at/σt for the
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Figure 3.8 (a) Time series plot of estimated volatility (σt ) for monthly excess returns of S&P 500
index and (b) standardized shocks of monthly excess returns of S&P 500 index. Both plots are based
on GARCH(1,1) model in Eq. (3.19).
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Figure 3.9 Model checking of GARCH(1,1) model in Eq. (3.19) for monthly excess returns of S&P
500 index: (a) Sample ACF of standardized residuals and (b) sample ACF of the squared standardized
residuals.

GARCH(1,1) model in Eq. (3.19). The ãt series looks like a white noise pro-
cess. Figure 3.9 provides the sample ACF of the standardized residuals ãt and the
squared process ã2

t . These ACFs fail to suggest any significant serial correlations
or conditional heteroscedasticity in the standardized residual series. More specifi-
cally, we have Q(12) = 11.99(0.45) and Q(24) = 28.52(0.24) for ãt , and Q(12)
= 13.11(0.36) and Q(24) = 26.45(0.33) for ã2

t , where the number in parenthe-
ses is the p value of the test statistic. Thus, the model appears to be adequate in
describing the linear dependence in the return and volatility series. Note that the
fitted model shows α̂1 + β̂1 = 0.9772, which is close to 1. This phenomenon is
commonly observed in practice and it leads to imposing the constraint α1 + β1 = 1
in a GARCH(1,1) model, resulting in an integrated GARCH (or IGARCH) model;
see Section 3.6.

Finally, to forecast the volatility of monthly excess returns of the S&P 500 index,
we can use the volatility equation in Eq. (3.19). For instance, at the forecast origin
h, we have σ 2

h+1 = 0.000086 + 0.1216a2
h + 0.8511σ 2

h . The 1-step-ahead forecast is
then

σ 2
h (1) = 0.000086 + 0.1216a2

h + 0.8511σ 2
h ,
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TABLE 3.1 Volatility Forecasts for Monthly Excess Returns of S&P 500 Indexa

Horizon 1 2 3 4 5 ∞
Return 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076
Volatility 0.0536 0.0537 0.0537 0.0538 0.0538 0.0560
aThe forecast origin is h = 792, which corresponds to December 1991. Here volatility denotes condi-
tional standard deviation.

where ah is the residual of the mean equation at time h and σh is obtained from the
volatility equation. The starting value σ 2

0 is fixed at either zero or the unconditional
variance of at . For multistep-ahead forecasts, we use the recursive formula in Eq.
(3.17). Table 3.1 shows some mean and volatility forecasts for the monthly excess
return of the S&P 500 index with forecast origin h = 792 based on the GARCH(1,1)
model in Eq. (3.19).

Some S-Plus Commands Used in Example 3.3.

> fit=garch(sp∼ar(3),∼garch(1,1))
> summary(fit)
> fit=garch(sp∼1,∼garch(1,1))
> summary(fit)
> names(fit)
[1] "residuals" "sigma.t" "df.residual" "coef" "model"
[6] "cond.dist" "likelihood" "opt.index" "cov"

"prediction"
[11] "call" "asymp.sd" "series"
>
> stdresi=fit$residuals/fit$sigma.t
> autocorTest(stdresi,lag=24)
> autocorTest(stdresi^2,lag=24)
> predict(fit,5)

Note that in the prior commands the volatility series σt is stored in fit$sigma.t

and the residual series of the returns in fit$residuals.

t Innovation
Assuming that εt follows a standardized Student-t distribution with 5 degrees of
freedom, we reestimate the GARCH(1,1) model and obtain

rt = 0.0085 + at , σ 2
t = 0.00012 + 0.1121a2

t−1 + 0.8432σ 2
t−1, (3.20)

where the standard errors of the parameters are 0.0015, 0.51×10−4, 0.0296, and
0.0371, respectively. This model is essentially an IGARCH(1,1) model as α̂1 + β̂1

≈ 0.95, which is close to 1. The Ljung–Box statistics of the standardized residuals
give Q(10) = 11.38 with a p value of 0.33 and those of the {ã2

t } series give Q(10)
= 10.48 with a p value of 0.40. Thus, the fitted GARCH(1,1) model with Student-t
distribution is adequate.
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S-Plus Commands Used

> fit1 = garch(sp∼1,∼garch(1,1),cond.dist=’t’,cond.par=5,
+ cond.est=F)
> summary(fit1)
> stresi=fit1$residuals/fit1$sigma.t
> autocorTest(stresi,lag=10)
> autocorTest(stresi^2,lag=10)

Estimation of Degrees of Freedom
If we further extend the GARCH(1,1) model by estimating the degrees of freedom
of the Student-t distribution used, we obtain the model

rt = 0.0085 + at , σ 2
t = 0.00012 + 0.1121a2

t−1 + 0.8432σ 2
t−1, (3.21)

where the estimated degrees of freedom is 7.02. Standard errors of the estimates
in Eq. (3.21) are close to those in Eq. (3.20). The standard error of the estimated
degrees of freedom is 1.78. Consequently, we cannot reject the hypothesis of using a
standardized Student-t distribution with 5 degrees of freedom at the 5% significance
level.

S-Plus Commands Used

> fit2 = garch(sp∼1,∼garch(1,1),cond.dist=’t’)
> summary(fit2)

R Commands Used in Example 3.3

> library(fGarch)
> sp5=scan(file=’sp500.txt’) % Load data
> plot(sp5,type=’l’)
% Below, fit an AR(3)+GARCH(1,1) model.
> m1=garchFit(∼arma(3,0)+garch(1,1),data=sp5,trace=F)
> summary(m1)
% Below, fit a GARCH(1,1) model with Student-t distribution.
> m2=garchFit(∼garch(1,1),data=sp5,trace=F,cond.dist="std")
> summary(m2)
% Obtain standardized residuals.
> stresi=residuals(m2,standardize=T)
> plot(stresi,type=’l’)
> Box.test(stresi,10,type=’Ljung’)
> predict(m2,5)

3.5.2 Forecasting Evaluation

Since the volatility of an asset return is not directly observable, comparing the
forecasting performance of different volatility models is a challenge to data analysts.
In the literature, some researchers use out-of-sample forecasts and compare the
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volatility forecasts σ 2
h (�) with the shock a2

h+� in the forecasting sample to assess
the forecasting performance of a volatility model. This approach often finds a
low correlation coefficient between a2

h+� and σ 2
h (�), that is, low R2. However,

such a finding is not surprising because a2
h+� alone is not an adequate measure

of the volatility at time index h + �. Consider the 1-step-ahead forecasts. From a
statistical point of view, E(a2

h+1|Fh) = σ 2
h+1 so that a2

h+1 is a consistent estimate
of σ 2

h+1. But it is not an accurate estimate of σ 2
h+1 because a single observation of a

random variable with a known mean value cannot provide an accurate estimate of
its variance. Consequently, such an approach to evaluate forecasting performance of
volatility models is strictly speaking not proper. For more information concerning
forecasting evaluation of GARCH models, readers are referred to Andersen and
Bollerslev (1998).

3.5.3 A Two-Pass Estimation Method

Based on Eq. (3.15), a two-pass estimation method can be used to estimate GARCH
models. First, ignoring any ARCH effects, one estimates the mean equation of a
return series using the methods discussed in Chapter 2 (e.g., maximum-likelihood
method). Denote the residual series by at . Second, treating {a2

t } as an observed
time series, one applies the maximum-likelihood method to estimate parameters
of Eq. (3.15). Denote the AR and MA coefficient estimates by φ̂i and θ̂i . The
GARCH estimates are obtained as β̂i = θ̂i and α̂i = φ̂i − θ̂i . Obviously, such esti-
mates are approximations to the true parameters and their statistical properties have
not been rigorously investigated. However, limited experience shows that this sim-
ple approach often provides good approximations, especially when the sample size
is moderate or large. For instance, consider the monthly excess return series of the
S&P 500 index of Example 3.3. Using the conditional MLE method in SCA, we
obtain the model

rt = 0.0061 + at , a2
t = 0.00014 + 0.9583a2

t−1 + ηt − 0.8456ηt−1,

where all estimates are significantly different from zero at the 5% level. From
the estimates, we have β̂1 = 0.8456 and α̂1 = 0.9583 − 0.8456 = 0.1127. These
approximate estimates are very close to those in Eq. (3.19) or (3.21). Further-
more, the fitted volatility series of the two-pass method is very close to that of
Figure 3.8(a).

3.6 THE INTEGRATED GARCH MODEL

If the AR polynomial of the GARCH representation in Eq. (3.15) has a unit root,
then we have an IGARCH model. Thus, IGARCH models are unit-root GARCH
models. Similar to ARIMA models, a key feature of IGARCH models is that the
impact of past squared shocks ηt−i = a2

t−i − σ 2
t−i for i > 0 on a2

t is persistent.
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An IGARCH(1,1) model can be written as

at = σtεt , σ 2
t = α0 + β1σ

2
t−1 + (1 − β1)a

2
t−1,

where {εt } is defined as before and 1>β1 > 0. For the monthly excess returns of
the S&P 500 index, an estimated IGARCH(1,1) model is

rt = 0.0067 + at , at = σtεt ,

σ 2
t = 0.000119 + 0.8059σ 2

t−1 + 0.1941a2
t−1,

where the standard errors of the estimates in the volatility equation are 0.0017,
0.000013, and 0.0144, respectively. The parameter estimates are close to those of
the GARCH(1,1) model shown before, but there is a major difference between
the two models. The unconditional variance of at , hence that of rt , is not defined
under the above IGARCH(1,1) model. This seems hard to justify for an excess
return series. From a theoretical point of view, the IGARCH phenomenon might
be caused by occasional level shifts in volatility. The actual cause of persistence
in volatility deserves a careful investigation.

When α1 + β1 = 1, repeated substitutions in Eq. (3.17) give

σ 2
h (�) = σ 2

h (1) + (� − 1)α0, � ≥ 1, (3.22)

where h is the forecast origin. Consequently, the effect of σ 2
h (1) on future volatilities

is also persistent, and the volatility forecasts form a straight line with slope α0.
Nelson (1990) studies some probability properties of the volatility process σ 2

t under
an IGARCH model. The process σ 2

t is a martingale for which some nice results
are available in the literature. Under certain conditions, the volatility process is
strictly stationary but not weakly stationary because it does not have the first two
moments.

The case of α0 = 0 is of particular interest in studying the IGARCH(1,1) model.
In this case, the volatility forecasts are simply σ 2

h (1) for all forecast horizons;
see Eq. (3.22). This special IGARCH(1,1) model is the volatility model used in
RiskMetrics, which is an approach for calculating value at risk; see Chapter 7.
The model is also an exponential smoothing model for the {a2

t } series. To see this,
rewrite the model as

σ 2
t = (1 − β1)a

2
t−1 + β1σ

2
t−1

= (1 − β1)a
2
t−1 + β1[(1 − β)a2

t−2 + β1σ
2
t−2]

= (1 − β1)a
2
t−1 + (1 − β1)β1a

2
t−2 + β2

1σ
2
t−2.

By repeated substitutions, we have

σ 2
t = (1 − β1)(a

2
t−1 + β1a

2
t−2 + β2

1a
3
t−3 + · · ·),
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which is the well-known exponential smoothing formation with β1 being the dis-
counting factor. Exponential smoothing methods can thus be used to estimate such
an IGARCH(1,1) model.

3.7 THE GARCH-M MODEL

In finance, the return of a security may depend on its volatility. To model such
a phenomenon, one may consider the GARCH-M model, where M stands for
GARCH in the mean . A simple GARCH(1,1)-M model can be written as

rt = µ + cσ 2
t + at , at = σtεt ,

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, (3.23)

where µ and c are constants. The parameter c is called the risk premium parameter.
A positive c indicates that the return is positively related to its volatility. Other
specifications of risk premium have also been used in the literature, including
rt = µ + cσt + at and rt = µ + c ln(σ 2

t ) + at .
The formulation of the GARCH-M model in Eq. (3.23) implies that there are

serial correlations in the return series rt . These serial correlations are introduced
by those in the volatility process {σ 2

t }. The existence of risk premium is, therefore,
another reason that some historical stock returns have serial correlations.

For illustration, we consider a GARCH(1,1)-M model with Gaussian innova-
tions for the monthly excess returns of the S&P 500 index from January 1926 to
December 1991. The fitted model is

rt = 0.0055 + 1.09σ 2
t + at , σ 2

t = 8.76 × 10−5 + 0.123a2
t−1 + 0.849σ 2

t−1,

where the standard errors for the two parameters in the mean equation are 0.0023
and 0.818, respectively, and those for the parameters in the volatility equation are
2.51×−5, 0.0205, and 0.0196, respectively. The estimated risk premium for the
index return is positive but is not statistically significant at the 5% level. Here the
result is obtained using S-Plus. Other forms of GARCH-M specification in S-Plus
are given in Table 3.2. The idea of risk premium applies to other GARCH models.

TABLE 3.2 GARCH-M Models Allowed in S-Plus:
Mean Equation Is rt = µ + cg(σt) + at

g(σt ) Command

σ 2
t var.in.mean

σt sd.in.mean
ln(σ 2

t ) logvar.in.mean
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S-Plus Demonstration

> sp.fit = garch(sp∼1+var.in.mean,∼garch(1,1))
> summary(sp.fit)

3.8 THE EXPONENTIAL GARCH MODEL

To overcome some weaknesses of the GARCH model in handling financial time
series, Nelson (1991) proposes the exponential GARCH (EGARCH) model. In
particular, to allow for asymmetric effects between positive and negative asset
returns, he considered the weighted innovation

g(εt ) = θεt + γ [|εt | − E(|εt |)], (3.24)

where θ and γ are real constants. Both εt and |εt | − E(|εt |) are zero-mean iid
sequences with continuous distributions. Therefore, E[g(εt )] = 0. The asymmetry
of g(εt ) can easily be seen by rewriting it as

g(εt ) =
{

(θ + γ )εt − γE(|εt |) if εt ≥ 0,
(θ − γ )εt − γE(|εt |) if εt < 0.

Remark. For the standard Gaussian random variable εt , E(|εt |) = √
2/π . For

the standardized Student-t distribution in Eq. (3.7), we have

E(|εt |) = 2
√
v − 2�[(v + 1)/2]

(v − 1)�(v/2)
√
π

.

�

An EGARCH(m, s) model can be written as

at = σtεt , ln(σ 2
t ) = α0 + 1 + β1B + · · · + βs−1B

s−1

1 − α1B − · · · − αmBm
g(εt−1), (3.25)

where α0 is a constant, B is the back-shift (or lag) operator such that Bg(εt ) =
g(εt−1), and 1 + β1B + · · · + βs−1B

s−1 and 1 − α1B − · · · − αmB
m are polyno-

mials with zeros outside the unit circle and have no common factors. By outside
the unit circle we mean that absolute values of the zeros are greater than 1. Again,
Eq. (3.25) uses the usual ARMA parameterization to describe the evolution of the
conditional variance of at . Based on this representation, some properties of the
EGARCH model can be obtained in a similar manner as those of the GARCH
model. For instance, the unconditional mean of ln(σ 2

t ) is α0. However, the model
differs from the GARCH model in several ways. First, it uses logged conditional
variance to relax the positiveness constraint of model coefficients. Second, the use
of g(εt ) enables the model to respond asymmetrically to positive and negative
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lagged values of at . Some additional properties of the EGARCH model can be
found in Nelson (1991).

To better understand the EGARCH model, let us consider the simple model with
order (1,1):

at = σtεt , (1 − αB) ln(σ 2
t ) = (1 − α)α0 + g(εt−1), (3.26)

where the εt are iid standard normal and the subscript of α1 is omitted. In this
case, E(|εt |) = √

2/π and the model for ln(σ 2
t ) becomes

(1 − αB) ln(σ 2
t ) =

{
α∗ + (γ + θ)εt−1 if εt−1 ≥ 0,
α∗ + (γ − θ)(−εt−1) if εt−1 < 0,

(3.27)

where α∗ = (1 − α)α0 − √
2/πγ . This is a nonlinear function similar to that of the

threshold autoregressive (TAR) model of Tong (1978, 1990). It suffices to say that
for this simple EGARCH model the conditional variance evolves in a nonlinear
manner depending on the sign of at−1. Specifically, we have

σ 2
t = σ 2α

t−1 exp(α∗)


exp

[
(γ + θ)

at−1

σt−1

]
if at−1 ≥ 0,

exp

[
(γ − θ)

|at−1|
σt−1

]
if at−1 < 0.

The coefficients (γ + θ) and (γ − θ) show the asymmetry in response to posi-
tive and negative at−1. The model is, therefore, nonlinear if θ �= 0. Since nega-
tive shocks tend to have larger impacts, we expect θ to be negative. For higher
order EGARCH models, the nonlinearity becomes much more complicated. Cao
and Tsay (1992) use nonlinear models, including EGARCH models, to obtain
multistep-ahead volatility forecasts. We discuss nonlinearity in financial time series
in Chapter 4.

3.8.1 Alternative Model Form

An alternative form for the EGARCH(m, s) model is

ln(σ 2
t ) = α0 +

s∑
i=1

αi

|at−i | + γiat−i

σt−i

+
m∑

j=1

βj ln(σ 2
t−j ). (3.28)

Here a positive at−i contributes αi(1 + γi)|εt−i | to the log volatility, whereas a
negative at−i gives αi(1 − γi)|εt−i |, where εt−i = at−i/σt−i . The γi parameter thus
signifies the leverage effect of at−i . Again, we expect γi to be negative in real
applications. This is the model form used in S-Plus.
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3.8.2 Illustrative Example

Nelson (1991) applies an EGARCH model to the daily excess returns of the value-
weighted market index from the Center for Research in Security Prices from July
1962 to December 1987. The excess returns are obtained by removing monthly
Treasury bill returns from the value-weighted index returns, assuming that the
Treasury bill return was constant for each calendar day within a given month.
There are 6408 observations. Denote the excess return by rt . The model used is as
follows:

rt = φ0 + φ1rt−1 + cσ 2
t + at , (3.29)

ln(σ 2
t ) = α0 + ln(1 + wNt) + 1 + βB

1 − α1B − α2B2
g(εt−1),

where σ 2
t is the conditional variance of at given Ft−1, Nt is the number of nontrad-

ing days between trading days t − 1 and t , α0 and w are real parameters, g(εt ) is
defined in Eq. (3.24), and εt follows a generalized error distribution in Eq. (3.10).
Similar to a GARCH-M model, the parameter c in Eq. (3.29) is the risk premium
parameter. Table 3.3 gives the parameter estimates and their standard errors of the
model. The mean equation of model (3.29) has two features that are of interest.
First, it uses an AR(1) model to take care of possible serial correlation in the excess
returns. Second, it uses the volatility σ 2

t as a regressor to account for risk premium.
The estimated risk premium is negative, but statistically insignificant.

3.8.3 Second Example

As another illustration, we consider the monthly log returns of IBM stock from
January 1926 to December 1997 for 864 observations. An AR(1)–EGARCH(1,1)
model is entertained and the fitted model is

rt = 0.0105 + 0.092rt−1 + at , at = σtεt , (3.30)

ln(σ 2
t ) = −5.496 + g(εt−1)

1 − 0.856B
,

g(εt−1) = −0.0795εt−1 + 0.2647
(
|εt−1| −

√
2/π

)
, (3.31)

TABLE 3.3 Estimated AR(1)–EGARCH(2,2) Model for Daily Excess Returns of
Value-Weighted CRSP Market Index: July 1962–December 1987

Parameter α0 w γ α1 α2 β

Estimate −10.06 0.183 0.156 1.929 −0.929 −0.978
Error 0.346 0.028 0.013 0.015 0.015 0.006

Parameter θ φ0 φ1 c v

Estimate −0.118 3.5·10−4 0.205 −3.361 1.576
Error 0.009 9.9·10−5 0.012 2.026 0.032
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where {εt } is a sequence of independent standard Gaussian random variates. All
parameter estimates are statistically significant at the 5% level. For model check-
ing, the Ljung–Box statistics give Q(10) = 6.31(0.71) and Q(20) = 21.4(0.32)
for the standardized residual process ãt = at/σt and Q(10) = 4.13(0.90) and
Q(20) = 15.93(0.66) for the squared process ã2

t , where again the number in
parentheses denotes p value. Therefore, there is no serial correlation or condi-
tional heteroscedasticity in the standardized residuals of the fitted model. The prior
AR(1)–EGARCH(1,1) model is adequate.

From the estimated volatility equation in (3.31) and using
√

2/π ≈ 0.7979, we
obtain the volatility equation as

ln(σ 2
t ) = −1.001 + 0.856 ln(σ 2

t−1) +
{

0.1852εt−1 if εt−1 ≥ 0,
−0.3442εt−1 if εt−1 < 0.

Taking antilog transformation, we have

σ 2
t = σ 2×0.856

t−1 e−1.001 ×
{

e0.1852εt−1 if εt−1 ≥ 0,
e−0.3442εt−1 if εt−1 < 0.

This equation highlights the asymmetric responses in volatility to the past positive
and negative shocks under an EGARCH model. For example, for a standardized
shock with magnitude 2 (i.e., two standard deviations), we have

σ 2
t (εt−1 = −2)

σ 2
t (εt−1 = 2)

= exp[−0.3442 × (−2)]

exp(0.1852 × 2)
= e0.318 = 1.374.

Therefore, the impact of a negative shock of size 2 standard deviations is about
37.4% higher than that of a positive shock of the same size. This example clearly
demonstrates the asymmetric feature of EGARCH models. In general, the bigger
the shock, the larger the difference in volatility impact.

Finally, we extend the sample period to include the log returns from 1998 to
2003 so that there are 936 observations and use S-Plus to fit an EGARCH(1,1)
model. The results are given below.

S-Plus Demonstration
The following output has been edited:

> ibm.egarch=garch(ibmln∼1,∼egarch(1,1),leverage=T,
+ cond.dist=’ged’)

> summary(ibm.egarch)
Call:
garch(formula.mean = ibmln ∼ 1, formula.var = ∼ egarch(1, 1),

leverage = T,cond.dist = "ged")

Mean Equation: ibmln ∼ 1
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Conditional Variance Equation: ∼ egarch(1, 1)
Conditional Distribution: ged
with estimated parameter 1.5003 and standard error 0.09912

--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C 0.01181 0.002012 5.870 3.033e-09
A -0.55680 0.171602 -3.245 6.088e-04

ARCH(1) 0.22025 0.052824 4.169 1.669e-05
GARCH(1) 0.92910 0.026743 34.742 0.000e+00
LEV(1) -0.26400 0.126096 -2.094 1.828e-02

--------------------------------------------------------------
Ljung-Box test for standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

17.87 0.1195 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------
Statistic P-value Chi^2-d.f.

6.723 0.8754 12

The fitted GARCH(1,1) model is

rt = 0.0118 + at , at = σtεt ,

ln(σ 2
t ) = −0.557 + 0.220

|at−1| − 0.264at−1

σt−1
+ 0.929 ln(σ 2

t−1), (3.32)

where εt follows a GED distribution with parameter 1.5. This model is adequate
and based on the Ljung–Box statistics of the standardized residual series and its
squared process. As expected, the output shows that the estimated leverage effect
is negative and is statistically significant at the 5% level with a t ratio of −2.094.

3.8.4 Forecasting Using an EGARCH Model

We use the EGARCH(1,1) model to illustrate multistep-ahead forecasts of
EGARCH models, assuming that the model parameters are known and the
innovations are standard Gaussian. For such a model, we have

ln(σ 2
t ) = (1 − α1)α0 + α1 ln(σ 2

t−1) + g(εt−1),

g(εt−1) = θεt−1 + γ (|εt−1| −
√

2/π).

Taking exponentials, the model becomes

σ 2
t = σ

2α1
t−1 exp[(1 − α1)α0] exp[g(εt−1)],

g(εt−1) = θεt−1 + γ (|εt−1| −
√

2/π). (3.33)
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Let h be the forecast origin. For the 1-step-ahead forecast, we have

σ 2
h+1 = σ

2α1
h exp[(1 − α1)α0] exp[g(εh)],

where all of the quantities on the right-hand side are known. Thus, the 1-step-ahead
volatility forecast at the forecast origin h is simply σ̂ 2

h (1) = σ 2
h+1 given earlier. For

the 2-step-ahead forecast, Eq. (3.33) gives

σ 2
h+2 = σ

2α1
h+1 exp[(1 − α1)α0] exp[g(εh+1)].

Taking conditional expectation at time h, we have

σ̂ 2
h (2) = σ̂

2α1
h (1) exp[(1 − α1)α0]Eh{exp[g(εh+1)]},

where Eh denotes a conditional expectation taken at the time origin h. The prior
expectation can be obtained as follows:

E{exp[g(ε)]} =
∫ ∞

−∞
exp[θε + γ (|ε| −

√
2/π)]f (ε) dε

= exp
(
−γ

√
2/π

) [∫ ∞

0
e(θ+γ )ε 1√

2π
e−ε2/2 dε

+
∫ 0

−∞
e(θ−γ )ε 1√

2π
e−ε2/2 dε

]
= exp

(
−γ

√
2/π

) [
e(θ+γ )2/2�(θ + γ ) + e(θ−γ )2/2�(γ − θ)

]
,

where f (ε) and �(x) are the probability density function and CDF of the stan-
dard normal distribution, respectively. Consequently, the 2-step-ahead volatility
forecast is

σ̂ 2
h (2) = σ̂

2α1
h (1) exp

[
(1 − α1)α0 − γ

√
2/π

]
× {

exp[(θ + γ )2/2]�(θ + γ ) + exp[(θ − γ )2/2]�(γ − θ)
}
.

Repeating the previous procedure, we obtain a recursive formula for a j -step-ahead
forecast:

σ̂ 2
h (j) = σ̂

2α1
h (j − 1) exp(ω)

× {
exp[(θ + γ )2/2]�(θ + γ ) + exp[(θ − γ )2/2]�(γ − θ)

}
,

where ω = (1 − α1)α0 − γ
√

2/π . The values of �(θ + γ ) and �(γ − θ) can be
obtained from most statistical packages. Alternatively, accurate approximations to
these values can be obtained by using the method in Appendix B of Chapter 6.
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For illustration, consider the AR(1)–EGARCH(1,1) model of the previous
section for the monthly log returns of IBM stock, ending December 1997. Using
the fitted EGARCH(1,1) model, we can compute the volatility forecasts for the
series. At the forecast origin t = 864, the forecasts are σ̂ 2

864(1) = 6.05 × 10−3,
σ̂ 2

864(2) = 5.82 × 10−3, σ̂ 2
864(3) = 5.63 × 10−3, and σ̂ 2

864(10) = 4.94 × 10−3.
These forecasts converge gradually to the sample variance 4.37 × 10−3 of the
shock process at of Eq. (3.30).

3.9 THE THRESHOLD GARCH MODEL

Another volatility model commonly used to handle leverage effects is the threshold
GARCH (or TGARCH) model; see Glosten, Jagannathan, and Runkle (1993) and
Zakoian (1994). A TGARCH(m, s) model assumes the form

σ 2
t = α0 +

s∑
i=1

(αi + γiNt−i )a
2
t−i +

m∑
j=1

βjσ
2
t−j , (3.34)

where Nt−i is an indicator for negative at−i , that is,

Nt−i =
{

1 if at−i < 0,
0 if at−i ≥ 0,

and αi, γi , and βj are nonnegative parameters satisfying conditions similar to those
of GARCH models. From the model, it is seen that a positive at−i contributes αia

2
t−i

to σ 2
t , whereas a negative at−i has a larger impact (αi + γi)a

2
t−i with γi > 0. The

model uses zero as its threshold to separate the impacts of past shocks. Other
threshold values can also be used; see Chapter 4 for the general concept of threshold
models. Model (3.34) is also called the GJR model because Glosten et al. (1993)
proposed essentially the same model.

For illustration, consider the monthly log returns of IBM stock from 1926 to
2003. The fitted TGARCH(1,1) model with conditional GED innovations is

rt = 0.0121 + at , at = σtεt ,

σ 2
t = 3.45 × 10−4 + (0.0658 + 0.0843Nt−1)a

2
t−1 + 0.8182σ 2

t−1, (3.35)

where the estimated parameter of the GED is 1.51 with standard error 0.099. The
standard error of the parameter for the mean equation is 0.002 and the standard
errors of the parameters in the volatility equation are 1.26×−4, 0.0314, 0.0395, and
0.049, respectively. To check the fitted model, we have Q(12) = 18.34(0.106) for
the standardized residual ãt and Q(12) = 5.36 (0.95) for ã2

t . The model is adequate
in modeling the first two conditional moments of the log return series. Based on
the fitted model, the leverage effect is significant at the 5% level.
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S-Plus Commands Used

> ibm.tgarch = garch(ibmln∼1,∼tgarch(1,1),leverage=T,
+ cond.dist=’ged’)
> summary(ibm.tgarch)
> plot(ibm.tgarch)

It is interesting to compare the two models in Eqs. (3.32) and (3.35) for the
monthly log returns of IBM stock. Assume that at−1 = ±2σt−1 so that εt−1 = ±2.
The EGARCH(1,1) model gives

σ 2
t (εt−1 = −2)

σ 2
t (εt−1 = 2)

= e0.22×2×0.632 ≈ 1.264.

On the other hand, ignoring the constant term 0.000345, the TGARCH(1,1) model
gives

σ 2
t (εt−1 = −2)

σ 2
t (εt−1 = 2)

≈ [(0.0658 + 0.0843)4 + 0.8182]σ 2
t−1

(0.0658 × 4 + 0.8182)σ 2
t−1

= 1.312.

The two models provide similar leverage effects.

3.10 THE CHARMA MODEL

Many other econometric models have been proposed in the literature to describe the
evolution of the conditional variance σ 2

t in Eq. (3.2). We mention the conditional
heteroscedastic ARMA (CHARMA) model that uses random coefficients to produce
conditional heteroscedasticity; see Tsay (1987). The CHARMA model is not the
same as the ARCH model, but the two models have similar second-order conditional
properties. A CHARMA model is defined as

rt = µt + at , at = δ1t at−1 + δ2t at−2 + · · · + δmtat−m + ηt , (3.36)

where {ηt } is a Gaussian white noise series with mean zero and variance σ 2
η ,

{δt } = {(δ1t , . . . , δmt )
′} is a sequence of iid random vectors with mean zero and

nonnegative definite covariance matrix �, and {δt } is independent of {ηt }. In this
section, we use some basic properties of vector and matrix operations to simplify
the presentation. Readers may consult Appendix A of Chapter 8 for a brief review
of these properties. For m> 0, the model can be written as

at = a′
t−1δt + ηt ,

where at−1 = (at−1, . . . , at−m)
′ is a vector of lagged values of at and is available

at time t − 1. The conditional variance of at of the CHARMA model in Eq. (3.36)
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is then

σ 2
t = σ 2

η + a′
t−1Cov(δt )at−1

= σ 2
η + (at−1, . . . , at−m)�(at−1, . . . , at−m)

′. (3.37)

Denote the (i, j)th element of � by ωij . Because the matrix is symmetric, we have
ωij = ωji . If m = 1, then Eq. (3.37) reduces to σ 2

t = σ 2
η + ω11a

2
t−1, which is an

ARCH(1) model. If m = 2, then Eq. (3.37) reduces to

σ 2
t = σ 2

η + ω11a
2
t−1 + 2ω12at−1at−2 + ω22a

2
t−2,

which differs from an ARCH(2) model by the cross-product term at−1at−2. In
general, the conditional variance of a CHARMA(m) model is equivalent to that
of an ARCH(m) model if � is a diagonal matrix. Because � is a covariance
matrix, which is nonnegative definite, and σ 2

η is a variance, which is positive, we
have σ 2

t ≥ σ 2
η > 0 for all t . In other words, the positiveness of σ 2

t is automatically
satisfied under a CHARMA model.

An obvious difference between ARCH and CHARMA models is that the latter
use cross products of the lagged values of at in the volatility equation. The cross-
product terms might be useful in some applications. For example, in modeling
an asset return series, cross-product terms denote interactions between previous
returns. It is conceivable that stock volatility may depend on such interactions.
However, the number of cross-product terms increases rapidly with the order m,
and some constraints are needed to keep the model simple. A possible constraint
is to use a small number of cross-product terms in a CHARMA model. Another
difference between the two models is that higher order properties of CHARMA
models are harder to obtain than those of ARCH models because it is in general
harder to handle multiple random variables.

For illustration, we employ the CHARMA model

rt = φ0 + at , at = δ1t at−1 + δ2t at−2 + ηt

for the monthly excess returns of the S&P 500 index used before in GARCH
modeling. The fitted model is

rt = 0.00635 + at , σ 2
t = 0.00179 + (at−1, at−2)�̂(at−1, at−2)

′,

where

�̂ =
[

0.1417(0.0333) −0.0594(0.0365)
−0.0594(0.0365) 0.3081(0.0340)

]
,

where the numbers in parentheses are standard errors. The cross-product term of
�̂ has a t ratio of −1.63, which is marginally significant at the 10% level. If we
refine the model to

rt = φ0 + at , at = δ1t at−1 + δ2t at−2 + δ3t at−3 + ηt ,
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but assume that δ3t is uncorrelated with (δ1t , δ2t ), then we obtain the fitted model

rt = 0.0068 + at , σ 2
t = 0.00136 + (at−1, at−2, at−3)�̂(at−1, at−2, at−3)

′,

where the elements of �̂ and their standard errors, shown in parentheses, are

�̂ =
 0.1212(0.0355) −0.0622(0.0283) 0

−0.0622(0.0283) 0.1913(0.0254) 0
0 0 0.2988(0.0420)

 .

All of the estimates are now statistically significant at the 5% level. From the model,
at = rt − 0.0068 is the deviation of the monthly excess return from its average.
The fitted CHARMA model shows that there is some interaction effect between
the first two lagged deviations. Indeed, the volatility equation can be written
approximately as

σ 2
t = 0.00136 + 0.12a2

t−1 − 0.12at−1at−2 + 0.19a2
t−2 + 0.30a2

t−3.

The conditional variance is slightly larger when at−1at−2 is negative.

3.10.1 Effects of Explanatory Variables

The CHARMA model can easily be generalized so that the volatility of rt may
depend on some explanatory variables. Let {xit }mi=1 be m explanatory variables
available at time t . Consider the model

rt = µt + at , at =
m∑
i=1

δit xi,t−1 + ηt , (3.38)

where δt = (δ1t , . . . , δmt )
′ and ηt are random vector and variable defined in Eq.

(3.36). Then the conditional variance of at is

σ 2
t = σ 2

η + (x1,t−1, . . . , xm,t−1)�(x1,t−1, . . . , xm,t−1)
′.

In application, the explanatory variables may include some lagged values of at .

3.11 RANDOM COEFFICIENT AUTOREGRESSIVE MODELS

In the literature, the random coefficient autoregressive (RCA) model is introduced
to account for variability among different subjects under study, similar to the panel
data analysis in econometrics and the hierarchical model in statistics. We classify
the RCA model as a conditional heteroscedastic model, but historically it is used
to obtain a better description of the conditional mean equation of the process by
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allowing for the parameters to evolve over time. A time series rt is said to follow
an RCA(p) model if it satisfies

rt = φ0 +
p∑

i=1

(φi + δit )rt−i + at , (3.39)

where p is a positive integer, {δt } = {(δ1t , . . . , δpt )
′} is a sequence of independent

random vectors with mean zero and covariance matrix �δ , and {δt } is independent
of {at }; see Nicholls and Quinn (1982) for further discussions of the model. The
conditional mean and variance of the RCA model in Eq. (3.39) are

µt = E(rt |Ft−1) = φ0 +
p∑

i=1

φirt−i ,

σ 2
t = σ 2

a + (rt−1, . . . , rt−p)�δ(rt−1, . . . , rt−p)
′,

which is in the same form as that of a CHARMA model. However, there is a subtle
difference between RCA and CHARMA models. For the RCA model, the volatility
is a quadratic function of the observed lagged values rt−i . Yet the volatility is a
quadratic function of the lagged innovations at−i in a CHARMA model.

3.12 STOCHASTIC VOLATILITY MODEL

An alternative approach to describe the volatility evolution of a financial time
series is to introduce an innovation to the conditional variance equation of at ; see
Melino and Turnbull (1990), Taylor (1994), Harvey, Ruiz, and Shephard (1994), and
Jacquier, Polson, and Rossi (1994). The resulting model is referred to as a stochastic
volatility (SV) model. Similar to EGARCH models, to ensure positiveness of the
conditional variance, SV models use ln(σ 2

t ) instead of σ 2
t . A SV model is defined as

at = σtεt , (1 − α1B − · · · − αmB
m) ln(σ 2

t ) = α0 + vt , (3.40)

where the εt are iid N(0, 1), the vt are iid N(0, σ 2
v ), {εt } and {vt } are independent,

α0 is a constant, and all zeros of the polynomial 1 − ∑m
i=1 αiB

i are greater than
1 in modulus. Adding the innovation vt substantially increases the flexibility of
the model in describing the evolution of σ 2

t , but it also increases the difficulty
in parameter estimation. To estimate an SV model, we need a quasi-likelihood
method via Kalman filtering or a Monte Carlo method. Jacquier, Polson, and Rossi
(1994) provide some comparison of estimation results between quasi-likelihood and
Markov chain Monte Carlo (MCMC) methods. The difficulty in estimating an SV
model is understandable because for each shock at the model uses two innovations
εt and vt . We discuss an MCMC method to estimate SV models in Chapter 12.
For more discussions on stochastic volatility models, see Taylor (1994).
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The appendixes of Jacquier, Polson, and Rossi (1994) provide some properties
of the SV model when m = 1. For instance, with m = 1, we have

ln(σ 2
t ) ∼ N

(
α0

1 − α1
,

σ 2
v

1 − α2
1

)
≡ N(µh, σ

2
h ),

and E(a2
t ) = exp(µh + σ 2

h /2), E(a4
t ) = 3 exp(2µ2

h + 2σ 2
h ), and corr(a2

t , a
2
t−i) =

[exp(σ 2
hα

i
1) − 1]/[3 exp(σ 2

h ) − 1]. Limited experience shows that SV models often
provided improvements in model fitting, but their contributions to out-of-sample
volatility forecasts received mixed results.

3.13 LONG-MEMORY STOCHASTIC VOLATILITY MODEL

More recently, the SV model is further extended to allow for long memory in
volatility, using the idea of fractional difference. As stated in Chapter 2, a time
series is a long-memory process if its autocorrelation function decays at a hyper-
bolic, instead of an exponential, rate as the lag increases. The extension to long-
memory models in volatility study is motivated by the fact that the autocorrelation
function of the squared or absolute-valued series of an asset return often decays
slowly, even though the return series has no serial correlation; see Ding, Granger,
and Engle (1993). Figure 3.10 shows the sample ACF of the daily absolute returns
for IBM stock and the S&P 500 index from July 3, 1962, to December 31, 2003.
These sample ACFs are positive with moderate magnitude but decay slowly.

A simple long-memory stochastic volatility (LMSV) model can be written as

at = σtεt , σt = σ exp(ut/2), (1 − B)dut = ηt , (3.41)

where σ > 0, the εt are iid N(0, 1), the ηt are iid N(0, σ 2
η ) and independent of εt ,

and 0 < d < 0.5. The feature of long memory stems from the fractional difference
(1 − B)d , which implies that the ACF of ut decays slowly at a hyperbolic, instead
of an exponential, rate as the lag increases. For model (3.41), we have

ln(a2
t ) = ln(σ 2) + ut + ln(ε2

t )

= [ln(σ 2) + E(ln ε2
t )] + ut + [ln(ε2

t ) − E(ln ε2
t )]

≡ µ + ut + et .

Thus, the ln(a2
t ) series is a Gaussian long-memory signal plus a non-Gaussian white

noise; see Breidt, Crato, and de Lima (1998). Estimation of the LMSV model is
complicated, but the fractional difference parameter d can be estimated by using
either a quasi-maximum-likelihood method or a regression method. Using the log
series of squared daily returns for companies in the S&P 500 index, Bollerslev and
Jubinski (1999) and Ray and Tsay (2000) found that the median estimate of d is
about 0.38. For applications, Ray and Tsay (2000) studied common long-memory
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Figure 3.10 Sample ACF of daily absolute log returns for (a) S&P 500 index and (b) IBM stock for
period from July 3, 1962, to December 31, 2003. Two horizontal lines denote asymptotic 5% limits.

components in daily stock volatilities of groups of companies classified by various
characteristics. They found that companies in the same industrial or business sector
tend to have more common long-memory components (e.g., big U.S. national banks
and financial institutions).

3.14 APPLICATION

In this section, we apply the volatility models discussed in this chapter to investigate
some problems of practical importance. The data used are the monthly log returns
of IBM stock and the S&P 500 index from January 1926 to December 1999. There
are 888 observations, and the returns are in percentages and include dividends.
Figure 3.11 shows the time plots of the two return series. Note that the result of
this section was obtained by the RATS program.

Example 3.4. The questions we address here are whether the daily volatility
of a stock is lower in the summer and, if so, by how much. Affirmative answers
to these two questions have practical implications in stock option pricing. We use
the monthly log returns of IBM stock shown in Figure 3.11(a) as an illustrative
example.
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Figure 3.11 Time plots of monthly log returns for (a) IBM stock and (b) S&P 500 index. Sample
period is from January 1926 to December 1999. Returns are in percentages and include dividends.

Denote the monthly log return series by rt . If Gaussian GARCH models are
entertained, we obtain the GARCH(1,1) model:

rt = 1.23 + 0.099rt−1 + at , at = σtεt ,

σ 2
t = 3.206 + 0.103a2

t−1 + 0.825σ 2
t−1, (3.42)

for the series. The standard errors of the two parameters in the mean equation
are 0.222 and 0.037, respectively, whereas those of the parameters in the volatility
equation are 0.947, 0.021, and 0.037, respectively. Using the standardized residuals
ãt = at/σt , we obtain Q(10) = 7.82(0.553) and Q(20) = 21.22(0.325), where the
p value is in parentheses. Therefore, there are no serial correlations in the residuals
of the mean equation. The Ljung–Box statistics of the ã2

t series show Q(10) =
2.89(0.98) and Q(20) = 7.26(0.99), indicating that the standardized residuals have
no conditional heteroscedasticity. The fitted model seems adequate. This model
serves as a starting point for further study.

To study the summer effect on stock volatility of an asset, we define an indicator
variable

ut =
{

1 if t is June, July, or August,
0 otherwise,

(3.43)
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and modify the volatility equation to

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 + ut (α00 + α10a

2
t−1 + β10σ

2
t−1).

This equation uses two GARCH(1,1) models to describe the volatility of a stock
return; one model for the summer months and the other for the remaining months.
For the monthly log returns of IBM stock, estimation results show that the estimates
of α10 and β10 are statistically nonsignificant at the 10% level. Therefore, we refine
the equation and obtain the model

rt = 1.21 + 0.099rt−1 + at , at = σtεt ,

σ 2
t = 4.539 + 0.113a2

t−1 + 0.816σ 2
t−1 − 5.154ut . (3.44)

The standard errors of the parameters in the mean equation are 0.218 and 0.037,
respectively, and those of the parameters in the volatility equation are 1.071, 0.022,
0.037, and 1.900, respectively. The Ljung–Box statistics for the standardized resid-
uals ãt = at/σt show Q(10) = 7.66(0.569) and Q(20) = 21.64(0.302). Therefore,
there are no serial correlations in the standardized residuals. The Ljung–Box
statistics for ã2

t give Q(10) = 3.38(0.97) and Q(20) = 6.82(0.99), indicating
no conditional heteroscedasticity in the standardized residuals either. The refined
model seems adequate.

Comparing the volatility models in Eqs. (3.42) and (3.44), we obtain the follow-
ing conclusions. First, because the coefficient −5.514 is significantly different from
zero with a p value of 0.0067, the summer effect on stock volatility is statistically
significant at the 1% level. Furthermore, the negative sign of the estimate confirms
that the volatility of IBM monthly log stock returns is indeed lower during the
summer. Second, rewrite the volatility model in Eq. (3.44) as

σ 2
t =

{ −0.615 + 0.113a2
t−1 + 0.816σ 2

t−1 if t is June, July,or August,
4.539 + 0.113a2

t−1 + 0.816σ 2
t−1 otherwise.

The negative constant term −0.615 = 4.539 − 5.514 is counterintuitive. However,
since the standard errors of 4.539 and 5.514 are relatively large, the estimated
difference −0.615 might not be significantly different from zero. To verify the
assertion, we refit the model by imposing the constraint that the constant term of
the volatility equation is zero for the summer months. This can easily be done by
using the equation

σ 2
t = α1a

2
t−1 + β1σ

2
t−1 + γ (1 − ut ).

The fitted model is

rt = 1.21 + 0.099rt−1 + at , at = σtεt ,

σ 2
t = 0.114a2

t−1 + 0.811σ 2
t−1 + 4.552(1 − ut). (3.45)
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The standard errors of the parameters in the mean equation are 0.219 and 0.038,
respectively, and those of the parameters in the volatility equation are 0.022, 0.034,
and 1.094, respectively. The Ljung–Box statistics of the standardized residuals
show Q(10) = 7.68 and Q(20) = 21.67, and those of the ã2

t series give Q(10) =
3.17 and Q(20) = 6.85. These test statistics are close to what we had before and
are not significant at the 5% level.

The volatility Eq. (3.45) can readily be used to assess the summer effect on the
IBM stock volatility. For illustration, based on the model in Eq. (3.45) the medians
of a2

t and σ 2
t are 29.4 and 75.1, respectively, for the IBM monthly log returns

in 1999. Using these values, we have σ 2
t = 0.114 × 29.4 + 0.811 × 75.1 = 64.3

for the summer months and σ 2
t = 68.8 for the other months. The ratio of the two

volatilities is 64.3/68.8 ≈ 93%. Thus, there is a 7% reduction in the volatility of
the monthly log return of IBM stock in the summer months.

Example 3.5. The S&P 500 index is widely used in the derivative markets.
As such, modeling its volatility is a subject of intensive study. The question we
ask in this example is whether the past returns of individual components of the
index contribute to the modeling of the S&P 500 index volatility in the presence
of its own returns. A thorough investigation on this topic is beyond the scope of
this chapter, but we use the past returns of IBM stock as explanatory variables to
address the question.

The data used are shown in Figure 3.11. Denote by rt the monthly log return
series of the S&P 500 index. Using the rt series and Gaussian GARCH models,
we obtain the following special GARCH(2,1) model:

rt = 0.609 + at , at = σtεt , σ 2
t = 0.717 + 0.147a2

t−2 + 0.839σ 2
t−1. (3.46)

The standard error of the constant term in the mean equation is 0.138, and those of
the parameters in the volatility equation are 0.214, 0.021, and 0.017, respectively.
Based on the standardized residuals ãt = at/σt , we have Q(10) = 11.51(0.32) and
Q(20) = 23.71(0.26), where the number in parentheses denotes the p value. For
the ã2

t series, we have Q(10) = 9.42(0.49) and Q(20) = 13.01(0.88). Therefore,
the model seems adequate at the 5% significance level.

Next, we evaluate the contributions, if any, of using the past returns of IBM
stock, which is a component of the S&P 500 index, in modeling the index volatility.
As a simple illustration, we modify the volatility equation as

σ 2
t = α0 + α2a

2
t−2 + β1σ

2
t−1 + γ (xt−1 − 1.24)2,

where xt is the monthly log return of IBM stock and 1.24 is the sample mean of
xt . The fitted model for rt becomes

rt = 0.616 + at , at = σtεt ,

σ 2
t = 1.069 + 0.148a2

t−2 + 0.834σ 2
t−1 − 0.007(xt−1 − 1.24)2. (3.47)
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TABLE 3.4 Fitted Volatilities for Monthly Log Returns of S&P 500 Index from July
to December 1999 Using Models with and without Past Log Return of IBM Stock
Month 7/99 8/99 9/99 10/99 11/99 12/99
Model (3.46) 26.30 26.01 24.73 21.69 20.71 22.46
Model (3.47) 23.32 23.13 22.46 20.00 19.45 18.27

The standard error of the parameter in the mean equation is 0.139 and the standard
errors of the parameters in the volatility equation are 0.271, 0.020, 0.018, and
0.002, respectively. For model checking, we have Q(10) = 11.39(0.33) and Q(20)
= 23.63(0.26) for the standardized residuals ãt = at/σt and Q(10) = 9.35(0.50)
and Q(20) = 13.51(0.85) for the ã2

t series. Therefore, the model is adequate.
Since the p value for testing γ = 0 is 0.0039, the contribution of the lag-1

IBM stock return to the S&P 500 index volatility is statistically significant at the
1% level. The negative sign is understandable because it implies that using the
lag-1 past return of IBM stock reduces the volatility of the S&P 500 index return.
Table 3.4 gives the fitted volatility of the S&P 500 index from July to December
of 1999 using models (3.46) and (3.47). From the table, the past value of IBM log
stock return indeed contributes to the modeling of the S&P 500 index volatility.

3.15 ALTERNATIVE APPROACHES

In this section, we discuss two alternative methods to volatility modeling.

3.15.1 Use of High-Frequency Data

French, Schwert, and Stambaugh (1987) consider an alternative approach for
volatility estimation that uses high-frequency data to calculate volatility of
low-frequency returns. In recent years, this approach has attracted substantial
interest due to the availability of high-frequency financial data; see Andersen,
Bollerslev, Diebold, and Labys (2001a, 2001b).

Suppose that we are interested in the monthly volatility of an asset for which
daily returns are available. Let rmt be the monthly log return of the asset at month
t . Assume that there are n trading days in month t and the daily log returns of the
asset in the month are {rt,i}ni=1. Using properties of log returns, we have

rmt =
n∑

i=1

rt,i .

Assuming that the conditional variance and covariance exist, we have

Var(rmt |Ft−1) =
n∑

i=1

Var(rt,i |Ft−1) + 2
∑
i<j

Cov[(rt,i , rt,j )|Ft−1], (3.48)
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where Ft−1 denotes the information available at month t − 1 (inclusive). The prior
equation can be simplified if additional assumptions are made. For example, if we
assume that {rt,i} is a white noise series, then

Var(rmt |Ft−1) = nVar(rt,1),

where Var(rt,1) can be estimated from the daily returns {rt,i}ni=1 by

σ̂ 2 =
∑n

i=1(rt,i − r̄t )
2

n − 1
,

where r̄t is the sample mean of the daily log returns in month t [i.e.,
r̄t = (

∑n
i=1 rt,i)/n]. The estimated monthly volatility is then

σ̂ 2
m = n

n − 1

n∑
i=1

(rt,i − r̄t )
2. (3.49)

If {rt,i} follows an MA(1) model, then

Var(rmt |Ft−1) = nVar(rt,1) + 2(n − 1)Cov(rt,1, rt,2),

which can be estimated by

σ̂ 2
m = n

n − 1

n∑
i=1

(rt,i − r̄t )
2 + 2

n−1∑
i=1

(rt,i − r̄t )(rt,i+1 − r̄t ). (3.50)

The previous approach for volatility estimation is simple, but it encounters several
difficulties in practice. First, the model for daily returns {rt,i} is unknown. This
complicates the estimation of covariances in Eq. (3.48). Second, there are roughly
21 trading days in a month, resulting in a small sample size. The accuracy of
the estimates of variance and covariance in Eq. (3.48) might be questionable. The
accuracy depends on the dynamic structure of {rt,i} and their distribution. If the
daily log returns have high excess kurtosis and serial correlations, then the sample
estimates σ̂ 2

m in Eqs. (3.49) and (3.50) may not even be consistent; see Bai, Russell,
and Tiao (2004). Further research is needed to make this approach valuable.

Example 3.6. Consider the monthly volatility of the log returns of the S&P
500 index from January 1980 to December 1999. We calculate the volatility by
three methods. In the first method, we use daily log returns and Eq. (3.49) (i.e.,
assuming that the daily log returns form a white noise series). The second method
also uses daily returns but assumes an MA(1) model [i.e., using Eq. (3.50)]. The
third method applies a GARCH(1,1) model to the monthly returns from January
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Figure 3.12 Time plots of estimated monthly volatility for log returns of S&P 500 index from January
1980 to December 1999: (a) assumes that daily log returns form a white noise series, (b) assumes that
daily log returns follow an MA(1) model, and (c) uses monthly returns from January 1962 to December
1999 and a GARCH(1,1) model.

1962 to December 1999. We use a longer data span to obtain a more accurate
estimate of the monthly volatility. The GARCH(1,1) model used is

rmt = 0.658 + at , at = σtεt , σ 2
t = 3.349 + 0.086a2

t−1 + 0.735σ 2
t−1,

where εt is a standard Gaussian white noise series. Figure 3.12 shows the time plots
of the estimated monthly volatility. Clearly the estimated volatilities based on daily
returns are much higher than those based on monthly returns and a GARCH(1,1)
model. In particular, the estimated volatility for October 1987 was about 680 when
daily returns are used. The plots shown were truncated to have the same scale.

In Eq. (3.49), if we further assume that the sample mean r̄t is zero, then we have
σ̂ 2
m ≈ ∑n

i=1 r
2
t,i . In this case, the cumulative sum of squares of daily log returns

in a month is used as an estimate of monthly volatility. This concept has been
generalized to estimate daily volatility of an asset by using intradaily log returns.
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Let rt be the daily log return of an asset. Suppose that there are n equally spaced
intradaily log returns available such that rt = ∑n

i=1 rt,i . The quantity

RVt =
n∑

i=1

r2
t,i ,

is called the realized volatility of rt ; see Andersen et al. (2001a,b). Mathematically,
realized volatility is a quadratic variation of rt , and it assumes that {rt,i}ni=1 forms
an iid sequence with mean zero and finite variance. Limited experience indicates
that ln(RVt ) often follows approximately a Gaussian ARIMA(0,1,q) model, which
can be used to produce forecasts. See demonstration in Section 1.1 for further
information.

Advantages of realized volatility include simplicity and making use of intradaily
returns. Intuitively, one would like to use as much information as possible by
choosing a large n. However, when the time interval between rt,i is small, the
returns are subject to the effects of market microstructure, for example, bid–ask
bounce, which often results in a biased estimate of the volatility. The problem of
choosing an optimal time interval for constructing realized volatility has attracted
much research lately. For heavily traded assets in the United States, a time interval
of 4–15 minutes is often used. Another problem of using realized volatility for
stock returns is that the overnight return, which is the return from the closing price
of day t − 1 to the opening price of t , tends to be substantial. Ignoring overnight
returns can seriously underestimate the volatility. On the other hand, our limited
experience shows that overnight returns appear to be small for index returns or
foreign exchange returns.

In a series of recent articles, Barndorff-Nielsen and Shephard (2004) have used
high-frequency returns to study bi-power variations of an asset return and developed
some methods to detect jumps in volatility.

3.15.2 Use of Daily Open, High, Low, and Close Prices

For many assets, daily opening, high, low, and closing prices are available. Parkin-
son (1980), Garman and Klass (1980), Rogers and Satchell (1991), and Yang and
Zhang (2000) showed that one can use such information to improve volatility esti-
mation. Figure 3.13 shows a time plot of price versus time for the t th trading day,
assuming that time is continuous. For an asset, define the following variables:

• Ct = closing price of the t th trading day.
• Ot = opening price of the t th trading day.
• f = fraction of the day (in interval [0,1]) that trading is closed.
• Ht = highest price of the t th trading period.
• Lt = lowest price of the t th trading period.
• Ft−1 = public information available at time t − 1.
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Figure 3.13 Time plot of price over time: scale for price is arbitrary.

The conventional variance (or volatility) is σ 2
t = E[(Ct − Ct−1)

2|Ft−1]. Garman
and Klass (1980) considered several estimates of σ 2

t assuming that the price follows
a simple diffusion model without drift; see Chapter 6 for more information about
stochastic diffusion models. The estimators considered include:

• σ̂ 2
0,t = (Ct − Ct−1)

2.

• σ̂ 2
1,t = (Ot − Ct−1)

2

2f
+ (Ct − Ot)

2

2(1 − f )
, 0 < f < 1.

• σ̂ 2
2,t = (Ht − Lt)

2

4 ln(2)
≈ 0.3607(Ht − Lt)

2.

• σ̂ 2
3,t = 0.17

(Ot − Ct−1)
2

f
+ 0.83

(Ht − Lt)
2

(1 − f )4 ln(2)
, 0 < f < 1.

• σ̂ 2
5,t = 0.5(Ht − Lt)

2 − [2 ln(2) − 1](Ct − Ot)
2, which is ≈ 0.5(Ht − Lt)

2 −
0.386(Ct − Ot)

2.

• σ̂ 2
6,t = 0.12

(Ot − Ct−1)
2

f
+ 0.88

σ̂ 2
5,t

1 − f
, 0 < f < 1.

A more precise, but complicated, estimator σ̂ 2
4,t was also considered. However, it

is close to σ̂ 2
5,t . Defining the efficiency factor of a volatility estimator as

Eff(σ̂ 2
i,t ) = Var(σ̂ 2

0,t )

Var(σ̂ 2
i,t )

,
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Garman and Klass (1980) found that Eff(σ̂ 2
i,t ) is approximately 2, 5.2, 6.2, 7.4,

and 8.4 for i = 1, 2, 3, 5, and 6, respectively, for the simple diffusion model
entertained. Note that σ̂ 2

2,t was derived by Parkinson (1980) with f = 0.
Turn to log returns. Define the following:

• ot = ln(Ot) − ln(Ct−1), the normalized open.
• ut = ln(Ht ) − ln(Ot), the normalized high.
• dt = ln(Lt ) − ln(Ot), the normalized low.
• ct = ln(Ct ) − ln(Ot), the normalized close.

Suppose that there are n days of data available and the volatility is constant over
the period. Yang and Zhang (2000) recommend the estimate

σ̂ 2
yz = σ̂ 2

o + kσ̂ 2
c + (1 − k)σ̂ 2

rs

as a robust estimator of the volatility, where

σ̂ 2
o = 1

n − 1

n∑
t=1

(ot − ō)2 with ō = 1

n

n∑
t=1

ot ,

σ̂ 2
c = 1

n − 1

n∑
t=1

(ct − c̄)2 with c̄ = 1

n

n∑
t=1

ct ,

σ̂ 2
rs = 1

n

n∑
t=1

[ut(ut − ct ) + dt (dt − ct )],

k = 0.34

1.34 + (n + 1)/(n − 1)
.

The estimate σ̂ 2
rs was proposed by Rogers and Satchell (1991), and the quantity

k is chosen to minimize the variance of the estimator of σ̂ 2
yz, which is a linear

combination of three estimates.
The quantity Ht − Lt is called the range of the price in the t th day. This

estimator has led to the use of range-based volatility estimates; see, for instance,
Alizadeh, Brandt, and Diebold (2002). In practice, stock prices are only observed
at discrete time points. As such, the observed daily high is likely lower than Ht

and the observed daily low is likely higher than Lt . Consequently, the observed
daily price range tends to underestimate the actual range and, hence, may lead
to underestimation of volatility. This bias in volatility estimation depends on the
trading frequency and tick size of the stocks. For intensively traded stocks, the bias
should be negligible. For other stocks, further study is needed to better understand
the performance of range-based volatility estimation.



kurtosis of garch models 165

3.16 KURTOSIS OF GARCH MODELS

Uncertainty in volatility estimation is an important issue, but it is often over-
looked. To assess the variability of an estimated volatility, one must consider the
kurtosis of a volatility model. In this section, we derive the excess kurtosis of a
GARCH(1,1) model. The same idea applies to other GARCH models, however.
The model considered is

at = σtεt , σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1,

where α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1, and {εt } is an iid sequence satisfying

E(εt ) = 0, Var(εt ) = 1, E(ε4
t ) = Kε + 3,

where Kε is the excess kurtosis of the innovation εt . Based on the assumption, we
have the following:

• Var(at ) = E(σ 2
t ) = α0/[1 − (α1 + β1)].

• E(a4
t ) = (Kε + 3)E(σ 4

t ) provided that E(σ 4
t ) exists.

Taking the square of the volatility model, we have

σ 4
t = α2

0 + α2
1a

4
t−1 + β2

1σ
4
t−1 + 2α0α1a

2
t−1 + 2α0β1σ

2
t−1 + 2α1β1σ

2
t−1a

2
t−1.

Taking expectation of the equation and using the two properties mentioned earlier,
we obtain

E(σ 4
t ) = α2

0(1 + α1 + β1)

[1 − (α1 + β1)][1 − α2
1(Kε + 2) − (α1 + β1)2]

,

provided that 1>α1 + β1 ≥ 0 and 1 − α2
1(Kε + 2) − (α1 + β1)

2 > 0. The excess
kurtosis of at , if it exists, is then

Ka = E(a4
t )

[E(a2
t )]2

− 3

= (Kε + 3)[1 − (α1 + β1)
2]

1 − 2α2
1 − (α1 + β1)2 − Kεα

2
1

− 3.

This excess kurtosis can be written in an informative expression. First, consider
the case that εt is normally distributed. In this case, Kε = 0, and some algebra
shows that

K(g)
a = 6α2

1

1 − 2α2
1 − (α1 + β1)2

,



166 conditional heteroscedastic models

where the superscript (g) is used to denote Gaussian distribution. This result has
two important implications: (a) the kurtosis of at exists if 1 − 2α2

1 − (α1 + β1)
2 > 0,

and (b) if α1 = 0, then K
(g)
a = 0, meaning that the corresponding GARCH(1,1)

model does not have heavy tails.
Second, consider the case that εt is not Gaussian. Using the prior result, we

have

Ka = Kε − Kε(α1 + β1) + 6α2
1 + 3Kεα

2
1

1 − 2α2
1 − (α1 + β1)2 − Kεα

2
1

= Kε[1 − 2α2
1 − (α1 + β1)

2] + 6α2
1 + 5Kεα

2
1

1 − 2α2
1 − (α1 + β1)2 − Kεα

2
1

= Kε + K
(g)
a + 5

6KεK
(g)
a

1 − 1
6KεK

(g)
a

.

This result was obtained originally by George C. Tiao; see Bai, Russell, and Tiao
(2003). It holds for all GARCH models provided that the kurtosis exists. For
instance, if β1 = 0, then the model reduces to an ARCH(1) model. In this case, it
is easy to verify that K

(g)
a = 6α2

1/(1 − 3α2
1) provided that 1> 3α2

1 and the excess
kurtosis of at is

Ka = (Kε + 3)(1 − α2
1)

1 − (Kε + 3)α2
1

− 3 = Kε + 2Kεα
2
1 + 6α2

1

1 − 3α2
1 − Kεα

2
1

= Kε(1 − 3α2
1) + 6α2

1 + 5Kεα
2
1

1 − 3α2
1 − Kεα

2
1

= Kε + K
(g)
a + 5

6KεK
(g)
a

1 − 1
6KεK

(g)
a

.

The prior result shows that for a GARCH(1,1) model the coefficient α1 plays
a critical role in determining the tail behavior of at . If α1 = 0, then K

(g)
a = 0

and Ka = Kε . In this case, the tail behavior of at is similar to that of the stan-
dardized noise εt . Yet if α1 > 0, then K

(g)
a > 0 and the at process has heavy

tails.
For a (standardized) Student-t distribution with v degrees of freedom, we have

E(ε4
t ) = 6/(v − 4) + 3 if v > 4. Therefore, the excess kurtosis of εt is Kε =

6/(v − 4) for v > 4. This is part of the reason that we used t5 in the chapter when
the degrees of freedom of a t-distribution are prespecified. The excess kurtosis
of at becomes Ka = [6 + (v + 1)K(g)

a ]/[v − 4 − K
(g)
a ] provided that 1 − 2α2

1(v −
1)/(v − 4) − (α1 + β1)

2 > 0.
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APPENDIX: SOME RATS PROGRAMS FOR ESTIMATING VOLATILITY
MODELS

The data file used in the illustration is sp500.txt, which contains the monthly
excess returns of the S&P 500 index with 792 observations. Comments in a RATS
program start with *.

A Gaussian GARCH(1,1) Model with a Constant Mean Equation

all 0 792:1
open data sp500.txt
data(org=obs) / rt
*** initialize the conditional variance function
set h = 0.0
*** specify the parameters of the model
nonlin mu a0 a1 b1
*** specify the mean equation
frml at = rt(t)-mu
*** specify the volatility equation
frml gvar = a0+a1*at(t-1)**2+b1*h(t-1)
*** specify the log likelihood function
frml garchln = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
*** sample period used in estimation
smpl 2 792
*** initial estimates
compute a0 = 0.01, a1 = 0.1, b1 = 0.5, mu = 0.1
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
*** Checking standardized residuals
cor(qstats,number=20,span=10) resid
*** Checking squared standardized residuals
cor(qstats,number=20,span=10) residsq

A GARCH(1,1) Model with Student-t Innovation

all 0 792:1
open data sp500.txt
data(org=obs) / rt
set h = 0.0
nonlin mu a0 a1 b1 v
frml at = rt(t)-mu
frml gvar = a0+a1*at(t-1)**2+b1*h(t-1)
frml tt = at(t)**2/(h(t)=gvar(t))
frml tln = %LNGAMMA((v+1)/2.)-%LNGAMMA(v/2.)-0.5*log(v-2.)
frml gln = tln-((v+1)/2.)*log(1.0+tt(t)/(v-2.0))-0.5*log(h(t))
smpl 2 792
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compute a0 = 0.01, a1 = 0.1, b1 = 0.5, mu = 0.1, v = 10
maximize(method=bhhh,recursive,iterations=150) gln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

An AR(1)−EGARCH(1,1) Model for Monthly Log Returns of IBM Stock

all 0 864:1
open data m-ibm.txt
data(org=obs) / rt
set h = 0.0
nonlin c0 p1 th ga a0 a1
frml at = rt(t)-c0-p1*rt(t-1)
frml epsi = at(t)/(sqrt(exp(h(t))))
frml g = th*epsi(t)+ga*(abs(epsi(t))-sqrt(2./% PI))
frml gvar = a1*h(t-1)+(1-a1)*a0+g(t-1)
frml garchln = -0.5*(h(t)=gvar(t))-0.5*epsi(t)**2
smpl 3 864
compute c0 = 0.01, p1 = 0.01, th = 0.1, ga = 0.1
compute a0 = 0.01, a1 = 0.5
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = epsi(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

EXERCISES

3.1. Derive multistep-ahead forecasts for a GARCH(1,2) model at the forecast
origin h.

3.2. Derive multistep-ahead forecasts for a GARCH(2,1) model at the forecast
origin h.

3.3. Suppose that r1, . . . , rn are observations of a return series that follows the
AR(1)-GARCH(1,1) model

rt = µ + φ1rt−1 + at , at = σtεt , σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1,

where εt is a standard Gaussian white noise series. Derive the conditional
log-likelihood function of the data.

3.4. In the equation in Exercise 3.3, assume that εt follows a standardized Student-
t distribution with v degrees of freedom. Derive the conditional log-likelihood
function of the data.
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3.5. Consider the monthly simple returns of Intel stock from January 1973 to
December 2008 in m-intc7308.txt. Transform the returns into log returns.
Build a GARCH model for the transformed series and compute 1-step- to
5-step-ahead volatility forecasts at the forecast origin December 2008.

3.6. The file m-mrk4608.txt contains monthly simple returns of Merck stock
from June 1946 to December 2008. The file has two columns denoting date
and simple return. Transform the simple returns to log returns.

(a) Is there any evidence of serial correlations in the log returns? Use auto-
correlations and 5% significance level to answer the question. If yes,
remove the serial correlations.

(b) Is there any evidence of ARCH effects in the log returns? Use the resid-
ual series if there are serial correlations in part (a). Use Ljung–Box
statistics for the squared returns (or residuals) with 6 and 12 lags of
autocorrelations and 5% significance level to answer the question.

(c) Identify an ARCH model for the data and fit the identified model. Write
down the fitted model.

3.7. The file m-3m4608.txt contains two columns. They are date and the
monthly simple return for 3M stock. Transform the returns to log returns.

(a) Is there any evidence of ARCH effects in the log returns? Use Ljung–Box
statistics with 6 and 12 lags of autocorrelations and 5% significance level
to answer the question.

(b) Use the PACF of the squared returns to identify an ARCH model. What
is the fitted model?

(c) There are 755 data points. Refit the model using the first 750 observations
and use the fitted model to predict the volatilities for t from 751 to 755
(the forecast origin is 750).

(d) Build an ARCH-M model for the log return series of 3M stock. Test the
hypothesis that the risk premium is zero at the 5% significance level.
Draw your conclusion.

(e) Build an EGARCH model for the log return series of 3M stock using
the first 750 observations. Use the fitted model to compute 1-step- to
5-step-ahead volatility forecasts at the forecast origin h = 750.

3.8. The file m-gmsp5008.txt contains the dates and monthly simple returns of
General Motors stock and the S&P 500 index from 1950 to 2008.

(a) Build a GARCH model with Gaussian innovations for the log returns of
GM stock. Check the model and write down the fitted model.

(b) Build a GARCH-M model with Gaussian innovations for the log returns
of GM stock. What is the fitted model?

(c) Build a GARCH model with Student-t distribution for the log returns
of GM stock, including estimation of the degrees of freedom. Write
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down the fitted model. Let v be the degrees of freedom of the Student-t
distribution. Test the hypothesis H0 : v = 6 versus Ha : v �= 6, using the
5% significance level.

(d) Build an EGARCH model for the log returns of GM stock. What is the
fitted model?

(e) Obtain 1-step- to 6-step-ahead volatility forecasts for all the models
obtained. Compare the forecasts.

3.9. Consider the monthly log returns of GM stock in m-gmsp5008.txt. Build
an adequate TGARCH model for the series. Write down the fitted model and
test for the significance of the leverage effect. Obtain 1-step- to 6-steps-ahead
volatility forecasts.

3.10. Again, consider the returns in m-gmsp5008.txt.

(a) Build a Gaussian GARCH model for the monthly log returns of the S&P
500 index. Check the model carefully.

(b) Is there a summer effect on the volatility of the index return? Use the
GARCH model built in part (a) to answer this question.

(c) Are lagged returns of GM stock useful in modeling the index volatil-
ity? Again, use the GARCH model of part (a) as a baseline model for
comparison.

3.11. The file d-gmsp9908.txt contains the daily simple returns of GM stock and
the S&P composite index from 1999 to 2008. It has three columns denoting
date, GM return, and S&P return.

(a) Compute the daily log returns of GM stock. Is there any evidence of
ARCH effects in the log returns? You may use 10 lags of the squared
returns and 5% significance level to perform the test.

(b) Compute the PACF of the squared log returns (10 lags).

(c) Specify a GARCH model for the GM log return using a normal distri-
bution for the innovations. Perform model checking and write down the
fitted model.

(d) Find an adequate GARCH model for the series but using the generalized
error distribution for the innovations. Write down the fitted model.

3.12. Consider the daily simple returns of the S&P composite index in the file
d-gmsp9908.txt.

(a) Is there any ARCH effect in the simple return series? Use 10 lags of the
squared returns and 5% significance level to perform the test.

(b) Build an adequate GARCH model for the simple return series.

(c) Compute 1-step- to 4-step-ahead forecasts of the simple return and its
volatility based on the fitted model.

3.13. Again, consider the daily simple returns of GM stock in the file
d-gmsp9908.txt.
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(a) Find an adequate GARCH-M model for the series. Write down the fitted
model.

(b) Find an adequate EGARCH model for the series. Is the “leverage” effect
significant at the 5% level?

3.14. Revisit the file d-gmsp9908.txt. However, we shall investigate the value
of using market volatility in modeling volatility of individual stocks. Convert
the two simple return series into percentage log return series.

(a) Build an AR(5)–GARCH(1,1) model with generalized error distribution
for the log S&P returns. The AR(5) contains only lags 3 and 5. Denote
the fitted volatility series by spvol.

(b) Estimate a GARCH(1,1) model with spvol as an exogenous variable to
the log GM return series. Check the adequacy of the model, and write
down the fitted model. In S-Plus, the command is

fit = garch(gm ∼ 1,∼garch(1,1)+spvol, cond.dist=’ged’)

(c) Discuss the implication of the fitted model.

3.15. Again, consider the percentage daily log returns of GM stock and the S&P
500 index from 1999 to 2008 as before, but we shall investigate whether
the volatility of GM stock has any contribution in modeling the S&P index
volatility. Follow the steps below to perform the analysis.

(a) Fit a GARCH(1,1) model with generalized error distribution to the per-
centage log returns of GM stock. Denote the fitted volatility by gmvol.
Build an adequate GARCH model plus gmvol as the exogenous variable
for the log S&P return series. Write down the fitted model.

(b) Is the volatility of GM stock returns helpful in modeling the volatility
of the S&P index returns? Why?
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C H A P T E R 4

Nonlinear Models
and Their Applications

This chapter focuses on nonlinearity in financial data and nonlinear econometric
models useful in analysis of financial time series. Consider a univariate time series
xt , which, for simplicity, is observed at equally spaced time points. We denote
the observations by {xt |t = 1, . . . , T }, where T is the sample size. As stated in
Chapter 2, a purely stochastic time series xt is said to be linear if it can be written as

xt = µ +
∞∑
i=0

ψiat−i , (4.1)

where µ is a constant, ψi are real numbers with ψ0 = 1, and {at } is a sequence of
independent and identically distributed (iid) random variables with a well-defined
distribution function. We assume that the distribution of at is continuous and
E(at ) = 0. In many cases, we further assume that Var(at ) = σ 2

a or, even stronger,
that at is Gaussian. If σ 2

a

∑∞
i=1 ψ

2
i < ∞, then xt is weakly stationary (i.e., the first

two moments of xt are time invariant). The ARMA process of Chapter 2 is linear
because it has an MA representation in Eq. (4.1). Any stochastic process that does
not satisfy the condition of Eq. (4.1) is said to be nonlinear. The prior definition
of nonlinearity is for purely stochastic time series. One may extend the definition
by allowing the mean of xt to be a linear function of some exogenous variables,
including the time index and some periodic functions. But such a mean function
can be handled easily by the methods discussed in Chapter 2, and we do not discuss
it here. Mathematically, a purely stochastic time series model for xt is a function
of an iid sequence consisting of the current and past shocks—that is,

xt = f (at , at−1, . . .). (4.2)
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The linear model in Eq. (4.1) says that f (·) is a linear function of its arguments.
Any nonlinearity in f (·) results in a nonlinear model. The general nonlinear model
in Eq. (4.2) is not directly applicable because it contains too many parameters.

To put nonlinear models available in the literature in a proper perspective, we
write the model of xt in terms of its conditional moments. Let Ft−1 be the σ

field generated by available information at time t − 1 (inclusive). Typically, Ft−1

denotes the collection of linear combinations of elements in {xt−1, xt−2, . . .} and
{at−1, at−2, . . .}. The conditional mean and variance of xt given Ft−1 are

µt = E(xt |Ft−1) ≡ g(Ft−1), σ 2
t = Var(xt |Ft−1) ≡ h(Ft−1), (4.3)

where g(·) and h(·) are well-defined functions with h(·)> 0. Thus, we restrict the
model to

xt = g(Ft−1) +
√
h(Ft−1)εt ,

where εt = at/σt is a standardized shock (or innovation). For the linear series xt
in Eq. (4.3), g(·) is a linear function of elements of Ft−1 and h(·) = σ 2

a . The
development of nonlinear models involves making extensions of the two equations
in Eq. (4.3). If g(·) is nonlinear, xt is said to be nonlinear in mean . If h(·) is time
variant, then xt is nonlinear in variance. The conditional heteroscedastic models of
Chapter 3 are nonlinear in variance because their conditional variances σ 2

t evolve
over time. In fact, except for the GARCH-M models, in which µt depends on σ 2

t

and hence also evolves over time, all of the volatility models of Chapter 3 focus
on modifications or extensions of the conditional variance equation in Eq. (4.3).
Based on the well-known Wold decomposition, a weakly stationary and purely
stochastic time series can be expressed as a linear function of uncorrelated shocks.
For stationary volatility series, these shocks are uncorrelated but dependent. The
models discussed in this chapter represent another extension to nonlinearity derived
from modifying the conditional mean equation in Eq. (4.3).

Many nonlinear time series models have been proposed in the statistical liter-
ature, such as the bilinear models of Granger and Andersen (1978), the threshold
autoregressive (TAR) model of Tong (1978), the state-dependent model of Priest-
ley (1980), and the Markov switching model of Hamilton (1989). The basic idea
underlying these nonlinear models is to let the conditional mean µt evolve over
time according to some simple parametric nonlinear function. Recently, a number
of nonlinear models have been proposed by making use of advances in comput-
ing facilities and computational methods. Examples of such extensions include the
nonlinear state-space modeling of Carlin, Polson, and Stoffer (1992), the functional
coefficient autoregressive model of Chen and Tsay (1993a), the nonlinear additive
autoregressive model of Chen and Tsay (1993b), and the multivariate adaptive
regression spline of Lewis and Stevens (1991). The basic idea of these extensions
is either using simulation methods to describe the evolution of the conditional dis-
tribution of xt or using data-driven methods to explore the nonlinear characteristics
of a series. Finally, nonparametric and semiparametric methods such as kernel
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regression and artificial neural networks have also been applied to explore the non-
linearity in a time series. We discuss some nonlinear models in Section 4.1 that
are applicable to financial time series. The discussion includes some nonparametric
and semiparametric methods.

Apart from the development of various nonlinear models, there is substantial
interest in studying test statistics that can discriminate linear series from nonlinear
ones. Both parametric and nonparametric tests are available. Most parametric tests
employ either the Lagrange multiplier or likelihood ratio statistics. Nonparametric
tests depend on either higher order spectra of xt or the concept of dimension
correlation developed for chaotic time series. We review some nonlinearity tests
in Section 4.2. Sections 4.3 and 4.4 discuss modeling and forecasting of nonlinear
models. Finally, an application of nonlinear models is given in Section 4.5.

4.1 NONLINEAR MODELS

Most nonlinear models developed in the statistical literature focus on the conditional
mean equation in Eq. (4.3); see Priestley (1988) and Tong (1990) for summaries
of nonlinear models. Our goal here is to introduce some nonlinear models that are
applicable to financial time series.

4.1.1 Bilinear Model

The linear model in Eq. (4.1) is simply the first-order Taylor series expansion of
the f (·) function in Eq. (4.2). As such, a natural extension to nonlinearity is to
employ the second-order terms in the expansion to improve the approximation.
This is the basic idea of bilinear models, which can be defined as

xt = c +
p∑

i=1

φixt−i −
q∑

j=1

θjat−j +
m∑
i=1

s∑
j=1

βij xt−iat−j + at , (4.4)

where p, q,m, and s are nonnegative integers. This model was introduced by
Granger and Andersen (1978) and has been widely investigated. Subba Rao and
Gabr (1984) discuss some properties and applications of the model, and Liu and
Brockwell (1988) study general bilinear models. Properties of bilinear models such
as stationarity conditions are often derived by (a) putting the model in a state-
space form (see Chapter 11) and (b) using the state transition equation to express
the state as a product of past innovations and random coefficient vectors. A special
generalization of the bilinear model in Eq. (4.4) has conditional heteroscedasticity.
For example, consider the model

xt = µ +
s∑

i=1

βiat−iat + at , (4.5)
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where {at } is a white noise series. The first two conditional moments of xt are

E(xt |Ft−1) = µ, Var(xt |Ft−1) =
(

1 +
s∑

i=1

βiat−i

)2

σ 2
a ,

which are similar to that of the RCA or CHARMA model of Chapter 3.

Example 4.1. Consider the monthly simple returns of the CRSP equal-
weighted index from January 1926 to December 2008 for 996 observations.
Denote the series by Rt . The sample PACF of Rt shows significant partial
autocorrelations at lags 1 and 3 so that an AR(3) model is used. The squared
series of the AR(3) residuals suggests that the conditional heteroscedasticity might
depend on lags 1, 3, and 8 of the residuals. Therefore, we employ the special
bilinear model

Rt = µ + φ1Rt−1 + φ3Rt−3 + (1 + β1at−1 + β3at−3)at

for the series, where at = β0εt with εt being an iid series with mean zero and
variance 1. Note that lag 8 is omitted for simplicity. Assuming that the conditional
distribution of at is normal, we use the conditional maximum-likelihood method
and obtain the fitted model

Rt = 0.0114 + 0.167Rt−1 − 0.095Rt−3

+ 0.071(1 + 0.377at−1 − 0.646at−3)εt , (4.6)

where the standard errors of the parameters are, in the order of appearance, 0.0023,
0.032, 0.027, 0.002, 0.147, and 0.136, respectively. All estimates are significantly
different from zero at the 5% level. Define

ε̂t = Rt − 0.0114 − 0.167Rt−1 + 0.095Rt−3

0.071(1 + 0.377ât−1 − 0.646ât−3)
,

where ε̂t = 0 for t ≤ 3, as the standardized residual series of the model. The sample
ACF of ε̂t shows no significant serial correlations, but the series is not independent
because the squared series ε̂2

t has significant serial correlations. The validity of
model (4.6) deserves further investigation. For comparison, we also consider an
AR(3)–ARCH(3) model for the series and obtain

Rt = 0.013 + 0.223Rt−1 + 0.006Rt−2 − 0.013Rt−3 + at ,

σ 2
t = 0.002 + 0.185a2

t−1 + 0.301a2
t−2 + 0.197a2

t−3,
(4.7)

where all estimates but the coefficients of Rt−2 and Rt−3 are highly significant.
The standardized residual series of the model shows no serial correlations, but the
squared residuals show Q(10) = 19.78 with a p value of 0.031. Models (4.6) and
(4.7) appear to be similar, but the latter seems to fit the data better. Further study
shows that an AR(1)–GARCH(1,1) model fits the data well.
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4.1.2 Threshold Autoregressive (TAR) Model

This model is motivated by several nonlinear characteristics commonly observed
in practice such as asymmetry in declining and rising patterns of a process. It uses
piecewise linear models to obtain a better approximation of the conditional mean
equation. However, in contrast to the traditional piecewise linear model that allows
for model changes to occur in the “time” space, the TAR model uses threshold
space to improve linear approximation. Let us start with a simple 2-regime AR(1)
model:

xt =
{

−1.5xt−1 + at if xt−1 < 0,

0.5xt−1 + at if xt−1 ≥ 0,
(4.8)

where the at are iid N(0, 1). Here the threshold variable is xt−1 so that the delay
is 1, and the threshold is 0. Figure 4.1 shows the time plot of a simulated series
of xt with 200 observations. A horizontal line of zero is added to the plot, which
illustrates several characteristics of TAR models. First, despite the coefficient −1.5
in the first regime, the process xt is geometrically ergodic and stationary. In fact,
the necessary and sufficient condition for model (4.8) to be geometrically ergodic
is φ

(1)
1 < 1, φ(2)

1 < 1, and φ
(1)
1 φ

(2)
1 < 1, where φ

(i)
1 is the AR coefficient of regime

i; see Petruccelli and Woolford (1984) and Chen and Tsay (1991). Ergodicity is
an important concept in time series analysis. For example, the statistical theory
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Figure 4.1 Time plot of simulated 2-regime TAR(1) series.



180 nonlinear models and their applications

showing that the sample mean x̄ = (
∑T

t=1 xt )/T of xt converges to the mean of xt
is referred to as the ergodic theorem , which can be regarded as the counterpart of
the central limit theory for the iid case. Second, the series exhibits an asymmetric
increasing and decreasing pattern. If xt−1 is negative, then xt tends to switch to a
positive value due to the negative and explosive coefficient −1.5. Yet when xt−1 is
positive, it tends to take multiple time indexes for xt to reduce to a negative value.
Consequently, the time plot of xt shows that regime 2 has more observations than
regime 1, and the series contains large upward jumps when it becomes negative.
The series is therefore not time reversible. Third, the model contains no constant
terms, but E(xt ) is not zero. The sample mean of the particular realization is
0.61 with a standard deviation of 0.07. In general, E(xt ) is a weighted average
of the conditional means of the two regimes, which are nonzero. The weight for
each regime is simply the probability that xt is in that regime under its stationary
distribution. It is also clear from the discussion that, for a TAR model to have
zero mean, nonzero constant terms in some of the regimes are needed. This is very
different from a stationary linear model for which a nonzero constant implies that
the mean of xt is not zero.

A time series xt is said to follow a k-regime self-exciting TAR (SETAR) model
with threshold variable xt−d if it satisfies

xt = φ
(j)

0 + φ
(j)

1 xt−1 − · · · − φ(j)
p xt−p + a

(j)
t , if γj−1 ≤ xt−d < γj , (4.9)

where k and d are positive integers, j = 1, . . . , k, γi are real numbers such that
−∞ = γ0 < γ1 < · · · < γk−1 < γk = ∞, the superscript (j) is used to signify the
regime, and {a(j)

t } are iid sequences with mean 0 and variance σ 2
j and are mutually

independent for different j . The parameter d is referred to as the delay parameter
and γj are the thresholds . Here it is understood that the AR models are different
for different regimes; otherwise, the number of regimes can be reduced. Equation
(4.9) says that a SETAR model is a piecewise linear AR model in the threshold
space. It is similar in spirit to the usual piecewise linear models in regression
analysis, where model changes occur in the order in which observations are taken.
The SETAR model is nonlinear provided that k > 1.

Properties of general SETAR models are hard to obtain, but some of them
can be found in Tong (1990), Chan (1993), Chan and Tsay (1998), and the refer-
ences therein. In recent years, there is increasing interest in TAR models and their
applications; see, for instance, Hansen (1997), Tsay (1998), and Montgomery et
al. (1998). Tsay (1989) proposed a testing and modeling procedure for univariate
SETAR models. The model in Eq. (4.9) can be generalized by using a threshold
variable zt that is measurable with respect to Ft−1 (i.e., a function of elements of
Ft−1). The main requirements are that zt is stationary with a continuous distribution
function over a compact subset of the real line and that zt−d is known at time t .
Such a generalized model is referred to as an open-loop TAR model .

Example 4.2. To demonstrate the application of TAR models, consider the
U.S. monthly civilian unemployment rate, seasonally adjusted and measured in
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Figure 4.2 Time plot of monthly U.S. civilian unemployment rate, seasonally adjusted, from January
1948 to March 2009.

percentage, from January 1948 to March 2009 for 735 observations. The data
are obtained from the Bureau of Labor Statistics, Department of Labor, and are
shown in Figure 4.2. The plot shows two main characteristics of the data. First,
there appears to be a slow but upward trend in the overall unemployment rate.
Second, the unemployment rate tends to increase rapidly and decrease slowly.
Thus, the series is not time reversible and may not be unit-root stationary,
either.

Because the sample autocorrelation function decays slowly, we employ the first
differenced series yt = (1 − B)ut in the analysis, where ut is the monthly unem-
ployment rate. Using univariate ARIMA models, we obtain the model

(1 − 1.13B + 0.27B2)(1 − 0.51B12)yt = (1 − 1.12B + 0.44B2)(1 − 0.82B12)at ,

(4.10)
where σ̂a = 0.187 and all estimates but the AR(2) coefficient are statistically sig-
nificant at the 5% level. The t ratio of the estimate of AR(2) coefficient is −1.66.
The residuals of model (4.10) give Q(12) = 12.3 and Q(24) = 25.5, respectively.
The corresponding p values are 0.056 and 0.11, respectively, based on χ2 dis-
tributions with 6 and 18 degrees of freedom. Thus, the fitted model adequately
describes the serial dependence of the data. Note that the seasonal AR and MA
coefficients are highly significant with standard error 0.049 and 0.035, respec-
tively, even though the data were seasonally adjusted. The adequacy of seasonal
adjustment deserves further study. Using model (4.10), we obtain the 1-step-ahead
forecast of 8.8 for the April 2009 unemployment rate, which is close to the actual
data of 8.9.
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To model nonlinearity in the data, we employ TAR models and obtain the
model

yt =
{

0.083yt−2 + 0.158yt−3 + 0.118yt−4 − 0.180yt−12 + a1t if yt−1 ≤ 0.1,

0.421yt−2 + 0.239yt−3 − 0.127yt−12 + a2t if yt−1 > 0.1,

(4.11)
where the standard errors of ait are 0.180 and 0.217, respectively, the standard
errors of the AR parameters in regime 1 are 0.046, 0.043, 0.042, and 0.037, whereas
those of the AR parameters in regime 2 are 0.054, 0.057, and 0.075, respectively.
The number of data points in regimes 1 and 2 are 460 and 262, respectively. The
standardized residuals of model (4.11) only shows some minor serial correlation at
lag 12. Based on the fitted TAR model, the dynamic dependence in the data appears
to be stronger when the change in monthly unemployment rate is greater than
0.1%. This is understandable because a substantial increase in the unemployment
rate is indicative of weakening in the U.S. economy, and policy makers might be
more inclined to take action to help the economy, which in turn may affect the
dynamics of the unemployment rate series. Consequently, model (4.11) is capable
of describing the time-varying dynamics of the U.S. unemployment rate.

The MA representation of model (4.10) is

ψ(B) ≈ 1 + 0.01B + 0.18B2 + 0.20B3 + 0.18B4 + 0.15B5 + · · · .

It is then not surprising to see that no yt−1 term appears in model (4.11).
As mentioned in Chapter 3, threshold models can be used in finance to handle

the asymmetric responses in volatility between positive and negative returns. The
models can also be used to study arbitrage tradings in index futures and cash prices;
see Chapter 8 on multivariate time series analysis. Here we focus on volatility
modeling and introduce an alternative approach to parameterization of TGARCH
models. In some applications, this new general TGARCH model fares better than
the GJR model of Chapter 3.

Example 4.3. Consider the daily log returns, in percentage and including
dividends, of IBM stock from July 3, 1962, to December 31, 2003, for 10,446
observations. Figure 4.3 shows the time plot of the series, which is one of the
longer return series analyzed in the book. The volatility seems to be larger in the
latter years of the data. Because general TGARCH models are used in the analysis,
we use the SCA package to perform estimation in this example.

If GARCH models of Chapter 3 are entertained, we obtain the following
AR(2)–GARCH(1,1) model for the series:

rt = 0.062 − 0.024rt−2 + at , at = σtεt ,

σ 2
t = 0.037 + 0.077a2

t−1 + 0.913σ 2
t−1, (4.12)

where rt is the log return, {εt } is a Gaussian white noise sequence with mean
zero and variance 1.0, the standard errors of the parameters in the mean equation
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Figure 4.3 Time plot of daily log returns for IBM stock from July 3, 1962, to December 31, 2003.

are 0.015 and 0.010, and those of the volatility equation are 0.004, 0.003, and
0.003, respectively. All estimates are statistically significant at the 5% level.
The Ljung–Box statistics of the standardized residuals give Q(10) = 5.19(0.82)
and Q(20) = 24.38(0.18), where the number in parentheses denotes the p value
obtained using χ2

m−1 distribution because of the estimated AR(2) coefficient.
For the squared standardized residuals, we obtain Q(10) = 11.67(0.31) and
Q(20) = 18.25(0.57). The model is adequate in modeling the serial dependence
and conditional heteroscedasticity of the data. But the unconditional mean for
rt of model (4.12) is 0.060, which is substantially larger than the sample mean
0.039, indicating that the model might be misspecified.

Next, we employ the TGARCH model of Chapter 3 and obtain

rt = 0.014 − 0.028rt−2 + at , at = σtεt ,

σ 2
t = 0.075 + 0.081Pt−1a

2
t−1 + 0.157Nt−1a

2
t−1 + 0.863σ 2

t−1, (4.13)

where Pt−1 = 1 − Nt−1, Nt−1 is the indicator for negative at−1 such that Nt−1 = 1
if at−1 < 0 and = 0 otherwise, the standard errors of the parameters in the mean
equation are 0.013 and 0.009, and those of the volatility equation are 0.007,
0.008, 0.010, and 0.010, respectively. All estimates except the constant term of
the mean equation are significant. Let ãt be the standardized residuals of model
(4.13). We have Q(10) = 2.47(0.98) and Q(20) = 25.90(0.13) for the {ãt } series
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and Q(10) = 97.07(0.00) and Q(20) = 170.3(0.00) for {ã2
t }. The model fails to

describe the conditional heteroscedasticity of the data.
The idea of TAR models can be used to refine the prior TGARCH model by

allowing for increased flexibility in modeling the asymmetric response in volatility.
More specifically, we consider an AR(2)−TAR−GARCH(1,1) model for the series
and obtain

rt = 0.033 − 0.023rt−2 + at , at = σtεt ,

σ 2
t = 0.075 + 0.041a2

t−1 + 0.903σ 2
t−1

+ (0.030a2
t−1 + 0.062σ 2

t−1)Nt−1, (4.14)

where Nt−1 is defined in Eq. (4.13). All estimates in model (4.14) are significantly
different from zero at the usual 1% level. Let ât be the standardized residuals of
model (4.14). We obtain Q(10) = 6.09(0.73) and Q(20) = 25.29(0.15) for {ât }
and Q(10) = 13.54(0.20) and Q(20) = 19.56(0.49) for {â2

t }. Thus, model (4.14)
is adequate in modeling the serial correlation and conditional heteroscedasticity
of the daily log returns of IBM stock considered. The unconditional mean return
of model (4.14) is 0.033, which is much closer to the sample mean 0.039 than
those implied by models (4.12) and (4.13). Comparing the two fitted TGARCH
models, we see that the asymmetric behavior in daily IBM stock volatility is much
stronger than what is allowed in a GJR model. Specifically, the coefficient of σ 2

t−1
also depends on the sign of at−1. Note that model (4.14) can be further refined by
imposing the constraint that the sum of the coefficients of a2

t−1 and σ 2
t−1 is one

when at−1 < 0.

Remark. A RATS program to estimate the AR(2)−TAR−GARCH(1,1) model
used is given in Appendix A. The results might be slightly different from those of
SCA given in the text. �

4.1.3 Smooth Transition AR (STAR) Model

A criticism of the SETAR model is that its conditional mean equation is not con-
tinuous. The thresholds {γj } are the discontinuity points of the conditional mean
function µt . In response to this criticism, smooth TAR models have been proposed;
see Chan and Tong (1986) and Teräsvirta (1994) and the references therein. A time
series xt follows a 2-regime STAR(p) model if it satisfies

xt = c0 +
p∑

i=1

φ0,ixt−i + F

(
xt−d − 

s

)(
c1 +

p∑
i=1

φ1,ixt−i

)
+ at , (4.15)

where d is the delay parameter,  and s are parameters representing the location and
scale of model transition, and F(·) is a smooth transition function. In practice, F(·)
often assumes one of three forms—namely, logistic, exponential, or a cumulative
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distribution function. From Eq. (4.15) and with 0 ≤ F(·) ≤ 1, the conditional mean
of a STAR model is a weighted linear combination between the following two
equations:

µ1t = c0 +
p∑

i=1

φ0,ixt−i ,

µ2t = (c0 + c1) +
p∑

i=1

(φ0,i + φ1,i)xt−i .

The weights are determined in a continuous manner by F [(xt−d − )/s]. The
prior two equations also determine properties of a STAR model. For instance, a
prerequisite for the stationarity of a STAR model is that all zeros of both AR
polynomials are outside the unit circle. An advantage of the STAR model over
the TAR model is that the conditional mean function is differentiable. However,
experience shows that the transition parameters  and s of a STAR model are hard
to estimate. In particular, most empirical studies show that standard errors of the
estimates of  and s are often quite large, resulting in t ratios of about 1.0; see
Teräsvirta (1994). This uncertainty leads to various complications in interpreting
an estimated STAR model.

Example 4.4. To illustrate the application of STAR models in financial time
series analysis, we consider the monthly simple stock returns for Minnesota Mining
and Manufacturing (3M) Company from February 1946 to December 2008. If
ARCH models are entertained, we obtain the following ARCH(2) model:

Rt = 0.013 + at , at = σtεt , σ 2
t = 0.003 + 0.088a2

t−1 + 0.109a2
t−2,

(4.16)
where standard errors of the estimates are 0.002, 0.0003, 0.047, and 0.050, respec-
tively. As discussed before, such an ARCH model fails to show the asymmetric
responses of stock volatility to positive and negative prior shocks. The STAR model
provides a simple alternative that may overcome this difficulty. Applying STAR
models to the monthly returns of 3M stock, we obtain the model

Rt = 0.015 + at , at = σtεt ,

σ 2
t = (0.003 + 0.205a2

t−1 + 0.092a2
t−2) + 0.001 − 0.239a2

t−1

1 + exp(−1000at−1)
, (4.17)

where the standard error of the constant term in the mean equation is 0.002 and the
standard errors of the estimates in the volatility equation are 0.0002, 0.074, 0.043,
0.0004, and 0.080, respectively. The scale parameter 1000 of the logistic transition
function is fixed a priori to simplify the estimation. This STAR model provides
some support for asymmetric responses to positive and negative prior shocks. For
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a large negative at−1, the volatility model approaches the ARCH(2) model

σ 2
t = 0.003 + 0.205a2

t−1 + 0.092a2
t−2.

Yet for a large positive at−1, the volatility process behaves like the ARCH(2) model

σ 2
t = 0.004 − 0.034a2

t−1 + 0.092a2
t−2.

The negative coefficient of a2
t−1 in the prior model is counterintuitive, but the

magnitude is small. As a matter of fact, for a large positive shock at−1, the ARCH
effects appear to be weak even though the parameter estimates remain statistically
significant. The results shown are obtained using the command optim in R. A
RATS program for estimating the STAR model is given in Appendix A.

R Program for Estimating the STAR Model Used

> da=read.table("m-3m4608.txt",header=T)
> rtn=da[,2]
> source("star.R")
> par=c(.001,.002,.256,.141,.002,-.314)
> m2=optim(par,star,method=c("BFGS"),hessian=T)

# function to calculate the likelihood of a STAR model.
star <- function(par){
f = 0
T1=length(rtn)
h=c(1,1)
at=c(0,0)
for (t in 3:T1){
resi = rtn[t]-par[1]
at=c(at,resi)
sig=par[2]+par[3]*at[t-1]^2+par[4]*at[t-2]^2
sig1=par[5]+par[6]*at[t-1]^2
tt=sqrt(sig+sig1/(1+exp(-1000*at[t-1])))
h=c(h,tt)
x=resi/tt
f=f+log(tt)+0.5*x*x
}
f
}

4.1.4 Markov Switching Model

The idea of using probability switching in nonlinear time series analysis is discussed
in Tong (1983). Using a similar idea, but emphasizing aperiodic transition between
various states of an economy, Hamilton (1989) considers the Markov switching
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autoregressive (MSA) model. Here the transition is driven by a hidden two-state
Markov chain. A time series xt follows an MSA model if it satisfies

xt =
{
c1 + ∑p

i=1 φ1,ixt−i + a1t if st = 1,

c2 + ∑p

i=1 φ2,ixt−i + a2t if st = 2,
(4.18)

where st assumes values in {1,2} and is a first-order Markov chain with transition
probabilities

P (st = 2|st−1 = 1) = w1, P (st = 1|st−1 = 2) = w2.

The innovational series {a1t } and {a2t } are sequences of iid random variables with
mean zero and finite variance and are independent of each other. A small wi

means that the model tends to stay longer in state i. In fact, 1/wi is the expected
duration of the process to stay in state i. From the definition, an MSA model uses a
hidden Markov chain to govern the transition from one conditional mean function
to another. This is different from that of a SETAR model for which the transition is
determined by a particular lagged variable. Consequently, a SETAR model uses a
deterministic scheme to govern the model transition, whereas an MSA model uses a
stochastic scheme. In practice, the stochastic nature of the states implies that one is
never certain about which state xt belongs to in an MSA model. When the sample
size is large, one can use some filtering techniques to draw inference on the state of
xt . Yet as long as xt−d is observed, the regime of xt is known in a SETAR model.
This difference has important practical implications in forecasting. For instance,
forecasts of an MSA model are always a linear combination of forecasts produced
by submodels of individual states. But those of a SETAR model only come from
a single regime provided that xt−d is observed. Forecasts of a SETAR model also
become a linear combination of those produced by models of individual regimes
when the forecast horizon exceeds the delay d. It is much harder to estimate
an MSA model than other models because the states are not directly observable.
Hamilton (1990) uses the EM algorithm, which is a statistical method iterating
between taking expectation and maximization. McCulloch and Tsay (1994) consider
a Markov chain Monte Carlo (MCMC) method to estimate a general MSA model.
We discuss MCMC methods in Chapter 12.

McCulloch and Tsay (1993) generalize the MSA model in Eq. (4.18) by let-
ting the transition probabilities w1 and w2 be logistic, or probit, functions of some
explanatory variables available at time t − 1. Chen, McCulloch, and Tsay (1997)
use the idea of Markov switching as a tool to perform model comparison and selec-
tion between nonnested nonlinear time series models (e.g., comparing bilinear and
SETAR models). Each competing model is represented by a state. This approach
to select a model is a generalization of the odds ratio commonly used in Bayesian
analysis. Finally, the MSA model can easily be generalized to the case of more
than two states. The computational intensity involved increases rapidly, however.
For more discussions of Markov switching models in econometrics, see Hamilton
(1994, Chapter 22).
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Example 4.5. Consider the growth rate, in percentages, of the U.S. quarterly
real gross national product (GNP) from the second quarter of 1947 to the first
quarter of 1991. The data are seasonally adjusted and shown in Figure 4.4, where
a horizontal line of zero growth is also given. It is reassuring to see that a majority
of the growth rates are positive. This series has been widely used in nonlinear
analysis of economic time series. Tiao and Tsay (1994) and Potter (1995) use TAR
models, whereas Hamilton (1989) and McCulloch and Tsay (1994) employ Markov
switching models.

Employing the MSA model in Eq. (4.18) with p = 4 and using a Markov chain
Monte Carlo method, which is discussed in Chapter 12, McCulloch and Tsay (1994)
obtain the estimates shown in Table 4.1. The results have several interesting find-
ings. First, the mean growth rate of the marginal model for state 1 is 0.909/(1 −
0.265 − 0.029 + 0.126 + 0.11) = 0.965 and that of state 2 is −0.42/(1 − 0.216 −
0.628 + 0.073 + 0.097) = −1.288. Thus, state 1 corresponds to quarters with posi-
tive growth, or expansion periods, whereas state 2 consists of quarters with negative
growth, or a contraction period. Second, the relatively large posterior standard devi-
ations of the parameters in state 2 reflect that there are few observations in that state.
This is expected as Figure 4.4 shows few quarters with negative growth. Third,
the transition probabilities appear to be different for different states. The estimates
indicate that it is more likely for the U.S. GNP to get out of a contraction period
than to jump into one −0.286 versus 0.118. Fourth, treating 1/wi as the expected
duration for the process to stay in state i, we see that the expected durations for
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Figure 4.4 Time plot of growth rate of U.S. quarterly real GNP from 1947.II to 1991.I. Data are
seasonally adjusted and in percentages.
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TABLE 4.1 Estimation Results of Markov Switching Model with p = 4 for Growth
Rate of U.S. Quarterly Real GNP, Seasonally Adjusteda

Parameter ci φ1 φ2 φ3 φ4 σi wi

State 1
Estimate 0.909 0.265 0.029 −0.126 −0.110 0.816 0.118
Standard Error 0.202 0.113 0.126 0.103 0.109 0.125 0.053

State 2

Estimate −0.420 0.216 0.628 −0.073 −0.097 1.017 0.286
Standard Error 0.324 0.347 0.377 0.364 0.404 0.293 0.064
aThe estimates and their standard errors are posterior means and standard errors of a Gibbs sampling
with 5000 iterations.

a contraction period and an expansion period are approximately 3.69 and 11.31
quarters. Thus, on average, a contraction in the U.S. economy lasts about a year,
whereas an expansion can last for 3 years. Finally, the estimated AR coefficients
of xt−2 differ substantially between the two states, indicating that the dynamics of
the U.S. economy are different between expansion and contraction periods.

4.1.5 Nonparametric Methods

In some financial applications, we may not have sufficient knowledge to prespecify
the nonlinear structure between two variables Y and X. In other applications, we
may wish to take advantage of the advances in computing facilities and compu-
tational methods to explore the functional relationship between Y and X. These
considerations lead to the use of nonparametric methods and techniques. Nonpara-
metric methods, however, are not without cost. They are highly data dependent
and can easily result in overfitting. Our goal here is to introduce some nonparamet-
ric methods for financial applications and some nonlinear models that make use
of nonparametric methods and techniques. The nonparametric methods discussed
include kernel regression, local least-squares estimation, and neural network.

The essence of nonparametric methods is smoothing . Consider two financial
variables Y and X, which are related by

Yt = m(Xt) + at , (4.19)

where m(·) is an arbitrary, smooth, but unknown function and {at } is a white
noise sequence. We wish to estimate the nonlinear function m(·) from the data. For
simplicity, consider the problem of estimating m(·) at a particular date for which
X = x. That is, we are interested in estimating m(x). Suppose that at X = x we
have repeated independent observations y1, . . . , yT . Then the data become

yt = m(x) + at , t = 1, . . . , T .

Taking the average of the data, we have∑T
t=1 yt

T
= m(x) +

∑T
t=1 at

T
.
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By the law of large numbers, the average of the shocks converges to zero as T

increases. Therefore, the average ȳ = (
∑T

t=1 yt )/T is a consistent estimate of m(x).
That the average ȳ provides a consistent estimate of m(x) or, alternatively, that the
average of shocks converges to zero shows the power of smoothing.

In financial time series, we do not have repeated observations available at X = x.
What we observed are {(yt , xt )} for t = 1, . . . , T . But if the function m(·) is
sufficiently smooth, then the value of Yt for which Xt ≈ x continues to provide
accurate approximation of m(x). The value of Yt for which Xt is far away from
x provides less accurate approximation for m(x). As a compromise, one can use a
weighted average of yt instead of the simple average to estimate m(x). The weight
should be larger for those Yt with Xt close to x and smaller for those Yt with
Xt far away from x. Mathematically, the estimate of m(x) for a given x can be
written as

m̂(x) = 1

T

T∑
t=1

wt(x)yt , (4.20)

where the weights wt(x) are larger for those yt with xt close to x and smaller for
those yt with xt far away from x. In Eq. (4.20), we assume that the weights sum
to T . One can treat 1/T as part of the weights and make the weights sum to one.

From Eq. (4.20), the estimate m̂(x) is simply a local weighted average with
weights determined by two factors. The first factor is the distance measure (i.e.,
the distance between xt and x). The second factor is the assignment of weight for
a given distance. Different ways to determine the distance between xt and x and to
assign the weight using the distance give rise to different nonparametric methods.
In what follows, we discuss the commonly used kernel regression and local linear
regression methods.

Kernel Regression
Kernel regression is perhaps the most commonly used nonparametric method in
smoothing. The weights here are determined by a kernel , which is typically a
probability density function, is denoted by K(x), and satisfies

K(x) ≥ 0,
∫

K(z) dz = 1.

However, to increase the flexibility in distance measure, one often rescales the
kernel using a variable h> 0, which is referred to as the bandwidth . The rescaled
kernel becomes

Kh(x) = 1

h
K(x/h),

∫
Kh(z) dz = 1. (4.21)

The weight function can now be defined as

wt(x) = Kh(x − xt )∑T
t=1 Kh(x − xt )

, (4.22)
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Figure 4.5 Standard normal kernel (solid line) and Epanechnikov kernel (dashed line) with bandwidth
h = 1.

where the denominator is a normalization constant that makes the smoother adap-
tive to the local intensity of the X variable and ensures the weights sum to one.
Plugging Eq. (4.22) into the smoothing formula (4.20), we have the well-known
Nadaraya–Watson kernel estimator

m̂(x) =
T∑

t=1

wt(x)yt =
∑T

t=1 Kh(x − xt )yt∑T
t=1 Kh(x − xt )

; (4.23)

see Nadaraya (1964) and Watson (1964). In practice, many choices are available
for the kernel K(x). However, theoretical and practical considerations lead to a
few choices, including the Gaussian kernel

Kh(x) = 1

h
√

2π
exp

(
− x2

2h2

)
and the Epanechnikov kernel (Epanechnikov, 1969)

Kh(x) = 0.75

h

(
1 − x2

h2

)
I
(∣∣∣x

h

∣∣∣ ≤ 1
)
,

where I (A) is an indicator such that I (A) = 1 if A holds and I (A) = 0 otherwise.
Figure 4.5 shows the Gaussian and Epanechnikov kernels for h = 1.
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To understand the role played by the bandwidth h, we evaluate the
Nadaraya–Watson estimator with the Epanechnikov kernel at the observed values
{xt } and consider two extremes. First, if h → 0, then

m̂(xt ) → Kh(0)yt
Kh(0)

= yt ,

indicating that small bandwidths reproduce the data. Second, if h → ∞, then

m̂(xt ) →
∑T

t=1 Kh(0)yt∑T
t=1 Kh(0)

= 1

T

T∑
t=1

yt = ȳ,

suggesting that large bandwidths lead to an oversmoothed curve—the sample mean.
In general, the bandwidth function h acts as follows. If h is very small, then the
weights focus on a few observations that are in the neighborhood around each xt .
If h is very large, then the weights will spread over a larger neighborhood of xt .
Consequently, the choice of h plays an important role in kernel regression. This is
the well-known problem of bandwidth selection in kernel regression.

Bandwidth Selection
There are several approaches for bandwidth selection; see Härdle (1990) and Fan
and Yao (2003). The first approach is the plug-in method, which is based on
the asymptotic expansion of the mean integrated squared error (MISE) for kernel
smoothers

MISE = E

∫ ∞

−∞
[m̂(x) − m(x)]2 dx,

where m(·) is the true function. The quantity E[m̂(x) − m(x)]2 of the MISE is a
pointwise measure of the mean squared error (MSE) of m̂(x) evaluated at x. Under
some regularity conditions, one can derive the optimal bandwidth that minimizes
the MISE. The optimal bandwidth typically depends on several unknown quantities
that must be estimated from the data with some preliminary smoothing. Several
iterations are often needed to obtain a reasonable estimate of the optimal bandwidth.
In practice, the choice of preliminary smoothing can become a problem. Fan and
Yao (2003) give a normal reference bandwidth selector as

ĥopt =
{

1.06sT −1/5 for the Gaussian kernel,

2.34sT −1/5 for the Epanechnikov kernel,

where s is the sample standard error of the independent variable, which is assumed
to be stationary.
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The second approach to bandwidth selection is the leave-one-out cross valida-
tion . First, one observation (xj , yj ) is left out. The remaining T − 1 data points
are used to obtain the following smoother at xj :

m̂h,j (xj ) = 1

T − 1

∑
t �=j

wt (xj )yt ,

which is an estimate of yj , where the weights wt(xj ) sum to T − 1. Second,
perform step 1 for j = 1, . . . , T and define the function

CV(h) = 1

T

T∑
j=1

[yj − m̂h,j (xj )]
2W(xj ),

where W(·) is a nonnegative weight function satisfying
∑n

j=1 W(xj ) = T , that
can be used to down-weight the boundary points if necessary. Decreasing the
weights assigned to data points close to the boundary is needed because those
points often have fewer neighboring observations. The function CV(h) is called
the cross-validation function because it validates the ability of the smoother to
predict {yt }Tt=1. One chooses the bandwidth h that minimizes the CV(·) function.

Local Linear Regression Method
Assume that the second derivative of m(·) in model (4.19) exists and is continuous
at x, where x is a given point in the support of m(·). Denote the data available by
{(yt , xt )}Tt=1. The local linear regression method to nonparametric regression is to
find a and b that minimize

L(a, b) =
T∑

t=1

[yt − a − b(x − xt )]
2Kh(x − xt ), (4.24)

where Kh(·) is a kernel function defined in Eq. (4.21) and h is a bandwidth. Denote
the resulting value of a by â. The estimate of m(x) is then defined as â. In practice,
x assumes an observed value of the independent variable. The estimate b̂ can be
used as an estimate of the first derivative of m(·) evaluated at x.

Under the least-squares theory, Eq. (4.24) is a weighted least-squares problem
and one can derive a closed-form solution for a. Specifically, taking the partial
derivatives of L(a, b) with respect to both a and b and equating the derivatives to
zero, we have a system of two equations with two unknowns:

T∑
t=1

Kh(x − xt )yt = a

T∑
t=1

Kh(x − xt ) + b

T∑
t=1

(x − xt )Kh(x − xt ),

T∑
t=1

yt (x − xt )Kh(x − xt ) = a

T∑
t=1

(x − xt )Kh(x − xt ) + b

T∑
t=1

(x − xt )
2Kh(x − xt ).
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Define

sT ,� =
T∑

t=1

Kh(x − xt )(x − xt )
�, � = 0, 1, 2.

The prior system of equations becomes[
sT ,0 sT ,1
sT ,1 sT ,2

] [
a

b

]
=

[ ∑T
t=1 Kh(x − xt )yt∑T

t=1(x − xt )Kh(x − xt )yt

]
.

Consequently, we have

â = sT ,2
∑T

t=1 Kh(x − xt )yt − sT ,1
∑T

t=1(x − xt )Kh(x − xt )yt

sT ,0sT ,2 − s2
T ,1

.

The numerator and denominator of the prior fraction can be further simplified as

sT ,2

T∑
t=1

Kh(x − xt )yt − sT ,1

T∑
t=1

(x − xt )Kh(x − xt )yt

=
T∑

t=1

{Kh(x − xt )[sT ,2 − (x − xt )sT ,1]}yt .

sT ,0sT ,2 − s2
T ,1 =

T∑
t=1

Kh(x − xt )sT ,2 −
T∑

t=1

(x − xt )Kh(x − xt )sT ,1

=
T∑

t=1

Kh(x − xt )[sT ,2 − (x − xt )sT ,1].

In summary, we have

â =
∑T

t=1 wtyt∑T
t=1 wt

, (4.25)

where wt is defined as

wt = Kh(x − xt )[sT ,2 − (x − xt )sT ,1].

In practice, to avoid possible zero in the denominator, we use the following m̂(x)

to estimate m(x):

m̂(x) =
∑T

t=1 wtyt∑T
t=1 wt + 1/T 2

. (4.26)
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Notice that a nice feature of Eq. (4.26) is that the weight wt satisfies

T∑
t=1

(x − xt )wt = 0.

Also, if one assumes that m(·) of Eq. (4.19) has the first derivative and finds the
minimizer of

T∑
t=1

(yt − a)2Kh(x − xt ),

then the resulting estimator is the Nadaraya–Watson estimator mentioned earlier.
In general, if one assumes that m(x) has a bounded kth derivative, then one can
replace the linear polynomial in Eq. (4.24) by a (k − 1)-order polynomial. We refer
to the estimator in Eq. (4.26) as the local linear regression smoother. Fan (1993)
shows that, under some regularity conditions, the local linear regression estimator
has some important sampling properties. The selection of bandwidth can be carried
out via the same methods as before.

Time Series Application
In time series analysis, the explanatory variables are often the lagged values of
the series. Consider the simple case of a single explanatory variable. Here model
(4.19) becomes

xt = m(xt−1) + at ,

and the kernel regression and local linear regression method discussed before are
directly applicable. When multiple explanatory variables exist, some modifications
are needed to implement the nonparametric methods. For the kernel regression, one
can use a multivariate kernel such as a multivariate normal density function with
a prespecified covariance matrix:

Kh(x) = 1

(h
√

2π)p|�|1/2
exp

(
− 1

2h2
x ′�−1x

)
,

where p is the number of explanatory variables and � is a prespecified positive-
definite matrix. Alternatively, one can use the product of univariate kernel functions
as a multivariate kernel—for example,

Kh(x) =
p∏

i=1

0.75

hi

(
1 − x2

i

h2
i

)
I

(∣∣∣∣ xihi

∣∣∣∣ < 1

)
.

This latter approach is simple, but it overlooks the relationship between the explana-
tory variables.
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Example 4.6. To illustrate the application of nonparametric methods in finance,
consider the weekly 3-month Treasury bill secondary market rate from 1970 to 1997
for 1461 observations. The data are obtained from the Federal Reserve Bank of St.
Louis and are shown in Figure 4.6. This series has been used in the literature as
an example of estimating stochastic diffusion equations using discretely observed
data. See references in Chapter 6. Here we consider a simple model

yt = µ(xt−1) dt + σ(xt−1) dwt ,

where xt is the 3-month Treasury bill rate, yt = xt − xt−1, wt is a standard Brow-
nian motion, and µ(·) and σ(·) are smooth functions of xt−1, and apply the local
smoothing function lowess of R or S-Plus to obtain nonparametric estimates of
µ(·) and σ(·); see Cleveland (1979). For simplicity, we use |yt | as a proxy of the
volatility of xt .

For the simple model considered, µ(xt−1) is the conditional mean of yt given
xt−1, that is, µ(xt−1) = E(yt |xt−1). Figure 4.7(a) shows the scatterplot of y(t)

versus xt−1. The plot also contains the local smooth estimate of µ(xt−1) obtained
by lowess of R or S-Plus. The estimate is essentially zero. However, to better
understand the estimate, Figure 4.7(b) shows the estimate µ̂(xt−1) on a finer scale.
It is interesting to see that µ̂(xt−1) is positive when xt−1 is small but becomes
negative when xt−1 is large. This is in agreement with the common sense that
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Figure 4.6 Time plot of U.S. weekly 3-month Treasury bill rate in secondary market from 1970 to
1997.
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Figure 4.7 Estimation of conditional mean and volatility of weekly 3-month Treasury bill rate via a
local smoothing method: (a) yt vs. xt−1, where yt = xt − xt−1 and xt is interest rate; (b) estimate of
µ(xt−1); (c) |yt | vs. xt−1; and (d) estimate of σ(xt−1).

when the interest rate is high, it is expected to come down, and when the rate is
low, it is expected to increase. Figure 4.7(c) shows the scatterplot of |y(t)| versus
xt−1 and the estimate of σ̂ (xt−1) via lowess. The plot confirms that the higher the
interest rate, the larger the volatility. Figure 4.7(d) shows the estimate σ̂ (xt−1) on
a finer scale. Clearly, the volatility is an increasing function of xt−1 and the slope
seems to accelerate when xt−1 is approaching 10%. This example demonstrates
that simple nonparametric methods can be helpful in understanding the dynamic
structure of a financial time series.

R and S-Plus Commands Used in Example 4.6

> z1=read.table(’w-3mtbs7097.txt’,header=T)
> x=z1[4,1:1460]/100
> y=(z1[4,2:1461]-z1[4,1:1460])/100
> par(mfcol=c(2,2))
> plot(x,y,pch=’*’,xlab=’x(t-1)’,ylab=’y(t)’)
> lines(lowess(x,y))
> title(main=’(a) y(t) vs x(t-1)’)
> fit=lowess(x,y)
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> plot(fit$x,fit$y,xlab=’x(t-1)’,ylab=’mu’,type=’l’,
+ ylim=c(-.002,.002))
> title(main=’(b) Estimate of mu(.)’)
> plot(x,abs(y),pch=’*’,xlab=’x(t-1)’,ylab=’abs(y)’)
> lines(lowess(x,abs(y)))
> title(main=’(c) abs(y) vs x(t-1)’)
> fit2=lowess(x,abs(y))
> plot(fit2$x,fit2$y,type=’l’,xlab=’x(t-1)’,ylab=’sigma’,
+ ylim=c(0,.01))
> title(main=’(d) Estimate of sigma(.)’)

The following nonlinear models are derived with the help of nonparametric
methods.

4.1.6 Functional Coefficient AR Model

Recent advances in nonparametric techniques enable researchers to relax parametric
constraints in proposing nonlinear models. In some cases, nonparametric methods
are used in a preliminary study to help select a parametric nonlinear model. This is
the approach taken by Chen and Tsay (1993a) in proposing the functional coefficient
autoregressive (FAR) model that can be written as

xt = f1(Xt−1)xt−1 + · · · + fp(Xt−1)xt−p + at , (4.27)

where Xt−1 = (xt−1, . . . , xt−k)
′ is a vector of lagged values of xt . If necessary,

Xt−1 may also include other explanatory variables available at time t − 1. The
functions fi(·) of Eq. (4.27) are assumed to be continuous, even twice differen-
tiable, almost surely with respect to their arguments. Most of the nonlinear models
discussed before are special cases of the FAR model. In application, one can use
nonparametric methods such as kernel regression or local linear regression to esti-
mate the functional coefficients fi(·), especially when the dimension of Xt−1 is low
(e.g., Xt−1 is a scalar). Recently, Cai, Fan, and Yao (2000) applied the local linear
regression method to estimate fi(·) and showed that substantial improvements in
1-step-ahead forecasts can be achieved by using FAR models.

4.1.7 Nonlinear Additive AR Model

A major difficulty in applying nonparametric methods to nonlinear time series anal-
ysis is the “curse of dimensionality.” Consider a general nonlinear AR(p) process
xt = f (xt−1, . . . , xt−p) + at . A direct application of nonparametric methods to esti-
mate f (·) would require p-dimensional smoothing, which is hard to do when p is
large, especially if the number of data points is not large. A simple, yet effective
way to overcome this difficulty is to entertain an additive model that only requires
lower dimensional smoothing. A time series xt follows a nonlinear additive AR
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(NAAR) model if

xt = f0(t) +
p∑

i=1

fi(xt−i) + at , (4.28)

where the fi(·) are continuous functions almost surely. Because each function fi(·)
has a single argument, it can be estimated nonparametrically using one-dimensional
smoothing techniques and hence avoids the curse of dimensionality. In application,
an iterative estimation method that estimates fi(·) nonparametrically conditioned
on estimates of fj (·) for all j �= i is used to estimate a NAAR model; see Chen
and Tsay (1993b) for further details and examples of NAAR models.

The additivity assumption is rather restrictive and needs to be examined carefully
in application. Chen, Liu, and Tsay (1995) consider test statistics for checking the
additivity assumption.

4.1.8 Nonlinear State-Space Model

Making using of recent advances in MCMC methods (Gelfand and Smith, 1990),
Carlin, Polson, and Stoffer (1992) propose a Monte Carlo approach for nonlinear
state-space modeling. The model considered is

St = ft (St−1) + ut , xt = gt (St ) + vt , (4.29)

where St is the state vector, ft (·) and gt (·) are known functions depending on some
unknown parameters, {ut } is a sequence of iid multivariate random vectors with
zero mean and nonnegative definite covariance matrix �u, {vt } is a sequence of
iid random variables with mean zero and variance σ 2

v , and {ut } is independent of
{vt }. Monte Carlo techniques are employed to handle the nonlinear evolution of the
state transition equation because the whole conditional distribution function of St

given St−1 is needed for a nonlinear system. Other numerical smoothing methods
for nonlinear time series analysis have been considered by Kitagawa (1998) and the
references therein. MCMC methods (or computing-intensive numerical methods)
are powerful tools for nonlinear time series analysis. Their potential has not been
fully explored. However, the assumption of knowing ft (·) and gt (·) in model (4.29)
may hinder practical use of the proposed method. A possible solution to overcome
this limitation is to use nonparametric methods such as the analyses considered in
FAR and NAAR models to specify ft (·) and gt (·) before using nonlinear state-space
models.

4.1.9 Neural Networks

A popular topic in modern data analysis is neural networks, which can be classified
as a semiparametric method. The literature on neural networks is enormous, and
its application spreads over many scientific areas with varying degrees of success;
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Figure 4.8 Feed-forward neural network with one hidden layer for univariate time series analysis.

see Section 2 of Ripley (1993) for a list of applications and Section 10 for remarks
concerning its application in finance. Cheng and Titterington (1994) provide infor-
mation on neural networks from a statistical viewpoint. In this subsection, we focus
solely on the feed-forward neural networks in which inputs are connected to one
or more neurons , or nodes , in the input layer, and these nodes are connected
forward to further layers until they reach the output layer. Figure 4.8 shows an
example of a simple feed-forward network for univariate time series analysis with
one hidden layer. The input layer has two nodes, and the hidden layer has three.
The input nodes are connected forward to each and every node in the hidden layer,
and these hidden nodes are connected to the single node in the output layer. We call
the network a 2–3–1 feed-forward network. More complicated neural networks,
including those with feedback connections, have been proposed in the literature,
but the feed-forward networks are most relevant to our study.

Feed-Forward Neural Networks
A neural network processes information from one layer to the next by an “activation
function.” Consider a feed-forward network with one hidden layer. The j th node
in the hidden layer is defined as

hj = fj

α0j +
∑
i→j

wij xi

 , (4.30)

where xi is the value of the ith input node, fj (·) is an activation function typically
taken to be the logistic function

fj (z) = exp(z)

1 + exp(z)
,

α0j is called the bias, the summation i → j means summing over all input nodes
feeding to j , and wij are the weights. For illustration, the j th node of the hidden
layer of the 2–3–1 feed-forward network in Figure 4.8 is

hj = exp(α0j + w1j x1 + w2j x2)

1 + exp(α0j + w1j x1 + w2j x2)
, j = 1, 2, 3. (4.31)
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For the output layer, the node is defined as

o = fo

α0o +
∑
j→o

wjohj

 , (4.32)

where the activation function fo(·) is either linear or a Heaviside function. If fo(·)
is linear, then

o = α0o +
k∑

j=1

wjohj ,

where k is the number of nodes in the hidden layer. By a Heaviside function,
we mean fo(z) = 1 if z> 0 and fo(z) = 0 otherwise. A neuron with a Heaviside
function is called a threshold neuron , with 1 denoting that the neuron fires its
message. For example, the output of the 2–3–1 network in Figure 4.8 is

o = α0o + w1oh1 + w2oh2 + w3oh3,

if the activation function is linear; it is

o =
{

1 if α0o + w1oh1 + w2oh2 + w3oh3 > 0,

0 if α0o + w1oh1 + w2oh2 + w3oh3 ≤ 0,

if fo(·) is a Heaviside function.
Combining the layers, the output of a feed-forward neural network can be writ-

ten as

o = fo

α0o +
∑
j→o

wjofj

α0j +
∑
i→j

wij xi

 . (4.33)

If one also allows for direct connections from the input layer to the output layer,
then the network becomes

o = fo

α0o +
∑
i→o

αioxi +
∑
j→o

wjofj

α0j +
∑
i→j

wij xi

 , (4.34)

where the first summation is summing over the input nodes. When the activation
function of the output layer is linear, the direct connections from the input nodes
to the output node represent a linear function between the inputs and output. Con-
sequently, in this particular case model (4.34) is a generalization of linear models.
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For the 2–3–1 network in Figure 4.8, if the output activation function is linear,
then Eq. (4.33) becomes

o = α0o +
3∑

j=1

wjohj ,

where hj is given in Eq. (4.31). The network thus has 13 parameters. If Eq. (4.34)
is used, then the network becomes

o = α0o +
2∑

i=1

αioxi +
3∑

j=1

wjohj ,

where again hj is given in Eq. (4.31). The number of parameters of the network
increases to 15.

We refer to the function in Eq. (4.33) or (4.34) as a semiparametric function
because its functional form is known, but the number of nodes and their biases and
weights are unknown. The direct connections from the input layer to the output
layer in Eq. (4.34) mean that the network can skip the hidden layer. We refer to
such a network as a skip-layer feed-forward network.

Feed-forward networks are known as multilayer percetrons in the neural network
literature. They can approximate any continuous function uniformly on compact sets
by increasing the number of nodes in the hidden layer; see Hornik, Stinchcombe,
and White (1989), Hornik (1993), and Chen and Chen (1995). This property of neu-
ral networks is the universal approximation property of the multilayer percetrons.
In short, feed-forward neural networks with a hidden layer can be seen as a way
to parameterize a general continuous nonlinear function.

Training and Forecasting
Application of neural networks involves two steps. The first step is to train the
network (i.e., to build a network, including determining the number of nodes and
estimating their biases and weights). The second step is inference, especially fore-
casting. The data are often divided into two nonoverlapping subsamples in the
training stage. The first subsample is used to estimate the parameters of a given
feed-forward neural network. The network so built is then used in the second sub-
sample to perform forecasting and compute its forecasting accuracy. By comparing
the forecasting performance, one selects the network that outperforms the others
as the “best” network for making inference. This is the idea of cross validation
widely used in statistical model selection. Other model selection methods are also
available.

In a time series application, let {(rt , x t )|t = 1, . . . , T } be the available data for
network training, where x t denotes the vector of inputs and rt is the series of
interest (e.g., log returns of an asset). For a given network, let ot be the output of
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the network with input xt ; see Eq. (4.34). Training a neural network amounts to
choosing its biases and weights to minimize some fitting criterion—for example,
the least squares

S2 =
T∑

t=1

(rt − ot )
2.

This is a nonlinear estimation problem that can be solved by several iterative meth-
ods. To ensure the smoothness of the fitted function, some additional constraints
can be added to the prior minimization problem. In the neural network literature,
the back propagation (BP) learning algorithm is a popular method for network
training. The BP method, introduced by Bryson and Ho (1969), works backward
starting with the output layer and uses a gradient rule to modify the biases and
weights iteratively. Appendix 2A of Ripley (1993) provides a derivation of back
propagation. Once a feed-forward neural network is built, it can be used to compute
forecasts in the forecasting subsample.

Example 4.7. To illustrate applications of the neural network in finance, we
consider the monthly log returns, in percentages and including dividends, for IBM
stock from January 1926 to December 1999. We divide the data into two subsam-
ples. The first subsample consisting of returns from January 1926 to December
1997 for 864 observations is used for modeling. Using model (4.34) with three
inputs and two nodes in the hidden layer, we obtain a 3–2–1 network for the
series. The three inputs are rt−1, rt−2, and rt−3 and the biases and weights are
given next:

r̂t = 3.22 − 1.81f1(r t−1) − 2.28f2(r t−1) − 0.09rt−1 − 0.05rt−2 − 0.12rt−3,

(4.35)
where r t−1 = (rt−1, rt−2, rt−3) and the two logistic functions are

f1(r t−1) = exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)

1 + exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)
,

f2(r t−1) = exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)

1 + exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)
.

The standard error of the residuals for the prior model is 6.56. For comparison, we
also built an AR model for the data and obtained

rt = 1.101 + 0.077rt−1 + at , σa = 6.61. (4.36)

The residual standard error is slightly greater than that of the feed-forward model
in Eq. (4.35).
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Forecast Comparison
The monthly returns of IBM stock in 1998 and 1999 form the second subsample and
are used to evaluate the out-of-sample forecasting performance of neural networks.
As a benchmark for comparison, we use the sample mean of rt in the first subsample
as the 1-step-ahead forecast for all the monthly returns in the second subsample.
This corresponds to assuming that the log monthly price of IBM stock follows a
random walk with drift. The mean squared forecast error (MSFE) of this benchmark
model is 91.85. For the AR(1) model in Eq. (4.36), the MSFE of 1-step-ahead
forecasts is 91.70. Thus, the AR(1) model slightly outperforms the benchmark.
For the 3–2–1 feed-forward network in Eq. (4.35), the MSFE is 91.74, which is
essentially the same as that of the AR(1) model.

Remark. The estimation of feed-forward networks is done by using the nnet

package of S-Plus with default starting weights; see Venables and Ripley (1999)
for more information. Our limited experience shows that the estimation results
vary. For the IBM stock returns used in Example 4.7, the out-of-sample MSE for
a 3–2–1 network can be as low as 89.46 and as high as 93.65. If we change the
number of nodes in the hidden layer, the range for the MSE becomes even wider.
The S-Plus commands used in Example 4.7 are given in Appendix B. �

Example 4.8. Nice features of the feed-forward network include its flexibility
and wide applicability. For illustration, we use the network with a Heaviside acti-
vation function for the output layer to forecast the direction of price movement for
IBM stock considered in Example 4.7. Define a direction variable as

dt =
{

1 if rt ≥ 0,

0 if rt < 0.

We use eight input nodes consisting of the first four lagged values of both rt and
dt and four nodes in the hidden layer to build an 8–4–1 feed-forward network
for dt in the first subsample. The resulting network is then used to compute the
1-step-ahead probability of an “upward movement” (i.e., a positive return) for the
following month in the second subsample. Figure 4.9 shows a typical output of
probability forecasts and the actual directions in the second subsample with the
latter denoted by circles. A horizontal line of 0.5 is added to the plot. If we take a
rigid approach by letting d̂t = 1 if the probability forecast is greater than or equal to
0.5 and d̂t = 0 otherwise, then the neural network has a successful rate of 0.58. The
success rate of the network varies substantially from one estimation to another, and
the network uses 49 parameters. To gain more insight, we did a simulation study of
running the 8–4–1 feed-forward network 500 times and computed the number of
errors in predicting the upward and downward movement using the same method
as before. The mean and median of errors over the 500 runs are 11.28 and 11,
respectively, whereas the maximum and minimum number of errors are 18 and 4.
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Figure 4.9 One-step-ahead probability forecasts for positive monthly return for IBM stock using an
8–4–1 feed-forward neural network. Forecasting period is from January 1998 to December 1999.

For comparison, we also did a simulation with 500 runs using a random walk with
drift—that is,

d̂t =
{

1 if r̂t = 1.19 + εt ≥ 0,

0 otherwise,

where 1.19 is the average monthly log return for IBM stock from January 1926 to
December 1997 and {εt } is a sequence of iid N(0, 1) random variables. The mean
and median of the number of forecast errors become 10.53 and 11, whereas the
maximum and minimum number of errors are 17 and 5, respectively. Figure 4.10
shows the histograms of the number of forecast errors for the two simulations. The
results show that the 8–4–1 feed-forward neural network does not outperform the
simple model that assumes a random walk with drift for the monthly log price of
IBM stock.

4.2 NONLINEARITY TESTS

In this section, we discuss some nonlinearity tests available in the literature that
have decent power against the nonlinear models considered in Section 4.1. The tests
discussed include both parametric and nonparametric statistics. The Ljung–Box
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Figure 4.10 Histograms of number of forecasting errors for directional movements of monthly log
returns of IBM stock. Forecasting period is from January 1998 to December 1999.

statistics of squared residuals, the bispectral test, and the Brock, Dechert, and
Scheinkman (BDS) test are nonparametric methods. The RESET test (Ramsey,
1969), the F tests of Tsay (1986, 1989), and other Lagrange multiplier and like-
lihood ratio tests depend on specific parametric functions. Because nonlinearity
may occur in many ways, there exists no single test that dominates the others in
detecting nonlinearity.

4.2.1 Nonparametric Tests

Under the null hypothesis of linearity, residuals of a properly specified linear model
should be independent. Any violation of independence in the residuals indicates
inadequacy of the entertained model, including the linearity assumption. This is
the basic idea behind various nonlinearity tests. In particular, some of the nonlin-
earity tests are designed to check for possible violation in quadratic forms of the
underlying time series.

Q-Statistic of Squared Residuals
McLeod and Li (1983) apply the Ljung–Box statistics to the squared residuals of
an ARMA(p, q) model to check for model inadequacy. The test statistic is

Q(m) = T (T + 2)
m∑
i=1

ρ̂2
i (a

2
t )

T − i
,
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where T is the sample size, m is a properly chosen number of autocorrelations
used in the test, at denotes the residual series, and ρ̂i (a

2
t ) is the lag-i ACF of a2

t .
If the entertained linear model is adequate, Q(m) is asymptotically a chi-squared
random variable with m − p − q degrees of freedom. As mentioned in Chapter
3, the prior Q-statistic is useful in detecting conditional heteroscedasticity of at
and is asymptotically equivalent to the Lagrange multiplier test statistic of Engle
(1982) for ARCH models; see Section 3.4.3. The null hypothesis of the test is
H0 : β1 = · · · = βm = 0, where βi is the coefficient of a2

t−i in the linear regression

a2
t = β0 + β1a

2
t−1 + · · · + βma

2
t−m + et

for t = m + 1, . . . , T . Because the statistic is computed from residuals (not directly
from the observed returns), the number of degrees of freedom is m − p − q.

Bispectral Test
This test can be used to test for linearity and Gaussianity. It depends on the result
that a properly normalized bispectrum of a linear time series is constant over all
frequencies and that the constant is zero under normality. The bispectrum of a time
series is the Fourier transform of its third-order moments. For a stationary time
series xt in Eq. (4.1), the third-order moment is defined as

c(u, v) = g

∞∑
k=−∞

ψkψk+uψk+v, (4.37)

where u and v are integers, g = E(a3
t ), ψ0 = 1, and ψk = 0 for k < 0. Taking

Fourier transforms of Eq. (4.37), we have

b3(w1, w2) = g

4π2
�[−(w1 + w2)]�(w1)�(w2), (4.38)

where �(w) = ∑∞
u=0 ψu exp(−iwu) with i = √−1, and wi are frequencies. Yet

the spectral density function of xt is given by

p(w) = σ 2
a

2π
|�(w)|2,

where w denotes the frequency. Consequently, the function

b(w1, w2) = |b3(w1, w2)|2
p(w1)p(w2)p(w1 + w2)

= constant for all (w1, w2). (4.39)

The bispectrum test makes use of the property in Eq. (4.39). Basically, it estimates
the function b(w1, w2) in Eq. (4.39) over a suitably chosen grid of points and
applies a test statistic similar to Hotelling’s T 2 statistic to check the constancy of
b(w1, w2). For a linear Gaussian series, E(a3

t ) = g = 0 so that the bispectrum is
zero for all frequencies (w1, w2). For further details of the bispectral test, see Priest-
ley (1988), Subba Rao and Gabr (1984), and Hinich (1982). Limited experience
shows that the test has decent power when the sample size is large.
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BDS Statistic
Brock, Dechert, and Scheinkman (1987) propose a test statistic, commonly referred
to as the BDS test , to detect the iid assumption of a time series. The statistic is,
therefore, different from other test statistics discussed because the latter mainly
focus on either the second- or third-order properties of xt . The basic idea of the
BDS test is to make use of a “correlation integral” popular in chaotic time series
analysis. Given a k-dimensional time series Xt and observations {Xt }Tkt=1, define
the correlation integral as

Ck(δ) = lim
Tk→∞

2

Tk(Tk − 1)

∑
i<j

Iδ(Xi, Xj ), (4.40)

where Iδ(u, v) is an indicator variable that equals one if ‖u − v‖ < δ, and zero
otherwise, where ‖ · ‖ is the supnorm. The correlation integral measures the fraction
of data pairs of {Xt } that are within a distance of δ from each other. Consider
next a time series xt . Construct k-dimensional vectors Xk

t = (xt , xt+1, . . . , xt+k−1)
′,

which are called k histories . The idea of the BDS test is as follows. Treat a k

history as a point in the k-dimensional space. If {xt }Tt=1 are indeed iid random
variables, then the k-histories {Xt }Tkt=1 should show no pattern in the k-dimensional
space. Consequently, the correlation integrals should satisfy the relation Ck(δ) =
[C1(δ)]k . Any departure from the prior relation suggests that xt are not iid. As
a simple, but informative example, consider a sequence of iid random variables
from the uniform distribution over [0, 1]. Let [a, b] be a subinterval of [0, 1] and
consider the “2-history” (xt , xt+1), which represents a point in the two-dimensional
space. Under the iid assumption, the expected number of 2-histories in the subspace
[a, b] × [a, b] should equal the square of the expected number of xt in [a, b]. This
idea can be formally examined by using sample counterparts of correlation integrals.
Define

C�(δ, T ) = 2

Tk(Tk − 1)

∑
i<j

Iδ(X
∗
i , X

∗
j ), � = 1, k,

where T� = T − � + 1 and X∗
i = xi if � = 1 and X∗

i = Xk
i if � = k. Under the

null hypothesis that {xt } are iid with a nondegenerated distribution function F(·),
Brock, Dechert, and Scheinkman (1987) show that

Ck(δ, T ) → [C1(δ)]
k with probability 1, as T → ∞

for any fixed k and δ. Furthermore, the statistic
√
T {Ck(δ, T ) − [C1(δ, T )]k} is

asymptotically distributed as normal with mean zero and variance:

σ 2
k (δ) = 4

Nk + 2
k−1∑
j=1

Nk−jC2j + (k − 1)2C2k − k2NC2k−2

 ,
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where C = ∫
[F(z + δ) − F(z − δ)] dF(z) and N = ∫

[F(z + δ) − F(z − δ)]2

dF(z). Note that C1(δ, T ) is a consistent estimate of C, and N can be consistently
estimated by

N(δ, T ) = 6

Tk(Tk − 1)(Tk − 2)

∑
t<s<u

Iδ(xt , xs)Iδ(xs, xu).

The BDS test statistic is then defined as

Dk(δ, T ) =
√
T {Ck(δ, T ) − [C1(δ, T )]k}

σk(δ, T )
, (4.41)

where σk(δ, T ) is obtained from σk(δ) when C and N are replaced by C1(δ, T ) and
N(δ, T ), respectively. This test statistic has a standard normal limiting distribution.
For further discussion and examples of applying the BDS test, see Hsieh (1989)
and Brock, Hsieh, and LeBaron (1991). In application, one should remove linear
dependence, if any, from the data before applying the BDS test. The test may be
sensitive to the choices of δ and k, especially when k is large.

4.2.2 Parametric Tests

Turning to parametric tests, we consider the RESET test of Ramsey (1969) and its
generalizations. We also discuss some test statistics for detecting threshold non-
linearity. To simplify the notation, we use vectors and matrices in the discussion.
If necessary, readers may consult Appendix A of Chapter 8 for a brief review on
vectors and matrices.

The RESET Test
Ramsey (1969) proposes a specification test for linear least-squares regression anal-
ysis. The test is referred to as a RESET test and is readily applicable to linear AR
models. Consider the linear AR(p) model

xt = X′
t−1φ + at , (4.42)

where Xt−1 = (1, xt−1, . . . , xt−p)
′ and φ = (φ0, φ1, . . . , φp)

′. The first step of the
RESET test is to obtain the least-squares estimate φ̂ of Eq. (4.42) and compute
the fit x̂t = X′

t−1φ̂, the residual ât = xt − x̂t , and the sum of squared residuals
SSR0 = ∑T

t=p+1 â
2
t , where T is the sample size. In the second step, consider the

linear regression

ât = X′
t−1α1 + M ′

t−1α2 + vt , (4.43)

where M t−1 = (x̂2
t , . . . , x̂

s+1
t )′ for some s ≥ 1, and compute the least-squares resid-

uals

v̂t = ât − X′
t−1α̂1 − M ′

t−1α̂2
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and the sum of squared residuals SSR1 = ∑T
t=p+1 v̂

2
t of the regression. The basic

idea of the RESET test is that if the linear AR(p) model in Eq. (4.42) is adequate,
then α1 and α2 of Eq. (4.43) should be zero. This can be tested by the usual F

statistic of Eq. (4.43) given by

F = (SSR0 − SSR1)/g

SSR1/(T − p − g)
with g = s + p + 1, (4.44)

which, under the linearity and normality assumption, has an F distribution with
degrees of freedom g and T − p − g.

Remark. Because x̂k
t for k = 2, . . . , s + 1 tend to be highly correlated

with Xt−1 and among themselves, principal components of M t−1 that are not
co-linear with Xt−1 are often used in fitting Eq. (4.43). Principal component
analysis is a statistical tool for dimension reduction; see Chapter 8 for more
information. �

Keenan (1985) proposes a nonlinearity test for time series that uses x̂2
t only and

modifies the second step of the RESET test to avoid multicollinearity between x̂2
t

and Xt−1. Specifically, the linear regression (4.43) is divided into two steps. In
step 2(a), one removes linear dependence of x̂2

t on Xt−1 by fitting the regression

x̂2
t = X′

t−1β + ut

and obtaining the residual ût = x̂2
t − Xt−1β̂. In step 2(b), consider the linear regres-

sion

ât = ûtα + vt ,

and obtain the sum of squared residuals SSR1 = ∑T
t=p+1(ât − ût α̂)

2 = ∑T
t=p+1 v̂

2
t

to test the null hypothesis α = 0.

The F Test
To improve the power of Keenan’s test and the RESET test, Tsay (1986) uses a
different choice of the regressor M t−1. Specifically, he suggests using M t−1 =
vech(Xt−1X

′
t−1), where vech(A) denotes the half-stacking vector of the matrix

A using elements on and below the diagonal only; see Appendix B of Chapter 8
for more information about the operator. For example, if p = 2, then M t−1 =
(x2

t−1, xt−1xt−2, x
2
t−2)

′. The dimension of M t−1 is p(p + 1)/2 for an AR(p) model.
In practice, the test is simply the usual partial F statistic for testing α = 0 in the
linear least-squares regression

xt = X′
t−1φ + M ′

t−1α + et ,

where et denotes the error term. Under the assumption that xt is a linear AR(p)
process, the partial F statistic follows an F distribution with degrees of freedom
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g and T − p − g − 1, where g = p(p + 1)/2. We refer to this F test as the Ori-
F test . Luukkonen, Saikkonen, and Teräsvirta (1988) further extend the test by
augmenting M t−1 with cubic terms x3

t−i for i = 1, . . . , p.

Threshold Test
When the alternative model under study is a SETAR model, one can derive specific
test statistics to increase the power of the test. One of the specific tests is the
likelihood ratio statistic. This test, however, encounters the difficulty of undefined
parameters under the null hypothesis of linearity because the threshold is undefined
for a linear AR process. Another specific test seeks to transform testing threshold
nonlinearity into detecting model changes. It is then interesting to discuss the
differences between these two specific tests for threshold nonlinearity.

To simplify the discussion, let us consider the simple case that the alterna-
tive model is a 2-regime SETAR model with threshold variable xt−d . The null
hypothesis H0: xt follows the linear AR(p) model

xt = φ0 +
p∑

i=1

φixt−i + at , (4.45)

whereas the alternative hypothesis Ha: xt follows the SETAR model

xt =
{
φ
(1)
0 + ∑p

i=1 φ
(1)
i xt−i + a1t if xt−d < r1,

φ
(2)
0 + ∑p

i=1 φ
(2)
i xt−i + a2t if xt−d ≥ r1,

(4.46)

where r1 is the threshold. For a given realization {xt }Tt=1 and assuming normality,
let l0(φ̂, σ̂

2
a ) be the log-likelihood function evaluated at the maximum-likelihood

estimates of φ = (φ0, . . . , φp)
′ and σ 2

a . This is easy to compute. The likelihood
function under the alternative is also easy to compute if the threshold r1 is given.
Let l1(r1; φ̂1, σ̂

2
1 ; φ̂2, σ̂

2
2 ) be the log-likelihood function evaluated at the maximum-

likelihood estimates of φi = (φ
(i)
0 , . . . , φ

(i)
p )′ and σ 2

i conditioned on knowing the
threshold r1. The log-likelihood ratio l(r1) defined as

l(r1) = l1(r1; φ̂1, σ̂
2
1 ; φ̂2, σ̂

2
2 ) − l0(φ̂, σ̂

2
a )

is then a function of the threshold r1, which is unknown. Yet under the null hypoth-
esis, there is no threshold and r1 is not defined. The parameter r1 is referred to
as a nuisance parameter under the null hypothesis. Consequently, the asymptotic
distribution of the likelihood ratio is very different from that of the conventional
likelihood ratio statistics. See Chan (1991) for further details and critical values of
the test. A common approach is to use lmax = supv<r1<u l(r1) as the test statistic,
where v and u are prespecified lower and upper bounds of the threshold. Davis
(1987) and Andrews and Ploberger (1994) provide further discussion on hypothesis
testing involving nuisance parameters under the null hypothesis. Simulation is often
used to obtain empirical critical values of the test statistic lmax, which depends on
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the choices of v and u. The average of l(r1) over r1 ∈ [v, u] is also considered by
Andrews and Ploberger as a test statistic.

Tsay (1989) makes use of arranged autoregression and recursive estimation to
derive an alternative test for threshold nonlinearity. The arranged autoregression
seeks to transfer the SETAR model under the alternative hypothesis Ha into a model
change problem with the threshold r1 serving as the change point. To see this, the
SETAR model in Eq. (4.46) says that xt follows essentially two linear models
depending on whether xt−d < r1 or xt−d ≥ r1. For a realization {xt }Tt=1, xt−d can
assume values {x1, . . . , xT−d}. Let x(1) ≤ x(2) ≤ · · · ≤ x(T−d) be the ordered statis-
tics of {xt }T −d

t=1 (i.e., arranging the observations in increasing order). The SETAR
model can then be written as

x(j)+d = β0 +
p∑

i=1

βix(j)+d−i + a(j)+d, j = 1, . . . , T − d, (4.47)

where βi = φ
(1)
i if x(j) < r1 and βi = φ

(2)
i if x(j) ≥ r1. Consequently, the threshold

r1 is a change point for the linear regression in Eq. (4.47), and we refer to Eq. (4.47)
as an arranged autoregression (in increasing order of the threshold xt−d ). Note that
the arranged autoregression in (4.47) does not alter the dynamic dependence of xt
on xt−i for i = 1, . . . , p because x(j)+d still depends on x(j)+d−i for i = 1, . . . , p.
What is done is simply to present the SETAR model in the threshold space instead
of in the time space. That is, the equation with a smaller xt−d appears before that
with a larger xt−d . The threshold test of Tsay (1989) is obtained as follows.

• Step 1 . Fit Eq. (4.47) using j = 1, . . . , m, where m is a prespecified positive
integer (e.g., 30). Denote the least-squares estimates of βi by β̂i,m, where m

denotes the number of data points used in estimation.
• Step 2 . Compute the predictive residual

â(m+1)+d = x(m+1)+d − β̂0,m −
p∑

i=1

β̂i,mx(m+1)+d−i

and its standard error. Let ê(m+1)+d be the standardized predictive residual.
• Step 3 . Use the recursive least-squares method to update the least-squares

estimates to β̂i,m+1 by incorporating the new data point x(m+1)+d .
• Step 4 . Repeat steps 2 and 3 until all data points are processed.
• Step 5 . Consider the linear regression of the standardized predictive residual

ê(m+j)+d = α0 +
p∑

i=1

αix(m+j)+d−i + vt , j = 1, . . . , T − d − m (4.48)

and compute the usual F statistic for testing αi = 0 in Eq. (4.48) for i =
0, . . . , p. Under the null hypothesis that xt follows a linear AR(p) model,
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the F ratio has a limiting F distribution with degrees of freedom p + 1 and
T − d − m − p.

We refer to the earlier F test as a TAR-F test . The idea behind the test is that
under the null hypothesis there is no model change in the arranged autoregression
in Eq. (4.47) so that the standardized predictive residuals should be close to iid
with mean zero and variance 1. In this case, they should have no correlations with
the regressors x(m+j)+d−i . For further details including formulas for a recursive
least-squares method and some simulation study on performance of the TAR-F
test, see Tsay (1989). The TAR-F test avoids the problem of nuisance parameters
encountered by the likelihood ratio test. It does not require knowing the threshold
r1. It simply tests that the predictive residuals have no correlations with regressors
if the null hypothesis holds. Therefore, the test does not depend on knowing the
number of regimes in the alternative model. Yet the TAR-F test is not as powerful
as the likelihood ratio test if the true model is indeed a 2-regime SETAR model
with a known innovational distribution.

4.2.3 Applications

In this subsection, we apply some of the nonlinearity tests discussed previously to
five time series. For a real financial time series, an AR model is used to remove
any serial correlation in the data, and the tests apply to the residual series of the
model. The five series employed are as follows:

1. r1t : A simulated series of iid N(0, 1) with 500 observations.

2. r2t : A simulated series of iid Student-t distribution with 6 degrees of freedom.
The sample size is 500.

3. a3t : The residual series of monthly log returns of CRSP equal-weighted index
from 1926 to 1997 with 864 observations. The linear AR model used is

(1 − 0.180B + 0.099B3 − 0.105B9)r3t = 0.0086 + a3t .

4. a4t : The residual series of monthly log returns of CRSP value-weighted index
from 1926 to 1997 with 864 observations. The linear AR model used is

(1 − 0.098B + 0.111B3 − 0.088B5)r4t = 0.0078 + a4t .

5. a5t : The residual series of monthly log returns of IBM stock from 1926 to
1997 with 864 observations. The linear AR model used is

(1 − 0.077B)r5t = 0.011 + a5t .

Table 4.2 shows the results of the nonlinearity test. For the simulated series and
IBM returns, the F tests are based on an AR(6) model. For the index returns, the
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TABLE 4.2 Nonlinearity Tests for Simulated Series and Some Log Stock Returnsa

Q Q BDS(δ = 1.5σ̂a)

Data (5) (10) 2 3 4 5

N(0,1) 3.2 6.5 −0.32 −0.14 −0.15 −0.33
t6 0.9 1.7 −0.87 −1.18 −1.56 −1.71
ln(ew) 2.9 4.9 9.94 11.72 12.83 13.65
ln(vw) 1.0 9.8 8.61 9.88 10.70 11.29
ln(ibm) 0.6 7.1 4.96 6.09 6.68 6.82

d = 1 BDS(δ = σ̂a)

Data Ori-F TAR-F 2 3 4 5

N(0,1) 1.13 0.87 −0.77 −0.71 −1.04 −1.27
t6 0.69 0.81 −0.35 −0.76 −1.25 −1.49
ln(ew) 5.05 6.77 10.01 11.85 13.14 14.45
ln(vw) 4.95 6.85 7.01 7.83 8.64 9.53
ln(ibm) 1.32 1.51 3.82 4.70 5.45 5.72

aThe sample size of simulated series is 500 and that of stock returns is 864. The BDS test uses
k = 2, . . . , 5.

AR order is the same as the model given earlier. For the BDS test, we chose δ =
σ̂a and δ = 1.5σ̂a with k = 2, . . . , 5. Also given in the table are the Ljung–Box
statistics that confirm no serial correlation in the residual series before applying
nonlinearity tests. Compared with their asymptotic critical values, the BDS test and
F tests are insignificant at the 5% level for the simulated series. However, the BDS
tests are highly significant for the real financial time series. The F tests also show
significant results for the index returns, but they fail to suggest nonlinearity in the
IBM log returns. In summary, the tests confirm that the simulated series are linear
and suggest that the stock returns are nonlinear.

4.3 MODELING

Nonlinear time series modeling necessarily involves subjective judgment. However,
there are some general guidelines to follow. It starts with building an adequate lin-
ear model on which nonlinearity tests are based. For financial time series, the
Ljung–Box statistics and Engle’s test are commonly used to detect conditional
heteroscedasticity. For general series, other tests of Section 4.2 apply. If nonlin-
earity is statistically significant, then one chooses a class of nonlinear models to
entertain. The selection here may depend on the experience of the analyst and the
substantive matter of the problem under study. For volatility models, the order
of an ARCH process can often be determined by checking the partial autocorre-
lation function of the squared series. For GARCH and EGARCH models, only
lower orders such as (1,1), (1,2), and (2,1) are considered in most applications.
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Higher order models are hard to estimate and understand. For TAR models, one
may use the procedures given in Tong (1990) and Tsay (1989, 1998) to build an
adequate model. When the sample size is sufficiently large, one may apply non-
parametric techniques to explore the nonlinear feature of the data and choose a
proper nonlinear model accordingly; see Chen and Tsay (1993a) and Cai, Fan, and
Yao (2000). The MARS procedure of Lewis and Stevens (1991) can also be used
to explore the dynamic structure of the data. Finally, information criteria such as
the Akaike information criterion (Akaike, 1974) and the generalized odd ratios in
Chen, McCulloch, and Tsay (1997) can be used to discriminate between competing
nonlinear models. The chosen model should be carefully checked before it is used
for prediction.

4.4 FORECASTING

Unlike the linear model, there exist no closed-form formulas to compute forecasts
of most nonlinear models when the forecast horizon is greater than 1. We use
parametric bootstraps to compute nonlinear forecasts. It is understood that the model
used in forecasting has been rigorously checked and is judged to be adequate for the
series under study. By a model, we mean the dynamic structure and innovational
distributions. In some cases, we may treat the estimated parameters as given.

4.4.1 Parametric Bootstrap

Let T be the forecast origin and � be the forecast horizon (�> 0). That is, we
are at time index T and interested in forecasting xT+�. The parametric bootstrap
considered computes realizations xT+1, . . . , XT+� sequentially by (a) drawing a
new innovation from the specified innovational distribution of the model, and (b)
computing xT+i using the model, data, and previous forecasts xT+1, . . . , xT+i−1.
This results in a realization for xT+�. The procedure is repeated M times to obtain
M realizations of xT+� denoted by {x(j)

T +�}Mj=1. The point forecast of xT+� is then

the sample average of x
(j)

T+�. Let the forecast be xT (�). We used M = 3000 in
some applications and the results seem fine. The realizations {x(j)

T+�}Mj=1 can also
be used to obtain an empirical distribution of xT+�. We make use of this empirical
distribution later to evaluate forecasting performance.

4.4.2 Forecasting Evaluation

There are many ways to evaluate the forecasting performance of a model, ranging
from directional measures to magnitude measures to distributional measures. A
directional measure considers the future direction (up or down) implied by the
model. Predicting that tomorrow’s S&P 500 index will go up or down is an example
of directional forecasts that are of practical interest. Predicting the year-end value
of the daily S&P 500 index belongs to the case of magnitude measure. Finally,
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assessing the likelihood that the daily S&P 500 index will go up 10% or more
between now and the year end requires knowing the future conditional probability
distribution of the index. Evaluating the accuracy of such an assessment needs a
distributional measure.

In practice, the available data set is divided into two subsamples. The first sub-
sample of the data is used to build a nonlinear model, and the second subsample
is used to evaluate the forecasting performance of the model. We refer to the
two subsamples of data as estimation and forecasting subsamples . In some stud-
ies, a rolling forecasting procedure is used in which a new data point is moved
from the forecasting subsample into the estimation subsample as the forecast origin
advances. In what follows, we briefly discuss some measures of forecasting perfor-
mance that are commonly used in the literature. Keep in mind, however, that there
exists no widely accepted single measure to compare models. A utility function
based on the objective of the forecast might be needed to better understand the
comparison.

Directional Measure
A typical measure here is to use a 2 × 2 contingency table that summarizes the
number of “hits” and “misses” of the model in predicting ups and downs of xT+�

in the forecasting subsample. Specifically, the contingency table is given as

Actual Predicted

Up Down

Up m11 m12 m10

Down m21 m22 m20

m01 m02 m

where m is the total number of �-step-ahead forecasts in the forecasting subsample,
m11 is the number of “hits” in predicting upward movements, m21 is the number
of “misses” in predicting downward movements of the market, and so on. Larger
values in m11 and m22 indicate better forecasts. The test statistic

χ2 =
2∑

i=1

2∑
j=1

(mij − mi0m0j /m)2

mi0m0j /m

can then be used to evaluate the performance of the model. A large χ2 signifies that
the model outperforms the chance of random choice. Under some mild conditions,
χ2 has an asymptotic chi-squared distribution with 1 degree of freedom. For further
discussion of this measure, see Dahl and Hylleberg (1999).

For illustration of the directional measure, consider the 1-step-ahead probability
forecasts of the 8–4–1 feed-forward neural network shown in Figure 4.9. The
2 × 2 table of “hits” and “misses” of the network is
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Actual Predicted

Up Down

Up 12 2 14

Down 8 2 10

20 4 24

The table shows that the network predicts the upward movement well, but fares
poorly in forecasting the downward movement of the stock. The chi-squared statis-
tic of the table is 0.137 with a p value of 0.71. Consequently, the network does
not significantly outperform a random-walk model with equal probabilities for
“upward” and “downward” movements.

Magnitude Measure
Three statistics are commonly used to measure performance of point forecasts. They
are the mean squared error (MSE), mean absolute deviation (MAD), and mean
absolute percentage error (MAPE). For �-step-ahead forecasts, these measures are
defined as

MSE(�) = 1

m

m−1∑
j=0

[xT+�+j − xT+j (�)]
2, (4.49)

MAD(�) = 1

m

m−1∑
j=0

|xT+�+j − xT+j (�)|, (4.50)

MAPE(�) = 1

m

m−1∑
j=0

| xT+j (�)

xT+j+�

− 1 |, (4.51)

where m is the number of �-step-ahead forecasts available in the forecasting
subsample. In application, one often chooses one of the above three measures, and
the model with the smallest magnitude on that measure is regarded as the best �-
step-ahead forecasting model. It is possible that different � may result in selecting
different models. The measures also have other limitations in model comparison;
see, for instance, Clements and Hendry (1993).

Distributional Measure
Practitioners recently began to assess forecasting performance of a model using
its predictive distributions. Strictly speaking, a predictive distribution incorporates
parameter uncertainty in forecasts. We call it conditional predictive distribution if
the parameters are treated as fixed. The empirical distribution of xT+� obtained
by the parametric bootstrap is a conditional predictive distribution. This empirical
distribution is often used to compute a distributional measure. Let uT (�) be the
percentile of the observed xT+� in the prior empirical distribution. We then have
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a set of m percentiles {uT+j (�)}m−1
j=0 , where again m is the number of �-step-

ahead forecasts in the forecasting subsample. If the model entertained is adequate,
{uT+j (�)} should be a random sample from the uniform distribution on [0, 1].
For a sufficiently large m, one can compute the Kolmogorov–Smirnov statistic of
{uT+j (�)} with respect to uniform [0, 1]. The statistic can be used for both model
checking and forecasting comparison.

4.5 APPLICATION

In this section, we illustrate nonlinear time series models by analyzing the quarterly
U.S. civilian unemployment rate, seasonally adjusted, from 1948 to 1993. This
series was analyzed in detail by Montgomery et al. (1998). We repeat some of
the analyses here using nonlinear models. Figure 4.11 shows the time plot of
the data. Well-known characteristics of the series include that (a) it tends to move
countercyclically with U.S. business cycles, and (b) the rate rises quickly but decays
slowly. The latter characteristic suggests that the dynamic structure of the series is
nonlinear.

Denote the series by xt and let xt = xt − xt−1 be the change in unemployment
rate. The linear model

(1 − 0.31B4)(1 − 0.65B)xt = (1 − 0.78B4)at , σ̂ 2
a = 0.090 (4.52)
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Figure 4.11 Time plot of U.S. quarterly unemployment rate, seasonally adjusted, from 1948 to 1993.
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was built by Montgomery et al. (1998), where the standard errors of the three
coefficients are 0.11, 0.06, and 0.07, respectively. This is a seasonal model even
though the data were seasonally adjusted. It indicates that the seasonal adjustment
procedure used did not successfully remove the seasonality. This model is used as
a benchmark model for forecasting comparison.

To test for nonlinearity, we apply some of the nonlinearity tests of Section 4.2
with an AR(5) model for the differenced series xt . The results are given
in Table 4.3. All of the tests reject the linearity assumption. In fact, the
linearity assumption is rejected for all AR(p) models we applied, where p = 2,
. . . , 10.

Using a modeling procedure similar to that of Tsay (1989), Montgomery et al.
(1998) build the following TAR model for the xt series:

xt =
{

0.01 + 0.73xt−1 + 0.10xt−2 + a1t if xt−2 ≤ 0.1,

0.18 + 0.80xt−1 − 0.56xt−2 + a2t otherwise.
(4.53)

The sample variances of a1t and a2t are 0.76 and 0.165, respectively, the standard
errors of the three coefficients of regime 1 are 0.03, 0.10, and 0.12, respectively,
and those of regime 2 are 0.09, 0.1, and 0.16. This model says that the change in the
U.S. quarterly unemployment rate, xt , behaves like a piecewise linear model in
the reference space of xt−2 − xt−3 with threshold 0.1. Intuitively, the model implies
that the dynamics of unemployment act differently depending on the recent change
in the unemployment rate. In the first regime, the unemployment rate has had either
a decrease or a minor increase. Here the economy should be stable, and essentially
the change in the rate follows a simple AR(1) model because the lag-2 coefficient is
insignificant. In the second regime, there is a substantial jump in the unemployment
rate (0.1 or larger). This typically corresponds to the contraction phase in the
business cycle. It is also the period during which government interventions and
industrial restructuring are likely to occur. Here xt follows an AR(2) model with a
positive constant, indicating an upward trend in xt . The AR(2) polynomial contains
two complex characteristic roots, which indicate possible cyclical behavior in xt .
Consequently, the chance of having a turning point in xt increases, suggesting
that the period of large increases in xt should be short. This implies that the
contraction phases in the U.S. economy tend to be shorter than the expansion
phases.

TABLE 4.3 Nonlinearity Test for Changes in the U.S. Quarterly Unemployment
Rate: 1948.II–1993.IVa

Type Ori-F LST TAR(1) TAR(2) TAR(3) TAR(4)
Test 2.80 2.83 2.41 2.16 2.84 2.98
p Value .0007 .0002 .0298 .0500 .0121 .0088
aAn AR(5) model was used in the tests, where LST denotes the test of Luukkonen et al. (1988) and
TAR(d) means threshold test with delay d.
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Applying a Markov chain Monte Carlo method, Montgomery et al. (1998) obtain
the following Markov switching model for xt :

xt =
{

−0.07 + 0.38xt−1 − 0.05xt−2 + ε1t if st = 1,

0.16 + 0.86xt−1 − 0.38xt−2 + ε2t if st = 2.
(4.54)

The conditional means of xt are −0.10 for st = 1 and 0.31 for st = 2. Thus, the
first state represents the expansionary periods in the economy, and the second state
represents the contractions. The sample variances of ε1t and ε2t are 0.031 and 0.192,
respectively. The standard errors of the three parameters in state st = 1 are 0.03,
0.14, and 0.11, and those of state st = 2 are 0.04, 0.13, and 0.14, respectively. The
state transition probabilities are P (st = 2|st−1 = 1) = 0.084(0.060) and P (st =
1|st−1 = 2) = 0.126(0.053), where the number in parentheses is the corresponding
standard error. This model implies that in the second state the unemployment rate xt
has an upward trend with an AR(2) polynomial possessing complex characteristic
roots. This feature of the model is similar to the second regime of the TAR model
in Eq. (4.53). In the first state, the unemployment rate xt has a slightly decreasing
trend with a much weaker autoregressive structure.

Forecasting Performance
A rolling procedure was used by Montgomery et al. (1998) to forecast the unem-
ployment rate xt . The procedure works as follows:

1. Begin with forecast origin T = 83, corresponding to 1968.II, which was used
in the literature to monitor the performance of various econometric models in
forecasting unemployment rate. Estimate the linear, TAR, and MSA models
using the data from 1948.I to the forecast origin (inclusive).

2. Perform 1-quarter to 5-quarter ahead forecasts and compute the forecast errors
of each model. Forecasts of nonlinear models used are computed by using
the parametric bootstrap method of Section 4.4.

3. Advance the forecast origin by 1 and repeat the estimation and forecasting
processes until all data are employed.

4. Use MSE and mean forecast error to compare performance of the models.

Table 4.4 shows the relative MSE of forecasts and mean forecast errors for the
linear model in Eq. (4.52), the TAR model in Eq. (4.53), and the MSA model in
Eq. (4.54), using the linear model as a benchmark. The comparisons are based on
overall performance as well as the status of the U.S. economy at the forecast origin.
From the table, we make the following observations:

1. For the overall comparison, the TAR model and the linear model are very
close in MSE, but the TAR model has smaller biases. Yet the MSA model
has the highest MSE and smallest biases.
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TABLE 4.4 Out-of-Sample Forecast Comparison among Linear, TAR, and MSA
Models for the U.S. Quarterly Unemployment Ratea

Relative MSE of Forecast

Model 1-step 2-step 3-step 4-step 5-step

Overall Comparison

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.00 1.04 0.99 0.98 1.03
MSA 1.19 1.39 1.40 1.45 1.61
MSE 0.08 0.31 0.67 1.13 1.54

Forecast Origins in Economic Contractions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 0.85 0.91 0.83 0.72 0.72
MSA 0.97 1.03 0.96 0.86 1.02
MSE 0.22 0.97 2.14 3.38 3.46

Forecast Origins in Economic Expansions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.06 1.13 1.10 1.15 1.17
MSA 1.31 1.64 1.73 1.84 1.87
MSE 0.06 0.21 0.45 0.78 1.24

Mean of Forecast Errors

Model 1-step 2-step 3-step 4-step 5-step

Overall Comparison

Linear 0.03 0.09 0.17 0.25 0.33
TAR −0.10 −0.02 −0.03 −0.03 −0.01
MSA 0.00 −0.02 −0.04 −0.07 −0.12

Forecast Origins in Economic Contractions

Linear 0.31 0.68 1.08 1.41 1.38
TAR 0.24 0.56 0.87 1.01 0.86
MSA 0.20 0.41 0.57 0.52 0.14

Forecast Origins in Economic Expansions

Linear −0.01 0.00 0.03 0.08 0.17
TAR −0.05 −0.11 −0.17 −0.19 −0.14
MSA −0.03 −0.08 −0.13 −0.17 −0.16

aThe starting forecast origin is 1968.II, where the row marked by MSE shows the MSE of the benchmark
linear model.
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2. For forecast origins in economic contractions, the TAR model shows
improvements over the linear model both in MSE and bias. The MSA model
also shows some improvement over the linear model, but the improvement
is not as large as that of the TAR model.

3. For forecast origins in economic expansions, the linear model outperforms
both nonlinear models.

The results suggest that the contributions of nonlinear models over linear ones in
forecasting the U.S. quarterly unemployment rate are mainly in the periods when
the U.S. economy is in contraction. This is not surprising because, as mentioned
before, it is during the economic contractions that government interventions and
industrial restructuring are most likely to occur. These external events could intro-
duce nonlinearity in the U.S. unemployment rate. Intuitively, such improvements
are important because it is during the contractions that people pay more attention
to economic forecasts.

APPENDIX A: SOME RATS PROGRAMS FOR NONLINEAR
VOLATILITY MODELS

Program Used to Estimate an AR(2)–TAR–GARCH(1,1) Model for Daily Log
Returns of IBM Stock
Assume that the data file is d-ibmln03.txt.

all 0 10446:1
open data d-ibmln03.txt
data(org=obs) / rt
set h = 0.0
nonlin mu p2 a0 a1 b1 a2 b2
frml at = rt(t)-mu-p2*rt(t-2)
frml gvar = a0 + a1*at(t-1)**2+b1*h(t-1) $

+ % if(at(t-1) < 0,a2*at(t-1)**2+b2*h(t-1),0)
frml garchln = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
smpl 4 10446
compute mu = 0.03, p2 = -0.03
compute a0 = 0.07, a1 = 0.05, a2 = 0.05, b1 = 0.85, b2 = 0.05
maximize(method=simplex,iterations=10) garchln
smpl 4 10446
maximize(method=bhhh,recursive,iterations=150) garchln
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq
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Program Used to Estimate a Smooth TAR Model for the Monthly Simple
Returns of 3M Stock
The data file is m-3m4608.txt.

all 0 755:1
open data m-3m4608.txt
data(org=obs) / date mmm
set h = 0.0
nonlin a0 a1 a2 a00 a11 mu
frml at = mmm(t) - mu
frml var1 = a0+a1*at(t-1)**2+a2*at(t-2)**2
frml var2 = a00+a11*at(t-1)**2
frml gvar = var1(t)+var2(t)/(1.0+exp(-at(t-1)*1000.0))
frml garchlog = -0.5*log(h(t)=gvar(t))-0.5*at(t)**2/h(t)
smpl 3 623
compute a0 = .01, a1 = 0.2, a2 = 0.1
compute a00 = .01, a11 = -.2, mu = 0.02
maximize(method=bhhh,recursive,iterations=150) garchlog
set fv = gvar(t)
set resid = at(t)/sqrt(fv(t))
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

APPENDIX B: R AND S-PLUS COMMANDS FOR NEURAL NETWORK

The following commands are used in R or S-Plus to build the 3–2–1 skip-layer
feed-forward network of Example 4.7. A line starting with # denotes a comment.
The data file is m-ibmln.txt. The library used is nnet.

# load the data into R or S-Plus workspace.
x_scan(file=’m-ibmln.txt’)
# select the output: r(t)
y_x[4:864]
# obtain the input variables: r(t-1), r(t-2), and r(t-3)
ibm.x_cbind(x[3:863]_,x[2:862],x[1:861])
# build a 3-2-1 network with skip layer connections
# and linear output.
ibm.nn_nnet(ibm.x,y,size=2,linout=T,skip=T,maxit=10000,
decay=1e-2,reltol=1e-7,abstol=1e-7,range=1.0)
# print the summary results of the network
summary(ibm.nn)
# compute \& print the residual sum of squares.
sse_sum((y-predict(ibm.nn,ibm.x))^2)
print(sse)
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#eigen(nnet.Hess(ibm.nn,ibm.x,y),T)$values
# setup the input variables in the forecasting subsample
ibm.p_cbind(x[864:887],x[863:886],x[862:885])
# compute the forecasts
yh_predict(ibm.nn,ibm.p)
# The observed returns in the forecasting subsample
yo_x[865:888]
# compute \& print the sum of squares of forecast errors
ssfe_sum((yo-yh)^2)
print(ssfe)
# quit S-Plus or R
q()

EXERCISES

4.1. Consider the daily simple returns of Johnson & Johnson stock from January
1998 to December 2008. The data are in the file d-jnj9808.txt or can be
obtained from CRSP. Convert the returns into log returns in percentage. (a)
Build a GJR model for the log return series. Write down the fitted model. Is
the leverage effect significant at the 1% level? (b) Build a general threshold
volatility model for the log return series. (c) Compare the two TGARCH
models.

4.2. Consider the monthly simple returns of General Electric (GE) stock from
January 1926 to December 2008 with 996 observations. You may download
the data from CRSP or use the file m-ge2608.txt on the Web. Convert
the returns into log returns in percentages. Build a TGARCH model with
GED innovations for the series using at−1 as the threshold variable with zero
threshold, where at−1 is the shock at time t − 1. Write down the fitted model.
Is the leverage effect significant at the 5% level?

4.3. Suppose that the monthly log returns of GE stock, measured in percentages,
follow a smooth threshold IGARCH(1,1) model. For the sampling period from
January 1926 to December 2008, the fitted model is

rt = 1.14 + at , at = σtεt

σ 2
t = 0.119a2

t−1 + 0.881σ 2
t−1 + 1

1 + exp(−10at−1)
(4.276 − 0.084σ 2

t−1),

where all of the estimates are highly significant, the coefficient 10 in the
exponent is fixed a priori to simplify the estimation, and {εt } are iid N(0, 1).
Assume that a996 = −5.06 and σ 2

996 = 50.5. What is the 1-step-ahead volatility
forecast σ̂996(1)? Suppose instead that a996 = 5.06. What is the 1-step-ahead
volatility forecast σ̂996(1)?
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4.4. Suppose that the monthly log returns, in percentages, of a stock follow the
following Markov switching model:

rt = 1.25 + at , at = σtεt ,

σ 2
t =

{
0.10a2

t−1 + 0.93σ 2
t−1 if st = 1,

4.24 + 0.10a2
t−1 + 0.78σ 2

t−1 if st = 2,

where the transition probabilities are

P (st = 2|st−1 = 1) = 0.15, P (st = 1|st−1 = 2) = 0.05.

Suppose that a100 = 6.0, σ 2
100 = 50.0, and s100 = 2 with probability 1.0. What

is the 1-step-ahead volatility forecast at the forecast origin t = 100? Also, if
the probability of s100 = 2 is reduced to 0.8, what is the 1-step-ahead volatility
forecast at the forecast origin t = 100?

4.5. Consider the monthly simple returns of GE stock from January 1926 to Decem-
ber 2008. Use the last three years of data for forecasting evaluation.

(a) Using lagged returns rt−1, rt−2, rt−3 as input, build a 3–2–1 feed-forward
network to forecast 1-step-ahead returns. Calculate the mean squared error
of forecasts.

(b) Again, use lagged returns rt−1, rt−2, rt−3 and their signs (directions) to
build a 6–5–1 feed-forward network to forecast the 1-step ahead direction
of GE stock price movement with 1 denoting upward movement. Calculate
the mean squared error of forecasts.
Note: Let rtn denote a time series in R or S-Plus. To create a direction
variable for rtn, use the command

drtn = ifelse(rtn > 0, 1, 0)

4.6. Because of the existence of inverted yield curves in the term structure of
interest rates, the spread of interest rates should be nonlinear. To verify this,
consider the weekly U.S. interest rates of (a) Treasury 1-year constant maturity
rate and (b) Treasury 3-year constant maturity rate. As in Chapter 2, denote
the two interest rates by r1t and r3t , respectively, and the data span is from
January 5, 1962, to April 10, 2009. The data are in files w-gs3yr.txt and
w-gs1yr.txt on the Web and can be obtained from the Federal Reserve
Bank of St. Louis.

(a) Let st = r3t − r1t be the spread in log interest rates. Is {st } linear? Perform
some nonlinearity tests and draw the conclusion using the 5% significance
level.
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(b) Let s∗
t = (r3t − r3,t−1) − (r1t − r1,t−1) = st − st−1 be the change in inter-

est rate spread. Is {s∗
t } linear? Perform some nonlinearity tests and draw

the conclusion using the 5% significance level.

(c) Build a threshold model for the st series and check the fitted model.

(d) Build a threshold model for the s∗
t series and check the fitted model.
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C H A P T E R 5

High-Frequency Data Analysis
and Market Microstructure

High-frequency data are observations taken at fine time intervals. In finance, they
often mean observations taken daily or at a finer time scale. These data have
become available primarily due to advances in data acquisition and processing
techniques, and they have attracted much attention because they are important in
empirical study of market microstructure and realized volatility. The ultimate high-
frequency data in finance are the transaction-by-transaction or trade-by-trade data in
security markets. Here time is often measured in seconds. The Trades and Quotes
(TAQ) database of the New York Stock Exchange (NYSE) contains all equity
transactions reported on the Consolidated Tape from 1992 to the present, which
includes transactions on the NYSE, AMEX, NASDAQ, and the regional exchanges.
The Berkeley Options Data Base provides similar data for options transactions
from August 1976 to December 1996. More high-frequency options data are also
available; see the website of Chicago Board Options Exchange. Transactions data
for many other securities and markets, both domestic and foreign, are continuously
collected and processed. Wood (2000) provides some historical perspective of high-
frequency financial study.

High-frequency financial data are important in studying a variety of issues related
to the trading process and market microstructure. They can be used to compare the
efficiency of different trading systems in price discovery (e.g., the open out-cry
system of the NYSE and the computer trading system of NASDAQ). They can
also be used to study the dynamics of bid-and-ask quotes of a particular stock (e.g.,
Hasbrouck, 1999; Zhang, Russell, and Tsay, 2008). In an order-driven stock market
(e.g., the Taiwan Stock Exchange), high-frequency data can be used to study the
order dynamics and, more interesting, to investigate the question of “who provides
the market liquidity.” Cho, Russell, Tiao, and Tsay (2003) use intraday 5-minute
returns of more than 340 stocks traded on the Taiwan Stock Exchange to study the
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impact of daily stock price limits and find significant evidence of magnet effects
toward the price ceiling.

However, high-frequency data have some unique characteristics that do not
appear in lower frequencies. Analysis of these data thus introduces new challenges
to financial economists and statisticians. In this chapter, we study these special
characteristics, consider methods for analyzing high-frequency data, and discuss
implications of the results obtained. In particular, we discuss nonsynchronous
trading, bid–ask spread, duration models, price movements, and bivariate mod-
els for price changes and time durations between transactions associated with price
changes. The models discussed are also applicable to other scientific areas such as
telecommunications and environmental studies.

5.1 NONSYNCHRONOUS TRADING

We begin with nonsynchronous trading. Stock tradings such as those on the NYSE
do not occur in a synchronous manner; different stocks have different trading
frequencies, and even for a single stock the trading intensity varies from hour to
hour and from day to day. Yet we often analyze a return series in a fixed time
interval such as daily, weekly, or monthly. For daily series, the price of a stock is
its closing price, which is the last transaction price of the stock in a trading day. The
actual time of the last transaction of the stock varies from day to day. As such we
incorrectly assume daily returns as an equally spaced time series with a 24-hour
interval. It turns out that such an assumption can lead to erroneous conclusions
about the predictability of stock returns even if the true return series are serially
independent.

For daily stock returns, nonsynchronous trading can introduce (a) lag-1 cross
correlation between stock returns, (b) lag-1 serial correlation in a portfolio return,
and (c) in some situations negative serial correlations of the return series of a single
stock. Consider stocks A and B. Assume that the two stocks are independent, and
stock A is traded more frequently than stock B. For special news affecting the
market that arrives near the closing hour on one day, stock A is more likely than
B to show the effect of the news on the same day simply because A is traded
more frequently. The effect of the news on B will eventually appear, but it may be
delayed until the following trading day. If this situation indeed happens, return of
stock A appears to lead that of stock B. Consequently, the return series may show
a significant lag-1 cross correlation from A to B even though the two stocks are
independent. For a portfolio that holds stocks A and B, the prior cross correlation
would become a significant lag-1 serial correlation.

In a more complicated manner, nonsynchronous trading can also induce erro-
neous negative serial correlations for a single stock. There are several models
available in the literature to study this phenomenon; see Campbell, Lo, and MacKin-
lay (1997) and the references therein. Here we adopt a simplified version of the
model proposed in Lo and MacKinlay (1990). Let rt be the continuously com-
pounded return of a security at the time index t . For simplicity, assume that {rt }
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is a sequence of independent and identically distributed random variables with
mean E(rt ) = µ and variance Var(rt ) = σ 2. For each time period, the probabil-
ity that the security is not traded is π , which is time invariant and independent
of rt . Let rot be the observed return. When there is no trade at time index t , we
have rot = 0 because there is no information available. Yet when there is a trade at
time index t , we define rot as the cumulative return from the previous trade (i.e.,
rot = rt + rt−1 + · · · + rt−kt , where kt is the largest nonnegative integer such that
no trade occurred in the periods t − kt , t − kt + 1, . . . , t − 1). Mathematically, the
relationship between rt and rot is

rot =



0 with probability π

rt with probability (1 − π)2

rt + rt−1 with probability (1 − π)2π

rt + rt−1 + rt−2 with probability (1 − π)2π2

...∑k
i=0 rt−i with probability (1 − π)2πk

...

(5.1)

These probabilities are easy to understand. For example, rot = rt if and only if there
are trades at both t and t − 1, rot = rt + rt−1 if and only if there are trades at t

and t − 2, but no trade at t − 1, and rot = rt + rt−1 + rt−2 if and only if there are
trades at t and t − 3, but no trades at t − 1 and t − 2, and so on. As expected, the
total probability is 1 given by

π + (1 − π)2(1 + π + π2 + · · ·) = π + (1 − π)2 1

1 − π
= π + 1 − π = 1.

We are ready to consider the moment equations of the observed return series
{rot }. First, the expectation of rot is

E(rot ) = (1 − π)2E(rt ) + (1 − π)2πE(rt + rt−1) + · · ·
= (1 − π)2µ + (1 − π)2π2µ + (1 − π)2π23µ + · · ·
= (1 − π)2µ(1 + 2π + 3π2 + 4π3 + · · ·)

= (1 − π)2µ
1

(1 − π)2
= µ. (5.2)

In the prior derivation, we use the result 1 + 2π + 3π2 + 4π3 + · · · = 1/(1 − π)2.
Next, for the variance of rot , we use Var(rot ) = E[(rot )

2] − [E(rot )]
2 and

E(rot )
2 = (1 − π)2E[(rt )

2] + (1 − π)2πE[(rt + rt−1)
2] + · · ·

= (1 − π)2[(σ 2 + µ2) + π(2σ 2 + 4µ2) + π2(3σ 2 + 9µ2) + · · ·] (5.3)



234 high-frequency data analysis and market microstructure

= (1 − π)2[σ 2(1 + 2π + 3π2 + · · ·) + µ2(1 + 4π + 9π2 + · · ·)] (5.4)

= σ 2 + µ2
[

2

1 − π
− 1

]
. (5.5)

In Eq. (5.3), we use

E

(
k∑

i=0

rt−i

)2

= Var

(
k∑

i=0

rt−i

)
+

[
E

(
k∑

i=0

rt−i

)]2

= (k + 1)σ 2 + [(k + 1)µ]2

under the serial independence assumption of rt . Using techniques similar to that
of Eq. (5.2), we can show that the first term of Eq. (5.4) reduces to σ 2. For the
second term of Eq. (5.4), we use the identity

1 + 4π + 9π2 + 16π3 + · · · = 2

(1 − π)3
− 1

(1 − π)2
,

which can be obtained as follows. Let

H = 1 + 4π + 9π2 + 16π3 + · · · and G = 1 + 3π + 5π2 + 7π3 + · · · .

Then (1 − π)H = G and

(1 − π)G = 1 + 2π + 2π2 + 2π3 + · · ·

= 2(1 + π + π2 + · · ·) − 1 = 2

1 − π
− 1.

Consequently, from Eqs. (5.2) and (5.5), we have

Var(rot ) = σ 2 + µ2
(

2

1 − π
− 1

)
− µ2 = σ 2 + 2πµ2

1 − π
. (5.6)

Consider next the lag-1 autocovariance of {rot }. Here we use Cov(rot , r
o
t−1) =

E(rot r
o
t−1) − E(r0

t )E(rot−1) = E(rot r
o
t−1) − µ2. The question then reduces to finding

E(rot r
o
t−1). Notice that rot r

o
t−1 is zero if there is no trade at t , no trade at t − 1, or

no trade at both t and t − 1. Therefore, we have

rot r
o
t−1 =



0 with probability 2π − π2

rt rt−1 with probability (1 − π)3

rt (rt−1 + rt−2) with probability (1 − π)3π

rt (rt−1 + rt−2 + rt−3) with probability (1 − π)3π2

...

rt (
∑k

i=1 rt−i ) with probability (1 − π)3πk−1

...

(5.7)
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Again the total probability is unity. To understand the prior result, notice that
rot r

o
t−1 = rt rt−1 if and only if there are three consecutive trades at t − 2, t − 1, and

t . Using Eq. (5.7) and the fact that E(rt rt−j ) = E(rt )E(rt−j ) = µ2 for j > 0, we
have

E(rot r
o
t−1)

= (1 − π)3

{
E(rt rt−1) + πE[rt (rt−1 + rt−2)] + π2E

[
rt

(
3∑

i=1

rt−i

)]
+ · · ·

}
= (1 − π)3µ2(1 + 2π + 3π2 + · · ·) = (1 − π)µ2.

The lag-1 autocovariance of {rot } is then

Cov(rot , r
o
t−1) = −πµ2. (5.8)

Provided that µ is not zero, the nonsynchronous trading induces a negative lag-1
autocorrelation in rot given by

ρ1(r
o
t ) = −(1 − π)πµ2

(1 − π)σ 2 + 2πµ2
.

In general, we can extend the prior result and show that

Cov(rot , r
o
t−j ) = −µ2πj , j ≥ 1.

The magnitude of the lag-1 ACF depends on the choices of µ, π , and σ and can
be substantial. Thus, when µ �= 0, the nonsynchronous trading induces negative
autocorrelations in an observed security return series.

The previous discussion can be generalized to the return series of a portfolio
that consists of N securities; see Campbell et al. (1997, Chapter 3). In the time
series literature, effects of nonsynchronous trading on the return of a single security
are equivalent to that of random temporal aggregation on a time series, with the
trading probability π governing the mechanism of aggregation.

5.2 BID–ASK SPREAD

In some stock exchanges (e.g., NYSE), market makers play an important role in
facilitating trades. They provide market liquidity by standing ready to buy or sell
whenever the public wishes to buy or sell. By market liquidity, we mean the ability
to buy or sell significant quantities of a security quickly, anonymously, and with
little price impact. In return for providing liquidity, market makers are granted
monopoly rights by the exchange to post different prices for purchases and sales of
a security. They buy at the bid price Pb and sell at a higher ask price Pa . (For the
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public, Pb is the sale price and Pa is the purchase price.) The difference Pa − Pb is
call the bid–ask spread , which is the primary source of compensation for market
makers. Typically, the bid–ask spread is small—namely, one or two cents.

The existence of a bid–ask spread, although small in magnitude, has several
important consequences in time series properties of asset returns. We briefly discuss
the bid–ask bounce—namely, the bid–ask spread introduces negative lag-1 serial
correlation in an asset return. Consider the simple model of Roll (1984). The
observed market price Pt of an asset is assumed to satisfy

Pt = P ∗
t + It

S

2
, (5.9)

where S = Pa − Pb is the bid–ask spread, P ∗
t is the time-t fundamental value of

the asset in a frictionless market, and {It } is a sequence of independent binary
random variables with equal probabilities (i.e., It = 1 with probability 0.5 and
= −1 with probability 0.5). The It can be interpreted as an order-type indicator,
with 1 signifying buyer-initiated transaction and −1 seller-initiated transaction.
Alternatively, the model can be written as

Pt = P ∗
t +

{
+S/2 with probability 0.5,

−S/2 with probability 0.5.

If there is no change in P ∗
t , then the observed process of price changes is

Pt = (It − It−1)
S

2
. (5.10)

Under the assumption of It in Eq. (5.9), E(It ) = 0 and Var(It ) = 1, and we have
E(Pt) = 0 and

Var(Pt ) = S2/2, (5.11)

Cov(Pt ,Pt−1) = −S2/4, (5.12)

Cov(Pt ,Pt−j ) = 0, j > 1. (5.13)

Therefore, the autocorrelation function of Pt is

ρj (Pt ) =
{

−0.5 if j = 1,

0 if j > 1.
(5.14)

The bid–ask spread thus introduces a negative lag-1 serial correlation in the series
of observed price changes. This is referred to as the bid–ask bounce in the finance
literature. Intuitively, the bounce can be seen as follows. Assume that the funda-
mental price P ∗

t is equal to (Pa + Pb)/2. Then Pt assumes the value Pa or Pb. If
the previously observed price is Pa (the higher value), then the current observed
price is either unchanged or lower at Pb. Thus, Pt is either 0 or −S. However, if
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the previous observed price is Pb (the lower value), then Pt is either 0 or S. The
negative lag-1 correlation in Pt becomes apparent. The bid–ask spread does not
introduce any serial correlation beyond lag 1, however.

A more realistic formulation is to assume that P ∗
t follows a random walk so that

P ∗
t = P ∗

t − P ∗
t−1 = εt , which forms a sequence of independent and identically

distributed random variables with mean zero and variance σ 2. In addition, {εt } is
independent of {It }. In this case, Var(Pt ) = σ 2 + S2/2, but Cov(Pt,Pt−j )
remains unchanged. Therefore,

ρ1(Pt) = −S2/4

S2/2 + σ 2
≤ 0.

The magnitude of the lag-1 autocorrelation of Pt is reduced, but the negative
effect remains when S = Pa − Pb > 0. In finance, it might be of interest to study
the components of the bid–ask spread. Interested readers are referred to Campbell
et al. (1997) and the references therein.

The effect of bid–ask spread continues to exist in portfolio returns and in mul-
tivariate financial time series. Consider the bivariate case. Denote the bivariate
order-type indicator by It = (I1t , I2t )

′, where I1t is for the first security and I2t

for the second security. If I1t and I2t are contemporaneously positively correlated,
then the bid–ask spreads can introduce negative lag-1 cross correlations.

5.3 EMPIRICAL CHARACTERISTICS OF TRANSACTIONS DATA

Let ti be the calendar time, measured in seconds from midnight, at which the ith
transaction of an asset takes place. Associated with the transaction are several vari-
ables such as the transaction price, the transaction volume, the prevailing bid and
ask quotes, and so on. The collection of ti and the associated measurements are
referred to as the transactions data . These data have several important character-
istics that do not exist when the observations are aggregated over time. Some of
the characteristics are given next.

1. Unequally Spaced Time Intervals. Transactions such as stock tradings on an
exchange do not occur at equally spaced time intervals. As such, the observed
transaction prices of an asset do not form an equally spaced time series. The
time duration between trades becomes important and might contain useful
information about market microstructure (e.g., trading intensity).

2. Discrete-Valued Prices. The price change of an asset from one transaction
to the next only occurred in multiples of tick size before January 29, 2001.
On the NYSE, the tick size was one-eighth of a dollar before June 24, 1997
and was one-sixteenth of a dollar before January 29, 2001. Therefore, the
price was a discrete-valued variable in transactions data. Although all equity
markets in the United States now use the decimal system, the price change in
consecutive trades tends to occur in multiples of one cent and can be treated
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approximately as a discrete-valued variable. In some markets, price change
may also be subject to limit constraints set by regulators.

3. Existence of a Daily Periodic or Diurnal Pattern. Under the normal trading
conditions, transaction activity can exhibit a periodic pattern. For instance,
on the NYSE, transactions are “heavier” at the beginning and closing of
the trading hours and “thinner” during lunch hour, resulting in a U-shaped
transaction intensity. Consequently, time durations between transactions also
exhibit a daily cyclical pattern.

4. Multiple Transactions within a Single Second. It is possible that multiple
transactions, even with different prices, occur at the same time. This is partly
due to the fact that time is measured in seconds, which may be too long a
time scale in periods of heavy trading.

To demonstrate these characteristics, we consider first the IBM transactions data
from November 1, 1990, to January 31, 1991. These data are from the Trades,
Orders Reports, and Quotes (TORQ) data set; see Hasbrouck (1992). There are
63 trading days and 60,328 transactions. To simplify the discussion, we ignore the
price changes between trading days and focus on the transactions that occurred in
the normal trading hours from 9:30 am to 4:00 pm Eastern time. It is well known
that overnight stock returns differ substantially from intraday returns; see Stoll
and Whaley (1990) and the references therein. Table 5.1 gives the frequencies in
percentages of price change measured in the tick size of $ 1

8 = $0.125. From the
table, we make the following observations:

1. About two-thirds of the intraday transactions were without price change.

2. The price changed in one tick approximately 29% of the intraday transactions.

3. Only 2.6% of the transactions were associated with two-tick price changes.

4. Only about 1.3% of the transactions resulted in price changes of three ticks
or more.

5. The distribution of positive and negative price changes was approximately
symmetric.

Consider next the number of transactions in a 5-minute time interval. Denote
the series by xt . That is, x1 is the number of IBM transactions from 9:30 am to
9:35 am on November 1, 1990, Eastern time; x2 is the number of transactions from
9:35 am to 9:40 am; and so on. The time gaps between trading days are ignored.
Figure 5.1(a) shows the time plot of xt , and Figure 5.1(b) shows the sample ACF

TABLE 5.1 Frequencies of Price Change in Multiples of Tick Size for IBM Stock
from November 1, 1990, to January 31, 1991

Number (tick) ≤ −3 −2 −1 0 1 2 ≥3
Percentage 0.66 1.33 14.53 67.06 14.53 1.27 0.63
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Figure 5.1 IBM intraday transactions data from 11/01/90 to 1/31/91: (a) number of transactions in
5-minute time intervals and (b) sample ACF of series in part (a).

of xt for lags 1–260. Of particular interest is the cyclical pattern of the ACF with
a periodicity of 78, which is the number of 5-minute intervals in a trading day.
The number of transactions thus exhibits a daily pattern. To further illustrate the
daily trading pattern, Figure 5.2 shows the average number of transactions within
5-minute time intervals over the 63 days. There are 78 such averages. The plot
exhibits a “smiling” or U shape, indicating heavier trading at the opening and
closing of the market and thinner trading during the lunch hours.

Since we focus on transactions that occurred during normal trading hours of
a trading day, there are 59,838 time intervals in the data. These intervals are
called the intraday durations between trades. For IBM stock, there were 6531
zero time intervals. That is, during the normal trading hours of the 63 trading
days from November 1, 1990, to January 31, 1991, multiple transactions in a
second occurred 6531 times, which is about 10.91%. Among these multiple trans-
actions, 1002 of them had different prices, which is about 1.67% of the total
number of intraday transactions. Therefore, multiple transactions (i.e., zero dura-
tions) may become an issue in statistical modeling of the time durations between
trades.

Table 5.2 provides a two-way classification of price movements. Here price
movements are classified into “up,” “unchanged,” and “down.” We denote them
by +, 0, and −, respectively. The table shows the price movements between two
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Figure 5.2 Time plot of average number of transactions in 5-minute time intervals. There are 78
observations, averaging over 63 trading days from 11/01/90 to 1/31/91 for IBM stock.

TABLE 5.2 Two-Way Classification of Price Movements in Consecutive Intraday
Trades for IBM Stocka

ith Trade

(i − 1)th trade + 0 − Margin

+ 441 5498 3948 9887
0 4867 29779 5473 40119
− 4580 4841 410 9831
Margin 9888 40118 9831 59837

aThe price movements are classified into “up,” “unchanged,” and “down.” The data span is from
November 1, 1990, to January 31, 1991.

consecutive trades [i.e., from the (i − 1)th to the ith transaction] in the sample.
From the table, trade-by-trade data show that:

1. Consecutive price increases or decreases are relatively rare, which are about
441/59837 = 0.74% and 410/59837 = 0.69%, respectively.

2. There is a slight edge to move from up to unchanged rather than to down;
see row 1 of the table.

3. There is a high tendency for the price to remain unchanged.
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4. The probabilities of moving from down to up or unchanged are about the
same; see row 3.

The first observation mentioned before is a clear demonstration of bid–ask
bounce, showing price reversals in intraday transactions data. To confirm this phe-
nomenon, we consider a directional series Di for price movements, where Di

assumes the value +1, 0, and −1 for up, unchanged, and down price movement,
respectively, for the ith transaction. The ACF of {Di} has a single spike at lag 1
with value −0.389, which is highly significant for a sample size of 59,837 and
confirms the price reversal in consecutive trades.

As a second illustration, we consider the transactions data of IBM stock in
December 1999 obtained from the TAQ database. The normal trading hours are
from 9:30 am to 4:00 pm Eastern time, except for December 31 when the market
closed at 1:00 pm. Comparing with the 1990–1991 data, two important changes
have occurred. First, the number of intraday tradings has increased sixfold. There
were 134,120 intraday tradings in December 1999 alone. The increased trading
intensity also increased the chance of multiple transactions within a second. The
percentage of trades with zero time duration doubled to 22.98%. At the extreme,
there were 42 transactions within a given second that happened twice on December
3, 1999. Second, the tick size of price movement was $ 1

16 = $0.0625 instead of
$ 1

8 . The change in tick size should reduce the bid–ask spread. Figure 5.3 shows the
daily number of transactions in the new sample. Figure 5.4(a) shows the time plot
of time durations between trades, measured in seconds, and Figure 5.4(b) is the
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Figure 5.3 IBM transactions data for December 1999. Box plot shows the number of transactions in
each trading day with after-hours portion denoting number of trades with time stamp after 4:00 PM.
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Figure 5.4 IBM transactions data for December 1999. (a) Time plot of time durations between trades
and (b) time plot of price changes in consecutive trades measured in multiples of tick size of $1/16.
Only data during normal trading hours are included.

time plot of price changes in consecutive intraday trades, measured in multiples
of the tick size of $ 1

16 . As expected, Figures 5.3 and 5.4(a) show clearly the
inverse relationship between the daily number of transactions and the time interval
between trades. Figure 5.4(b) shows two unusual price movements for IBM stock
on December 3, 1999. They were a drop of 63 ticks followed by an immediate
jump of 64 ticks and a drop of 68 ticks followed immediately by a jump of 68 ticks.
Unusual price movements like these occurred infrequently in intraday transactions.

Focusing on trades recorded within regular trading hours, we have 61,149 trades
out of 133,475 with no price change. This is about 45.8% and substantially lower
than that between November 1990 and January 1991. It seems that reducing the
tick size increased the chance of a price change. Table 5.3 gives the percentages of
trades associated with a price change. The price movements remain approximately

TABLE 5.3 Percentages of Intraday Transactions Associated with a Price Change
for IBM Stock Traded in December 1999a

Size 1 2 3 4 5 6 7 >7

Downward Movements
Percentage 18.03 5.80 1.79 0.66 0.25 0.15 0.09 0.32

Upward Movements
Percentage 18.24 5.57 1.79 0.71 0.24 0.17 0.10 0.31
aThe percentage of transactions without price change is 45.8% and the total number of transactions
recorded within regular trading hours is 133,475. The size is measured in multiples of tick size $ 1/16.
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Figure 5.5 Transactions data of Boeing stock on December 1, 2008. (a) Price series over calendar time
measured in seconds from midnight and (b) time plot of price changes in consecutive trades measured
in cents. Only data during normal trading hours are included.

symmetric with respect to zero. Large price movements in intraday tradings are
still relatively rare.

Finally, we consider the transactions data of Boeing stock on December 1,
2008. There are 43,894 transactions within the regular trading hours. Figure 5.5(a)
shows the transaction prices versus the calendar time measured in seconds from
the midnight, and Figure 5.5(b) shows the time plot of price changes. In this
particular instance, the price shows a downward trend within the day, but the
price changes continue to exhibit patterns similar to those before using the decimal
system. Figure 5.6 shows the histogram of the price changes for the Boeing stock.
The histogram shows some distinct characteristics. First, the price changes appear to
be symmetric with respective to zero. Second, the price changes indeed concentrate
on multiples of one cent. Out of the 43,894 transactions, 58.5% have no price
change; see the big spike of the histogram. Details of the summary of price changes
for the Boeing stock are given in Table 5.4. The remaining 4.59% of the price
changes not shown in Table 5.4 are not in multiples of one cent.

Remark. The recordkeeping of high-frequency data is often not as good as
that of observations taken at lower frequencies. Data cleaning becomes a necessity
in high-frequency data analysis. For transactions data, missing observations may
happen in many ways, and the accuracy of the exact transaction time might be
questionable for some trades. For example, recorded trading times may be beyond
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Figure 5.6 Histogram of price changes for Boeing stock on December 1, 2008.

TABLE 5.4 Frequencies of Price Change for Boeing Stock on December 1, 2008

Cents < −3 −3 −2 −1 0 1 2 3 >3
Percentage 1.63 1.05 3.51 12.6 58.5 12.2 3.45 0.94 1.53

4:00 pm Eastern time even before the opening of after-hours tradings. How to handle
these observations deserves a careful study. A proper method of data cleaning
requires a deep understanding of the way in which the market operates. As such,
it is important to specify clearly and precisely the methods used in data cleaning.
These methods must be taken into consideration in making inference. �

Again, let ti be the calendar time, measured in seconds from midnight, when the
ith transaction took place. Let Pti be the transaction price. The price change from
the (i − 1)th to the ith trade is yi ≡ Pti = Pti − Pti−1 and the time duration is
ti = ti − ti−1. Here it is understood that the subscript i in ti and yi denotes the
time sequence of transactions, not the calendar time. In what follows, we consider
models for yi and ti both individually and jointly.

5.4 MODELS FOR PRICE CHANGES

The discreteness and concentration on “no change” make it difficult to model
the intraday price changes. Campbell et al. (1997) discuss several econometric
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models that have been proposed in the literature. Here we mention two models
that have the advantage of employing explanatory variables to study the intraday
price movements. The first model is the ordered probit model used by Hauseman,
Lo, and MacKinlay (1992) to study the price movements in transactions data. The
second model has been considered recently by McCulloch and Tsay (2000) and is
a simplified version of the model proposed by Rydberg and Shephard (2003); see
also Ghysels (2000).

5.4.1 Ordered Probit Model

Let y∗
i be the unobservable price change of the asset under study (i.e., y∗

i = P ∗
ti

−
P ∗
ti−1

), where P ∗
t is the virtual price of the asset at time t . The ordered probit model

assumes that y∗
i is a continuous random variable and follows the model

y∗
i = xiβ + εi, (5.15)

where xi is a p-dimensional row vector of explanatory variables available at
time ti−1, β is a p × 1 parameter vector, E(εi |xi ) = 0, Var(εi |xi) = σ 2

i , and
Cov(εi, εj ) = 0 for i �= j . The conditional variance σ 2

i is assumed to be a positive
function of the explanatory variable wi , that is,

σ 2
i = g(wi ), (5.16)

where g(·) is a positive function. For financial transactions data, wi may contain
the time interval ti − ti−1 and some conditional heteroscedastic variables. Typically,
one also assumes that the conditional distribution of εi given xi and wi is Gaussian.

Suppose that the observed price change yi may assume k possible values. In
theory, k can be infinity, but countable. In practice, k is finite and may involve
combining several categories into a single value. For example, we have k = 7 in
Table 5.1, where the first value “−3 ticks” means that the price change is −3 ticks
or lower. We denote the k possible values as {s1, . . . , sk}. The ordered probit model
postulates the relationship between yi and y∗

i as

yi = sj if αj−1 < y∗
i ≤ αj , j = 1, . . . , k, (5.17)

where αj are real numbers satisfying −∞ = α0 < α1 < · · · < αk−1 < αk = ∞.
Under the assumption of conditional Gaussian distribution, we have

P (yi = sj |xi ,wi ) = P (αj−1 < xiβ + εi ≤ αj |x i ,wi )

=


P (xiβ + εi ≤ α1|xi ,wi ) if j = 1,

P (αj−1 < xiβ + εi ≤ αj |xi ,wi ) if j = 2, . . . , k − 1,

P (αk−1 < xiβ + εi |xi ,wi ) if j = k,
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=



�

[
α1 − xiβ

σi(wi )

]
if j = 1,

�

[
αj − xiβ

σi(wi )

]
− �

[
αj−1 − xiβ

σi(wi )

]
if j = 2, . . . , k − 1,

1 − �

[
αk−1 − xiβ

σi(wi )

]
if j = k,

(5.18)

where �(x) is the cumulative distribution function of the standard normal random
variable evaluated at x, and we write σi(wi ) to denote that σ 2

i is a positive function
of wi . From the definition, an ordered probit model is driven by an unobservable
continuous random variable. The observed values, which have a natural ordering,
can be regarded as categories representing the underlying process.

The ordered probit model contains parameters β, αi (i = 1, . . . , k − 1), and
those in the conditional variance function σi(wi ) in Eq. (5.16). These parame-
ters can be estimated by the maximum-likelihood or Markov chain Monte Carlo
methods.

Example 5.1. Hauseman et al. (1992) apply the ordered probit model to
the 1988 transactions data of more than 100 stocks. Here we only report their
result for IBM. There are 206,794 trades. The sample mean (standard deviation)
of price change yi , time duration ti , and bid–ask spread are −0.0010(0.753),
27.21(34.13), and 1.9470(1.4625), respectively. The bid–ask spread is measured
in ticks. The model used has nine categories for price movement, and the functional
specifications are

xiβ = β1 t∗i +
3∑

v=1

βv+1yi−v +
3∑

v=1

βv+4SP5i−v +
3∑

v=1

βv+7IBSi−v

+
3∑

v=1

βv+10[Tλ(Vi−v) × IBSi−v], (5.19)

σ 2
i (wi ) = 1.0 + γ 2

1 t∗i + γ 2
2 ABi−1, (5.20)

where Tλ(V ) = (V λ − 1)/λ is the Box–Cox (1964) transformation of V with λ ∈
[0, 1] and the explanatory variables are defined by the following:

• t∗i = (ti − ti−1)/100 is a rescaled time duration between the (i − 1)th and
ith trades with time measured in seconds.

• ABi−1 is the bid–ask spread prevailing at time ti−1 in ticks.
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• yi−v (v = 1, 2, 3) is the lagged value of price change at ti−v in ticks. With k

= 9, the possible values of price changes are {−4,−3,−2,−1, 0, 1, 2, 3, 4}
in ticks.

• Vi−v (v = 1, 2, 3) is the lagged value of dollar volume at the (i − v)th trans-
action, defined as the price of the (i − v)th transaction in dollars times the
number of shares traded (denominated in hundreds of shares). That is, the
dollar volume is in hundreds of dollars.

• SP5i−v (v = 1, 2, 3) is the 5-minute continuously compounded returns of the
Standard and Poor’s 500 index futures price for the contract maturing in the
closest month beyond the month in which transaction (i − v) occurred, where
the return is computed with the futures price recorded 1 minute before the
nearest round minute prior to ti−v and the price recorded 5 minutes before this.

• IBSi−v (v = 1, 2, 3) is an indicator variable defined by

IBSi−v =


1 if Pi−v >(P a

i−v + P b
i−v)/2,

0 if Pi−v = (P a
i−v + P b

i−v)/2,

−1 if Pi−v < (P a
i−v + P b

i−v)/2,

where P a
j and P b

j are the ask and bid price at time tj .

The parameter estimates and their t ratios are given in Table 5.5. All the t ratios
are large except one, indicating that the estimates are highly significant. Such high
t ratios are not surprising as the sample size is large. For the heavily traded IBM
stock, the estimation results suggest the following conclusions:

1. The boundary partitions are not equally spaced but are almost symmetric
with respect to zero.

TABLE 5.5 Parameter Estimates of Ordered Probit Model in Eqs. (5.19) and (5.20)
for the 1988 Transaction Data of IBM, Where t Denotes the t Ratio

Boundary Partitions of the Probit Model

Parameter α1 α2 α3 α4 α5 α6 α7 α8

Estimate −4.67 −4.16 −3.11 −1.34 1.33 3.13 4.21 4.73
t −145.7 −157.8 −171.6 −155.5 154.9 167.8 152.2 138.9

Equation Parameters of the Probit Model

Parameter γ1 γ2 β1 : t∗i β2 : y−1 β3 β4 β5 β6

Estimate 0.40 0.52 −0.12 −1.01 −0.53 −0.21 1.12 −0.26
t 15.6 71.1 −11.4 −135.6 −85.0 −47.2 54.2 −12.1

Parameter β7 β8 β9: β10 β11 β12 β13

Estimate 0.01 −1.14 −0.37 −0.17 0.12 0.05 0.02
t 0.26 −63.6 −21.6 −10.3 47.4 18.6 7.7

Source: Reprinted with permission of Elsevier from Journal of Financial Economics (1992, Vol. 31,
p. 345)
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2. The transaction duration ti affects both the conditional mean and condi-
tional variance of yi in Eqs. (5.19) and (5.20).

3. The coefficients of lagged price changes are negative and highly significant,
indicating price reversals .

4. As expected, the bid–ask spread at time ti−1 significantly affects the condi-
tional variance.

5.4.2 Decomposition Model

An alternative approach to modeling price change is to decompose it into three
components and use conditional specifications for the components; see Rydberg
and Shephard (2003). The three components are an indicator for price change, the
direction of price movement if there is a change, and the size of price change if a
change occurs. Specifically, the price change at the ith transaction can be written as

yi ≡ Pti − Pti−1 = AiDiSi, (5.21)

where Ai is a binary variable defined as

Ai =
{

1 if there is a price change at the ith trade,

0 if price remains the same at the ith trade,
(5.22)

Di is also a discrete variable signifying the direction of the price change if a change
occurs, that is,

Di |(Ai = 1) =
{

1 if price increases at the ith trade,
−1 if price drops at the ith trade,

(5.23)

where Di |(Ai = 1) means that Di is defined under the condition of Ai = 1, and Si is
the size of the price change in ticks if there is a change at the ith trade and Si = 0
if there is no price change at the ith trade. When there is a price change, Si is a
positive integer-valued random variable.

Note that Di is not needed when Ai = 0, and there is a natural ordering in the
decomposition. Di is well defined only when Ai = 1 and Si is meaningful when
Ai = 1 and Di is given. Model specification under the decomposition makes use
of the ordering.

Let Fi be the information set available at the ith transaction. Examples of
elements in Fi are ti−j , Ai−j , Di−j , and Si−j for j ≥ 0. The evolution of price
change under model (5.21) can then be partitioned as

P (yi |Fi−1) = P (AiDiSi |Fi−1)

= P (Si |Di,Ai, Fi−1)P (Di |Ai, Fi−1)P (Ai |Fi−1). (5.24)
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Since Ai is a binary variable, it suffices to consider the evolution of the probability
pi = P (Ai = 1) over time. We assume that

ln

(
pi

1 − pi

)
= xiβ or pi = exiβ

1 + exiβ
, (5.25)

where xi is a finite-dimensional vector consisting of elements of Fi−1 and β is a
parameter vector. Conditioned on Ai = 1, Di is also a binary variable, and we use
the following model for δi = P (Di = 1|Ai = 1):

ln

(
δi

1 − δi

)
= ziγ or δi = eziγ

1 + eziγ
, (5.26)

where zi is a finite-dimensional vector consisting of elements of Fi−1 and γ is
a parameter vector. To allow for asymmetry between positive and negative price
changes, we assume that

Si |(Di, Ai = 1) ∼ 1 +
{
g(λu,i) if Di = 1, Ai = 1,

g(λd,i) if Di = −1, Ai = 1,
(5.27)

where g(λ) is a geometric distribution with parameter λ and the parameters λj,i

evolve over time as

ln

(
λj,i

1 − λj,i

)
= wiθ j or λj,i = ewiθj

1 + ewiθj
, j = u, d, (5.28)

where wi is again a finite-dimensional explanatory variable in Fi−1 and θ j is a
parameter vector.

In Eq. (5.27), the probability mass function of a random variable x, which
follows the geometric distribution g(λ), is

p(x = m) = λ(1 − λ)m, m = 0, 1, 2, . . . .

We added 1 to the geometric distribution so that the price change, if it occurs,
is at least 1 tick. In Eq. (5.28), we take the logistic transformation to ensure that
λj,i ∈ [0, 1].

The previous specification classifies the ith trade, or transaction, into one of
three categories:

1. No price change: Ai = 0 and the associated probability is (1 − pi).

2. A price increase: Ai = 1, Di = 1, and the associated probability is piδi . The
size of the price increase is governed by 1 + g(λu,i).

3. A price drop: Ai = 1, Di = −1, and the associated probability is pi(1 − δi).
The size of the price drop is governed by 1 + g(λd,i).
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Let Ii(j) for j = 1, 2, 3 be the indicator variables of the prior three categories.
That is, Ii(j) = 1 if the j th category occurs and Ii(j) = 0 otherwise. The log-
likelihood function of Eq. (5.24) becomes

ln[P (yi |Fi−1)] = Ii(1) ln[(1 − pi)] + Ii(2)[ln(pi) + ln(δi)

+ ln(λu,i) + (Si − 1) ln(1 − λu,i)]

+ Ii(3)[ln(pi) + ln(1 − δi) + ln(λd,i) + (Si − 1) ln(1 − λd,i)],

and the overall log-likelihood function is

ln[P (y1, . . . , yn|F0)] =
n∑

i=1

ln[P (yi |Fi−1)], (5.29)

which is a function of parameters β, γ , θu, and θd .

Example 5.2. We illustrate the decomposition model by analyzing the intraday
transactions of IBM stock from November 1, 1990, to January 31, 1991. There were
63 trading days and 59,838 intraday transactions in the normal trading hours. The
explanatory variables used are:

1. Ai−1: the action indicator of the previous trade [i.e., the (i − 1)th trade within
a trading day]

2. Di−1: the direction indicator of the previous trade

3. Si−1: the size of the previous trade

4. Vi−1: the volume of the previous trade, divided by 1000

5. ti−1: time duration from the (i − 2)th to (i − 1)th trade

6. BAi : the bid–ask spread prevailing at the time of transaction

Because we use lag-1 explanatory variables, the actual sample size is 59,775. It
turns out that Vi−1, ti−1, and BAi are not statistically significant for the model
entertained. Thus, only the first three explanatory variables are used. The model
employed is

ln

(
pi

1 − pi

)
= β0 + β1Ai−1,

ln

(
δi

1 − δi

)
= γ0 + γ1Di−1, (5.30)

ln

(
λu,i

1 − λu,i

)
= θu,0 + θu,1Si−1,

ln

(
λd,i

1 − λd,i

)
= θd,0 + θd,1Si−1.
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TABLE 5.6 Parameter Estimates of ADS Model in Eq. (5.30) for IBM Intraday
Transactions from December 1, 1990, to January 31, 1991

Parameter β0 β1 γ0 γ1

Estimate −1.057 0.962 −0.067 −2.307

Standard Error 0.104 0.044 0.023 0.056

Parameter θu,0 θu,1 θd,0 θd,1

Estimate 2.235 −0.670 2.085 −0.509

Standard Error 0.029 0.050 0.187 0.139

The parameter estimates, using the log-likelihood function in Eq. (5.29), are given
in Table 5.6. The estimated simple model shows some dynamic dependence in the
price change. In particular, the trade-by-trade price changes of IBM stock exhibit
some appealing features:

1. The probability of a price change depends on the previous price change.
Specifically, we have

P (Ai = 1|Ai−1 = 0) = 0.258, P (Ai = 1|Ai−1 = 1) = 0.476.

The result indicates that a price change may occur in clusters and, as expected,
most transactions are without price change. When no price change occurred
at the (i − 1)th trade, then only about one out of four trades in the subsequent
transaction has a price change. When there is a price change at the (i − 1)th
transaction, the probability of a price change in the ith trade increases to
about 0.5.

2. The direction of price change is governed by

P (Di = 1|Fi−1, Ai) =


0.483 if Di−1 = 0 (i.e., Ai−1 = 0),

0.085 if Di−1 = 1, Ai = 1,

0.904 if Di−1 = −1, Ai = 1.

This result says that (a) if no price change occurred at the (i − 1)th trade,
then the chances for a price increase or decrease at the ith trade are about
even; and (b) the probabilities of consecutive price increases or decreases are
very low. The probability of a price increase at the ith trade given that a price
change occurs at the ith trade and there was a price increase at the (i − 1)th
trade is only 8.6%. However, the probability of a price increase is about
90% given that a price change occurs at the ith trade and there was a price
decrease at the (i − 1)th trade. Consequently, this result shows the effect of
bid–ask bounce and supports price reversals in high-frequency trading.

3. There is weak evidence suggesting that big price changes have a higher
probability to be followed by another big price change. Consider the size of
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a price increase. We have

Si |(Di = 1) ∼ 1 + g(λu,i), λu,i = 2.235 − 0.670Si−1.

Using the probability mass function of a geometric distribution, we obtain
that the probability of a price increase by one tick is 0.827 at the ith trade
if the transaction results in a price increase and Si−1 = 1. The probability
reduces to 0.709 if Si−1 = 2 and to 0.556 if Si−1 = 3. Consequently, the
probability of a large Si is proportional to Si−1 given that there is a price
increase at the ith trade.

A difference between the ADS of Eq. (5.21) and ordered probit models is that
the former does not require any truncation or grouping in the size of a price change.

R Demonstration for Logistic Linear Regression
The following output has been edited:

> da=read.table("ibm91-ads.txt",header=T)
> da1=read.table("ibm91-adsx.txt",header=T)
> Ai=da[,1] % Select the variables
> Di=da[,2]
> Aim1=da1[,4]
> Dim1=da1[,5]
>
> m1=glm(Ai∼Aim1,family=binomial) %Fit a linear

logistic model
> summary(m1)
Call:
glm(formula = Ai ∼ Aim1, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1373 -0.7724 -0.7724 1.2180 1.6462

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.05667 0.01142 -92.55 <2e-16 ***
Aim1 0.96164 0.01827 52.62 <2e-16 ***
---
>
> di=Di[Ai==1] % Select the cases in which Ai = 1.
> dim1=Dim1[Ai==1]
> di=(di+abs(di))/2 % Logistic regression works for 1 or 0,

% but di is coded 1 or -1 so that change is needed.
> m2=glm(di∼dim1,family=binomial)
> summary(m2)
Call:
glm(formula = di ∼ dim1, family = binomial)



duration models 253

Deviance Residuals:
Min 1Q Median 3Q Max

-2.1640 -1.1493 0.4497 1.2058 2.2193

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.06663 0.01728 -3.855 0.000116 ***
dim1 -2.30693 0.03595 -64.171 < 2e-16 ***

5.5 DURATION MODELS

Duration models are concerned with time intervals between trades. Longer dura-
tions indicate lack of trading activities, which in turn signify a period of no new
information. The dynamic behavior of durations thus contains useful information
about intraday market activities. Using concepts similar to the ARCH models for
volatility, Engle and Russell (1998) propose an autoregressive conditional dura-
tion (ACD) model to describe the evolution of time durations for (heavily traded)
stocks. Zhang et al. (2001) extend the ACD model to account for nonlinearity and
structural breaks in the data. In this section, we introduce some simple duration
models. As mentioned before, intraday transactions exhibit some diurnal pattern.
Therefore, we focus on the adjusted time duration

t∗i = ti/f (ti), (5.31)

where f (ti) is a deterministic function consisting of the cyclical component of
ti . Obviously, f (ti) depends on the underlying asset and the systematic behavior
of the market. In practice, there are many ways to estimate f (ti), but no single
method dominates the others in terms of statistical properties. A common approach
is to use smoothing spline. Here we use simple quadratic functions and indicator
variables to take care of the deterministic component of daily trading activities.

For the IBM data employed in the illustration of ADS models, we assume

f (ti) = exp[d(ti )], d(ti) = β0 +
7∑

j=1

βjfj (ti), (5.32)

where

f1(ti) = −
(
ti − 43200

14400

)2

, f3(ti) =

−
(
ti − 38700

7500

)2

if ti < 43200,

0 otherwise,

f2(ti) = −
(
ti − 48300

9300

)2

, f4(ti) =

−
(
ti − 48600

9000

)2

if ti ≥ 43200,

0 otherwise,
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Figure 5.7 Quadratic functions used to remove deterministic component of IBM intraday trading
durations: (a)–(d) are functions f1(·) to f4(·) of Eq. (5.32), respectively.

and f5(ti) and f6(ti) are indicator variables for the first and second 5 minutes of
market opening [i.e., f5(·) = 1 if and only if ti is between 9:30 am and 9:35 am
Eastern time], and f7(ti) is the indicator for the last 30 minutes of daily trading
[i.e., f7(ti) = 1 if and only if the trade occurred between 3:30 pm and 4:00 pm
Eastern time]. Figure 5.7 shows the plot of fi(·) for i = 1, . . . , 4, where the time
scale on the x axis is in minutes. Note that f3(43200) = f4(43200), where 43,200
corresponds to 12:00 noon.

The coefficients βj of Eq. (5.32) are obtained by the least-squares method of
the linear regression

ln(ti) = β0 +
7∑

j=1

βjfj (ti) + εi.

The fitted model is

ln(̂ti) = 2.555 + 0.159f1(ti) + 0.270f2(ti) + 0.384f3(ti)

+ 0.061f4(ti) − 0.611f5(ti) − 0.157f6(ti) + 0.073f7(ti).

Figure 5.8 shows the time plot of average durations in 5-minute time intervals over
the 63 trading days before and after adjusting for the deterministic component.
Figure 5.8(a) shows the average durations of ti and, as expected, exhibits a
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Figure 5.8 IBM transactions data from 11/01/90 to 1/31/91: (a) average durations in 5-minute time
intervals and (b) average durations in 5-minute time intervals after adjusting for deterministic component.

diurnal pattern. Figure 5.8(b) shows the average durations of t∗i (i.e., after the
adjustment), and the diurnal pattern is largely removed.

5.5.1 The ACD Model

The autoregressive conditional duration (ACD) model uses the idea of GARCH
models to study the dynamic structure of the adjusted duration t∗i of Eq. (5.31).
For ease in notation, we define xi = t∗i .

Let ψi = E(xi |Fi−1) be the conditional expectation of the adjusted duration
between the (i − 1)th and ith trades, where Fi−1 is the information set available
at the (i − 1)th trade. In other words, ψi is the expected adjusted duration given
Fi−1. The basic ACD model is defined as

xi = ψiεi, (5.33)

where {εi} is a sequence of independent and identically distributed nonnegative
random variables such that E(εi) = 1. In Engle and Russell (1998), εi follows a
standard exponential or a standardized Weibull distribution, and ψi assumes the
form

ψi = ω +
r∑

j=1

γjxi−j +
s∑

j=1

ωjψi−j . (5.34)
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Such a model is referred to as an ACD(r, s) model. When the distribution of εi
is exponential, the resulting model is called an EACD(r, s) model. Similarly, if
εi follows a Weibull distribution, the model is a WACD(r, s) model. If necessary,
readers are referred to Appendix A for a quick review of exponential and Weibull
distributions.

Similar to GARCH models, the process ηi = xi − ψi is a martingale difference
sequence [i.e., E(ηi |Fi−1) = 0], and the ACD(r, s) model can be written as

xi = ω +
max(r,s)∑
j=1

(γj + ωj)xi−j −
s∑

j=1

ωjηi−j + ηj , (5.35)

which is in the form of an ARMA process with non-Gaussian innovations. It is
understood here that γj = 0 for j > r and ωj = 0 for j > s. Such a representation
can be used to obtain the basic conditions for weak stationarity of the ACD model.
For instance, taking expectation on both sides of Eq. (5.35) and assuming weak
stationarity, we have

E(xi) = ω

1 − ∑max(r,s)
j=1 (γj + ωj)

.

Therefore, we assume ω> 0 and 1>
∑

j (γj + ωj) because the expected duration is
positive. As another application of Eq. (5.35), we study properties of the EACD(1,1)
model.

EACD(1,1) Model
An EACD(1,1) model can be written as

xi = ψiεi, ψi = ω + γ1xi−1 + ω1ψi−1, (5.36)

where εi follows the standard exponential distribution. Using the moments of a
standard exponential distribution in Appendix A, we have E(εi) = 1, Var(εi) = 1,
and E(ε2

i ) = Var(xi) + [E(xi)]2 = 2. Assuming that xi is weakly stationary (i.e.,
the first two moments of xi are time invariant), we derive the variance of xi . First,
taking the expectation of Eq. (5.36), we have

E(xi) = E[E(ψiεi |Fi−1)] = E(ψi),

E(ψi) = ω + γ1E(xi−1) + ω1E(ψi−1). (5.37)

Under weak stationarity, E(ψi) = E(ψi−1) so that Eq. (5.37) gives

µx ≡ E(xi) = E(ψi) = ω

1 − γ1 − ω1
. (5.38)

Next, because E(ε2
i ) = 2, we have E(x2

i ) = E[E(ψ2
i ε

2
i |Fi−1)] = 2E(ψ2

i ).
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Taking the square of ψi in Eq. (5.36) and the expectation and using weak
stationarity of ψi and xi , we have, after some algebra, that

E(ψ2
i ) = µ2

x × 1 − (γ1 + ω1)
2

1 − 2γ 2
1 − ω2

1 − 2γ1ω1
. (5.39)

Finally, using Var(xi) = E(x2
i ) − [E(xi)]2 and E(x2

i ) = 2E(ψ2
i ), we have

Var(xi) = 2E(ψ2
i ) − µ2

x = µ2
x × 1 − ω2

1 − 2γ1ω1

1 − ω2
1 − 2γ1ω1 − 2γ 2

1

,

where µx is defined in Eq. (5.38). This result shows that, to have time-invariant
unconditional variance, the EACD(1,1) model in Eq. (5.36) must satisfy 1> 2γ 2

1 +
ω2

1 + 2γ1ω1. The variance of a WACD(1,1) model can be obtained by using the
same techniques and the first two moments of a standardized Weibull distribution.

ACD Models with a Generalized Gamma Distribution
In the statistical literature, intensity function is often expressed in terms of hazard
function. As shown in Appendix B, the hazard function of an EACD model is
constant over time and that of a WACD model is a monotonous function. These
hazard functions are rather restrictive in application as the intensity function of
stock transactions might not be constant or monotone over time. To increase the
flexibility of the associated hazard function, Zhang et al. (2001) employ a (stan-
dardized) generalized gamma distribution for εi . See Appendix A for some basic
properties of a generalized gamma distribution. The resulting hazard function may
assume various patterns, including U shape or inverted U shape. We refer to an
ACD model with innovations that follow a generalized gamma distribution as a
GACD(r, s) model.

5.5.2 Simulation

To illustrate ACD processes, we generated 500 observations from the ACD(1,1)
model:

xi = ψiεi, ψi = 0.3 + 0.2xi−1 + 0.7ψi−1 (5.40)

using two different innovational distributions for εi . In case 1, εi is assumed to
follow a standardized Weibull distribution with parameter α = 1.5. In case 2, εi
follows a (standardized) generalized gamma distribution with parameters κ = 1.5
and α = 0.5.

Figure 5.9(a) shows the time plot of the WACD(1,1) series, whereas
Figure 5.10(a) is the GACD(1,1) series. Figure 5.11 plots the histograms of both
simulated series. The difference between the two models is evident. Finally,
the sample ACFs of the two simulated series are shown in Figures 5.12(a) and
5.13(b), respectively. The serial dependence of the data is clearly seen.
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Figure 5.9 Simulated WACD(1,1) series in Eq. (5.40): (a) original series and (b) standardized series
after estimation. There are 500 observations.
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Figure 5.10 Simulated GACD(1,1) series in Eq. (5.40): (a) original series and (b) standardized series
after estimation. There are 500 observations.
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(a) original series and (b) standardized residual series.

5.5.3 Estimation

For an ACD(r, s) model, let io = max(r, s) and x t = (x1, . . . , xt )
′. The likelihood

function of the durations x1, . . . , xT is

f (xT |θ) =
 T∏

i=io+1

f (xi |Fi−1, θ)

 × f (xio |θ),

where θ denotes the vector of model parameters, and T is the sample size. The
marginal probability density function f (xio |θ) of the previous equation is rather
complicated for a general ACD model. Because its impact on the likelihood function
is diminishing as the sample size T increases, this marginal density is often ignored,
resulting in use of the conditional-likelihood method. For a WACD model, we use
the probability density function (pdf) of Eq. (5.56) and obtain the conditional
log-likelihood function

�(x|θ , xio ) =
T∑

i=i0+1

α ln

[
�

(
1 + 1

α

)]

+ ln

(
α

xi

)
+ α ln

(
xi

ψi

)
−

[
�(1 + 1/α)xi

ψi

]α

, (5.41)
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TABLE 5.7 Estimation Results for Simulated ACD(1,1) Series with 500
Observations: For WACD(1,1) Series and GACD(1,1) Series

WACD(1,1) Model

Parameter ω γ1 ω1 α

True 0.3 0.2 0.7 1.5
Estimate 0.364 0.100 0.767 1.477
Standard Error (0.139) (0.025) (0.060) (0.052)

GACD(1,1) Model

Parameter ω γ1 ω1 α κ

True 0.3 0.2 0.7 0.5 1.5
Estimate 0.401 0.343 0.561 0.436 2.077
Standard Error (0.117) (0.074) (0.065) (0.078) (0.653)

where ψi =ω + ∑r
j=1 γjxi−j + ∑s

j=1 ωjψi−j , θ =(ω, γ1, . . . , γr , ω1, . . . , ωs, α)
′,

and x = (xio+1, . . . , xT )
′. When α = 1, the (conditional) log-likelihood function

reduces to that of an EACD(r, s) model.
For a GACD(r, s) model, the conditional log-likelihood function is

�(x|θ , xio ) =
T∑

i=io+1

ln

[
α

�(κ)

]
+ (κα − 1) ln(xi) − κα ln(λψi) −

(
xi

λψi

)α

,

(5.42)

where λ = �(κ)/�(κ + 1/α) and the parameter vector θ now also includes κ . As
expected, when κ = 1, λ = 1/�(1 + 1/α) and the log-likelihood function in Eq.
(5.42) reduces to that of a WACD(r, s) model in Eq. (5.41). This log-likelihood
function can be rewritten in many ways to simplify the estimation.

Under some regularity conditions, the conditional maximum-likelihood estimates
are asymptotically normal; see Engle and Russell (1998) and the references therein.
In practice, simulation can be used to obtain finite-sample reference distributions
for the problem of interest once a duration model is specified.

Example 5.3. (Simulated ACD(1,1) series, continued). Consider the simu-
lated WACD(1,1) and GACD(1,1) series of Eq. (5.40). We apply the conditional-
likelihood method and obtain the results in Table 5.7. The estimates appear to be
reasonable. Let ψ̂i be the 1-step-ahead prediction of ψi and ε̂i = xi/ψ̂i be the stan-
dardized series, which can be regarded as standardized residuals of the series. If
the model is adequately specified, {ε̂i} should behave as a sequence of independent
and identically distributed random variables. Figures 5.9(b) and 5.10(b) show the
time plot of ε̂i for both models. The sample ACF of ε̂i for both fitted models are
shown in Figures 5.12(b) and 5.13(b), respectively. It is evident that no significant
serial correlations are found in the ε̂i series.

Example 5.4. As an illustration of duration models, we consider the transac-
tion durations of IBM stock on five consecutive trading days from November 1
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Figure 5.14 Time plots of durations for IBM stock traded in first five trading days of November 1990:
(a) adjusted series and (b) normalized innovations of an WACD(1,1) model. There are 3534 nonzero
durations.

to November 7, 1990. Focusing on positive transaction durations, we have 3534
observations. In addition, the data have been adjusted by removing the determinis-
tic component in Eq. (5.32). That is, we employ 3534 positive adjusted durations
as defined in Eq. (5.31).

Figure 5.14(a) shows the time plot of the adjusted (positive) durations for the
first five trading days of November 1990, and Figure 5.15(a) gives the sample ACF
of the series. There exist some serial correlations in the adjusted durations. We fit
a WACD(1,1) model to the data and obtain the model

xi = ψiεi, ψi = 0.169 + 0.064xi−1 + 0.885ψi−1, (5.43)

where {εi} is a sequence of independent and identically distributed random variates
that follow the standardized Weibull distribution with parameter α̂ = 0.879(0.012),
where 0.012 is the estimated standard error. Standard errors of the estimates in
Eq. (5.43) are 0.039, 0.010, and 0.018, respectively. All t ratios of the estimates
are greater than 4.2, indicating that the estimates are significant at the 1% level.
Figure 5.14(b) shows the time plot of ε̂i = xi/ψ̂i , and Figure 5.15(b) provides the
sample ACF of ε̂i . The Ljung–Box statistics show Q(10) = 4.96 and Q(20) =
10.75 for the ε̂i series. Clearly, the standardized innovations have no significant
serial correlations. In fact, the sample autocorrelations of the squared series {ε̂2

i }
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Figure 5.15 Sample autocorrelation function of adjusted durations for IBM stock traded in first five
trading days of November 1990: (a) adjusted series and (b) normalized innovations for WACD(1,1)
model.

are also small with Q(10) = 6.20 and Q(20) = 11.16, further confirming lack of
serial dependence in the normalized innovations. In addition, the mean and standard
deviation of a standardized Weibull distribution with α = 0.879 are 1.00 and 1.14,
respectively. These numbers are close to the sample mean and standard deviation
of {ε̂i}, which are 1.01 and 1.22, respectively. The fitted model seems adequate.

In model (5.43), the estimated coefficients show γ̂1 + ω̂1 ≈ 0.949, indicating
certain persistence in the adjusted durations. The expected adjusted duration is
0.169/(1 − 0.064 − 0.885) = 3.31 seconds, which is close to the sample mean 3.29
of the adjusted durations. The estimated α of the standardized Weibull distribution
is 0.879, which is less than but close to 1. Thus, the conditional hazard function is
monotonously decreasing at a slow rate.

If a generalized gamma distribution function is used for the innovations, then
the fitted GACD(1,1) model is

xi = ψiεi, ψi = 0.141 + 0.063xi−1 + 0.897ψi−1, (5.44)

where {εi} follows a standardized, generalized gamma distribution in Eq. (5.57)
with parameters κ = 4.248(1.046) and α = 0.395(0.053), where the number in
parentheses denotes estimated standard error. Standard errors of the three parame-
ters in Eq. (5.44) are 0.041, 0.010, and 0.019, respectively. All of the estimates are
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statistically significant at the 1% level. Again, the normalized innovational process
{ε̂i} and its squared series have no significant serial correlation, where ε̂i = xi/ψ̂i

based on model (5.44). Specifically, for the ε̂i process, we have Q(10) = 4.95 and
Q(20) = 10.28. For the ε̂2

i series, we have Q(10) = 6.36 and Q(20) = 10.89.
The expected duration of model (5.44) is 3.52, which is slightly greater than

that of the WACD(1,1) model in Eq. (5.43). Similarly, the persistence parameter
γ̂1 + ω̂1 of model (5.44) is also slightly higher at 0.96.

Remark. Estimation of EACD models can be carried out by using programs
for ARCH models with some minor modification; see Engle and Russell (1998). In
this book, we use either the RATS program or some Fortran programs developed
by the author to estimate the duration models. Limited experience indicates that it
is harder to estimate a GACD model than an EACD or a WACD model. RATS
programs used to estimate WACD and GACD models are given in Appendix C.

�

5.6 NONLINEAR DURATION MODELS

Nonlinear features are also commonly found in high-frequency data. As an illus-
tration, we apply some nonlinearity tests discussed in Chapter 4 to the normalized
innovations ε̂i of the WACD(1,1) model for the IBM transaction durations in
Example 5.4; see Eq. (5.43). Based on an AR(4) model, the test results are given
in part (a) of Table 5.8. As expected from the model diagnostics of Example 5.4,
the Ori-F test indicates no quadratic nonlinearity in the normalized innovations.
However, the TAR-F test statistics suggest strong nonlinearity.

Based on the test results in Table 5.8, we entertain a threshold duration model
with two regimes for the IBM intraday durations. The threshold variable is xt−1

(i.e., lag-1 adjusted duration). The estimated threshold value is 3.79. The fitted
threshold WACD(1,1) model is xi = ψiεi , where

ψi =
{

0.020 + 0.257xi−1 + 0.847ψi−1, εi ∼ w(0.901) if xi−1 ≤ 3.79,

1.808 + 0.027xi−1 + 0.501ψi−1, εi ∼ w(0.845) if xi−1 > 3.79,

(5.45)

where w(α) denotes a standardized Weibull distribution with parameter α. The
number of observations in the two regimes are 2503 and 1030, respectively. In Eq.
(5.45), the standard errors of the parameters for the first regime are 0.043, 0.041,
0.024, and 0.014, whereas those for the second regime are 0.526, 0.020, 0.147, and
0.020, respectively.

Consider the normalized innovations ε̂i = xi/ψ̂i of the threshold WACD(1,1)
model in Eq. (5.45). We obtain Q(12) = 9.8 and Q(24) = 23.9 for ε̂i and Q(12) =
8.0 and Q(24) = 16.7 for ε̂2

i . Thus, there are no significant serial correlations in
the ε̂i and ε̂2

i series. Furthermore, applying the same nonlinearity tests as before
to this newly normalized innovational series ε̂i , we detect no nonlinearity; see part
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TABLE 5.8 Nonlinearity Tests for IBM Transaction Durations from November 1 to
November 7, 1990a

(a) Normalized Innovations of a WACD(1,1) Model

Type Ori-F TAR-F (1) TAR-F (2) TAR-F (3) TAR-F (4)

Test 0.343 3.288 3.142 3.128 0.297
p Value 0.969 0.006 0.008 0.008 0.915

(b) Normalized Innovations of a Threshold WACD(1,1) Model

Test 0.163 0.746 1.899 1.752 0.270
p Value 0.998 0.589 0.091 0.119 0.929
aOnly intraday durations are used. The number in parentheses of TAR-F tests denotes time delay.

(b) of Table 5.8. Consequently, the two-regime threshold WACD(1,1) model in Eq.
(5.45) is adequate.

If we classify the two regimes as heavy and thin trading periods, then the thresh-
old model suggests that the trading dynamics measured by intraday transaction
durations are different between heavy and thin trading periods for IBM stock even
after the adjustment of diurnal pattern. This is not surprising as market activities
are often driven by the arrival of news and other information.

The estimated threshold WACD(1,1) model in Eq. (5.45) contains some insignif-
icant parameters. We refine the model and obtain the result:

ψi =
{

0.225xi−1 + 0.867ψi−1, εi ∼ w(0.902) if xi−1 ≤ 3.79,

1.618 + 0.614ψi−1, εi ∼ w(0.846) if xi−1 > 3.79.

All of the estimates of the refined model are highly significant. The Ljung–Box
statistics of the standardized innovations ε̂i = xi/ψ̂i show Q(10) = 5.91(0.82)
and Q(20) = 16.04(0.71) and those of ε̂2

i give Q(10) = 5.35(0.87) and Q(20) =
15.20(0.76), where the number in parentheses is the p value. Therefore, the refined
model is adequate. The RATS program used to estimate the prior model is given
in Appendix C.

5.7 BIVARIATE MODELS FOR PRICE CHANGE AND DURATION

In this section, we introduce a model that considers jointly the process of price
change and the associated duration. As mentioned before, many intraday transac-
tions of a stock result in no price change. Those transactions are highly relevant
to trading intensity, but they do not contain direct information on price movement.
Therefore, to simplify the complexity involved in modeling price change, we focus
on transactions that result in a price change and consider a price change and dura-
tion (PCD) model to describe the multivariate dynamics of price change and the
associated time duration.
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We continue to use the same notation as before, but the definition is changed to
transactions with a price change. Let ti be the calendar time of the ith price change
of an asset. As before, ti is measured in seconds from midnight of a trading day. Let
Pti be the transaction price when the ith price change occurred and ti = ti − ti−1

be the time duration between price changes. In addition, let Ni be the number of
trades in the time interval (ti−1, ti ) that result in no price change. This new variable
is used to represent trading intensity during a period of no price change. Finally,
let Di be the direction of the ith price change with Di = 1 when price goes up
and Di = −1 when the price comes down, and let Si be the size of the ith price
change measured in ticks. Under the new definitions, the price of a stock evolves
over time by

Pti = Pti−1 + DiSi, (5.46)

and the transactions data consist of {ti, Ni,Di, Si} for the ith price change. The
PCD model is concerned with the joint analysis of (ti, Ni,Di, Si).

Remark. Focusing on transactions associated with a price change can reduce
the sample size dramatically. For example, consider the intraday data of IBM stock
from November 1, 1990 to January 31, 1991. There were 60,265 intraday trades,
but only 19,022 of them resulted in a price change. In addition, there is no diurnal
pattern in time durations between price changes. �

To illustrate the relationship among the price movements of all transactions
and those of transactions associated with a price change, we consider the intraday
tradings of IBM stock on November 21, 1990. There were 726 transactions on that
day during normal trading hours, but only 195 trades resulted in a price change.
Figure 5.16 shows the time plot of the price series for both cases. As expected, the
price series are the same.

The PCD model decomposes the joint distribution of (ti, Ni,Di, Si) given
Fi−1 as

f (ti, Ni,Di, Si |Fi−1)

= f (Si |Di,Ni,ti, Fi−1)f (Di |Ni,ti, Fi−1)f (Ni |ti, Fi−1)f (ti |Fi−1).

(5.47)

This partition enables us to specify suitable econometric models for the condi-
tional distributions and, hence, to simplify the modeling task. There are many
ways to specify models for the conditional distributions. A proper specification
might depend on the asset under study. Here we employ the specifications used by
McCulloch and Tsay (2000), who use generalized linear models for the discrete-
valued variables and a time series model for the continuous variable ln(ti).

For the time duration between price changes, we use the model

ln(ti) = β0 + β1 ln(ti−1) + β2Si−1 + σεi, (5.48)
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Figure 5.16 Time plots of intraday transaction prices of IBM stock on November 21, 1990: (a) all
transactions and (b) transactions that resulted in price change.

where σ is a positive number and {εi} is a sequence of iid N(0, 1) random variables.
This is a multiple linear regression model with lagged variables. Other explanatory
variables can be added if necessary. The log transformation is used to ensure the
positiveness of time duration.

The conditional model for Ni is further partitioned into two parts because empir-
ical data suggest a concentration of Ni at 0. The first part of the model for Ni is
the logit model

p(Ni = 0|ti, Fi−1) = logit[α0 + α1 ln(ti)], (5.49)

where logit(x) = exp(x)/[1 + exp(x)], whereas the second part of the model is

Ni |(Ni > 0,ti, Fi−1) ∼ 1 + g(λi), λi = exp[γ0 + γ1 ln(ti)]

1 + exp[γ0 + γ1 ln(ti)]
, (5.50)

where ∼ means “is distributed as,” and g(λ) denotes a geometric distribution with
parameter λ, which is in the interval (0, 1).

The model for direction Di is

Di |(Ni,ti, Fi−1) = sign(µi + σiε), (5.51)
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where ε is a N(0, 1) random variable, and

µi = ω0 + ω1Di−1 + ω2 ln(ti),

ln(σi) = β

∣∣∣∣∣∣
4∑

j=1

Di−j

∣∣∣∣∣∣ = β|Di−1 + Di−2 + Di−3 + Di−4|.

In other words, Di is governed by the sign of a normal random variable with mean
µi and variance σ 2

i . A special characteristic of the prior model is the function
for ln(σi). For intraday transactions, a key feature is the price reversal between
consecutive price changes. This feature is modeled by the dependence of Di on
Di−1 in the mean equation with a negative ω1 parameter. However, there exists
an occasional local trend in the price movement. The previous variance equation
allows for such a local trend by increasing the uncertainty in the direction of price
movement when the past data showed evidence of a local trend. For a normal
distribution with a fixed mean, increasing its variance makes a random draw have
the same chance to be positive and negative. This in turn increases the chance for
a sequence of all positive or all negative draws. Such a sequence produces a local
trend in price movement.

To allow for different dynamics between positive and negative price movements,
we use different models for the size of a price change. Specifically, we have

Si |(Di = −1, Ni,ti, Fi−1) ∼ p(λd,i) + 1, with (5.52)

ln(λd,i) = ηd,0 + ηd,1Ni + ηd,2 ln(ti) + ηd,3Si−1

Si |(Di = 1, Ni,ti, Fi−1) ∼ p(λu,i) + 1, with (5.53)

ln(λu,i) = ηu,0 + ηu,1Ni + ηu,2 ln(ti) + ηu,3Si−1,

where p(λ) denotes a Poisson distribution with parameter λ, and 1 is added to the
size because the minimum size is 1 tick when there is a price change.

The specified models in Eqs. (5.48)–(5.53) can be estimated jointly by either
the maximum-likelihood method or the Markov chain Monte Carlo methods. Based
on Eq. (5.47), the models consist of six conditional models that can be estimated
separately.

Example 5.5. Consider the intraday transactions of IBM stock on November
21, 1990. There are 194 price changes within normal trading hours. Figure 5.17
shows the histograms of ln(ti), Ni , Di , and Si . The data for Di are about equally
distributed between “upward” and “downward” movements. Only a few transac-
tions resulted in a price change of more than 1 tick; as a matter of fact, there were
7 changes with 2 ticks and 1 change with 3 ticks. Using Markov chain Monte Carlo
(MCMC) methods (see Chapter 12), we obtained the following models for the data.
The reported estimates and their standard deviations are the posterior means and
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Figure 5.17 Histograms of intraday transactions data for IBM stock on November 21, 1990: (a) log
durations between price changes, (b) direction of price movement, (c) size of price change measured in
ticks, and (d) number of trades without price change.

standard deviations of MCMC draws with 9500 iterations. The model for the time
duration between price changes is

ln(ti) = 4.023 + 0.032 ln(ti−1) − 0.025Si−1 + 1.403εi,

where standard deviations of the coefficients are 0.415, 0.073, 0.384, and 0.073,
respectively. The fitted model indicates that there was no dynamic dependence in
the time duration. For the Ni variable, we have

Pr(Ni > 0|ti, Fi−1) = logit[−0.637 + 1.740 ln(ti)],

where standard deviations of the estimates are 0.238 and 0.248, respectively. Thus,
as expected, the number of trades with no price change in the time interval (ti−1, ti)

depends positively on the length of the interval. The magnitude of Ni when it is
positive is

Ni |(Ni > 0,ti, Fi−1) ∼ 1 + g(λi), λi = exp[0.178 − 0.910 ln(ti)]

1 + exp[0.178 − 0.910 ln(ti)]
,

where standard deviations of the estimates are 0.246 and 0.138, respectively. The
negative and significant coefficient of ln(ti) means that Ni is positively related
to the length of the duration ti because a large ln(ti) implies a small λi , which
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in turn implies higher probabilities for larger Ni ; see the geometric distribution in
Eq. (5.27).

The fitted model for Di is

µi = 0.049 − 0.840Di−1 − 0.004 ln(ti),

ln(σi) = 0.244|Di−1 + Di−2 + Di−3 + Di−4|,

where standard deviations of the parameters in the mean equation are 0.129, 0.132,
and 0.082, respectively, whereas the standard error for the parameter in the variance
equation is 0.182. The price reversal is clearly shown by the highly significant
negative coefficient of Di−1. The marginally significant parameter in the variance
equation is exactly as expected. Finally, the fitted models for the size of a price
change are

ln(λd,i) = 1.024 − 0.327Ni + 0.412 ln(ti) − 4.474Si−1,

ln(λu,i) = −3.683 − 1.542Ni + 0.419 ln(ti) + 0.921Si−1,

where standard deviations of the parameters for the “down size” are 3.350, 0.319,
0.599, and 3.188, respectively, whereas those for the “up size” are 1.734, 0.976,
0.453, and 1.459. The interesting estimates of the prior two equations are the
negative estimates of the coefficient of Ni . A large Ni means there were more
transactions in the time interval (ti−1, ti ) with no price change. This can be taken
as evidence of no new information available in the time interval (ti−1, ti). Conse-
quently, the size for the price change at ti should be small. A small λu,i or λd,i for
a Poisson distribution gives precisely that.

In summary, granted that a sample of 194 observations in a given day may not
contain sufficient information about the trading dynamics of IBM stock, but the
fitted models appear to provide some sensible results. McCulloch and Tsay (2000)
extend the PCD model to a hierarchical framework to handle all the data of the
63 trading days between November 1, 1990, and January 31, 1991. Many of the
parameter estimates become significant in this extended sample, which has more
than 19,000 observations. For example, the overall estimate of the coefficient of
ln(ti−1) in the model for time duration ranges from 0.04 to 0.1, which is small,
but significant.

Finally, using transactions data to test microstructure theory often requires a
careful specification of the variables used. It also requires a deep understanding of
the way by which the market operates and the data are collected. However, ideas of
the econometric models discussed in this chapter are useful and widely applicable
in analysis of high-frequency data.

5.8 APPLICATION

In this section we apply the ACD model to stock volatility modeling. Consider the
daily range of the log price of Apple stock from January 4, 1999, to November 20,
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2007. The data are obtained from Yahoo Finance and consist of 2235 observations.
This series was analyzed in Tsay (2009). The range of daily log prices has been
used in the literature as a robust alternative to volatility modeling; see Chapter 3
and Chou (2005) and the references therein. Apple stock had two-for-one splits on
June 21, 2000, and February 28, 2005, during the sample period, but no adjustments
are needed for the splits because we use daily range of log price. As mentioned
before, stock prices in the U.S. markets switched from the tick size 1

16 of a dollar
to the decimal system on January 29, 2001. Such a change affected the bid–ask
spread of stock prices. We shall employ intervention analysis to study the impact
of such a policy change on the stock volatility.

The sample mean, standard deviation, minimum, and maximum of the range
of log prices are 0.0407, 0.0218, 0.0068, and 0.1468, respectively. The sample
skewness and excess kurtosis are 1.3 and 2.13, respectively. Figure 5.18(a) shows
the time plot of the range series. The volatility seems to be increasing from 2000
to 2001, then decreasing to a stable level after 2002. It seems to increase somewhat
at the end of the series. Figure 5.19(a) shows the sample ACF of the daily range
series. The sample ACFs are highly significant and decay slowly.

We fit EACD(1,1), WACD(1,1), and GACD(1,1) models to the daily range
series. The estimation results, along with the Ljung–Box statistics for the standard-
ized residual series and its squared process, are given in Table 5.9. The parameter
estimates for the duration equation are stable for all three models, except for the
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Figure 5.18 Time plots of daily range of log price of Apple stock from January 4, 1999, to November
20, 2007: (a) observed daily range and (b) standardized residuals of a GACD(1,1) model.
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GACD(1,1) model.

TABLE 5.9 Estimation Results of EACD(1,1), WACD(1,1), and GACD(1,1) Models
for Daily Range of Log Prices of Apple Stock from January 4, 1999 to November 20,
2007a

Parameters Checking

Model α0 α1 β1 α κ Q(10) Q∗(10)

EACD 0.0007 0.133 0.849 16.65 12.12
(0.0005) (0.036) (0.044) (0.082) (0.277)

WACD 0.0013 0.131 0.835 2.377 13.66 9.74
(0.0003) (0.015) (0.021) (0.031) (0.189) (0.464)

GACD 0.0010 0.133 0.843 1.622 2.104 14.62 11.21
(0.0002) (0.015) (0.019) (0.029) (0.040) (0.147) (0.341)

aThe standard errors of the estimates and the p values of the Ljung–Box statistics are in parentheses,
where Q(10) and Q∗(10) are for standardized residual series and its squared process, respectively.

constant term of the EACD model, which appears to be statistically insignificant
at the usual 5% level. Indeed, in this particular instance, the EACD(1,1) model
fares slightly worse than the other two ACD models. Between the WACD(1,1) and
GACD(1,1) models, we slightly prefer the GACD(1,1) model because it fits the
data better and is more flexible.



application 273

Figure 5.19(b) shows the sample ACFs of the standardized residuals of the
fitted GACD(1,1) model. From the plot, the standardized residuals do not have
significant serial correlations, even though the lag-1 sample ACF is slightly above
its two standard error limit. The lag-1 serial correlation is removed when we use
nonlinear ACD models later. Figure 5.18(b) shows the time plot of the standardized
residuals of the GACD(1,1) model. The residuals do not show any pattern of
model inadequacy. The mean, standard deviation, minimum, and maximum of the
standardized residuals are 0.203, 4.497, 0.999, and 0.436, respectively.

It is interesting to see that the estimates of the shape parameter α are greater
than 1 for both WACD(1,1) and GACD(1,1) models, indicating that the hazard
function of the daily range is monotonously increasing. This is consistent with the
idea of volatility clustering, for large volatility tends to be followed by another
large volatility.

Threshold ACD model
To refine the GACD(1,1) model for the daily range of log prices of Apple stock,
we employ a two-regime threshold WACD(1,1) model. Some preliminary analysis
of the threshold WACD models indicates that the major difference in the parameter
estimates between the two regimes is the shape parameter of the Weibull distribu-
tion. Thus, we focus on a TWACD(2;1,1) model with different shape parameters
for the two regimes.

Table 5.10 gives the maximized log-likelihood value of a TWACD(2;1,1) model
with delay d = 1 and threshold r ∈ {x(q)|q = 60, 65, . . . , 95}, where x(q) denotes
the sample qth percentile. From the table, the threshold 0.04753 is selected, which
is the 70th percentile of the data. The fitted model is

xi = ψiεi, ψi = 0.0013 + 0.1539xi−1 + 0.8131ψi−1,

where the standard errors of the coefficients are 0.0003, 0.0164, and 0.0215, respec-
tively, and εi follows the standardized Weibull distribution as

εi ∼
{
W(2.2756) if xi−1 ≤ 0.04753,

W(2.7119) otherwise,

where the standard errors of the two shape parameters are 0.0394 and 0.0717,
respectively.

TABLE 5.10 Selection of Threshold of TWACD(2;1,1) Model for Daily Range of
Log Prices of Apple Stock from January 4, 1999, to November 20, 2007a

Quantile 60 65 70 75 80 85 90 95

r × 100 4.03 4.37 4.75 5.15 5.58 6.16 7.07 8.47
�(r) × 103 6.073 6.076 6.079 6.076 6.078 6.074 6.072 6.066
aThe threshold variable is xi−1.
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Figure 5.20 Model fitting for daily range of log price of Apple stock from January 4, 1999, to
November 20, 2007: (a) conditional expected durations of fitted TWACD(2;1,1) model and (b) sample
ACF of standardized residuals.

Figure 5.20(a) shows the time plot of the conditional expected duration for
the fitted TWACD(2;1,1) model, that is, ψ̂i , whereas Figure 5.20(b) gives the
residual ACFs for the fitted model. All residual ACFs are within the two stan-
dard error limits. Indeed, we have Q(1) = 4.01(0.05) and Q(10) = 9.84(0.45) for
the standardized residuals and Q∗(1) = 0.83(0.36) and Q∗(10) = 9.35(0.50) for
the squared series of the standardized residuals, where the number in parentheses
denotes p value. Note that the threshold variable xi−1 is also selected based on the
value of the log-likelihood function. For instance, the log-likelihood function of
the TWACD(2;1,1) model assumes the value 6.069×103 and 6.070 × 103, respec-
tively, for d = 2 and 3 when the threshold is 0.04753. These values are lower than
that when d = 1.

Intervention Analysis
High-frequency financial data are often influenced by external events, for example,
an increase or drop in interest rates by the U.S. Federal Open Market Committee
or a jump in the oil price. Applications of ACD models in finance are often faced
with the problem of outside interventions. To handle the effects of external events,
the intervention analysis of Box and Tiao (1975) can be used. Here we apply the
analysis to the daily range series of Apple stock to study the impact of change in
tick size on the stock volatility.
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Let to be the time of intervention. For the Apple stock, to = 522, which cor-
responds to January 26, 2001, the last trading day before the change in tick size.
Since more observations in the sample are after the intervention, we define the
indicator variable

I
(to)
i =

{
1 if i ≤ to,

0 otherwise,

to signify the absence of intervention. Since a larger tick size tends to increase the
observed daily price range, it is reasonable to assume that the conditional expected
range would be higher before the intervention. A simple intervention model for the
daily range of Apple stock is then given by

xi = ψi

{
ε1i if xi−1 ≤ 0.04753,

ε2i otherwise,

where ψi follows the model

ψi = α0 + γ I
(to)
i + α1xi−1 + β1ψi−1, (5.54)

where γ denotes the decrease in expected duration due to the decimalization of
stock prices. In other words, the expected durations before and after the intervention
are

α0 + γ

1 − α1 − β1
and

α0

1 − α1 − β1
,

respectively. We expect γ > 0.
The fitted duration equation for the intervention model is

ψi = 0.0021 + 0.0011I (522)
i + 0.1595xi−1 + 0.7828ψi−1,

where the standard errors of the estimates are 0.0004, 0.0003, 0.0177, and 0.0264,
respectively. The estimate γ̂ is significant at the 1% level. For the innovations, we
have

εi ∼
{
W(2.2835) if xi−1 ≤ 0.04753,

W(2.7322) otherwise.

The standard errors of the two estimates of the shape parameter are 0.0413 and
0.0780, respectively. Figure 5.21(a) shows the expected durations of the inter-
vention model, and Figure 5.21(b) shows the ACF of the standardized residuals.
All residual ACFs are within the two standard error limits. Indeed, for the stan-
dardized residuals, we have Q(1) = 2.37(0.12) and Q(10) = 6.24(0.79). For
the squared series of the standardized residuals, we have Q∗(1) = 0.34(0.56) and
Q∗(10) = 6.79(0.75). As expected, γ̂ > 0 so that the decimalization indeed reduces
the expected value of the daily range. This simple analysis shows that, as expected,
adopting the decimal system reduces the volatility of Apple stock.
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Figure 5.21 Model fitting for daily range of log price of Apple stock from January 4, 1999, to
November 20, 2007: (a) conditional expected durations of fitted TWACD(2;1,1) model with intervention
and (b) sample ACF of corresponding standardized residuals.

APPENDIX A: REVIEW OF SOME PROBABILITY DISTRIBUTIONS

Exponential Distribution
A random variable X has an exponential distribution with parameter β > 0 if its
probability density function (pdf) is given by

f (x|β) =


1

β
e−x/β if x ≥ 0,

0 otherwise.

Denoting such a distribution by X ∼ exp(β), we have E(X) = β and Var(X) =
β2. The cumulative distribution function (CDF) of X is

F(x|β) =
{

0 if x < 0,

1 − e−x/β if x ≥ 0.

When β = 1, X is said to have a standard exponential distribution.
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Gamma Function
For κ > 0, the gamma function �(κ) is defined by

�(κ) =
∫ ∞

0
xκ−1e−x dx.

The most important properties of the gamma function are:

1. For any κ > 1, �(κ) = (κ − 1)�(κ − 1).

2. For any positive integer m, �(m) = (m − 1)!.

3. �( 1
2 ) = √

π .

The integration

�(y|κ) =
∫ y

0
xκ−1e−x dx, y > 0

is an incomplete gamma function. Its values have been tabulated in the literature.
Computer programs are now available to evaluate the incomplete gamma function.

Gamma Distribution
A random variable X has a gamma distribution with parameter κ and β (κ > 0,
β > 0) if its pdf is given by

f (x|κ, β) =


1

βκ�(κ)
xκ−1e−x/β if x ≥ 0,

0 otherwise.

By changing variable y = x/β, one can easily obtain the moments of X:

E(Xm) =
∫ ∞

0
xmf (x|κ, β) dx = 1

βκ�(κ)

∫ ∞

0
xκ+m−1e−x/β dx

= βm

�(κ)

∫ ∞

0
yκ+m−1e−y dy = βm�(κ + m)

�(κ)
.

In particular, the mean and variance of X are E(X) = κβ and Var(X) = κβ2. When
β = 1, the distribution is called a standard gamma distribution with parameter κ .
We use the notation G ∼ gamma(κ) to denote that G follows a standard gamma
distribution with parameter κ . The moments of G are

E(Gm) = �(κ + m)

�(κ)
, m> 0. (5.55)
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Weibull Distribution
A random variable X has a Weibull distribution with parameters α and β (α > 0,
β > 0) if its pdf is given by

f (x|α, β) =


α

βα
xα−1e−(x/β)α if x ≥ 0,

0 if x < 0,

where β and α are the scale and shape parameters of the distribution. The mean
and variance of X are

E(X) = β�

(
1 + 1

α

)
, Var(X) = β2

{
�

(
1 + 2

α

)
−

[
�

(
1 + 1

α

)]2
}
,

and the CDF of X is

F(x|α, β) =
{

0 if x < 0,

1 − e−(x/β)α if x ≥ 0.

When α = 1, the Weibull distribution reduces to an exponential distribution.
Define Y = X/[β�(1 + 1/α)]. We have E(Y) = 1 and the pdf of Y is

f (y|α) =
α

[
�

(
1 + 1

α

)]α

yα−1 exp

{
−

[
�

(
1 + 1

α

)
y

]α}
if y ≥ 0,

0 otherwise,
(5.56)

where the scale parameter β disappears due to standardization. The CDF of the
standardized Weibull distribution is

F(y|α) =
0 if y < 0,

1 − exp

{
−

[
�

(
1 + 1

α

)
y

]α}
if y > 0,

and we have E(Y) = 1 and Var(Y ) = �(1 + 2/α)/[�(1 + 1/α)]2 − 1. For a dura-
tion model with Weibull innovations, the pdf in Eq. (5.56) is used in the maximum-
likelihood estimation.

Generalized Gamma Distribution
A random variable X has a generalized gamma distribution with parameter α, β, κ

(α > 0, β > 0, and κ > 0) if its pdf is given by

f (x|α, β, κ) =
 αxκα−1

βκα�(κ)
exp

[
−

(
x

β

)α]
if x ≥ 0,

0 otherwise,
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where β is a scale parameter, and α and κ are shape parameters. This distribution
can be written as

G =
(
X

β

)α

,

where G is a standard gamma random variable with parameter κ . The pdf of X

can be obtained from that of G by the technique of changing variables. Similarly,
the moments of X can be obtained from that of G in Eq. (5.55) by

E(Xm) = E[(βG1/α)m] = βmE(Gm/α) = βm�(κ + m/α)

�(κ)
= βm�(κ + m/α)

�(κ)
.

When κ = 1, the generalized gamma distribution reduces to that of a Weibull
distribution. Thus, the exponential and Weibull distributions are special cases of
the generalized gamma distribution.

The expectation of a generalized gamma distribution is E(X) = β�(κ + 1/α)/
�(κ). In duration models, we need a distribution with unit expectation. Therefore,
defining a random variable Y = λX/β, where λ = �(κ)/�(κ + 1/α), we have
E(Y) = 1 and the pdf of Y is

f (y|α, κ) =


αyκα−1

λκα�(κ)
exp

[
−

(y
λ

)α]
if y > 0,

0 otherwise,
(5.57)

where again the scale parameter β disappears and λ = �(κ)/�(κ + 1/α).

APPENDIX B: HAZARD FUNCTION

A useful concept in modeling duration is the hazard function implied by a dis-
tribution function. For a random variable X, the survival function is defined as

S(x) ≡ P (X>x) = 1 − P (X ≤ x) = 1 − CDF(x), x > 0,

which gives the probability that a subject, which follows the distribution of X,
survives at the time x. The hazard function (or intensity function) of X is then
defined by

h(x) = f (x)

S(x)
, (5.58)

where f (·) and S(·) are the pdf and survival function of X, respectively.
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Example 5.6. For the Weibull distribution with parameters α and β, the sur-
vival function and hazard function are

S(x|α, β) = exp

[
−

(
x

β

)α]
, h(x|α, β) = α

βα
xα−1, x > 0.

In particular, when α = 1, we have h(x|β) = 1/β. Therefore, for an exponential
distribution, the hazard function is constant. For a Weibull distribution, the haz-
ard is a monotone function. If α > 1, then the hazard function is monotonously
increasing. If α < 1, the hazard function is monotonously decreasing. For the gen-
eralized gamma distribution, the survival function and, hence, the hazard function
involve the incomplete gamma function. Yet the hazard function may exhibit vari-
ous patterns, including U shape or inverted U shape. Thus, the generalized gamma
distribution provides a flexible approach to modeling the duration of stock trans-
actions.

For the standardized Weibull distribution, the survival and hazard functions are

S(y|α) = exp

{
−

[
�

(
1 + 1

α

)
y

]α}
,

h(y|α) = α

[
�

(
1 + 1

α

)]α

yα−1, y > 0.

APPENDIX C: SOME RATS PROGRAMS FOR DURATION MODELS

The data used are adjusted time durations of intraday transactions of IBM stock
from November 1 to November 9, 1990. The file name is ibm1to5.txt and it has
3534 observations.

Program for Estimating a WACD(1,1) Model

all 0 3534:1
open data ibm1to5.txt
data(org=obs) / x r1
set psi = 1.0
nonlin a0 a1 b1 al
frml gvar = a0+a1*x(t-1)+b1*psi(t-1)
frml gma = %LNGAMMA(1.0+1.0/al)
frml gln =al*gma(t)+log(al)-log(x(t)) $
+al*log(x(t)/(psi(t)=gvar(t)))-(exp(gma(t))*x(t)/psi(t))**al

smpl 2 3534
compute a0 = 0.2, a1 = 0.1, b1 = 0.1, al = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv = gvar(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
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cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

Program for Estimating a GACD(1,1) Model

all 0 3534:1
open data ibm1to5.txt
data(org=obs) / x r1
set psi = 1.0
nonlin a0 a1 b1 al ka
frml cv = a0+a1*x(t-1)+b1*psi(t-1)
frml gma = %LNGAMMA(ka)
frml lam = exp(gma(t))/exp(%LNGAMMA(ka+(1.0/al)))
frml xlam = x(t)/(lam(t)*(psi(t)=cv(t)))
frml gln =-gma(t)+log(al/x(t))+ka*al*log(xlam(t))

-(xlam(t))**al
smpl 2 3534
compute a0 = 0.238, a1 = 0.075, b1 = 0.857, al = 0.5, ka = 4.0
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) gln
set fv = cv(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

Program for Estimating a TAR-WACD(1,1) Model
The threshold 3.79 is prespecified.

all 0 3534:1
open data ibm1to5.txt
data(org=obs) / x rt
set psi = 1.0
nonlin a1 a2 al b0 b2 bl
frml u = ((x(t-1)-3.79)/abs(x(t-1)-3.79)+1.0)/2.0
frml cp1 = a1*x(t-1)+a2*psi(t-1)
frml gma1 = %LNGAMMA(1.0+1.0/al)
frml cp2 = b0+b2*psi(t-1)
frml gma2 = %LNGAMMA(1.0+1.0/bl)
frml cp = cp1(t)*(1-u(t))+cp2(t)*u(t)
frml gln1 =al*gma1(t)+log(al)-log(x(t)) $
+al*log(x(t)/(psi(t)=cp(t)))-(exp(gma1(t))*x(t)/psi(t))**al

frml gln2 =bl*gma2(t)+log(bl)-log(x(t)) $
+bl*log(x(t)/(psi(t)=cp(t)))-(exp(gma2(t))*x(t)/psi(t))**bl

frml gln = gln1(t)*(1-u(t))+gln2(t)*u(t)
smpl 2 3534
compute a1 = 0.2, a2 = 0.85, al = 0.9
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compute b0 = 1.8, b2 = 0.5, bl = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv = cp(t)
set resid = x(t)/fv(t)
set residsq = resid(t)*resid(t)
cor(qstats,number=20,span=10) resid
cor(qstats,number=20,span=10) residsq

EXERCISES

5.1. Let rt be the log return of an asset at time t . Assume that {rt } is a Gaussian
white noise series with mean 0.05 and variance 1.5. Suppose that the proba-
bility of a trade at each time point is 40% and is independent of rt . Denote
the observed return by rot . Is rot serially correlated? If yes, calculate the first
three lags of autocorrelations of rot .

5.2. Let Pt be the observed market price of an asset, which is related to the fun-
damental value of the asset P ∗

t via Eq. (5.9). Assume that P ∗
t = P ∗

t − P ∗
t−1

forms a Gaussian white noise series with mean zero and variance 1.0. Sup-
pose that the bid–ask spread is two ticks. What is the lag-1 autocorrela-
tion of the price change series Pt = Pt − Pt−1 when the tick size is $ 1

8 ?
What is the lag-1 autocorrelation of the price change when the tick size
is $ 1

16 ?

5.3. The file ibm-d2-dur.txt contains the adjusted durations between trades of
IBM stock on November 2, 1990. The file has three columns consisting of
day, time of trade measured in seconds from midnight, and adjusted durations.

(a) Build an EACD model for the adjusted duration and check the fitted
model.

(b) Build a WACD model for the adjusted duration and check the fitted
model.

(c) Build a GACD model for the adjusted duration and check the fitted
model.

(d) Compare the prior three duration models.

5.4. The file mmm9912-dtp.txt contains the transactions data of the stock of 3M
Company in December 1999. There are three columns: day of the month, time
of transaction in seconds from midnight, and transaction price. Transactions
that occurred after 4:00 pm Eastern time are excluded.

(a) Is there a diurnal pattern in 3M stock trading? You may construct a time
series nt , which denotes the number of trades in a 5-minute time interval
to answer this question.

(b) Use the price series to confirm the existence of a bid–ask bounce in
intraday trading of 3M stock.
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(c) Tabulate the frequencies of price change in multiples of tick size $ 1
16 .

You may combine changes with 5 ticks or more into a category and those
with −5 ticks or beyond into another category.

5.5. Consider again the transactions data of 3M stock in December 1999.

(a) Use the data to construct an intraday 5-minute log return series. Use the
simple average of all transaction prices within a 5-minute interval as the
stock price for the interval. Is the series serially correlated? You may use
Ljung–Box statistics to test the hypothesis with the first 10 lags of the
sample autocorrelation function.

(b) There are seventy-seven 5-minute returns in a normal trading day. Some
researchers suggest that the sum of squares of the intraday 5-minute
returns can be used as a measure of daily volatility. Apply this approach
and calculate the daily volatility of the log return of 3M stock in Decem-
ber 1999. Discuss the validity of such a procedure to estimate daily
volatility.

5.6. The file mmm9912-adur.txt contains an adjusted intraday trading duration
of 3M stock in December 1999. There are thirty-nine 10-minute time intervals
in a trading day. Let di be the average of all log durations for the ith 10-
minute interval across all trading days in December 1999. Define an adjusted
duration as tj / exp(di), where j is in the ith 10-minute interval. Note that
more sophisticated methods can be used to adjust the diurnal pattern of
trading duration. Here we simply use a local average.

(a) Is there a diurnal pattern in the adjusted duration series? Why?

(b) Build a duration model for the adjusted series using exponential innova-
tions. Check the fitted model.

(c) Build a duration model for the adjusted series using Weibull innovations.
Check the fitted model.

(d) Build a duration model for the adjusted series using generalized gamma
innovations. Check the fitted model.

(e) Compare and comment on the three duration models built before.

5.7. To gain experience in analyzing high-frequency financial data, consider the
trade data of Boeing stock from December 1 to December 5, 2008. The data
are in five files: taq-td-ba12012008.txt to taq-td-ba12052008.txt.
Each file has five columns, namely hour, minute, second, price, and vol-
ume. Only transactions within the normal trading hours (9:30 am to 4:00 pm
Eastern time) are kept. Construct a time series of the number of trades in an
intraday 5-minute time interval. Is there any diurnal pattern in the constructed
series? You can simply compute the sample ACF of the series to answer this
question.

5.8. Again, consider the high-frequency data of Boeing stock from December 1
to December 5, 2008. Construct an intraday 5-minute return series. Note that
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the price of the stock in a 5-minute interval (e.g., 9:30 to 9:35 am) is the last
transaction price within the time interval. For simplicity, ignore overnight
returns. Are there serial correlations in the 5-minute return series? Use 10
lags of the ACF and 5% significance level to perform of test.

5.9. Consider the same problem as in Exercise 5.8, but use 10-minute time inter-
vals.

5.10. Again, consider the high-frequency data of Boeing stock. Compute the per-
centage of consecutive transactions without price change in the sample.
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C H A P T E R 6

Continuous-Time Models
and Their Applications

The price of a financial asset evolves over time and forms a stochastic process ,
which is a statistical term used to describe the evolution of a random variable over
time. The observed prices are a realization of the underlying stochastic process. The
theory of stochastic process is the basis on which the observed prices are analyzed
and statistical inference is made.

There are two types of stochastic process for modeling the price of an asset. The
first type is called the discrete-time stochastic process , in which the price changes at
discrete time points. All the processes discussed in the previous chapters belong to
this category. For example, the daily closing price of IBM stock on the New York
Stock Exchange forms a discrete-time stochastic process. Here the price changes
only at the closing of a trading day. Price movements within a trading day are
not necessarily relevant to the observed daily price. The second type of stochastic
process is the continuous-time process , in which the price changes continuously,
even though the price is only observed at discrete time points. One can think of
the price as the “true value” of the stock that always exists and is time varying.

For both types of process, the price can be continuous or discrete. A continuous
price can assume any positive real number, whereas a discrete price can only
assume a countable number of possible values. Assume that the price of an asset is
a continuous-time stochastic process. If the price is a continuous random variable,
then we have a continuous-time continuous process. If the price itself is discrete,
then we have a continuous-time discrete process. Similar classifications apply to
discrete-time processes. The series of price change in Chapter 5 is an example of
a discrete-time discrete process.

In this chapter, we treat the price of an asset as a continuous-time continuous
stochastic process. Our goal is to introduce the statistical theory and tools needed
to model financial assets and to price options. We begin the chapter with some
terminologies of stock options used in the chapter. In Section 6.2, we provide a brief
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introduction of Brownian motion, which is also known as a Wiener process. We
then discuss some diffusion equations and stochastic calculus, including the well-
known Ito lemma. Most option pricing formulas are derived under the assumption
that the price of an asset follows a diffusion equation. We use the Black–Scholes
formula to demonstrate the derivation. Finally, to handle the price variations caused
by rare events (e.g., a profit warning), we also study some simple diffusion models
with jumps.

If the price of an asset follows a diffusion equation, then the price of an option
contingent to the asset can be derived by using hedging methods. However, with
jumps the market becomes incomplete and there is no perfect hedging of options.
The price of an option is then valued either by using diversifiability of jump risk
or defining a notion of risk and choosing a price and a hedge that minimize this
risk. For basic applications of stochastic processes in derivative pricing, see Cox
and Rubinstein (1985) and Hull (2007).

6.1 OPTIONS

A stock option is a financial contract that gives the holder the right to trade a certain
number of shares of a specified common stock by a certain date for a specified
price. There are two types of options. A call option gives the holder the right to
buy the underlying stock; see Chapter 3 for a formal definition. A put option gives
the holder the right to sell the underlying stock. The specified price in the contract
is called the strike price or exercise price. The date in the contract is known as the
expiration date or maturity . American options can be exercised at any time up to
the expiration date. European options can be exercised only on the expiration date.

The value of a stock option depends on the value of the underlying stock. Let
K be the strike price and P be the stock price. A call option is in-the-money when
P >K , at-the-money when P = K , and out-of-the-money when P < K . A put
option is in-the-money when P < K , at-the-money when P = K , and out-of-the-
money when P >K . In general, an option is in-the-money when it would lead to
a positive cash flow to the holder if it were exercised immediately. An option is
out-of-the-money when it would lead to a negative cash flow to the holder if it
were exercised immediately. Finally, an option is at-the-money when it would lead
to zero cash flow if it were exercised immediately. Obviously, only in-the-money
options are exercised in practice. For more information on options, see Hull (2007).

6.2 SOME CONTINUOUS-TIME STOCHASTIC PROCESSES

In mathematical statistics, a continuous-time continuous stochastic process is
defined on a probability space (�, F,P), where � is a nonempty space, F is a σ

field consisting of subsets of �, and P is a probability measure; see Chapter 1 of
Billingsley (1986). The process can be written as {x(η, t)}, where t denotes time
and is continuous in [0,∞). For a given t , x(η, t) is a real-valued continuous
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random variable (i.e., a mapping from � to the real line), and η is an element of
�. For the price of an asset at time t , the range of x(η, t) is the set of nonnegative
real numbers. For a given η, {x(η, t)} is a time series with values depending on
the time t . For simplicity, we write a continuous-time stochastic process as {xt }
with the understanding that, for a given t , xt is a random variable. In the literature,
some authors use x(t) instead of xt to emphasize that t is continuous. However,
we use the same notation xt , but call it a continuous-time stochastic process.

6.2.1 Wiener Process

In a discrete-time econometric model, we assume that the shocks form a white
noise process, which is not predictable. What is the counterpart of shocks in a
continuous-time model? The answer is the increments of a Wiener process , which
is also known as a standard Brownian motion . There are many ways to define a
Wiener process {wt }. We use a simple approach that focuses on the small change
wt = wt+t − wt associated with a small increment t in time. A continuous-
time stochastic process {wt } is a Wiener process if it satisfies

1. wt = ε
√
t , where ε is a standard normal random variable; and

2. wt is independent of wj for all j ≤ t .

The second condition is a Markov property saying that conditional on the present
value wt , any past information of the process, wj with j < t , is irrelevant to the
future wt+� with �> 0. From this property, it is easily seen that for any two nonover-
lapping time intervals 1 and 2, the increments wt1+1 − wt1 and wt2+2 − wt2

are independent. In finance, this Markov property is related to a weak form of
efficient market.

From the first condition, wt is normally distributed with mean zero and vari-
ance t . That is, wt ∼ N(0,t), where ∼ denotes probability distribution.
Consider next the process wt . We assume that the process starts at t = 0 with
initial value w0, which is fixed and often set to zero. Then wt − w0 can be treated
as a sum of many small increments. More specifically, define T = t/t , where t

is a small positive increment. Then

wt − w0 = wTt − w0 =
T∑

i=1

wi =
T∑

i=1

εi
√
t,

where wi = wit − w(i−1)t . Because the εi are independent, we have

E(wt − w0) = 0, Var(wt − w0) =
T∑

i=1

t = T t = t.

Thus, the increment in wt from time 0 to time t is normally distributed with
mean zero and variance t . To put it formally, for a Wiener process wt , we have
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Figure 6.1 Four simulated Wiener processes.

that wt − w0 ∼ N(0, t). This says that the variance of a Wiener process increases
linearly with the length of time interval.

Figure 6.1 shows four simulated Wiener processes on the unit time interval [0, 1].
They are obtained by using a simple version of Donsker’s theorem in the statistical
literature with n = 3000; see Donsker (1951) or Billingsley (1968). The four plots
start with w0 = 0 but drift apart as time increases, illustrating that the variance of
a Wiener process increases with time. A simple time transformation from [0, 1) to
[0,∞) can be used to obtain simulated Wiener processes for t ∈ [0,∞).

Donsker’s Theorem
Assume that {zi}ni=1 is a sequence of independent standard normal random variates.
For any t ∈ [0, 1], let [nt] be the integer part of nt . Define wn,t = (1/

√
n)

∑[nt]
i=1 zi .

Then wn,t converges in distribution to a Wiener process wt on [0, 1] as n goes to
infinity.

R or S-Plus Commands for Generating a Wiener Process

n = 3000
epsi = rnorm(n,0,1)
w=cumsum(epsi)/sqrt(n)
plot(w,type=’l’)

Remark. A formal definition of a Brownian motion wt on a probability space
(�, F,P) is that it is a real-valued, continuous stochastic process for t ≥ 0 with
independent and stationary increments. In other words, wt satisfies the following:
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1. Continuity: The map from t to wt is continuous almost surely with respect
to the probability measure P.

2. Independent increments: If s ≤ t , wt − ws is independent of wv for all v ≤ s.

3. Stationary increments: If s ≤ t , wt − ws and wt−s − w0 have the same prob-
ability distribution.

It can be shown that the probability distribution of the increment wt − ws is nor-
mal with mean µ(t − s) and variance σ 2(t − s). Furthermore, for any given time
indexes 0 ≤ t1 < t2 < · · · < tk , the random vector (wt1 , wt2, . . . , wtk ) follows a
multivariate normal distribution. Finally, a Brownian motion is standard if w0 = 0
almost surely, µ = 0, and σ 2 = 1. �

Remark. An important property of Brownian motions is that their paths are
not differentiable almost surely. In other words, for a standard Brownian motion
wt , it can be shown that dwt/dt does not exist for all elements of � except for
elements in a subset �1 ⊂ � such that P (�1) = 0. As a result, we cannot use
the usual integration in calculus to handle integrals involving a standard Brownian
motion when we consider the value of an asset over time. Another approach must be
sought. This is the purpose of discussing Ito’s calculus in the next section. �

6.2.2 Generalized Wiener Process

The Wiener process is a special stochastic process with zero drift and variance
proportional to the length of the time interval. This means that the rate of change
in expectation is zero and the rate of change in variance is 1. In practice, the mean
and variance of a stochastic process can evolve over time in a more complicated
manner. Hence, further generalization of a stochastic process is needed. To this
end, we consider the generalized Wiener process in which the expectation has a
drift rate µ and the rate of variance change is σ 2. Denote such a process by xt and
use the notation dy for a small change in the variable y. Then the model for xt is

dxt = µdt + σ dwt , (6.1)

where wt is a Wiener process. If we consider a discretized version of Eq. (6.1),
then

xt − x0 = µt + σε
√
t

for increment from 0 to t . Consequently,

E(xt − x0) = µt, Var(xt − x0) = σ 2t.

The results say that the increment in xt has a growth rate of µ for the expectation
and a growth rate of σ 2 for the variance. In the literature, µ and σ of Eq. (6.1)
are referred to as the drift and volatility parameters of the generalized Wiener
process xt .
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6.2.3 Ito Process

The drift and volatility parameters of a generalized Wiener process are time invari-
ant. If one further extends the model by allowing µ and σ to be functions of the
stochastic process xt , then we have an Ito process. Specifically, a process xt is an
Ito process if it satisfies

dxt = µ(xt , t) dt + σ(xt , t) dwt , (6.2)

where wt is a Wiener process. This process plays an important role in mathematical
finance and can be written as

xt = x0 +
∫ t

0
µ(xs, s) ds +

∫ t

0
σ(xs, s) dws,

where x0 denotes the starting value of the process at time 0 and the last term on the
right-hand side is a stochastic integral. Equation (6.2) is referred to as a stochastic
diffusion equation with µ(xt , t) and σ(xt , t) being the drift and diffusion functions,
respectively.

The Wiener process is a special Ito process because it satisfies Eq. (6.2) with
µ(xt , t) = 0 and σ(xt , t) = 1.

6.3 ITO’S LEMMA

In finance, when using continuous-time models, it is common to assume that the
price of an asset is an Ito process. Therefore, to derive the price of a financial
derivative, one needs to use Ito’s calculus. In this section, we briefly review Ito’s
lemma by treating it as a natural extension of the differentiation in calculus. Ito’s
lemma is the basis of stochastic calculus.

6.3.1 Review of Differentiation

Let G(x) be a differentiable function of x. Using the Taylor expansion, we have

G ≡ G(x + x) − G(x) = ∂G

∂x
x + 1

2

∂2G

∂x2
(x)2 + 1

6

∂3G

∂x3
(x)3 + · · · .

Taking the limit as x → 0 and ignoring the higher order terms of x, we have

dG = ∂G

∂x
dx.

When G is a function of x and y, we have

G = ∂G

∂x
x + ∂G

∂y
y + 1

2

∂2G

∂x2
(x)2 + ∂2G

∂x∂y
x y + 1

2

∂2G

∂y2
(y)2 + · · · .
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Taking the limit as x → 0 and y → 0, we have

dG = ∂G

∂x
dx + ∂G

∂y
dy.

6.3.2 Stochastic Differentiation

Turn next to the case in which G is a differentiable function of xt and t , and xt is
an Ito process. The Taylor expansion becomes

G = ∂G

∂x
x + ∂G

∂t
t + 1

2

∂2G

∂x2
(x)2 + ∂2G

∂x ∂t
x t + 1

2

∂2G

∂t2
(t)2 + · · · .

(6.3)

A discretized version of the Ito process is

x = µt + σε
√
t, (6.4)

where, for simplicity, we omit the arguments of µ and σ , and x = xt+t − xt .
From Eq. (6.4), we have

(x)2 = µ2(t)2 + σ 2ε2 t + 2µσε(t)3/2 = σ 2ε2 t + H(t), (6.5)

where H(t) denotes higher order terms of t . This result shows that (x)2

contains a term of order t , which cannot be ignored when we take the limit as
t → 0. However, the first term on the right-hand side of Eq. (6.5) has some nice
properties:

E(σ 2ε2 t) = σ 2 t,

Var(σ 2ε2 t) = E[σ 4ε4(t)2] − [E(σ 2ε2 t)]2 = 2σ 4(t)2,

where we use E(ε4) = 3 for a standard normal random variable. These two prop-
erties show that σ 2ε2 t converges to a nonstochastic quantity σ 2 t as t → 0.
Consequently, from Eq. (6.5), we have

(x)2 → σ 2 dt as t → 0.

Plugging the prior result into Eq. (6.3) and using Ito’s equation of xt in Eq. (6.2),
we obtain

dG = ∂G

∂x
dx + ∂G

∂t
dt + 1

2

∂2G

∂x2
σ 2 dt

=
(
∂G

∂x
µ + ∂G

∂t
+ 1

2

∂2G

∂x2
σ 2

)
dt + ∂G

∂x
σ dwt ,

which is the well-known Ito lemma in stochastic calculus.
Recall that we suppressed the argument (xt , t) from the drift and volatility terms

µ and σ in the derivation of Ito’s lemma. To avoid any possible confusion in the
future, we restate the lemma as follows.
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Ito’s Lemma
Assume that xt is a continuous-time stochastic process satisfying

dxt = µ(xt , t) dt + σ(xt , t) dwt ,

where wt is a Wiener process. Furthermore, G(xt , t) is a differentiable function of
xt and t . Then,

dG =
[
∂G

∂x
µ(xt , t) + ∂G

∂t
+ 1

2

∂2G

∂x2
σ 2(xt , t)

]
dt + ∂G

∂x
σ(xt , t) dwt . (6.6)

Example 6.1. As a simple illustration, consider the square function G(wt , t) =
w2

t of the Wiener process. Here we have µ(wt, t) = 0, σ (wt , t) = 1, and

∂G

∂wt

= 2wt,
∂G

∂t
= 0,

∂2G

∂w2
t

= 2.

Therefore,

dw2
t = (2wt × 0 + 0 + 1

2 × 2 × 1) dt + 2wt dwt = dt + 2wt dwt . (6.7)

6.3.3 An Application

Let Pt be the price of a stock at time t , which is continuous in [0,∞). In the
literature, it is common to assume that Pt follows the special Ito process

dPt = µPt dt + σPt dwt , (6.8)

where µ and σ are constant. Using the notation of the general Ito process in
Eq. (6.2), we have µ(xt , t) = µxt and σ(xt , t) = σxt , where xt = Pt . Such a spe-
cial process is referred to as a geometric Brownian motion . We now apply Ito’s
lemma to obtain a continuous-time model for the logarithm of the stock price Pt .
Let G(Pt , t) = ln(Pt ) be the log price of the underlying stock. Then we have

∂G

∂Pt

= 1

Pt

,
∂G

∂t
= 0,

1

2

∂2G

∂P 2
t

= 1

2

−1

P 2
t

.

Consequently, via Ito’s lemma, we obtain

d ln(Pt ) =
(

1

Pt

µPt + 1

2

−1

P 2
t

σ 2P 2
t

)
dt + 1

Pt

σPt dwt

=
(
µ − σ 2

2

)
dt + σ dwt .

This result shows that the logarithm of a price follows a generalized Wiener process
with drift rate µ − σ 2/2 and variance rate σ 2 if the price is a geometric Brownian
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motion. Consequently, the change in logarithm of price (i.e., log return) between
current time t and some future time T is normally distributed with mean (µ −
σ 2/2)(T − t) and variance σ 2(T − t). If the time interval T − t =  is fixed and
we are interested in equally spaced increments in log price, then the increment
series is a Gaussian process with mean (µ − σ 2/2) and variance σ 2 .

6.3.4 Estimation of µ and σ

The two unknown parameters µ and σ of the geometric Brownian motion in
Eq. (6.8) can be estimated empirically. Assume that we have n + 1 observations of
stock price Pt at equally spaced time interval  (e.g., daily, weekly, or monthly).
We measure  in years. Denote the observed prices as {P0, P1, . . . , Pn} and let
rt = ln(Pt ) − ln(Pt−1) for t = 1, . . . , n.

Since Pt = Pt−1 exp(rt ), rt is the continuously compounded return in the t th time
interval. Using the result of the previous section and assuming that the stock price
Pt follows a geometric Brownian motion, we obtain that rt is normally distributed
with mean (µ − σ 2/2) and variance σ 2 . In addition, the rt are not serially
correlated.

For simplicity, define µr = E(rt ) = (µ − σ 2/2) and σ 2
r = var(rt ) = σ 2 .

Let r̄ and sr be the sample mean and standard deviation of the data—that is,

r̄ =
∑n

t=1 rt

n
, sr =

√√√√ 1

n − 1

n∑
t=1

(rt − r̄)2.

As mentioned in Chapter 1, r̄ and sr are consistent estimates of the mean and
standard deviation of ri , respectively. That is, r̄ → µr and sr → σr as n → ∞.
Therefore, we may estimate σ by

σ̂ = sr√


.

Furthermore, it can be shown that the standard error of this estimate is approxi-
mately σ̂ /

√
2n. From µ̂r = r̄ , we can estimate µ by

µ̂ = r̄


+ σ̂ 2

2
= r̄


+ s2

r

2
.

When the series rt is serially correlated or when the price of the asset does not
follow the geometric Brownian motion in Eq. (6.8), then other estimation methods
must be used to estimate the drift and volatility parameters of the diffusion equation.
We return to this issue later.

Example 6.2. Consider the daily log returns of IBM stock in 1998.
Figure 6.2(a) shows the time plot of the data, which have 252 observations.
Figure 6.2(b) shows the sample autocorrelations of the series. It is seen that
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Figure 6.2 Daily returns of IBM stock in 1998: (a) log returns and (b) sample autocorrelations.

the log returns are indeed serially uncorrelated. The Ljung–Box statistic
gives Q(10) = 4.9, which is highly insignificant compared with a chi-squared
distribution with 10 degrees of freedom.

If we assume that the price of IBM stock in 1998 follows the geometric Brownian
motion in Eq. (6.8), then we can use the daily log returns to estimate the parameters
µ and σ . From the data, we have r̄ = 0.002276 and sr = 0.01915. Since 1 trading
day is equivalent to  = 1/252 year, we obtain that

σ̂ = sr√


= 0.3040, µ̂ = r̄


+ σ̂ 2

2
= 0.6198.

Thus, the estimated expected return was 61.98% and the standard deviation was
30.4% per annum for IBM stock in 1998.

The normality assumption of the daily log returns may not hold, however. In this
particular instance, the skewness −0.464(0.153) and excess kurtosis 2.396(0.306)
raise some concern, where the number in parentheses denotes asymptotic standard
error.

Example 6.3. Consider the daily log return of the stock of Cisco Systems, Inc.
in 2007. There are 251 observations, and the sample mean and standard deviation
are −3.81 × 10−5 and 0.0174, respectively. The log return series also shows no
serial correlation with Q(12) = 12.30 with a p value of 0.42. Therefore, we have

σ̂ = sr√


= 0.0174√
1.0/251.0

= 0.275, µ̂ = r̄


+ σ̂ 2

2
= −0.0094.
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Consequently, the estimated expected log return for Cisco Systems’ stock was
−0.94% per annum, and the estimated standard deviation was 27.5% per annum
in 2007.

6.4 DISTRIBUTIONS OF STOCK PRICES AND LOG RETURNS

The result of the previous section shows that if one assumes that price of a stock
follows the geometric Brownian motion

dPt = µPt dt + σPt dwt ,

then the logarithm of the price follows a generalized Wiener process

d ln(Pt ) =
(
µ − σ 2

2

)
dt + σ dwt ,

where Pt is the price of the stock at time t and wt is a Wiener process. Therefore,
the change in log price from time t to T is normally distributed as

ln(PT ) − ln(Pt ) ∼ N

[(
µ − σ 2

2

)
(T − t), σ 2(T − t)

]
. (6.9)

Consequently, conditional on the price Pt at time t , the log price at time T > t is
normally distributed as

ln(PT ) ∼ N

[
ln(Pt ) +

(
µ − σ 2

2

)
(T − t), σ 2(T − t)

]
. (6.10)

Using the result of lognormal distribution discussed in Chapter 1, we obtain the
(conditional) mean and variance of PT as

E(PT ) = Pt exp[µ(T − t)],

Var(PT ) = P 2
t exp[2µ(T − t)]{exp[σ 2(T − t)] − 1}.

Note that the expectation confirms that µ is the expected rate of return of the stock.
The prior distribution of stock price can be used to make inferences. For

example, suppose that the current price of stock A is $50, the expected return of the
stock is 15% per annum, and the volatility is 40% per annum. Then the expected
price of stock A in 6 months (0.5 year) and the associated variance are given by

E(PT ) = 50 exp(0.15 × 0.5) = 53.89,

Var(PT ) = 2500 exp(0.3 × 0.5)[exp(0.16 × 0.5) − 1] = 241.92.

The standard deviation of the price 6 months from now is
√

241.92 = 15.55.
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Next, let r be the continuously compounded rate of return per annum from time
t to T . Then we have

PT = Pt exp[r(T − t)],

where T and t are measured in years. Therefore,

r = 1

T − t
ln

(
PT

Pt

)
.

By Eq. (6.9), we have

ln

(
PT

Pt

)
∼ N

[(
µ − σ 2

2

)
(T − t), σ 2(T − t)

]
.

Consequently, the distribution of the continuously compounded rate of return per
annum is

r ∼ N

(
µ − σ 2

2
,

σ 2

T − t

)
.

The continuously compounded rate of return is, therefore, normally distributed with
mean µ − σ 2/2 and standard deviation σ/

√
T − t .

Consider a stock with an expected rate of return of 15% per annum and a
volatility of 10% per annum. The distribution of the continuously compounded
rate of return of the stock over 2 years is normal with mean 0.15 − 0.01/2 = 0.145
or 14.5% per annum and standard deviation 0.1/

√
2 = 0.071 or 7.1% per annum.

These results allow us to construct confidence intervals (CI) for r . For instance,
a 95% CI for r is 0.145±1.96 × 0.071 per annum (i.e., 0.6%, 28.4%).

6.5 DERIVATION OF BLACK–SCHOLES DIFFERENTIAL EQUATION

In this section, we use Ito’s lemma and assume no arbitrage to derive the
Black–Scholes differential equation for the price of a derivative contingent to
a stock valued at Pt . Assume that the price Pt follows the geometric Brownian
motion in Eq. (6.8) and Gt = G(Pt , t) is the price of a derivative (e.g., a call
option) contingent on Pt . By Ito’s lemma,

dGt =
(
∂Gt

∂Pt

µPt + ∂Gt

∂t
+ 1

2

∂2Gt

∂P 2
t

σ 2P 2
t

)
dt + ∂Gt

∂Pt

σPt dwt .

The discretized versions of the process and previous result are

Pt = µPt t + σPt wt , (6.11)

Gt =
(
∂Gt

∂Pt

µPt + ∂Gt

∂t
+ 1

2

∂2Gt

∂P 2
t

σ 2P 2
t

)
t + ∂Gt

∂Pt

σPt wt , (6.12)
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where Pt and Gt are changes in Pt and Gt in a small time interval t . Because
wt = ε

√
t for both Eqs. (6.11) and (6.12), one can construct a portfolio of the

stock and the derivative that does not involve the Wiener process. The appropriate
portfolio is short on derivative and long ∂Gt/∂Pt shares of the stock. Denote the
value of the portfolio by Vt . By construction,

Vt = −Gt + ∂Gt

∂Pt

Pt . (6.13)

The change in Vt is then

Vt = −Gt + ∂Gt

∂Pt

Pt . (6.14)

Substituting Eqs. (6.11) and (6.12) into Eq. (6.14), we have

Vt =
(

−∂Gt

∂t
− 1

2

∂2Gt

∂P 2
t

σ 2P 2
t

)
t. (6.15)

This equation does not involve the stochastic component wt . Therefore, under
the no arbitrage assumption, the portfolio Vt must be riskless during the small
time interval t . In other words, the assumptions used imply that the portfolio
must instantaneously earn the same rate of return as other short-term, risk-free
securities. Otherwise there exists an arbitrage opportunity between the portfolio
and the short-term, risk-free securities. Consequently, we have

Vt = rVt t = (rt)Vt , (6.16)

where r is the risk-free interest rate. By Eqs. (6.13)–(6.16), we have(
∂Gt

∂t
+ 1

2

∂2Gt

∂P 2
t

σ 2P 2
t

)
t = r

(
Gt − ∂Gt

∂Pt

Pt

)
t.

Therefore,

∂Gt

∂t
+ rPt

∂Gt

∂Pt

+ 1

2
σ 2P 2

t

∂2Gt

∂P 2
t

= rGt . (6.17)

This is the Black–Scholes differential equation for derivative pricing. It can be
solved to obtain the price of a derivative with Pt as the underlying variable. The
solution so obtained depends on the boundary conditions of the derivative. For a
European call option, the boundary condition is

GT = max(PT − K, 0),
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where T is the expiration time and K is the strike price. For a European put option,
the boundary condition becomes

GT = max(K − PT , 0).

Example 6.4. As a simple example, consider a forward contract on a stock
that pays no dividend. In this case, the value of the contract is given by

Gt = Pt − K exp[−r(T − t)],

where K is the delivery price, r is the risk-free interest rate, and T is the expiration
time. For such a function, we have

∂Gt

∂t
= −rK exp[−r(T − t)],

∂Gt

∂Pt

= 1,
∂2Gt

∂P 2
t

= 0.

Substituting these quantities into the left-hand side of Eq. (6.17) yields

−rK exp[−r(T − t)] + rPt = r{Pt − K exp[−r(T − t)]},

which equals the right-hand side of Eq. (6.17). Thus, the Black–Scholes differential
equation is indeed satisfied.

6.6 BLACK–SCHOLES PRICING FORMULAS

Black and Scholes (1973) successfully solved their differential equation in Eq.
(6.17) to obtain exact formulas for the price of European call-and-put options. In
what follows, we derive these formulas using what is called risk-neutral valuation
in finance.

6.6.1 Risk-Neutral World

The drift parameter µ drops out from the Black–Scholes differential equation. In
finance, this means the equation is independent of risk preferences. In other words,
risk preferences cannot affect the solution of the equation. A nice consequence of
this property is that one can assume that investors are risk neutral. In a risk-neutral
world, we have the following results:

• The expected return on all securities is the risk-free interest rate r .
• The present value of any cash flow can be obtained by discounting its expected

value at the risk-free rate.

6.6.2 Formulas

The expected value of a European call option at maturity in a risk-neutral world is

E∗[max(PT − K, 0)],
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where E∗ denotes expected value in a risk-neutral world. The price of the call
option at time t is

ct = exp[−r(T − t)]E∗[max(PT − K, 0)]. (6.18)

Yet in a risk-neutral world, we have µ = r , and by Eq. (6.10), ln(PT ) is normally
distributed as

ln(PT ) ∼ N

[
ln(Pt ) +

(
r − σ 2

2

)
(T − t), σ 2(T − t)

]
.

Let g(PT ) be the probability density function of PT . Then the price of the call
option in Eq. (6.18) is

ct = exp[−r(T − t)]
∫ ∞

K

(PT − K)g(PT ) dPT .

By changing the variable in the integration and some algebraic calculations (details
are given in Appendix A), we have

ct = Pt�(h+) − K exp[−r(T − t)]�(h−), (6.19)

where �(x) is the cumulative distribution function (CDF) of the standard normal
random variable evaluated at x,

h+ = ln(Pt/K) + (r + σ 2/2)(T − t)

σ
√
T − t

,

h− = ln(Pt/K) + (r − σ 2/2)(T − t)

σ
√
T − t

= h+ − σ
√
T − t .

In practice, �(x) can easily be obtained from most statistical packages. Alterna-
tively, one can use an approximation given in Appendix B.

The Black–Scholes call formula in Eq. (6.19) has some nice interpretations.
First, if we exercise the call option on the expiration date, we receive the stock,
but we have to pay the strike price. This exchange will take place only when the call
finishes in-the-money (i.e., PT >K). The first term Pt�(h+) is the present value
of receiving the stock if and only if PT >K and the second term −K exp[−r(T −
t)]�(h−) is the present value of paying the strike price if and only if PT >K .
A second interpretation is particularly useful. As shown in the derivation of the
Black–Scholes differential equation in Section 6.5, �(h+) = ∂Gt/∂Pt is the num-
ber of shares in the portfolio that does not involve uncertainty, the Wiener process.
This quantity is known as the delta in hedging. We know that ct = Pt�(h+) + Bt ,
where Bt is the dollar amount invested in risk-free bonds in the portfolio (or
short on the derivative). We can then see that Bt = −K exp[−r(T − t)]�(h−)
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directly from inspection of the Black–Scholes formula. The first term of the for-
mula, Pt�(h+), is the amount invested in the stock, whereas the second term,
K exp[−r(T − t)]�(h−), is the amount borrowed.

Similarly, we can obtain the price of a European put option as

pt = K exp[−r(T − t)]�(−h−) − Pt�(−h+). (6.20)

Since the standard normal distribution is symmetric with respect to its mean 0.0,
we have �(x) = 1 − �(−x) for all x. Using this property, we have �(−hi) =
1 − �(hi). Thus, the information needed to compute the price of a put option is
the same as that of a call option. Alternatively, using the symmetry of normal
distribution, it is easy to verify that

pt − ct = K exp[−r(T − t)] − Pt ,

which is referred to as the put–call parity and can be used to obtain pt from ct . The
put–call parity can also be obtained by considering the following two portfolios:

1. Portfolio A. One European call option plus an amount of cash equal to
K exp[−r(T − t)].

2. Portfolio B. One European put option plus one share of the underlying stock.

The payoff of these two portfolios is

max(PT ,K)

at the expiration of the options. Since the options can only be exercised at the
expiration date, the portfolios must have identical value today. This means

ct + K exp[−r(T − t)] = pt + Pt ,

which is the put–call parity given earlier.

Example 6.5. Suppose that the current price of Intel stock is $80 per share
with volatility σ = 20% per annum. Suppose further that the risk-free interest rate
is 8% per annum. What is the price of a European call option on Intel with a strike
price of $90 that will expire in 3 months?

From the assumptions, we have Pt = 80, K = 90, T − t = 0.25, σ = 0.2, and
r = 0.08. Therefore,

h+ = ln(80/90) + (0.08 + 0.04/2) × 0.25

0.2
√

0.25
= −0.9278,

h− = h+ − 0.2
√

0.25 = −1.0278.
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Using any statistical software (e.g., R or S-Plus) or the approximation in Appendix
B, we have

�(−0.9278) = 0.1767, �(−1.0278) = 0.1520.

Consequently, the price of a European call option is

ct = $80�(−0.9278) − $90�(−1.0278) exp(−0.02) = $0.73.

The stock price has to rise by $10.73 for the purchaser of the call option to break
even.

Under the same assumptions, the price of a European put option is

pt = $90 exp(−0.08 × 0.25)�(1.0278) − $80�(0.9278) = $8.95.

Thus, the stock price can rise an additional $1.05 for the purchaser of the put option
to break even.

Example 6.6. The strike price of the previous example is well beyond the
current stock price. A more realistic strike price is $81. Assume that the other
conditions of the previous example continue to hold. We now have Pt = 80, K =
81, r = 0.08, and T − t = 0.25, and the hi become

h+ = ln(80/81) + (0.08 + 0.04/2) × 0.25

0.2
√

0.25
= 0.125775,

h− = h+ − 0.2
√

0.25 = 0.025775.

Using the approximation in Appendix B, we have �(0.125775) = 0.5500 and
�(0.025775) = 0.5103. The price of a European call option is then

ct = $80�(0.125775) − $81 exp(−0.02)�(0.025775) = $3.49.

The price of the stock has to rise by $4.49 for the purchaser of the call option to
break even. On the other hand, under the same assumptions, the price of a European
put option is

pt = $81 exp(−0.02)�(−0.025775) − $80�(−0.125775)

= $81 exp(−0.02) × 0.48972 − $80 × 0.44996 = $2.89.

The stock price must fall $1.89 for the purchaser of the put option to break
even.
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6.6.3 Lower Bounds of European Options

Consider the call option of a nondividend-paying stock. It can be shown that the
price of a European call option satisfies

ct ≥ Pt − K exp[−r(T − t)];

that is, the lower bound for a European call price is Pt − K exp[−r(T − t)]. This
result can be verified by considering two portfolios:

1. Portfolio A. One European call option plus an amount of cash equal to
K exp[−r(T − t)].

2. Portfolio B . One share of the stock.

For portfolio A, if the cash is invested at the risk-free interest rate, it will result in
K at time T . If PT >K , the call option is exercised at time T and the portfolio is
worth PT . If PT < K , the call option expires worthless and the portfolio is worth
K . Therefore, the value of portfolio is

max(PT ,K).

The value of portfolio B is PT at time T . Hence, portfolio A is always worth more
than (or, at least, equal to) portfolio B. It follows that portfolio A must be worth
more than portfolio B today; that is,

ct + K exp[−r(T − t)] ≥ Pt, or ct ≥ Pt − K exp[−r(T − t)].

Furthermore, since ct ≥ 0, we have

ct ≥ max(Pt − K exp[−r(T − t)], 0).

A similar approach can be used to show that the price of a corresponding
European put option satisfies

pt ≥ max{K exp[−r(T − t)] − Pt, 0}.

Example 6.7. Suppose that Pt = $30, K = $28, r = 6% per annum, and T −
t = 0.5. In this case,

Pt − K exp[−r(T − t)] = $[30 − 28 exp(−0.06 × 0.5)] ≈ $2.83.

Assume that the European call price of the stock is $2.50, which is less than the
theoretical minimum of $2.83. An arbitrageur can buy the call option and short the
stock. This provides a new cash flow of $(30 − 2.50) = $27.50. If invested for 6
months at the risk-free interest rate, the $27.50 grows to $27.50 exp(0.06 × 0.5) =
$28.34. At the expiration time, if PT > $28, the arbitrageur exercises the option,
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closes out the short position, and makes a profit of $(28.34 − 28) = $0.34. On
the other hand, if PT < $28, the stock is bought in the market to close the short
position. The arbitrageur then makes an even greater profit. For illustration, suppose
that PT = $27.00, then the profit is $(28.34 − 27.00) = $1.34.

6.6.4 Discussion

From the formulas, the price of a call or put option depends on five
variables—namely, the current stock price Pt , the strike price K , the time to
expiration T − t measured in years, the volatility σ per annum, and the interest
rate r per annum. It pays to study the effects of these five variables on the price
of an option.

Marginal Effects
Consider first the marginal effects of the five variables on the price of a call option
ct . By marginal effects we mean changing one variable while holding the others
fixed. The effects on a call option can be summarized as follows:

1. Current Stock Price Pt . ct is positively related to ln(Pt ). In particular, ct → 0
as Pt → 0 and ct → ∞ as Pt → ∞. Figure 6.3(a) illustrates the effects with
K = 80, r = 6% per annum, T − t = 0.25 year, and σ = 30% per annum.
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Figure 6.3 Marginal effects of current stock price on price of an option with K = 80, T − t = 0.25,
σ = 0.3, and r = 0.06: (a) call option and (b) put option.
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2. Strike Price K . ct is negatively related to ln(K). In particular, ct → Pt as
K → 0 and ct → 0 as K → ∞.

3. Time to Expiration. ct is related to T − t in a complicated manner, but we
can obtain the limiting results by writing h+ and h− as

h+ = ln(Pt/K)

σ
√
T − t

+ (r + σ 2/2)
√
T − t

σ
,

h− = ln(Pt/K)

σ
√
T − t

+ (r − σ 2/2)
√
T − t

σ
.

If Pt < K , then ct → 0 as (T − t) → 0. If Pt >K , then ct → Pt − K as
(T − t) → 0 and ct → Pt as (T − t) → ∞. Figure 6.4(a) shows the marginal
effects of T − t on ct for three different current stock prices. The fixed
variables are K = 80, r = 6%, and σ = 30%. The solid, dotted, and dashed
lines of the plot are for Pt = 70, 80, and 90, respectively.

4. Volatility σ . Rewriting h+ and h− as

h+ = ln(Pt/K) + r(T − t)

σ
√
T − t

+ σ

2

√
T − t,
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Figure 6.4 Marginal effects of time to expiration on price of an option with K = 80, σ = 0.3, and
r = 0.06: (a) call option and (b) put option. Solid, dotted, and dashed lines are for current stock price
Pt = 70, 80, and 90, respectively.
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h− = ln(Pt/K) + r(T − t)

σ
√
T − t

− σ

2

√
T − t,

we obtain that (a) if ln(Pt/K) + r(T − t) < 0, then ct → 0 as σ → 0, and
(b) if ln(Pt/K) + r(T − t) ≥ 0, then ct → Pt − Ke−r(T−t) as σ → 0 and
ct → Pt as σ → ∞. Figure 6.5(a) shows the effects of σ on ct for K = 80,
T − t = 0.25, r = 0.06, and three different values of Pt . The solid, dotted,
and dashed lines are for Pt = 70, 80, and 90, respectively.

5. Interest Rate. ct is positively related to r such that ct → Pt as r → ∞.

The marginal effects of the five variables on a put option can be obtained
similarly. Figures 6.3(b), 6.4(b), and 6.5(b) illustrates the effects for some selected
cases.

Some Joint Effects
Figure 6.6 shows the joint effects of volatility and strike price on a call option,
where the other variables are fixed at Pt = 80, r = 0.06, and T − t = 0.25. As
expected, the price of a call option is higher when the volatility is high and the
strike price is well below the current stock price. Figure 6.7 shows the effects on
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Figure 6.5 Marginal effects of stock volatility on price of an option with K = 80, T − t = 0.25, and
r = 0.06: (a) call option and (b) put option. Solid, dotted, and dashed lines are for current stock price
Pt = 70, 80, and 90, respectively.
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Figure 6.6 Joint effects of stock volatility and strike price on call option with Pt = 80, r = 0.06, and
T − t = 0.25.

0.2
0.4

0.6
0.8

1
1.2

Volatility

60

70

80

90

100

Striking price

 0
10

20
30

40
V

al
ue

 o
f a

 p
ut

Figure 6.7 Joint effects of stock volatility and strike price on put option with K = 80, T − t = 0.25,
and r = 0.06.
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a put option under the same conditions. The price of a put option is higher when
the volatility is high and the strike price is well above the current stock price.
Furthermore, the plot also shows that the effects of a strike price on the price of a
put option becomes more linear as the volatility increases.

6.7 EXTENSION OF ITO’S LEMMA

In derivative pricing, a derivative may be contingent on multiple securities. When
the prices of these securities are driven by multiple factors, the price of the deriva-
tive is a function of several stochastic processes. The two-factor model for the term
structure of interest rate is an example of two stochastic processes. In this section,
we briefly discuss the extension of Ito’s lemma to the case of several stochastic
processes.

Consider a k-dimensional continuous-time process x t = (x1t , . . . , xkt )
′, where k

is a positive integer and xit is a continuous-time stochastic process satisfying

dxit = µi(xt ) dt + σi(xt ) dwit , i = 1, . . . , k, (6.21)

where wit is a Wiener process. It is understood that the drift and volatility functions
µi(xit ) and σi(xit ) are functions of time index t as well. We omit t from their
arguments to simplify the notation. For i �= j , the Wiener processes wit and wjt

are different. We assume that the correlation between dwit and dwjt is ρij . This
means that ρij is the correlation between the two standard normal random variables
εi and εj defined by wit = εi t and wjt = εj t . Assume that Gt = G(x t , t)

is a function of the stochastic processes xit and time t . The Taylor expansion gives

Gt =
k∑

i=1

∂Gt

∂xit
xit + ∂Gt

∂t
t + 1

2

k∑
i=1

k∑
j=1

∂2Gt

∂xit ∂xjt
xit xjt

+ 1

2

k∑
i=1

∂2Gt

∂xit ∂t
xit t + · · · .

The discretized version of Eq. (6.21) is

wit = µi(xt ) t + σi(xt ) wit , i = 1, . . . , k.

Using a similar argument as that of Eq. (6.5) in Section 6.3, we can obtain that

lim
t→0

(xit )
2 → σ 2

i (x t ) dt, (6.22)

lim
t→0

(xit xjt ) → σi(x t )σj (x t )ρij dt. (6.23)
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Using Eqs. (6.21)–(6.23), taking the limit as t → 0, and ignoring higher order
terms of t , we have

dGt =
 k∑

i=1

∂Gt

∂xit
µi(xt ) + ∂Gt

∂t
+ 1

2

k∑
i=1

k∑
j=1

∂2Gt

∂xit ∂xjt
σi(x t )σj (xt )ρij

 dt

+
k∑

i=1

∂Gt

∂xit
σi(x t ) dwit . (6.24)

This is a generalization of Ito’s lemma to the case of multiple stochastic processes.

6.8 STOCHASTIC INTEGRAL

We briefly discuss stochastic integration so that the price of an asset can be obtained
under the assumption that it follows an Ito process. We deduce the integration result
using Ito’s formula. For a rigorous treatment on the topic, readers may consult
textbooks on stochastic calculus. First, like the usual integration of a deterministic
function, integration is the opposite of differentiation so that∫ t

0
dxs = xt − x0

continues to hold for a stochastic process xt . In particular, for the Wiener pro-
cess wt , we have

∫ t

0 dws = wt because w0 = 0. Next, consider the integration∫ t

0 ws dws . Using the prior result and taking integration of Eq. (6.7), we have

w2
t = t + 2

∫ t

0
ws dws.

Therefore, ∫ t

0
ws dws = 1

2
(w2

t − t).

This is different from the usual deterministic integration for which
∫ t

0 y dy = (y2
t −

y2
0)/2.

Turn to the case that xt is a geometric Brownian motion—that is, xt satisfies

dxt = µxt dt + σxt dwt ,

where µ and σ are constant with σ > 0; see Eq. (6.8). Applying Ito’s lemma to
G(xt , t) = ln(xt ), we obtain

d ln(xt ) =
(
µ − σ 2

2

)
dt + σ dwt .
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Performing the integration and using the results obtained before, we have∫ t

0
d ln(xs) =

(
µ − σ 2

2

)∫ t

0
ds + σ

∫ t

0
dws.

Consequently,

ln(xt ) = ln(x0) + (µ − σ 2/2)t + σwt

and

xt = x0 exp[(µ − σ 2/2)t + σwt ].

Changing the notation xt to Pt for the price of an asset, we have a solution for the
price under the assumption that it is a geometric Brownian motion. The price is

Pt = P0 exp[(µ − σ 2/2)t + σwt ]. (6.25)

6.9 JUMP DIFFUSION MODELS

Empirical studies have found that the stochastic diffusion model based on Brownian
motion fails to explain some characteristics of asset returns and the prices of their
derivatives [e.g., the “volatility smile” of implied volatilities; see Bakshi, Cao, and
Chen (1997) and the references therein]. Volatility smile is referred to as the convex
function between the implied volatility and strike price of an option. Both out-of-
the-money and in-the-money options tend to have higher implied volatilities than
at-the-money options especially in the foreign exchange markets. Volatility smile
is less pronounced for equity options. The inadequacy of the standard stochastic
diffusion model has led to the developments of alternative continuous-time models.
For example, jump diffusion and stochastic volatility models have been proposed
in the literature to overcome the inadequacy; see Merton (1976) and Duffie (1995).

Jumps in stock prices are often assumed to follow a probability law. For example,
the jumps may follow a Poisson process, which is a continuous-time discrete pro-
cess. For a given time t , let Xt be the number of times a special event occurs
during the time period [0, t]. Then Xt is a Poisson process if

Pr(Xt = m) = λmtm

m!
exp(−λt), λ> 0.

That is, Xt follows a Poisson distribution with parameter λt . The parameter λ

governs the occurrence of the special event and is referred to as the rate or intensity
of the process. A formal definition also requires that Xt be a right-continuous
homogeneous Markov process with left-hand limit.

In this section, we discuss a simple jump diffusion model proposed by Kou
(2002). This simple model enjoys several nice properties. The returns implied
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by the model are leptokurtic and asymmetric with respect to zero. In addition,
the model can reproduce volatility smile and provide analytical formulas for the
prices of many options. The model consists of two parts, with the first part being
continuous and following a geometric Brownian motion and the second part being
a jump process. The occurrences of jump are governed by a Poisson process, and
the jump size follows a double exponential distribution. Let Pt be the price of an
asset at time t . The simple jump diffusion model postulates that the price follows
the stochastic differential equation

dPt

Pt

= µdt + σ dwt + d

[
nt∑
i=1

(Ji − 1)

]
, (6.26)

where wt is a Wiener process, nt is a Poisson process with rate λ, and {Ji} is a
sequence of independent and identically distributed nonnegative random variables
such that X = ln(J ) has a double exponential distribution with probability density
function

fX(x) = 1

2η
e−|x−κ|/η, 0 < η < 1. (6.27)

The double exponential distribution is also referred to as the Laplacian distribution .
In model (6.26), nt , wt , and Ji are independent so that there is no relation between
the randomness of the model. Notice that nt is the number of jumps in the time
interval [0, t] and follows a Poisson distribution with parameter λt , where λ is a
constant. At the ith jump, the proportion of price jump is Ji − 1.

The double exponential distribution can be written as

X − κ =
{

ξ with probability 0.5,
−ξ with probability 0.5,

(6.28)

where ξ is an exponential random variable with mean η and variance η2. The
probability density function of ξ is

f (x) = 1

η
e−x/η, 0 < x < ∞.

Some useful properties of the double exponential distribution are

E(X) = κ, Var(X) = 2η2, E(eX) = eκ

1 − η2
.

For finite samples, it is hard to distinguish a double exponential distribution from a
Student-t distribution. However, a double exponential distribution is more tractable
analytically and can generate a higher probability concentration (e.g., higher peak)
around its mean value. As stated in Chapter 1, histograms of observed asset returns
tend to have a higher peak than the normal density. Figure 6.8 shows the probability
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Figure 6.8 Probability density functions of double exponential and normal random variable with
mean zero and variance 0.0008. Solid line denotes the double exponential distribution. Dotted line is
the normal distribution.

density function of a double exponential random variable in the solid line and that
of a normal random variable in the dotted line. Both variables have mean zero and
variance 0.0008. The high peak of the double exponential density is clearly seen.

Solving the stochastic differential equation in Eq. (6.26), we obtain the dynamics
of the asset price as

Pt = P0 exp

[(
µ − σ 2

2

)
t + σwt

] nt∏
i=1

Ji, (6.29)

where it is understood that
∏0

i=1 = 1. This result is a generalization of Eq. (6.25)
by including the stochastic jumps. It can be obtained as follows. Let ti be the time
of the ith jump. For t ∈ [0, t1), there is no jump and the price is given in Eq. (6.25).
Consequently, the left-hand price limit at time t1 is

Pt−1
= P0 exp[(µ − σ 2/2)t1 + σwt1 ].

At time t1, the proportion of price jump is J1 − 1 so that the price becomes

Pt1 = (1 + J1 − 1)Pt−1
= J1Pt−1

= P0 exp[(µ − σ 2/2)t1 + σwt1 ]J1.

For t ∈ (t1, t2), there is no jump in the interval (t1, t] so that

Pt = Pt1 exp[(µ − σ 2/2)(t − t1) + σ(wt − wt1)].
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Plugging in Pt1 , we have

Pt = P0 exp[(µ − σ 2/2)t + σwt ]J1.

Repeating the scheme, we obtain Eq. (6.29).
From Eq. (6.29), the simple return of the underlying asset in a small time

increment t becomes

Pt+t − Pt

Pt

= exp

(
µ − 1

2
σ 2

)
t + σ(wt+t − wt) +

nt+t∑
i=nt+1

Xi

 − 1,

where it is understood that a summation over an empty set is zero and Xi = ln(Ji).
For a small t , we may use the approximation ex ≈ 1 + x + x2/2 and the result
(wt)

2 ≈ t discussed in Section 6.3 to obtain

Pt+t − Pt

Pt

≈
(
µ − 1

2
σ 2

)
t + σ wt +

nt+t∑
i=nt+1

Xi + 1

2
σ 2(wt)

2

≈ µt + σε
√
t +

nt+t∑
i=nt+1

Xi,

where wt = wt+t − wt and ε is a standard normal random variable.
Under the assumption of a Poisson process, the probability of having one jump

in the time interval (t, t + t] is λt and that of having more than one jump is
o(t), where the symbol o(t) means that if we divide this term by t then its
value tends to zero as t tends to zero. Therefore, for a small t , by ignoring
multiple jumps, we have

nt+t∑
i=nt+1

Xi ≈
{

Xnt+1 with probability λt,

0 with probability 1 − λt.

Combining the prior results, we see that the simple return of the underlying asset
is approximately distributed as

Pt+t − Pt

Pt

≈ µt + σε
√
t + I × X, (6.30)

where I is a Bernoulli random variable with Pr(I = 1) = λt and Pr(I = 0) =
1 − λt , and X is a double exponential random variable defined in Eq. (6.28).
Equation (6.30) reduces to that of a geometric Brownian motion without jumps.

Let G = µt + σε
√
t + I × X be the random variable on the right-hand

side of Eq. (6.30). Using the independence between the exponential and normal
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distributions used in the model, Kou (2002) obtains the probability density function
of G as

g(x) = λt

2η
eσ

2t/(2η2)

[
e−ω/η�

(
ωη − σ 2 t

ση
√
t

)
+ eω/η�

(
ωη + σ 2 t

ση
√
t

)]
+ (1 − λt)

1

σ
√
t

f

(
x − µt

σ
√
t

)
, (6.31)

where ω = x − µt − κ , and f (·) and �(·) are, respectively, the probability den-
sity and cumulative distribution functions of the standard normal random variable.
Furthermore,

E(G) = µt + κλt, Var(G) = σ 2 t + λt[2η2 + κ2(1 − λt)].

Figure 6.9 shows some comparisons between probability density functions of a
normal distribution and the distribution of Eq. (6.31). Both distributions have mean
zero and variance 2.0572 × 10−4. The mean and variance are obtained by assuming
that the return of the underlying asset satisfies µ = 20% per annum, σ = 20% per
annum, t = 1 day = 1/252 year, λ = 10, κ = −0.02, and η = 0.02. In other
words, we assume that there are about 10 daily jumps per year with average jump
size −2%, and the jump size standard error is 2%. These values are reasonable
for a U.S. stock. From the plots, the leptokurtic feature of the distribution derived
from the jump diffusion process in Eq. (6.26) is clearly shown. The distribution
has a higher peak and fatter tails than the corresponding normal distribution.

6.9.1 Option Pricing under Jump Diffusion

In the presence of random jumps, the market becomes incomplete. In this case, the
standard hedging arguments are not applicable to price an option. But we can still
derive an option pricing formula that does not depend on attitudes toward risk by
assuming that the number of securities available is very large so that the risk of the
sudden jumps is diversifiable and the market will therefore pay no risk premium
over the risk-free rate for bearing this risk. Alternatively, for a given set of risk
premiums, one can consider a risk-neutral measure P ∗ such that

dPt

Pt

= [r − λE(J − 1)] dt + σ dwt + d

[
nt∑
i=1

(Ji − 1)

]

= (r − λψ) dt + σ dwt + d

[
nt∑
i=1

(Ji − 1)

]
,

where r is the risk-free interest rate, J = exp(X) such that X follows the double
exponential distribution of Eq. (6.27), ψ = eκ/(1 − η2) − 1, 0 < η < 1, and the
parameters κ, η, ψ , and σ become risk-neutral parameters taking consideration of
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Figure 6.9 Density comparisons between normal distribution and distribution of Eq. (6.31). Dotted
line denotes the normal distribution. Both distributions have mean zero and variance 2.0572×10−4.
(a) Overall comparison, (b) comparison of peaks, (c) left tails, and (d) right tails.

the risk premiums; see Kou (2002) for more details. The unique solution of the
prior equation is given by

Pt = P0 exp

[(
r − σ 2

2
− λψ

)
t + σwt

] nt∏
i=1

Ji.

To price a European option in the jump diffusion model, it remains to compute the
expectation, under the measure P ∗, of the discounted final payoff of the option. In
particular, the price of a European call option at time t is given by

ct = E∗[e−r(T−t)(PT − K)+]

= E∗

(
e−r(T−t)

{
Pt exp

[(
r − σ 2

2
− λψ

)
(T − t)

+ σ
√
T − tε

] nT∏
i=1

Ji − K

}
+

 , (6.32)

where T is the expiration time, (T − t) is the time to expiration measured in
years, K is the strike price, (y)+ = max(0, y), and ε is a standard normal random
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variable. Kou (2002) shows that ct is analytically tractable as

ct =
∞∑
n=1

n∑
j=1

e−λ(T−t) λ
n(T − t)n

n!

2j

22n−1

(
2n − j − 1

n − 1

)
(A1,n,j + A2,n,j + A3,n,j )

+ e−λ(T−t)
[
Pte

−λψ(T−t)�(h+) − Ke−r(T−t)�(h−)
]
, (6.33)

where �(·) is the CDF of the standard normal random variable,

A1,n,j = Pte
−λψ(T−t)+nκ 1

2

[
1

(1 − η)j
+ 1

(1 + η)j

]
�(b+) − e−r(T−t)K�(b−),

A2,n,j = 1

2
e−r(T−t)−ω/η+σ 2(T−t)/(2η2)K

×
j−1∑
i=0

[
1

(1 − η)j−i
− 1

](
σ

√
T − t

η

)i
1√
2π

Hhi(c−),

A3,n,j = 1

2
e−r(T−t)+ω/η+σ 2(T−t)/(2η2)K

×
j−1∑
i=0

[
1 − 1

(1 + η)j−i

](
σ

√
T − t

η

)i
1√
2π

Hhi(c+),

b± = ln(Pt/K) + (r ± σ 2/2 − λψ)(T − t) + nκ

σ
√
T − t

,

h± = ln(Pt/K) + (r ± σ 2/2 − λψ)(T − t)

σ
√
T − t

,

c± = σ
√
T − t

η
± ω

σ
√
T − t

,

ω = ln

(
K

Pt

)
+ λψ(T − t) −

(
r − σ 2

2

)
(T − t) − nκ,

ψ = eκ

1 − η2
− 1,

and the Hhi(·) functions are defined as

Hhn(x) = 1

n!

∫ ∞

x

(s − x)ne−s2/2 ds, n = 0, 1, . . . , (6.34)

and Hh−1(x) = exp(−x2/2), which is
√

2πf (x) with f (x) being the probability
density function of a standard normal random variable; see Abramowitz and Stegun
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(1972). The Hhn(x) functions satisfy the recursion

nHhn(x) = Hhn−2(x) − xHhn−1(x), n ≥ 1, (6.35)

with starting values Hh−1(x) = e−x2/2 and Hh0(x) = √
2π�(−x).

The pricing formula involves an infinite series, but its numerical value can be
approximated quickly and accurately through truncation (e.g., the first 10 terms).
Also, if λ = 0 (i.e., there are no jumps), then it is easily seen that ct reduces to the
Black–Scholes formula for a call option discussed before.

Finally, the price of a European put option under the jump diffusion model
considered can be obtained by using the putf -call parity; that is,

pt = ct + Ke−r(T−t) − Pt .

Pricing formulas for other options under the jump diffusion model in Eq. (6.26)
can be found in Kou (2002).

Example 6.8. Consider the stock of Example 6.6, which has a current price
of $80. As before, assume that the strike price of a European option is K = $81
and other parameters are r = 0.08 and T − t = 0.25. In addition, assume that the
price of the stock follows the jump diffusion model in Eq. (6.26) with parameters
λ = 10, κ = −0.02, and η = 0.02. In other words, there are about 10 jumps per
year with average jump size −2% and jump size standard error of 2%. Using the
formula in Eq. (6.33), we obtain ct = $3.92, which is higher than the $3.49 of
Example 6.6 when there are no jumps. The corresponding put option assumes the
value pt = $3.31, which is also higher than what we had before. As expected,
adding the jumps while keeping the other parameters fixed increases the prices of
both European options. Keep in mind, however, that adding the jump process to
the stock price in a real application often leads to different estimates for the stock
volatility σ .

6.10 ESTIMATION OF CONTINUOUS-TIME MODELS

Next, we consider the problem of estimating directly the diffusion equation (i.e.,
Ito process) from discretely sampled data. Here the drift and volatility functions
µ(xt , t) and σ(xt , t) are time varying and may not follow a specific paramet-
ric form. This is a topic of considerable interest in recent years. Details of the
available methods are beyond the scope of this chapter. Hence, we only outline
the approaches proposed in the literature. Interested readers can consult the corre-
sponding references and Lo (1988).

There are several approaches available for estimating a diffusion equation. The
first approach is the quasi-maximum-likelihood approach, which makes use of the
fact that for a small time interval dwt is normally distributed; see Kessler (1997)
and the references therein. The second approach uses methods of moments; see
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Conley, Hansen, Luttmer, and Scheinkman (1997) and the references therein. The
third approach uses nonparametric methods; see Ait-Sahalia (1996, 2002). The
fourth approach uses semiparametric and reprojection methods; see Gallant and
Long (1997) and Gallant and Tauchen (1997). Recently, many researchers have
applied Markov chain Monte Carlo methods to estimate the diffusion equation; see
Eraker (2001) and Elerian, Chib, and Shephard (2001).

APPENDIX A: INTEGRATION OF BLACK–SCHOLES FORMULA

In this appendix, we derive the price of a European call option given in Eq. (6.19).
Let x = ln(PT ). By changing variable and using g(PT ) dPT = f (x) dx, where
f (x) is the probability density function of x, we have

ct = exp[−r(T − t)]
∫ ∞

K

(PT − K)g(PT ) dPt

= e−r(T−t)

∫ ∞

ln(K)

(ex − K)f (x) dx

= e−r(T−t)

[∫ ∞

ln(K)

exf (x) dx − K

∫ ∞

ln(K)

f (x) dx

]
. (6.36)

Because x = ln(PT ) ∼ N [ln(Pt ) + (r − σ 2/2)(T − t), σ 2(T − t)], the integration
of the second term of Eq. (6.36) reduces to

∫ ∞

ln(K)

f (x) dx = 1 −
∫ ln(K)

−∞
f (x) dx

= 1 − CDF[ln(K)]

= 1 − �(−h−) = �(h−),

where CDF[ln(K)] is the cumulative distribution function (CDF) of x = ln(PT )

evaluated at ln(K), �(·) is the CDF of the standard normal random variable, and

−h− = ln(K) − ln(Pt ) − (r − σ 2/2)(T − t)

σ
√
T − t

= − ln(Pt/K) − (r − σ 2/2)(T − t)

σ
√
T − t

.

The integration of the first term of Eq. (6.36) can be written as∫ ∞

ln(K)

1√
2π

√
σ 2(T − t)

exp

{
x − [x − ln(Pt ) − (r − σ 2/2)(T − t)]2

2σ 2(T − t)

}
dx,
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where the exponent can be simplified to

x − {x − [ln(Pt ) + (r − σ 2/2)(T − t)]}2

2σ 2(T − t)

= −{x − [ln(Pt ) + (r + σ 2/2)(T − t)]}2

2σ 2(T − t)
+ ln(Pt ) + r(T − t).

Consequently, the first integration becomes∫ ∞

ln(K)

exf (x) dx = Pte
r(T−t)

∫ ∞

ln(K)

1√
2π

√
σ 2(T − t)

× exp

(
−{x − [ln(Pt ) + (r + σ 2/2)(T − t)]}2

2σ 2(T − t)

)
dx,

which involves the CDF of a normal distribution with mean ln(Pt ) + (r +
σ 2/2)(T − t) and variance σ 2(T − t). By using the same techniques as those of
the second integration shown before, we have∫ ∞

ln(K)

exf (x) dx = Pte
r(T−t)�(h+),

where h+ is given by

h+ = ln(Pt/K) + (r + σ 2/2)(T − t)

σ
√
T − t

.

Putting the two integration results together, we have

ct = e−r(T−t)[Pte
r(T−t)�(h+) − K�(h−)] = Pt�(h+) − Ke−r(T−t)�(h−).

APPENDIX B: APPROXIMATION TO STANDARD NORMAL
PROBABILITY

The CDF �(x) of a standard normal random variable can be approximated by

�(x) =
{

1 − f (x)[c1k + c2k
2 + c3k

3 + c4k
4 + c5k

5] if x ≥ 0,
1 − �(−x) if x < 0,

where f (x) = exp(−x2/2)/
√

2π , k = 1/(1 + 0.2316419x), c1 = 0.319381530,
c2 = −0.356563782, c3 = 1.781477937, c4 = −1.821255978, and c5 =
1.330274429.

For illustration, using the earlier approximation, we obtain �(1.96) = 0.975002,
�(0.82) = 0.793892, and �(−0.61) = 0.270931. These probabilities are very
close to that obtained from a typical normal probability table.
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EXERCISES

6.1. Assume that the log price pt = ln(Pt ) follows a stochastic differential
equation

dpt = γ dt + σ dwt ,

where wt is a Wiener process. Derive the stochastic equation for the price Pt .
6.2. Considering the forward price F of a nondividend-paying stock, we have

Ft,T = Pte
r(T−t),

where r is the risk-free interest rate, which is constant, and Pt is the cur-
rent stock price. Suppose Pt follows the geometric Brownian motion dPt =
µPt dt + σPt dwt . Derive a stochastic diffusion equation for Ft,T .

6.3. Assume that the price of IBM stock follows the Ito process

dPt = µPt dt + σPt dwt ,

where µ and σ are constant and wt is a standard Brownian motion. Consider
the daily log returns of IBM stock in 1997. The average return and the sample
standard deviation are 0.00131 and 0.02215, respectively. Use the data to
estimate the parameters µ and σ assuming that there were 252 trading days
in 1997.

6.4. Suppose that the current price of a stock is $120 per share with volatility
σ = 50% per annum. Suppose further that the risk-free interest rate is 7% per
annum and the stock pays no dividend. (a) What is the price of a European
call option contingent on the stock with a strike price of $125 that will expire
in 3 months? (b) What is the price of a European put option on the same stock
with a strike price of $118 that will expire in 3 months? If the volatility σ

is increased to 80% per annum, then what are the prices of the two options?

6.5. Derive the limiting marginal effects of the five variables K , Pt , T − t , σ ,
and r on a European put option contingent on a stock.

6.6. A stock price is currently $60 per share and follows the geometric Brownian
motion dPt = µPt dt + σPt dt . Assume that the expected return µ from the
stock is 20% per annum and its volatility is 40% per annum. What is the
probability distribution for the stock price in 2 years? Obtain the mean and
standard deviation of the distribution and construct a 95% confidence interval
for the stock price.

6.7. A stock price is currently $60 per share and follows the geometric Brownian
motion dPt = µPt dt + σPt dt . Assume that the expected return µ from
the stock is 20% per annum and its volatility is 40% per annum. What is
the probability distribution for the continuously compounded rate of return
of the stock over 2 years? Obtain the mean and standard deviation of the
distribution.
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6.8. Suppose that the current price of stock A is $70 per share and the price
follows the jump diffusion model in Eq. (6.26). Assume that the risk-free
interest rate is 8% per annum, the stock pays no dividend, and its volatility
(σ ) is 30% per annum. In addition, the price on average has about 15 jumps
per year with average jump size −2% and jump standard error 3%. What is
the price of a European call option with strike price $75 that will expire in
3 months? What is the price of the corresponding European put option?

6.9. Consider the European call option of a nondividend-paying stock. Suppose
that Pt = $20, K = $18, r = 6% per annum, and T − t = 0.5 year. If the
price of a European call option of the stock is $2.10, what opportunities are
there for an arbitrageur?

6.10. Consider the put option of a nondividend-paying stock. Suppose that Pt =
$44, K = $47, r = 6% per annum, and T − t = 0.5 year. If the European
put option of the stock is selling at $1.00, what opportunities are there for
an arbitrageur?
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C H A P T E R 7

Extreme Values, Quantiles,
and Value at Risk

Extreme price movements in the financial markets are rare but important. The stock
market crash on Wall Street in October 1987 and other big financial crises such as
the Long-Term Capital Management and the bankruptcy of Lehman Brothers have
attracted a great deal of attention among investors, practitioners, and researchers.
The recent worldwide financial crisis characterized by the substantial increase in
market volatility, for example, the volatility index (VIX) of the Chicago Board
Options Exchange index, and the big drops in market indices has further gener-
ated discussions on market risk and margin setting for financial institutions. As a
result, value at risk (VaR) has become the standard measure of market risk in risk
management. Its usefulness and weaknesses are widely discussed.

In this chapter, we discuss various methods for calculating VaR and the statistical
theories behind these methods. In particular, we consider the extreme value theory
developed in the statistical literature for studying rare (or extraordinary) events
and its application to VaR. Both unconditional and conditional concepts of extreme
values are discussed. The unconditional approach to VaR calculation for a financial
position uses the historical returns of the instruments involved to compute VaR.
On the other hand, a conditional approach uses the historical data and explanatory
variables to calculate VaR. The explanatory variables may include macroeconomic
variables of an economy and accounting variables of companies involved.

Other approaches to VaR calculation discussed in the chapter are RiskMetrics,
econometric modeling using volatility models, and empirical quantile. We use daily
log returns of IBM stock to illustrate the actual calculation of all the methods
discussed. The results obtained can therefore be used to compare the performance
of different methods. Figure 7.1 shows the time plot of daily log returns of IBM
stock from July 3, 1962, to December 31, 1998, for 9190 observations.

VaR is a point estimate of potential financial loss. It contains a certain degree
of uncertainty. It also has a tendency to underestimate the actual loss if an extreme
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Figure 7.1 Time plot of daily log returns of IBM stock from July 3, 1962, to December 31, 1998.

event actually occurs. To overcome the weaknesses of VaR, we discuss other risk
measures such as expected shortfalls and the loss distribution of a financial position
in the chapter.

7.1 VALUE AT RISK

There are several types of risk in financial markets. Credit risk, operational risk,
and market risk are the three main categories of financial risk. Value at risk (VaR)
is mainly concerned with market risk, but the concept is also applicable to other
types of risk. VaR is a single estimate of the amount by which an institution’s
position in a risk category could decline due to general market movements during
a given holding period; see Duffie and Pan (1997) and Jorion (2006) for a general
exposition of VaR. The measure can be used by financial institutions to assess
their risks or by a regulatory committee to set margin requirements. In either case,
VaR is used to ensure that the financial institutions can still be in business after
a catastrophic event. From the viewpoint of a financial institution, VaR can be
defined as the maximal loss of a financial position during a given time period for a
given probability. In this view, one treats VaR as a measure of loss associated with
a rare (or extraordinary) event under normal market conditions. Alternatively, from
the viewpoint of a regulatory committee, VaR can be defined as the minimal loss
under extraordinary market circumstances. Both definitions will lead to the same
VaR measure, even though the concepts appear to be different.



value at risk 327

In what follows, we define VaR under a probabilistic framework. Suppose that
at the time index t we are interested in the risk of a financial position for the
next � periods. Let V (�) be the change in value of the underlying assets of the
financial position from time t to t + � and L(�) be the associated loss function.
These two quantities are measured in dollars and are random variables at the time
index t . L(�) is a positive or negative function of V (�) depending on the position
being short or long. Denote the cumulative distribution function (CDF) of L(�) by
F�(x). We define the VaR of a financial position over the time horizon � with tail
probability p as

p = Pr[L(�) ≥ VaR] = 1 − Pr[L(�) < VaR]. (7.1)

From the definition, the probability that the position holder would encounter a loss
greater than or equal to VaR over the time horizon � is p. Alternatively, VaR
can be interpreted as follows. With probability (1 − p), the potential loss encoun-
tered by the holder of the financial position over the time horizon � is less than
VaR.

The previous definition shows that VaR is concerned with the upper tail behavior
of the loss CDF F�(x). For any univariate CDF F�(x) and probability q, such that
0 < q < 1, the quantity

xq = inf{x|F�(x) ≥ q}

is called the qth quantile of F�(x), where inf denotes the smallest real number
x satisfying F�(x) ≥ q. If the random variable L(�) of F�(x) is continuous, then
q = Pr[L(�) ≤ xq ].

If the CDF F�(x) of Eq. (7.1) is known, then 1 − p = Pr[L(�) < VaR] so that
VaR is simply the (1 − p)th quantile of the CDF of the loss function L(�) (i.e.,
VaR = x1−p). Sometimes, VaR is referred to as the upper pth quantile because
p is the upper tail probability of the loss distribution. The CDF is unknown in
practice, however. Studies of VaR are essentially concerned with estimation of the
CDF and/or its quantile, especially the upper tail behavior of the loss CDF.

In real applications, calculation of VaR involves several factors:

1. The probability of interest p, such as p = 0.01 for risk management and
p = 0.001 in stress testing.

2. The time horizon �. It might be set by a regulatory committee, such as 1 day
or 10 days for market risk and 1 year or 5 years for credit risk.

3. The frequency of the data, which might not be the same as the time horizon
�. Daily observations are often used in market risk analysis.

4. The CDF F�(x) or its quantiles.

5. The amount of the financial position or the mark-to-market value of the
portfolio.
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Among these factors, the CDF F�(x) is the focus of econometric modeling.
Different methods for estimating the CDF give rise to different approaches to VaR
calculation.

Remark. The definition of VaR in Eq. (7.1) is based on the upper tail of
a loss function. For a long financial position, loss occurs when the returns are
negative. Therefore, we shall use negative returns in data analysis for a long
financial position. Furthermore, the VaR defined in Eq. (7.1) is in dollar amount.
Since log returns correspond approximately to percentage changes in value of
a financial asset, we use log returns rt in data analysis. The VaR calculated
from the upper quantile of the distribution of rt+1 given information available
at time t is therefore in percentage. The dollar amount of VaR is then the cash
value of the financial position times the VaR of the log return series. That is,
VaR = Value × VaR(of log returns). If necessary, one can also use the approxima-
tion VaR = Value × [exp(VaR of log returns) − 1]. �

Remark. VaR is a prediction concerning possible loss of a portfolio in a
given time horizon. It should be computed using the predictive distribution of
future returns of the financial position. For example, the VaR for a 1-day hori-
zon of a portfolio using daily returns rt should be calculated using the predictive
distribution of rt+1 given information available at time t . From a statistical view-
point, predictive distribution takes into account the parameter uncertainty in a
properly specified model. However, predictive distribution is hard to obtain, and
most of the available methods for VaR calculation ignore the effects of parameter
uncertainty. �

Remark. From the prior discussion, VaR is just a quantile of the loss function.
It does not fully describe the upper tail behavior of the loss function. In practice,
two assets may have the same VaR yet encounter different losses when the VaR is
exceeded. Furthermore, the VaR does not satisfy the sub-additivity property, which
states that a risk measure for two portfolios after they have been merged should be
no greater than the sum of their risk measures before they were merged. Therefore,
care must be exercised in using VaR to measure risk. We discuss the concept of
expected shortfall later as an alternative to measuring risk. The expected shortfall
is also known as the conditional value at risk (CVaR). �

7.2 RISKMETRICS

J. P. Morgan developed the RiskMetrics methodology to VaR calculation; see
Longerstaey and More (1995). In its simple form, RiskMetrics assumes that the
continuously compounded daily return of a portfolio follows a conditional normal
distribution. Denote the daily log return by rt and the information set available at
time t − 1 by Ft−1. RiskMetrics assumes that rt |Ft−1 ∼ N(µt , σ

2
t ), where µt is the

conditional mean and σ 2
t is the conditional variance of rt . In addition, the method
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assumes that the two quantities evolve over time according to the simple model:

µt = 0, σ 2
t = ασ 2

t−1 + (1 − α)r2
t−1, 1>α> 0. (7.2)

Therefore, the method assumes that the logarithm of the daily price, pt = ln(Pt ),
of the portfolio satisfies the difference equation pt − pt−1 = at , where at = σtεt
is an IGARCH(1,1) process without drift. The value of α is often in the interval
(0.9, 1) with a typical value of 0.94.

A nice property of such a special random-walk IGARCH model is that the
conditional distribution of a multiperiod return is easily available. Specifically, for
a k-period horizon, the log return from time t + 1 to time t + k (inclusive) is
rt [k] = rt+1 + · · · + rt+k−1 + rt+k . We use the square bracket [k] to denote a k-
horizon return. Under the special IGARCH(1,1) model in Eq. (7.2), the conditional
distribution rt [k]|Ft is normal with mean zero and variance σ 2

t [k], where σ 2
t [k]

can be computed using the forecasting method discussed in Chapter 3. Using the
independence assumption of εt and model (7.2), we have

σ 2
t [k] = Var(rt [k]|Ft) =

k∑
i=1

Var(at+i |Ft),

where Var(at+i |Ft) = E(σ 2
t+i |Ft) can be obtained recursively. Using rt−1 = at−1 =

σt−1εt−1, we can rewrite the volatility equation of the IGARCH(1,1) model in Eq.
(7.2) as

σ 2
t = σ 2

t−1 + (1 − α)σ 2
t−1(ε

2
t−1 − 1) for all t.

In particular, we have

σ 2
t+i = σ 2

t+i−1 + (1 − α)σ 2
t+i−1(ε

2
t+i−1 − 1) for i = 2, . . . , k.

Since E(ε2
t+i−1 − 1|Ft) = 0 for i ≥ 2, the prior equation shows that

E(σ 2
t+i |Ft) = E(σ 2

t+i−1|Ft) for i = 2, . . . , k. (7.3)

For the 1-step-ahead volatility forecast, Eq. (7.2) shows that σ 2
t+1 = ασ 2

t + (1 −
α)r2

t . Therefore, Eq. (7.3) shows that Var(rt+i |Ft) = σ 2
t+1 for i ≥ 1 and, hence,

σ 2
t [k] = kσ 2

t+1. The results show that rt [k]|Ft ∼ N(0, kσ 2
t+1). Consequently, under

the special IGARCH(1,1) model in Eq. (7.2) the conditional variance of rt [k] is
proportional to the time horizon k. The conditional standard deviation of a k-period
horizon log return is then

√
kσt+1, which is

√
k times σt+1.

Given a tail probability, RiskMetrics uses the result rt [k]|Ft ∼ N(0, kσ 2
t+1)

to calculate VaR for the log return. If the tail probability is set to 5%, then
VaR = 1.65σt+1 for the next trading day. This is the upper 5% quantile (or the
95th percentile) of a normal distribution with mean zero and standard devia-
tion σt+1. For the next k trading days, VaR[k] = 1.65

√
kσt+1, which is the 95th
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percentile of N(0, kσ 2
t+1). Similarly, if the tail probability is 1%, then VaR =

2.326σt+1 for the next trading day and VaR[k] = 2.326
√
kσt+1 for the next k

trading days.
Consider the case of 1% tail probability. The VaR for the portfolio under Risk-

Metrics is then

VaR = Amount of position × 2.326σt+1,

for the next trading day and that of a k-day horizon is

VaR(k) = Amount of position × 2.326
√
kσt+1,

where the argument (k) of VaR is used to denote the time horizon and the portfolio
value is measured in dollars. Consequently, under RiskMetrics, we have

VaR(k) =
√
k × VaR.

This is referred to as the square root of time rule in VaR calculation under Risk-
Metrics.

If the log returns are in percentages, then the 1% VaR for the next trading day
is VaR = Amount of position × 2.326σt+1/100, where σt+1 is the volatility of the
percentage log returns.

Note that because RiskMetrics assumes log returns are normally distributed with
mean zero, the loss function is symmetric and VaR are the same for long and short
financial positions.

Example 7.1. The sample standard deviation of the continuously compounded
daily return of the German mark/U.S. dollar exchange rate was about 0.53%
in June 1997. Suppose that an investor was long in $10 million worth of
mark/dollar exchange rate contract. Then the 5% VaR for a 1-day horizon of the
investor is

$10,000,000 × (1.65 × 0.0053) = $87,450.

The corresponding VaR for 10-day horizon is

$10,000,000 × (
√

10 × 1.65 × 0.0053) ≈ $276,541.

Example 7.2. Consider the daily IBM log returns of Figure 7.1. As mentioned
in Chapter 1, the sample mean of the returns is significantly different from zero.
However, for demonstration of VaR calculation using RiskMetrics, we assume in
this example that the conditional mean is zero and the volatility of the returns
follows an IGARCH(1,1) model without drift. The fitted model is

rt = at , at = σtεt , σ 2
t = 0.9396σ 2

t−1 + (1 − 0.9396)a2
t−1, (7.4)
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where {εt } is a standard Gaussian white noise series. As expected, this model is
rejected by the Q statistics. For instance, we have a highly significant statistic
Q(10) = 56.19 for the squared standardized residuals.

From the data and the fitted model, we have r9190 = −0.0128 and σ̂ 2
9190 =

0.0003472. Therefore, the 1-step-ahead volatility forecast is σ̂ 2
9190(1) = 0.000336.

The 95% quantile of the conditional distribution r9191|F9190 is 1.65 × √
0.000336 =

0.03025. Consequently, the 1-day horizon 5% VaR of a long position of $10 mil-
lions is

VaR = $10,000,000 × 0.03025 = $302,500.

The 99% quantile is 2.326 × √
0.000336 = 0.04265, and the corresponding 1%

VaR for the same long position is $426,500.

Remark. To implement RiskMetrics in S-Plus, one can use ewma1 (expo-
nentially weighted moving average of order 1) under the mgarch (multivariate
GARCH) command to obtain the estimate of 1 − α. Then, use the command pre-

dict to obtain volatility forecasts. For the IBM data used, the estimate of α is
1 − 0.036 = 0.964 and the 1-step-ahead volatility forecast is σ̂9190(1) = 0.01888.
Please see the demonstration below. This leads to VaR = $10,000,000 × (1.65 ×
0.01888) = $311,520 and VaR = $439,187 for p = 0.05 and 0.01, respectively.
These two values are slightly higher than those of Example 7.2, which are based
on estimates of the RATS package. �

S-Plus Demonstration
The following output has been simplified:

> ibm.risk=mgarch(ibm~-1, ~ewma1)
> ibm.risk
ALPHA 0.036
> predict(ibm.risk,2)
$sigma.pred 0.01888

7.2.1 Discussion

An advantage of RiskMetrics is simplicity. It is easy to understand and apply.
Another advantage is that it makes risk more transparent in the financial markets.
However, as security returns tend to have heavy tails (or fat tails), the normality
assumption used often results in underestimation of VaR. Other approaches to VaR
calculation avoid making such an assumption.

The square root of time rule is a consequence of the special model used by
RiskMetrics. If either the zero mean assumption or the special IGARCH(1,1)
model assumption of the log returns fails, then the rule is invalid. Consider the
simple model

rt = µ + at , at = σtεt , µ �= 0,

σ 2
t = ασ 2

t−1 + (1 − α)a2
t−1,
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where {εt } is a standard Gaussian white noise series. The assumption that µ �= 0
holds for returns of many heavily traded stocks on the NYSE; see Chapter 1. For
this simple model, the distribution of rt+1 given Ft is N(µ, σ 2

t+1). The 95% quantile
used to calculate the 1-period horizon VaR becomes µ + 1.65σt+1. For a k-period
horizon, the distribution of rt [k] given Ft is N(kµ, kσ 2

t+1), where as before rt [k] =
rt+1 + · · · + rt+k. The 95% quantile used in the k-period horizon VaR calculation
is kµ + 1.65

√
kσt+1 = √

k(
√
kµ + 1.65σt+1). Consequently, VaR(k) �= √

k × VaR
when the mean return is not zero. It is also easy to show that the rule fails when
the volatility model of the return is not an IGARCH(1,1) model without drift.

7.2.2 Multiple Positions

In some applications, an investor may hold multiple positions and needs to com-
pute the overall VaR of the positions. RiskMetrics adopts a simple approach for
doing such a calculation under the assumption that daily log returns of each
position follow a random-walk IGARCH(1,1) model. The additional quantities
needed are the cross-correlation coefficients between the returns. Consider the
case of two positions. Let VaR1 and VaR2 be the VaR for the two positions
and ρ12 be the cross-correlation coefficient between the two returns—that is,
ρ12 = Cov(r1t , r2t )/[Var(r1t )Var(r2t )]0.5. Then the overall VaR of the investor is

VaR =
√

VaR2
1 + VaR2

2 + 2ρ12VaR1VaR2.

The generalization of VaR to a position consisting of m instruments is straightfor-
ward as

VaR =
√√√√ m∑

i=1

VaR2
i + 2

m∑
i<j

ρijVaRiVaRj ,

where ρij is the cross-correlation coefficient between returns of the ith and j th
instruments and VaRi is the VaR of the ith instrument.

The prior formula is obtained using the assumption that the joint distribution
of the log returns of assets involved in the portfolio is multivariate normal with
mean zero and covariance matrix �t+1. Under such an assumption, the log return
of the portfolio is normal with mean zero and finite variance; see Appendix B of
Chapter 8 for properties of multivariate normal variables.

7.2.3 Expected Shortfall

Given a tail probability p, VaR is simply the (1 − p)th quantile of the loss func-
tion. In practice, the actual loss, if it occurs, can be greater than VaR. In this
sense, VaR may underestimate the actual loss. To have a better assessment of the
potential loss, one can consider the expected value of the loss function if the VaR
is exceeded. This consideration leads to the concept of expected shortfall (ES).
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Under RiskMetrics, the loss function is normally distributed so that the conditional
distribution of the loss function given that a VaR is exceeded is a truncated (from
below) normal distribution. Properties such as mean and variance of a truncated
normal distribution have been well-studied in the statistical literature. We can use
the mean of the distribution to calculate expected shortfall. Specifically, consider
the standard normal distribution X ∼ N(0, 1). For a given upper tail probability p,
let q = 1 − p and VaRq be the associated VaR, that is, VaRq is the qth quantile of
X. Then the expectation of X given X>VaRq is E(X|X>VaRq) = f (VaRq)/p,
where f (x) = (1/

√
2π) exp(−x2/2) is the pdf of X. The expected shortfall for a

log return rt with conditional distribution N(0, σ 2
t ) is then

ESq = f (VaRq)

p
σt or ES1−p = f (VaR1−p)

p
σt .

For example, if p = 0.05, then VaR0.95 ≈ 1.645 and f (VaRq)/p = f (1.645)/0.05
= 2.0627 so that the expected shortfall under RiskMetrics is ES0.95 = 2.0627σt . If
p = 0.01, then ES0.99 = 2.6652σt .

7.3 ECONOMETRIC APPROACH TO VAR CALCULATION

A general approach to VaR calculation is to use the time series econometric models
of Chapters 2–4. For a log return series, the time series models of Chapter 2 can
be used to model the mean equation, and the conditional heteroscedastic models
of Chapter 3 or 4 are used to handle the volatility. For simplicity, we use GARCH
models in our discussion and refer to the approach as an econometric approach to
VaR calculation. Other volatility models, including the nonlinear ones in Chapter 4,
can also be used.

Consider the log return rt of an asset. A general time series model for rt can be
written as

rt = φ0 +
p∑

i=1

φirt−i + at −
q∑

j=1

θjat−j , (7.5)

at = σtεt ,

σ 2
t = α0 +

u∑
i=1

αia
2
t−i +

v∑
j=1

βjσ
2
t−j . (7.6)

Equations (7.5) and (7.6) are the mean and volatility equations for rt . These two
equations can be used to obtain 1-step-ahead forecasts of the conditional mean and
conditional variance of rt assuming that the parameters are known. Specifically,
we have

r̂t (1) = φ0 +
p∑

i=1

φirt+1−i −
q∑

j=1

θj at+1−j ,

σ̂ 2
t (1) = α0 +

u∑
i=1

αia
2
t+1−i +

v∑
j=1

βjσ
2
t+1−j .
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If one further assumes that εt is Gaussian, then the conditional distribution of
rt+1 given the information available at time t is N [r̂t (1), σ̂ 2

t (1)]. Quantiles of this
conditional distribution can easily be obtained for VaR calculation. For example, the
95% quantile is r̂t (1) + 1.65σ̂t (1). If one assumes that εt is a standardized Student-t
distribution with v degrees of freedom, then the quantile is r̂t (1) + t∗v (1 − p)σ̂t (1),
where t∗v (1 − p) is the (1 − p)th quantile of a standardized Student-t distribution
with v degrees of freedom.

The relationship between quantiles of a Student-t distribution with v degrees
of freedom, denoted by tv , and those of its standardized distribution, denoted by
t∗v , is

p = Pr(tv ≤ q) = Pr

[
tv√

v/(v − 2)
≤ q√

v/(v − 2)

]
= Pr

[
t∗v ≤ q√

v/(v − 2)

]
,

where v > 2. That is, if q is the pth quantile of a Student-t distribution with
v degrees of freedom, then q/

√
v/(v − 2) is the pth quantile of a standardized

Student-t distribution with v degrees of freedom. Therefore, if εt of the GARCH
model in Eq. (7.6) is a standardized Student-t distribution with v degrees of freedom
and the upper tail probability is p, then the (1 − p)th quantile used to calculate
the 1-period horizon VaR at time index t is

r̂t (1) + tv(1 − p)σ̂t (1)√
v/(v − 2)

,

where tv(1 − p) is the (1 − p)th quantile of a Student-t distribution with v degrees
of freedom.

Example 7.3. Consider again the daily IBM log returns of Example 7.2. We
use two volatility models to calculate VaR of 1-day horizon at t = 9190 for a long
position of $10 million. These econometric models are reasonable based on the
modeling techniques of Chapters 2 and 3.

Because the position is long, we use rt = −rct , where rct is the usual log return
of IBM stock shown in Figure 7.1.

CASE 1. Assume that εt is standard normal. The fitted model is

rt = −0.00066 − 0.0247rt−2 + at , at = σtεt ,

σ 2
t = 0.00000389 + 0.0799a2

t−1 + 0.9073σ 2
t−1.

From the data, we have r9189 = 0.00201, r9190 = 0.0128, and σ 2
9190 = 0.00033455.

Consequently, the prior AR(2)–GARCH(1,1) model produces 1-step-ahead fore-
casts as

r̂9190(1) = −0.00071 and σ̂ 2
9190(1) = 0.0003211.
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The 95% quantile is then

−0.00071 + 1.6449 ×
√

0.0003211 = 0.02877.

The VaR for a long position of $10 million with probability 0.05 is
VaR = $10,000,000 × 0.02877 = $287,700. The result shows that, with proba-
bility 95%, the potential loss of holding that position next day is $287, 200 or
less assuming that the AR(2)–GARCH(1,1) model holds. If the tail probability is
0.01, then the 99% quantile is

−0.00071 + 2.3262 ×
√

0.0003211 = 0.0409738.

The VaR for the position becomes $409, 738.

CASE 2. Assume that εt is a standardized Student-t distribution with 5 degrees
of freedom. The fitted model is

rt = −0.0003 − 0.0335rt−2 + at , at = σtεt ,

σ 2
t = 0.000003 + 0.0559a2

t−1 + 0.9350σ 2
t−1.

From the data, we have r9189 = 0.00201, r9190 = 0.0128, and σ 2
9190 = 0.000349.

Consequently, the prior Student-t AR(2)–GARCH(1,1) model produces 1-step-
ahead forecasts

r̂9190(1) = −0.000367 and σ̂ 2
9190(1) = 0.0003386.

The 95% quantile of a Student-t distribution with 5 degrees of freedom is 2.015
and that of its standardized distribution is 2.015/

√
5/3 = 1.5608. Therefore, the

95% quantile of the conditional distribution of r9191 given F9190 is

−0.000367 + 1.5608
√

0.0003386 = 0.028354.

The VaR for a long position of $10 million is

VaR = $10,000,000 × 0.028352 = $283,520,

which is essentially the same as that obtained under the normality assumption. The
99% quantile of the conditional distribution is

−0.000367 + (3.3649/
√

5/3)
√

0.0003386 = 0.0475943.

The corresponding VaR is $475, 943. Comparing with that of Case 1, we see the
heavy-tail effect of using a Student-t distribution with 5 degrees of freedom; it
increases the VaR when the tail probability becomes smaller. In R and S-Plus, the
quantile of a Student-t distribution with m degrees of freedom can be obtained
by the command qt(p,m), for example, xp = qt(0.99,5.23) for the 99th per-
centile of a Student-t distribution with 5.23 degrees of freedom.
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7.3.1 Multiple Periods

Suppose that at time h we want to compute the k-horizon VaR of an asset whose
log return is rt . The variable of interest is the k-period log return at the forecast
origin h (i.e., rh[k] = rh+1 + · · · + rh+k). If the return rt follows the time series
model in Eqs. (7.5) and (7.6), then the conditional mean and variance of rh[k]
given the information set Fh can be obtained by the forecasting methods discussed
in Chapters 2 and 3.

Expected Return and Forecast Error
The conditional mean E(rh[k]|Fh) can be obtained by the forecasting method of
ARMA models in Chapter 2. Specifically, we have

r̂h[k] = rh(1) + · · · + rh(k),

where rh(�) is the �-step-ahead forecast of the return at the forecast origin h. These
forecasts can be computed recursively as discussed in Section 2.6.4. Using the MA
representation

rt = µ + at + ψ1at−1 + ψ2at−2 + · · ·

of the ARMA model in Eq. (7.5), we can write the �-step-ahead forecast error at
the forecast origin h as

eh(�) = rh+� − rh(�) = ah+� + ψ1ah+�−1 + · · · + ψ�−1ah+1;

see Eq. (2.33) and the associated forecast error. The forecast error of the expected
k-period return r̂h[k] is the sum of 1-step to k-step forecast errors of rt at the
forecast origin h and can be written as

eh[k] = eh(1) + eh(2) + · · · + eh(k)

= ah+1 + (ah+2 + ψ1ah+1) + · · · +
k−1∑
i=0

ψiah+k−i

= ah+k + (1 + ψ1)ah+k−1 + · · · +
(

k−1∑
i=0

ψi

)
ah+1, (7.7)

where ψ0 = 1.

Expected Volatility
The volatility forecast of the k-period return at the forecast origin h is the condi-
tional variance of eh[k] given Fh. Using the independent assumption of εt+i for
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i = 1, . . . , k, where at+i = σt+iεt+i , we have

Vh(eh[k]) = Vh(ah+k) + (1 + ψ1)
2Vh(ah+k−1) + · · · +

(
k−1∑
i=0

ψi

)2

Vh(ah+1)

= σ 2
h (k) + (1 + ψ1)

2σ 2
h (k − 1) + · · · +

(
k−1∑
i=0

ψi

)2

σ 2
h (1), (7.8)

where Vh(z) denotes the conditional variance of z given Fh and σ 2
h (�) is the �-

step-ahead volatility forecast at the forecast origin h. If the volatility model is
the GARCH model in Eq. (7.6), then these volatility forecasts can be obtained
recursively by the methods discussed in Chapter 3.

As an illustration, consider the special time series model

rt = µ + at , at = σtεt ,

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1.

Then we have ψi = 0 for all i > 0. The point forecast of the k-period return at the
forecast origin h is r̂h[k] = kµ and the associated forecast error is

eh[k] = ah+k + ah+k−1 + · · · + ah+1.

Consequently, the volatility forecast for the k-period return at the forecast origin
h is

Var(eh[k]|Fh) =
k∑

�=1

σ 2
h (�).

Using the forecasting method of GARCH(1,1) models in Section 3.5, we have

σ 2
h (1) = α0 + α1a

2
h + β1σ

2
h ,

σ 2
h (�) = α0 + (α1 + β1)σ

2
h (� − 1), � = 2, . . . , k. (7.9)

Using Eq. (7.9), we obtain that for the case of ψi = 0 for i > 0,

Var(eh[k]|Fh) = α0

1 − φ

(
k − 1 − φk

1 − φ

)
+ 1 − φk

1 − φ
σ 2
h (1), (7.10)

where φ = α1 + β1 < 1. If ψi �= 0 for some i > 0, then one should use the general
formula of Var(eh[k]|Fh) in Eq. (7.8). If εt is Gaussian, then the conditional distri-
bution of rh[k] given Fh is normal with mean kµ and variance Var(eh[k]|Fh). The
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quantiles needed in VaR calculations are readily available. If the conditional dis-
tribution of at is not Gaussian (e.g., a Student-t or generalized error distribution),
simulation can be used to obtain the multiperiod VaR.

Example 7.3 (Continued). Consider the Gaussian AR(2)–GARCH(1,1)
model of Example 7.3 for the daily log returns of IBM stock. Suppose that we
are interested in the VaR of a 15-day horizon starting at the forecast origin 9190
(i.e., December 31, 1998). We can use the fitted model to compute the conditional
mean and variance for the 15-day log return via r9190[15] = ∑15

i=1 r9190+i

given F9190. The conditional mean is −0.00998 and the conditional variance is
0.0047948, which is obtained by the recursion in Eq. (7.9). The 95% quantile of
the conditional distribution is then −0.00998 + 1.6449

√
0.0047948 = 0.1039191.

Consequently, the 5% 15-day horizon VaR for a long position of $10 million
is VaR = $10,000,000 × 0.1039191 = $1,039,191. This amount is smaller than
$287,700 × √

15 = $1,114,257. This example further demonstrates that the
square root of time rule used by RiskMetrics holds only for the special white
noise IGARCH(1,1) model used. When the conditional mean is not zero, proper
steps must be taken to compute the k-horizon VaR.

7.3.2 Expected Shortfall under Conditional Normality

We can use the result of Section 7.2.3 to calculate the ES when the conditional
distribution of the log return is N(µt , σ

2
t ). The result is

ESq = µt + f (xq)

p
σt ,

where q = 1 − p and xq is the qth quantile of the standard normal distribution.
For instance, if p = 0.01, then ES0.99 = µt + 2.6652σt .

7.4 QUANTILE ESTIMATION

Quantile estimation provides a nonparametric approach to VaR calculation. It makes
no specific distributional assumption on the return of a portfolio except that the
distribution continues to hold within the prediction period. There are two types of
quantile methods. The first method is to use empirical quantile directly, and the
second method uses quantile regression.

7.4.1 Quantile and Order Statistics

Assuming that the distribution of return in the prediction period is the same as that
in the sample period, one can use the empirical quantile of the return rt to calculate
VaR. Let r1, . . . , rn be the returns of a portfolio in the sample period. The order
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statistics of the sample are these values arranged in increasing order. We use the
notation

r(1) ≤ r(2) ≤ · · · ≤ r(n)

to denote the arrangement and refer to r(i) as the ith order statistic of the sample.
In particular, r(1) is the sample minimum and r(n) the sample maximum.

Assume that the returns are independent and identically distributed random vari-
ables that have a continuous distribution with probability density function (pdf)
f (x) and CDF F(x). Then we have the following asymptotic result from the sta-
tistical literature [e.g., Cox and Hinkley (1974), Appendix 2], for the order statistic
r(�), where � = np with 0 < p < 1.

Result. Let xp be the pth quantile of F(x), that is, xp = F−1(p). Assume that
the pdf f (x) is not zero at xp [i.e., f (xp) �= 0]. Then the order statistic r(�) is
asymptotically normal with mean xp and variance p(1 − p)/[nf 2(xp)]. That is,

r(�) ∼ N

{
xp,

p(1 − p)

n[f (xp)]2

}
, � = np. (7.11)

Based on the prior result, one can use r(�) to estimate the quantile xp, where
� = np. In practice, the probability of interest p may not satisfy that np is a positive
integer. In this case, one can use simple interpolation to obtain quantile estimates.
More specifically, for noninteger np, let �1 and �2 be the two neighboring positive
integers such that �1 < np < �2. Define pi = �i/n. The previous result shows that
r(�i ) is a consistent estimate of the quantile xpi

. From the definition, p1 < p < p2.
Therefore, the quantile xp can be estimated by

x̂p = p2 − p

p2 − p1
r(�1) + p − p1

p2 − p1
r(�2). (7.12)

In practice, sample quantiles can easily be obtained from most statistical packages,
including R and S-Plus. A demonstration is given after the examples.

Example 7.4. Consider the daily log returns of Intel stock from December 15,
1972, to December 31, 2008. There are 9096 observations. For a long position in the
Intel stock, we consider the negative log returns. Since 9096 × 0.95 = 8641.2, we
have �1 = 8641, �2 = 8642, p1 = 8641/9096, and p2 = 8642/9096. The empirical
95% quantile of the negative log returns can be obtained as

x̂0.95 = 0.8r(8641) + 0.2r(8642) = 4.2952%,

r(i) is the ith order statistic of the negative log returns. In this particular instance,
r(8641) = 4.2951% and r(8642) = 4.2954%.
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R Demonstration

> da=read.table("d-intc7208.txt",header=T)
> intc=log(da[,2]+1)
> nintc=-intc
> quantile(nintc,0.95)

95%
0.04295213
> quantile(rtn,.05) % An alternative

5%
-0.04295213

Example 7.5. Consider again the daily log returns of IBM stock from July 3,
1962, to December 31, 1998. Using all 9190 observations, the empirical 95% quan-
tile of the negative log returns can be obtained as (r(8730) + r(8731))/2 = 0.021603,
where r(i) is the ith order statistic and np = 9190 × 0.95 = 8730.5. The VaR of
a long position of $10 million is $216,030, which is much smaller than those
obtained by the econometric approach discussed before. Because the sample size is
9190, we have 9098 < 9190 × 0.99 < 9099. Let p1 = 9198/9190 = 0.98999 and
p2 = 9099/9190 = 0.9901. The empirical 99% quantile can be obtained as

x̂0.99 = p2 − 0.99

p2 − p1
r(9098) + 0.99 − p1

p2 − p1
r(9099)

= 0.0001

0.00011
(3.627) + 0.00001

0.00011
(3.657)

≈ 3.630.

The 1% 1-day horizon VaR of the long position is $363, 000. Again this amount
is lower than those obtained before by other methods.

Discussion. Advantages of using the empirical quantile method to VaR cal-
culation include (a) simplicity and (b) using no specific distributional assumption.
However, the approach has several drawbacks. First, it assumes that the distribution
of the return rt remains unchanged from the sample period to the prediction period.
Given that VaR is concerned mainly with tail probability, this assumption implies
that the predicted loss cannot be greater than that of the historical loss. It is defi-
nitely not so in practice. Second, when the tail probability p is small, the empirical
quantile is not an efficient estimate of the theoretical quantile. Third, the direct
quantile estimation fails to take into account the effect of explanatory variables
that are relevant to the portfolio under study. In real application, VaR obtained by
the empirical quantile can serve as a lower bound for the actual VaR. �

The expected shortfall can also be estimated directly from the sample returns.
Let x̂q be the empirical qth quantile, where q = 1 − p with p being the upper tail
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probability. We have

ESq = 1

Nq

n∑
i=1

x(i)I [x(i) > x̂q ],

where I [·] = 1 if x(i) > x̂q and = 0, otherwise, and Nq denotes the number of xi
greater than x̂q . For illustration, consider the negative IBM daily log returns. If
p = 0.01, we have x̂0.99 = 3.630. Therefore, ES0.99 = 5.097.

R Demonstration

> da=read.table("d-ibm6298.txt",header=T)
> ibm=log(da[,2]+1)*100
> nibm=-ibm
> q99=quantile(nibm,0.99)
> q99

99%
[1] 3.630295

> idx=c(1:length(nibm))[nibm>q99] % locate the exceedances
> es=mean(nibm[idx])
> es
[1] 5.097222

7.4.2 Quantile Regression

In real application, one often has explanatory variables available that are important
to the problem under study. For example, the action taken by Federal Reserve
Banks on interest rates could have important impacts on the returns of U.S.
stocks. It is then more appropriate to consider the distribution function rt+1|Ft ,
where Ft includes the explanatory variables. In other words, we are interested
in the quantiles of the distribution function of rt+1 given Ft . Such a quantile
is referred to as a regression quantile in the literature; see Koenker and Bassett
(1978).

To understand regression quantile, it is helpful to cast the empirical quantile of
the previous subsection as an estimation problem. For a given probability p, the
pth quantile of {rt } is obtained by

x̂p = argminβ

n∑
i=1

wp(ri − β),

where wp(z) is defined by

wp(z) =
{

pz if z ≥ 0,
(p − 1)z if z < 0.

Regression quantile is a generalization of such an estimate.
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To see the generalization, suppose that we have the linear regression

rt = β ′x t + at , (7.13)

where β is a k-dimensional vector of parameters and xt is a vector of predictors that
are elements of Ft−1. The conditional distribution of rt given Ft−1 is a translation
of the distribution of at because β ′x t is known. Viewing the problem this way,
Koenker and Bassett (1978) suggest estimating the conditional quantile xp|Ft−1 of
rt given Ft−1 as

x̂p|Ft−1 ≡ inf{β ′
ox|Rp(βo) = min}, (7.14)

where “Rp(βo) = min” means that βo is obtained by

βo = argminβ

n∑
t=1

wp(rt − β ′x t ),

where wp(·) is defined as before. A computer program to obtain such an estimated
quantile can be found in Koenker and D’Orey (1987). The package quantreg of
R performs quantile regression analysis.

7.5 EXTREME VALUE THEORY

In this section, we review some extreme value theory in the statistical literature.
Denote the return of an asset, measured in a fixed time interval such as daily,
by rt . Consider the collection of n returns, {r1, . . . , rn}. The minimum return of
the collection is r(1), that is, the smallest order statistic, whereas the maximum
return is r(n), the maximum order statistic. Specifically, r(1) = min1≤j≤n{rj } and
r(n) = max1≤j≤n{rj }. Following the literature and using the loss function in VaR
calculation, we focus on properties of the maximum return r(n). However, the theory
discussed also applies to the minimum return of an asset over a given time period
because properties of the minimum return can be obtained from those of the max-
imum by a simple sign change. Specifically, we have r(1) = − max1≤j≤n{−rj } =
−rc(n), where rct = −rt with the superscript c denoting sign change. The minimum
return is relevant to holding a long financial position. As before, we shall use neg-
ative log returns, instead of the log returns, to perform VaR calculation for a long
position.

7.5.1 Review of Extreme Value Theory

Assume that the returns rt are serially independent with a common cumulative
distribution function F(x) and that the range of the return rt is [l, u]. For log
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returns, we have l = −∞ and u = ∞. Then the CDF of r(n), denoted by Fn,n(x),
is given by

Fn,n(x) = Pr[r(n) ≤ x]

= Pr(r1 ≤ x, r2 ≤ x, . . . , rn ≤ x) (by definition of maximum)

=
n∏

j=1

Pr(rj ≤ x) (by independence)

=
n∏

j=1

F(x) = [F(x)]n. (7.15)

In practice, the CDF F(x) of rt is unknown and, hence, Fn,n(x) of r(n) is unknown.
However, as n increases to infinity, Fn,n(x) becomes degenerated—namely,
Fn,n(x) → 0 if x < u and Fn,n(x) → 1 if x ≥ u as n goes to infinity. This
degenerated CDF has no practical value. Therefore, the extreme value theory is
concerned with finding two sequences {βn} and {αn}, where αn > 0, such that the
distribution of r(n∗) ≡ (r(n) − βn)/αn converges to a nondegenerate distribution as
n goes to infinity. The sequence {βn} is a location series and {αn} is a series of
scaling factors. Under the independent assumption, the limiting distribution of the
normalized minimum r(n∗) is given by

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if ξ �= 0,
exp[− exp(−x)] if ξ = 0,

(7.16)

for x < −1/ξ if ξ < 0 and for x >−1/ξ if ξ > 0, where the subscript ∗ signifies
the maximum. The case of ξ = 0 is taken as the limit when ξ → 0. The parameter
ξ is referred to as the shape parameter that governs the tail behavior of the limiting
distribution. The parameter α = 1/ξ is called the tail index of the distribution.

The limiting distribution in Eq. (7.16) is the generalized extreme value (GEV)
distribution of Jenkinson (1955) for the maximum. It encompasses the three types
of limiting distribution of Gnedenko (1943):

• Type I: ξ = 0, the Gumbel family. The CDF is

F∗(x) = exp[− exp(−x)], −∞ < x < ∞. (7.17)

• Type II: ξ > 0, the Fréchet family. The CDF is

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if x >−1/ξ,
0 otherwise.

(7.18)

• Type III: ξ < 0, the Weibull family. The CDF here is

F∗(x) =
{

exp[−(1 + ξx)−1/ξ ] if x < −1/ξ,
1 otherwise.

}
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Figure 7.2 Probability density functions of extreme value distributions for maximum. Solid line is
for Gumbel distribution, dotted line is for Weibull distribution with ξ = −0.5, and dashed line is for
Fréchet distribution with ξ = 0.9.

Gnedenko (1943) gave necessary and sufficient conditions for the CDF F(x) of rt
to be associated with one of the three types of limiting distribution. Briefly speak-
ing, the tail behavior of F(x) determines the limiting distribution F∗(x) of the
maximum. The right tail of the distribution declines exponentially for the Gumbel
family, by a power function for the Fréchet family, and is finite for the Weibull
family (Figure 7.2). Readers are referred to Embrechts, Kuppelberg, and Mikosch
(1997) for a comprehensive treatment of the extreme value theory. For risk man-
agement, we are mainly interested in the Fréchet family, which includes stable
and Student-t distributions. The Gumbel family consists of thin-tailed distributions
such as normal and lognormal distributions. The probability density function (pdf)
of the generalized limiting distribution in Eq. (7.16) can be obtained easily by
differentiation:

f∗(x) =
{

(1 + ξx)−1/ξ−1 exp[−(1 + ξx)−1/ξ ] if ξ �= 0,
exp[−x − exp(−x)] if ξ = 0,

(7.19)

where −∞ < x < ∞ for ξ = 0, and x < −1/ξ for ξ < 0, and x >−1/ξ for ξ > 0.
The aforementioned extreme value theory has two important implications. First,

the tail behavior of the CDF F(x) of rt , not the specific distribution, determines
the limiting distribution F∗(x) of the (normalized) maximum. Thus, the theory is
generally applicable to a wide range of distributions for the return rt . The sequences
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{βn} and {αn}, however, may depend on the CDF F(x). Second, Feller (1971,
p. 279) shows that the tail index ξ does not depend on the time interval of rt .
That is, the tail index (or equivalently the shape parameter) is invariant under time
aggregation. This second feature of the limiting distribution becomes handy in the
VaR calculation.

The extreme value theory has been extended to serially dependent observa-
tions {rt }nt=1 provided that the dependence is weak. Berman (1964) shows that the
same form of the limiting extreme value distribution holds for stationary normal
sequences provided that the autocorrelation function of rt is squared summable
(i.e.,

∑∞
i=1 ρ

2
i < ∞), where ρi is the lag-i autocorrelation function of rt . For fur-

ther results concerning the effect of serial dependence on the extreme value theory,
readers are referred to Leadbetter, Lindgren, and Rootzén (1983, Chapter 3). We
shall discuss extremal index for a strictly stationary time series later in Section 7.8.

7.5.2 Empirical Estimation

The extreme value distribution contains three parameters—ξ , βn, and αn. These
parameters are referred to as the shape, location , and scale parameters , respec-
tively. They can be estimated by using either parametric or nonparametric methods.
We review some of the estimation methods.

For a given sample, there is only a single minimum or maximum, and we cannot
estimate the three parameters with only an extreme observation. Alternative ideas
must be used. One of the ideas used in the literature is to divide the sample into
subsamples and apply the extreme value theory to the subsamples. Assume that
there are T returns {rj }Tj=1 available. We divide the sample into g nonoverlapping
subsamples each with n observations, assuming for simplicity that T = ng. In other
words, we divide the data as

{r1, . . . , rn|rn+1, . . . , r2n|r2n+1, . . . , r3n| · · · |r(g−1)n+1, . . . , rng}

and write the observed returns as rin+j , where 1 ≤ j ≤ n and i = 0, . . . , g − 1.
Note that each subsample corresponds to a subperiod of the data span. When n is
sufficiently large, we hope that the extreme value theory applies to each subsample.
In application, the choice of n can be guided by practical considerations. For
example, for daily returns, n = 21 corresponds approximately to the number of
trading days in a month and n = 63 denotes the number of trading days in a
quarter.

Let rn,i be the maximum of the ith subsample (i.e., rn,i is the largest return of the
ith subsample), where the subscript n is used to denote the size of the subsample.
When n is sufficiently large, xn,i = (rn,i − βn)/αn should follow an extreme value
distribution, and the collection of subsample maxima {rn,i |i = 1, . . . , g} can then
be regarded as a sample of g observations from that extreme value distribution.
Specifically, we define

rn,i = max
1≤j≤n

{r(i−1)n+j }, i = 1, . . . , g. (7.20)
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The collection of subsample maxima {rn,i} is the data we use to estimate the
unknown parameters of the extreme value distribution. Clearly, the estimates
obtained may depend on the choice of subperiod length n.

Remark. When T is not a multiple of the subsample size n, several methods
have been used to deal with this issue. First, one can allow the last subsample to
have a smaller size. Second, one can ignore the first few observations so that each
subsample has size n. �

The Parametric Approach
Two parametric approaches are available. They are the maximum-likelihood and
regression methods.

Maximum-Likelihood Method
Assuming that the subperiod maxima {rn,i} follow a generalized extreme value
distribution such that the pdf of xi = (rn,i − βn)/αn is given in Eq. (7.19), we can
obtain the pdf of rn,i by a simple transformation as

f (rn,i)=


1
αn

[
1 + ξn(rn,i−βn)

αn

]−(1+ξn)/ξn
exp

[
−

(
1 + ξn(rn,i−βn)

αn

)−1/ξn
]

if ξn �= 0,

1
αn

exp
[
− rn,i−βn

αn
− exp

(
− rn,i−βn

αn

)]
if ξn = 0,

where it is understood that 1 + ξn(rn,i − βn)/αn > 0 if ξn �= 0. The subscript n is
added to the shape parameter ξ to signify that its estimate depends on the choice
of n. Under the independence assumption, the likelihood function of the subperiod
maxima is

�(rn,1, . . . , rn,g|ξn, αn, βn) =
g∏

i=1

f (rn,i).

Nonlinear estimation procedures can then be used to obtain maximum-likelihood
estimates of ξn, βn, and αn. These estimates are unbiased, asymptotically normal,
and of minimum variance under proper assumptions. See Embrechts et al. (1997)
and Coles (2001) for details. We apply this approach to some stock return series
later.

Regression Method
This method assumes that {rn,i}gi=1 is a random sample from the generalized extreme
value distribution in Eq. (7.16) and makes use of properties of order statistics; see
Gumbel (1958). Denote the order statistics of the subperiod maxima {rn,i}gi=1 as

rn(1) ≤ rn(2) ≤ · · · ≤ rn(g).
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Using properties of order statistics (e.g., Cox and Hinkley, 1974, p. 467),
we have

E{F∗[rn(i)]} = i

g + 1
, i = 1, . . . , g. (7.21)

For simplicity, we separate the discussion into two cases depending on the value
of ξ . First, consider the case of ξ �= 0. From Eq. (7.16), we have

F∗[rn(i)] = exp

[
−

(
1 + ξn

rn(i) − βn

αn

)−1/ξn
]
. (7.22)

Consequently, using Eqs. (7.21) and (7.22) and approximating expectation by an
observed value, we have

i

g + 1
= exp

[
−

(
1 + ξn

rn(i) − βn

αn

)−1/ξn
]
, i = 1, . . . , g.

Taking natural logarithm twice, the prior equation gives

ln

[
− ln

(
i

g + 1

)]
= −1

ξn
ln

(
1 + ξn

rn(i) − βn

αn

)
, i = 1, . . . , g.

In practice, letting ei be the deviation between the previous two quantities and
assuming that the series {et } is not serially correlated, we have a regression setup

ln

[
− ln

(
i

g + 1

)]
= −1

ξn
ln

(
1 + ξn

rn(i) − βn

αn

)
+ ei, i = 1, . . . , g. (7.23)

The least-squares estimates of ξn, βn, and αn can be obtained by minimizing the
sum of squares of ei .

When ξn = 0, the regression setup reduces to

ln

[
− ln

(
i

g + 1

)]
= −1

αn

rn(i) + βn

αn

+ ei, i = 1, . . . , g.

The least-squares estimates are consistent but less efficient than the likelihood
estimates. We use the likelihood estimates in this chapter.
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The Nonparametric Approach
The shape parameter ξ can be estimated using some nonparametric methods. We
mention two such methods here. These two methods are proposed by Hill (1975)
and Pickands (1975) and are referred to as the Hill estimator and Pickands estimator,
respectively. Both estimators apply directly to the returns {rt }Tt=1. Thus, there is no
need to consider subsamples. Denote the order statistics of the sample as

r(1) ≤ r(2) ≤ · · · ≤ r(T ).

Let q be a positive integer. The two estimators of ξ are defined as

ξp(q) = 1

ln(2)
ln

(
r(T−q+1) − r(T−2q+1)

r(T−2q+1) − r(T−4q+1)

)
, q ≤ T /4, (7.24)

ξh(q) = 1

q

q∑
i=1

[
ln(r(T−i+1)) − ln(r(T−q))

]
, (7.25)

where the argument (q) is used to emphasize that the estimators depend on q and the
subscripts p and h denote Pickands and Hill estimators, respectively. The choice of
q differs between Hill and Pickands estimators. It has been investigated by several
researchers, but there is no general consensus on the best choice available. Dekkers
and De Haan (1989) show that ξp(q) is consistent if q increases at a properly chosen
pace with the sample size T . In addition,

√
q[ξp(q) − ξ ] is asymptotically normal

with mean zero and variance ξ 2(22ξ+1 + 1)/[2(2ξ − 1) ln(2)]2. The Hill estimator is
applicable to the Fréchet distribution only, but it is more efficient than the Pickands
estimator when applicable. Goldie and Smith (1987) show that

√
q[ξh(q) − ξ ] is

asymptotically normal with mean zero and variance ξ 2. In practice, one may plot the
Hill estimator ξh(q) against q and find a proper q such that the estimate appears to
be stable. The estimated tail index α = 1/ξh(q) can then be used to obtain extreme
quantiles of the return series; see Zivot and Wang (2003).

7.5.3 Application to Stock Returns

We apply the extreme value theory to the daily log returns of IBM stock from July
3, 1962, to December 31, 1998. The returns are measured in percentages, and the
sample size is 9190 (i.e., T = 9190). Figure 7.3 shows the time plots of extreme
daily log returns when the length of the subperiod is 21 days, which corresponds
approximately to a month. The October 1987 crash is clearly seen from the plot.
Excluding the 1987 crash, the range of extreme daily log returns is between 0.5
and 13%.

Table 7.1 summarizes some estimation results of the shape parameter ξ via
the Hill estimator. Three choices of q are reported in the table, and the results
are stable. To provide an overall picture of the performance of the Hill estimator,
Figure 7.4 shows the scatterplots of the Hill estimator ξh(q) and its pointwise 95%
confidence interval against q. For both positive and negative extreme daily log
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Figure 7.3 Maximum and minimum daily log returns of IBM stock when subperiod is 21 trading days.
Data span is from July 3, 1962, to December 31, 1998: (a) positive returns and (b) negative returns.

TABLE 7.1 Results of Hill Estimator for Daily Log Returns of IBM Stock from July
3, 1962, to December 31, 1998a

q 190 200 210

rt 0.300(0.022) 0.299(0.021) 0.305(0.021)
−rt 0.290(0.021) 0.292(0.021) 0.289(0.020)

aStandard errors are in parentheses.

returns, the estimator is stable except for cases when q is small. The estimated
shape parameters are about 0.30 and are significantly different from zero at the
asymptotic 5% level. The plots also indicate that the shape parameter ξ appears to
be larger for the negative extremes, indicating that the daily log return may have a
heavier left tail. Overall, the result indicates that the distribution of daily log returns
of IBM stock belongs to the Fréchet family. The analysis thus rejects the normality
assumption commonly used in practice. Such a conclusion is in agreement with
that of Longin (1996), who used a U.S. stock market index series. R and S-Plus
commands used to perform the analysis are given in the demonstration below.

Next, we apply the maximum-likelihood method to estimate parameters of the
generalized extreme value distribution for IBM daily log returns. Table 7.2 summa-
rizes the estimation results for different choices of the length of subperiods ranging
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Figure 7.4 Scatterplots of Hill estimator for daily log returns of IBM stock. Sample period is from
July 3, 1962, to December 31, 1998: upper plot is for positive returns and lower one for negative
returns.

TABLE 7.2 Maximum-Likelihood Estimates of Extreme Value Distribution for Daily
Log Returns of IBM Stock from July 3, 1962 to December 31, 1998a

Length of Subperiod Scale αn Location βn Shape Par. ξn

Minimal Returns

1 mon. (n = 21, g = 437) 0.823(0.035) 1.902(0.044) 0.197(0.036)
1 qur (n = 63, g = 145) 0.945(0.077) 2.583(0.090) 0.335(0.076)
6 mon. (n = 126, g = 72) 1.147(0.131) 3.141(0.153) 0.330(0.101)
1 year (n = 252, g = 36) 1.542(0.242) 3.761(0.285) 0.322(0.127)

Maximal Returns

1 mon. (n = 21, g = 437) 0.931(0.039) 2.184(0.050) 0.168(0.036)
1 qur (n = 63, g = 145) 1.157(0.087) 3.012(0.108) 0.217(0.066)
6 mon. (n = 126, g = 72) 1.292(0.158) 3.471(0.181) 0.349(0.130)
1 year (n = 252, g = 36) 1.624(0.271) 4.475(0.325) 0.264(0.186)

aStandard errors are in parentheses.
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from 1 month (n = 21) to 1 year (n = 252). From the table, we make the following
observations:

• Estimates of the location and scale parameters βn and αn increase in modulus
as n increases. This is expected as magnitudes of the subperiod minimum and
maximum are nondecreasing functions of n.

• Estimates of the shape parameter (or equivalently the tail index) are stable for
the negative extremes when n ≥ 63 and are approximately 0.33.

• Estimates of the shape parameter are less stable for the positive extremes. The
estimates are smaller in magnitude but remain significantly different from zero.

• The results for n = 252 have higher variabilities as the number of subperiods
g is relatively small.

Again the conclusion obtained is similar to that of Longin (1996), who provided a
good illustration of applying the extreme value theory to stock market returns.

The results of Table 7.2 were obtained using a Fortran program developed by
Richard Smith and modified by the author. The package evir of R performs similar
estimation. S-Plus is also based on the evir package. I demonstrate below the
commands used. Note that the package uses subgroup maxima in the estimation so
that negative log returns are used for holding long financial positions. Furthermore,
xi, sigma, mu in the package corresponds to (ξn, αn, βn) of the table. The estimates
obtained by R and S-Plus are close to those in Table 7.2. A source of minor
difference is that in Table 7.2 I dropped some data points at the beginning when
the sample size T is not a multiple of the subgroup size n. Consequently, results
of the R package have one more subgroup than that of Table 7.2.

R Demonstration for Extreme Value Analysis
The series is daily IBM log returns from 1962 to 1998. The following output was
edited:

> library(evir)
> help(hill)
> da=read.table("d-ibm6298.txt",header=T)
> ibm=log(da[,2]+1)*100
> nibm=-ibm
> par(mfcol=c(2,1)) <== Obtain plots
> hill(ibm,option=c("xi"),end=500)
> hill(nibm,option=c("xi"),end=500)
# A simple R program to compute Hill estimate
> source("Hill.R")
> Hill
function(x,q){
# Compute the Hill estimate of the shape parameter.
# x: data and q: the number of order statistics used.
sx=sort(x)
T=length(x)
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ist=T-q
y=log(sx[ist:T])
hill=sum(y[2:length(y)])/q
hill=hill-y[1]
sd=sqrt(hill^2/q)
cat("Hill estimate & std-err:",c(hill,sd),"\n")
}
> m1=Hill(ibm,190)
Hill estimate & std-err: 0.3000144 0.02176533
> m1=Hill(nibm,190)
Hill estimate & std-err: 0.2903796 0.02106635

> m1=gev(nibm,block=21)
> m1
$n.all
[1] 9190
$n
[1] 438
$data

[1] 3.2884827 3.6186920 3.9936970 ...
$block
[1] 21
$par.ests

xi sigma mu
0.1954537 0.8240286 1.9033817
$par.ses

xi sigma mu
0.03553259 0.03477151 0.04413856
$varcov

[,1] [,2] [,3]
[1,] 1.262565e-03 -2.831235e-05 -0.0004336771
[2,] -2.831235e-05 1.209058e-03 0.0008477562
[3,] -4.336771e-04 8.477562e-04 0.0019482125

> names(m1)
[1] "n.all" "n" "data" "block" "par.ests"
[6] "par.ses" "varcov" "converged" "nllh.final"

> plot(m1)
Make a plot selection (or 0 to exit):
1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals
Selection: 1

Define the residuals of a GEV distribution fit as

wi =
(

1 + ξn
rn,i − βn

αn

)−1/ξn

.
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Figure 7.5 Residual plots from fitting GEV distribution to daily negative IBM log returns, in percent-
age, for data from July 3, 1962, to December 31, 1998, with subperiod length of 21 days.

Using the pdf of the GEV distribution and transformation of variables, one can
easily show that {wi} should form an iid random sample of exponentially distributed
random variables if the fitted model is correctly specified. Figure 7.5 shows the
residual plots of the GEV distribution fit to the daily negative IBM log returns
with subperiod length of 21 days. The left panel gives the residuals and the right
panel shows a quantile-to-quantile (QQ) plot against an exponential distribution.
The plots indicate that the fit is reasonable.

Remark. Besides evir, several other packages are also available in R to per-
form extreme value analysis. They are evd, POT, and extRemes. �

7.6 EXTREME VALUE APPROACH TO VAR

In this section, we discuss an approach to VaR calculation using the extreme
value theory. The approach is similar to that of Longin (1999a,b), who pro-
posed an eight-step procedure for the same purpose. We divide the discussion
into two parts. The first part is concerned with parameter estimation using the
method discussed in the previous subsections. The second part focuses on VaR
calculation by relating the probabilities of interest associated with different time
intervals.
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Part I
Assume that there are T observations of an asset return available in the sample
period. We partition the sample period into g nonoverlapping subperiods of length
n such that T = ng. If T = ng + m with 1 ≤ m < n, then we delete the first m

observations from the sample. The extreme value theory discussed in the previous
section enables us to obtain estimates of the location, scale, and shape parameters
βn, αn, and ξn for the subperiod maxima {rn,i}. Plugging the maximum-likelihood
estimates into the CDF in Eq. (7.16) with x = (r − βn)/αn, we can obtain the
quantile of a given probability of the generalized extreme value distribution. Let
p∗ be a small upper tail probability that indicates the potential loss and r∗

n be
the (1 − p∗)th quantile of the subperiod maxima under the limiting generalized
extreme value distribution. Then we have

1 − p∗ =

 exp

{
−

[
1 + ξn(r

∗
n−βn)

αn

]−1/ξn
}

if ξn �= 0,

exp
[
− exp

(
− r∗

n−βn
αn

)]
if ξn = 0,

where it is understood that 1 + ξn(r
∗
n − βn)/αn > 0 for ξn �= 0. Rewriting this

equation as

ln(1 − p∗) =

 −
[
1 + ξn(r

∗
n−βn)

αn

]−1/ξn
if ξn �= 0,

− exp
(
− r∗

n−βn
αn

)
if ξn = 0,

we obtain the quantile as

r∗
n =

{
βn − αn

ξn

{
1 − [− ln(1 − p∗)

]−ξn
}

if ξn �= 0,

βn − αn ln[− ln(1 − p∗)] if ξn = 0.

}
(7.26)

In financial applications, the case of ξn �= 0 is of major interest.

Part II
For a given upper tail probability p∗, the quantile r∗

n of Eq. (7.26) is the VaR
based on the extreme value theory for the subperiod maximum. The next step is to
make explicit the relationship between subperiod maxima and the observed return
rt series.

Because most asset returns are either serially uncorrelated or have weak serial
correlations, we may use the relationship in Eq. (7.15) and obtain

1 − p∗ = P (rn,i ≤ r∗
n) = [P (rt ≤ r∗

n)]
n. (7.27)

This relationship between probabilities allows us to obtain VaR for the original
asset return series rt . More precisely, for a specified small upper probability p,
the (1 − p)th quantile of rt is r∗

n if the upper tail probability p∗ of the subperiod
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maximum is chosen based on Eq. (7.27), where P (rt ≤ r∗
n) = 1 − p. Consequently,

for a given small upper tail probability p, the VaR of a financial position with log
return rt is

VaR =
{

βn − αn
ξn

{
1 − [−n ln(1 − p)

]−ξn
}

if ξn �= 0

βn − αn ln[−n ln(1 − p)] if ξn = 0,

}
(7.28)

where n is the length of the subperiod.

Summary
We summarize the approach of applying the traditional extreme value theory to
VaR calculation as follows:

1. Select the length of the subperiod n and obtain subperiod maxima {rn,i},
i = 1, . . . , g, where g = [T /n].

2. Obtain the maximum-likelihood estimates of βn, αn, and ξn.

3. Check the adequacy of the fitted extreme value model; see the next section
for some methods of model checking.

4. If the extreme value model is adequate, apply Eq. (7.28) to calculate VaR.

Remark. Since we focus on loss function so that maxima of log returns are
used in the derivation. Keep in mind that for a long financial position, the return
series used in loss function is the negative log returns, not the traditional log
returns. �

Example 7.6. Consider the daily log return, in percentage, of IBM stock from
July 3, 1962, to December 31, 1998. From Table 7.2, we have α̂n = 0.945, β̂n =
2.583, and ξ̂n = 0.335 for n = 63. Therefore, for the left-tail probability p = 0.01,
the corresponding VaR is

VaR = 2.583 − 0.945

0.335

{
1 − [−63 ln(1 − 0.01)]−0.335}

= 3.04969.

Thus, for daily negative log returns of the stock, the upper 1% quantile is 3.04969.
If one holds a long position on the stock worth $10 million, then the estimated VaR
with probability 1% is $10,000,000 × 0.0304969 = $304, 969. If the probability is
0.05, then the corresponding VaR is $166, 641.

If we chose n = 21 (i.e., approximately 1 month), then α̂n = 0.823, β̂n = 1.902,
and ξ̂n = 0.197. The upper 1% quantile of the negative log returns based on the
extreme value distribution is

VaR = 1.902 − 0.823

0.197
{1 − [−21 ln(1 − 0.01)]−0.197} = 3.40013.
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Therefore, for a long position of $10,000,000, the corresponding 1-day horizon VaR
is $340, 013 at the 1% risk level. If the probability is 0.05, then the corresponding
VaR is $184, 127. In this particular case, the choice of n = 21 gives higher VaR
values.

It is somewhat surprising to see that the VaR values obtained in Example 7.6
using the extreme value theory are smaller than those of Example 7.3 that uses a
GARCH(1,1) model. In fact, the VaR values of Example 7.6 are even smaller than
those based on the empirical quantile in Example 7.5. This is due in part to the
choice of probability 0.05. If one chooses probability 0.001 = 0.1% and consid-
ers the same financial position, then we have VaR = $546,641 for the Gaussian
AR(2)–GARCH(1,1) model and VaR = $666,590 for the extreme value theory
with n = 21. Furthermore, the VaR obtained here via the traditional extreme value
theory may not be adequate because the independent assumption of daily log
returns is often rejected by statistical testings. Finally, the use of subperiod max-
ima overlooks the fact of volatility clustering in the daily log returns. The new
approach of extreme value theory discussed in the next section overcomes these
weaknesses.

Remark. As shown by the results of Example 7.6, the VaR calculation based
on the traditional extreme value theory depends on the choice of n, which is the
length of subperiods. For the limiting extreme value distribution to hold, one would
prefer a large n. But a larger n means a smaller g when the sample size T is fixed,
where g is the effective sample size used in estimating the three parameters αn, βn,
and ξn. Therefore, some compromise between the choices of n and g is needed. A
proper choice may depend on the returns of the asset under study. We recommend
that one should check the stability of the resulting VaR in applying the traditional
extreme value theory. �

7.6.1 Discussion

We have applied various methods of VaR calculation to the daily log returns of
IBM stock for a long position of $10 million. Consider the VaR of the position for
the next trading day. If the probability is 5%, which means that with probability
0.95 the loss will be less than or equal to the VaR for the next trading day, then
the results obtained are

1. $302, 500 for the RiskMetrics

2. $287, 200 for a Gaussian AR(2)–GARCH(1,1) model

3. $283, 520 for an AR(2)–GARCH(1,1) model with a standardized Student-t
distribution with 5 degrees of freedom

4. $216, 030 for using the empirical quantile

5. $184, 127 for applying the traditional extreme value theory using monthly
minima (i.e., subperiod length n = 21) of the log returns (or maxima of the
negative log returns)
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If the probability is 1%, then the VaR is

1. $426, 500 for the RiskMetrics
2. $409, 738 for a Gaussian AR(2)–GARCH(1,1) model
3. $475, 943 for an AR(2)–GARCH(1,1) model with a standardized Student-t

distribution with 5 degrees of freedom

4. $365, 709 for using the empirical quantile
5. $340, 013 for applying the traditional extreme value theory using monthly

minima (i.e., subperiod length n = 21)

If the probability is 0.1%, then the VaR becomes

1. $566, 443 for the RiskMetrics
2. $546, 641 for a Gaussian AR(2)–GARCH(1,1) model
3. $836, 341 for an AR(2)–GARCH(1,1) model with a standardized Student-t

distribution with 5 degrees of freedom

4. $780, 712 for using the empirical quantile
5. $666, 590 for applying the traditional extreme value theory using monthly

minima (i.e., subperiod length n = 21)

There are substantial differences among different approaches. This is not sur-
prising because there exists substantial uncertainty in estimating tail behavior of a
statistical distribution. Since there is no true VaR available to compare the accuracy
of different approaches, we recommend that one applies several methods to gain
insight into the range of VaR.

The choice of tail probability also plays an important role in VaR calculation. For
the daily IBM stock returns, the sample size is 9190 so that the empirical quantiles
of 5 and 1% are decent estimates of the quantiles of the return distribution. In
this case, we can treat the results based on empirical quantiles as conservative
estimates of the true VaR (i.e., lower bounds). In this view, the approach based
on the traditional extreme value theory seems to underestimate the VaR for the
daily log returns of IBM stock. The conditional approach of extreme value theory
discussed in the next section overcomes this weakness.

When the tail probability is small (e.g., 0.1%), the empirical quantile is a less
reliable estimate of the true quantile. The VaR based on empirical quantiles can
no longer serve as a lower bound of the true VaR. Finally, the earlier results show
clearly the effects of using a heavy-tail distribution in VaR calculation when the
tail probability is small. The VaR based on either a Student-t distribution with 5
degrees of freedom or the extreme value distribution is greater than that based on
the normal assumption when the probability is 0.1%.

7.6.2 Multiperiod VaR

The square root of time rule of the RiskMetrics methodology becomes a special
case under the extreme value theory. The proper relationship between �-day and
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1-day horizons is

VaR(�) = �1/αVaR = �ξVaR,

where α is the tail index and ξ is the shape parameter of the extreme value distri-
bution; see Danielsson and de Vries (1997a). This relationship is referred to as the
α root of time rule. Here α = 1/ξ , not the scale parameter αn.

For illustration, consider the daily log returns of IBM stock in Example 7.6. If
we use p = 0.01 and the results of n = 63, then for a 30-day horizon we have

VaR(30) = (30)0.335VaR = 3.125 × $304,969 = $952,997.

Because �0.335 < �0.5, the α root of time rule produces lower �-day horizon VaR
than the square root of time rule does.

7.6.3 Return Level

Another risk measure based on the extreme values of subperiods is the return level .
The g n-subperiod return level, Ln,g, is defined as the level that is exceeded in one
out of every g subperiods of length n. That is,

P (rn,i >Ln,g) = 1

g
,

where rn,i denotes subperiod maximum. The subperiod in which the return level
is exceeded is called a stress period . If the subperiod length n is sufficiently large
so that normalized rn,i follows the GEV distribution, then the return level is

Ln,g = βn − αn

ξn

{
1 −

[
− ln

(
1 − 1

g

)]−ξn
}
,

provided that ξn �= 0. Note that this is precisely the quantile of extreme value
distribution given in Eq. (7.26) with tail probability p∗ = 1/g, even though we
write it in a slightly different way. Thus, return level applies to the subperiod
maximum, not to the underlying returns. This marks the difference between VaR
and return level.

For the daily negative IBM log returns with subperiod length of 21 days, we can
use the fitted model to obtain the return level for 12 such subperiods (i.e., g = 12).
The return level is 4.4835%.

R and S-Plus Commands for Obtaining Return Level

> m1=gev(nibm,block=21)
# S-Plus output
> rl.21.12=rlevel.gev(m1, k.blocks=12, type=’profile’)
> class(rl.21.12)
[1] "list"
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> names(rl.21.12)
[1] "Range" "rlevel"
> rl.21.12$rlevel
[1] 4.483506
# R output
> rl.21.12=rlevel.gev(m1,k.blocks=12)
> rl.21.12
[1] 4.177923 4.481976 4.858102

In the prior demonstration, the number of subperiods is denoted by k.blocks

and the subcommand, type = ‘profile’, produces a plot of the profile log-
likelihood confidence interval for the return level. The plot is not shown here.

7.7 NEW APPROACH BASED ON THE EXTREME VALUE THEORY

The aforementioned approach to VaR calculation using the extreme value theory
encounters some difficulties. First, the choice of subperiod length n is not clearly
defined. Second, the approach is unconditional and, hence, does not take into con-
sideration effects of other explanatory variables. To overcome these difficulties, a
modern approach to extreme value theory has been proposed in the statistical liter-
ature; see Davison and Smith (1990) and Smith (1989). Instead of focusing on the
extremes (maximum or minimum), the new approach focuses on exceedances of
the measurement over some high threshold and the times at which the exceedances
occur. Thus, this new approach is also referred to as peaks over thresholds (POT).
For illustration, consider the daily returns of IBM stock used in this chapter and
a long position on the stock. Denote the negative daily log return by rt . Let η

be a prespecified high threshold. We may choose η = 2.5%. Suppose that the ith
exceedance occurs at day ti (i.e., rti ≤ η). Then the new approach focuses on the
data (ti , rti − η). Here rti − η is the exceedance over the threshold η and ti is the
time at which the ith exceedance occurs. Similarly, for a short position, we may
choose η = 2% and focus on the data (ti , rti − η) for which rti ≥ η.

In practice, the occurrence times {ti} provide useful information about the inten-
sity of the occurrence of important “rare events” (e.g., less than the threshold η for
a long position). A cluster of ti indicates a period of large market declines. The
exceeding amount (or exceedance) rti − η is also of importance as it provides the
actual quantity of interest.

Based on the prior introduction, the new approach does not require the choice
of a subperiod length n, but it requires the specification of threshold η. Different
choices of the threshold η lead to different estimates of the shape parameter k

(and hence the tail index 1/ξ ). In the literature, some researchers believe that
the choice of η is a statistical problem as well as a financial one, and it cannot
be determined based purely on statistical theory. For example, different financial
institutions (or investors) have different risk tolerances. As such, they may select
different thresholds even for an identical financial position. For the daily log returns
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of IBM stock considered in this chapter, the calculated VaR is not sensitive to the
choice of η.

The choice of threshold η also depends on the observed log returns. For a
stable return series, η = 2.5% may fare well for a long position. For a volatile
return series (e.g., daily returns of a dot-com stock), η may be as high as 10%.
Limited experience shows that η can be chosen so that the number of exceedances
is sufficiently large (e.g., about 5% of the sample). For a more formal study on the
choice of η, see Danielsson and de Vries (1997b).

7.7.1 Statistical Theory

Again consider the log return rt of an asset. Suppose that the ith exceedance
occurs at ti . Focusing on the exceedance rt − η and exceeding time ti results in a
fundamental change in statistical thinking. Instead of using the marginal distribution
(e.g., the limiting distribution of the minimum or maximum), the new approach
employs a conditional distribution to handle the magnitude of exceedance given
that the measurement exceeds a threshold. The chance of exceeding the threshold
is governed by a probability law. In other words, the new approach considers the
conditional distribution of x = rt − η given rt ≤ η for a long position. Occurrence
of the event {rt ≤ η} follows a point process (e.g., a Poisson process). See Section
6.9 for the definition of a Poisson process. In particular, if the intensity parameter
λ of the process is time invariant, then the Poisson process is homogeneous. If λ is
time variant, then the process is nonhomogeneous. The concept of Poisson process
can be generalized to the multivariate case.

The basic theory of the new approach is to consider the conditional distribution
of r = x + η given r > η for the limiting distribution of the maximum given in
Eq. (7.16). Since there is no need to choose the subperiod length n, we do not use
it as a subscript of the parameters. Then the conditional distribution of r ≤ x + η

given r >η is

Pr(r ≤ x + η|r >η) = Pr(η ≤ r ≤ x + η)

Pr(r > η)
= Pr(r ≤ x + η) − Pr(r ≤ η)

1 − Pr(r ≤ η)
. (7.29)

Using the CDF F∗(·) of Eq. (7.16) and the approximation e−y ≈ 1 − y and after
some algebra, we obtain that

Pr(r ≤ x + η|r > η) = F∗(x + η) − F∗(η)
1 − F∗(η)

=
exp

{
−

[
1 + ξ(x+η−β)

α

]−1/ξ
}

− exp

{
−

[
1 + ξ(η−β)

α

]−1/ξ
}

1 − exp

{
−

[
1 + ξ(η−β)

α

]−1/ξ
}

≈ 1 −
[

1 + ξx

α + ξ(η − β)

]−1/ξ

, (7.30)
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where x > 0 and 1 + ξ(η − β)/α > 0. As is seen later, this approximation makes
explicit the connection of the new approach to the traditional extreme value theory.
The case of ξ = 0 is taken as the limit of ξ → 0 so that

Pr(r ≤ x + η|r > η) ≈ 1 − exp(−x/α).

The distribution with cumulative distribution function

Gξ,ψ(η)(x) =
 1 −

[
1 + ξx

ψ(η)

]−1/ξ
for ξ �= 0,

1 − exp[−x/ψ(η)] for ξ = 0,
(7.31)

where ψ(η)> 0, x ≥ 0 when ξ ≥ 0, and 0 ≤ x ≤ −ψ(η)/ξ when ξ < 0, is called
the generalized Pareto distribution (GPD). Thus, the result of Eq. (7.30) shows that
the conditional distribution of r given r >η is well approximated by a GPD with
parameters ξ and ψ(η) = α + ξ(η − β). See Embrechts et al. (1997) for further
information. An important property of the GPD is as follows. Suppose that the
excess distribution of r given a threshold ηo is a GPD with shape parameter ξ

and scale parameter ψ(ηo). Then, for an arbitrary threshold η>ηo, the excess
distribution over the threshold η is also a GPD with shape parameter ξ and scale
parameter ψ(η) = ψ(ηo) + ξ(η − ηo).

When ξ = 0, the GPD in Eq. (7.31) reduces to an exponential distribution. This
result motivates the use of a QQ plot of excess returns over a threshold against
exponential distribution to infer the tail behavior of the returns. If ξ = 0, then the
QQ plot should be linear. Figure 7.6(a) shows the QQ plot of daily negative IBM
log returns used in this chapter with threshold 0.025. The nonlinear feature of the
plot clearly shows that the left tail of the daily IBM log returns is heavier than that
of a normal distribution, that is, ξ �= 0.

R and S-Plus Commands Used to Produce Figure 7.6

> par(mfcol=c(2,1))
> qplot(-ibm,threshold=0.025,main=’Negative daily IBM

log returns’)
> meplot(-ibm)
> title(main=’Mean excess plot’)

7.7.2 Mean Excess Function

Given a high threshold ηo, suppose that the excess r − ηo follows a GPD with
parameter ξ and ψ(ηo), where 0 < ξ < 1. Then the mean excess over the threshold
ηo is

E(r − ηo|r > ηo) = ψ(ηo)

1 − ξ
.
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Figure 7.6 Plots for daily negative IBM log returns from July 3, 1962, to December 31, 1998. (a)
QQ plot of excess returns over threshold 2.5% and (b) mean excess plot.

For any η>ηo, define the mean excess function e(η) as

e(η) = E(r − η|r >η) = ψ(ηo) + ξ(η − ηo)

1 − ξ
.

In other words, for any y > 0,

e(ηo + y) = E[r − (ηo + y)|r >ηo + y] = ψ(ηo) + ξy

1 − ξ
.

Thus, for a fixed ξ , the mean excess function is a linear function of y = η − ηo.
This result leads to a simple graphical method to infer the appropriate threshold
value ηo for the GPD. Define the empirical mean excess function as

eT (η) = 1

Nη

Nη∑
i=1

(rti − η), (7.32)

where Nη is the number of returns that exceed η and rti are the values of the
corresponding returns. See the next subsection for more information on the notation.
The scatterplot of eT (η) against η is called the mean excess plot , which should be
linear in η for η>ηo under the GPD. The plot is also called mean residual life plot .
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Figure 7.6(b) shows the mean excess plot of the daily negative IBM log returns. It
shows that, among others, a threshold of about 3% is reasonable for the negative
return series. In the evir package of R and S-Plus, the command for mean excess
plot is meplot.

7.7.3 New Approach to Modeling Extreme Values

Using the statistical result in Eq. (7.30) and considering jointly the exceedances
and exceeding times, Smith (1989) proposes a two-dimensional Poisson process
to model (ti, rti ). This approach was used by Tsay (1999) to study VaR in risk
management. We follow the same approach.

Assume that the baseline time interval is D, which is typically a year. In the
United States, D = 252 is used as there are typically 252 trading days in a year.
Let t be the time interval of the data points (e.g., daily) and denote the data span by
t = 1, 2, . . . , T , where T is the total number of data points. For a given threshold
η, the exceeding times over the threshold are denoted by {ti , i = 1, . . . , Nη} and
the observed log return at ti is rti . Consequently, we focus on modeling {(ti , rti )}
for i = 1, . . . , Nη, where Nη depends on the threshold η.

The new approach to applying the extreme value theory is to postulate that
the exceeding times and the associated returns [i.e., (ti , rti )] jointly form a two-
dimensional Poisson process with intensity measure given by

�[(D2,D1) × (r,∞)] = D2 − D1

D
S(r; ξ, α, β), (7.33)

where

S(r; ξ, α, β) =
[

1 + ξ(r − β)

α

]−1/ξ

+
,

0 ≤ D1 ≤ D2 ≤ T , r >η, α > 0, β, and ξ are parameters, and the notation [x]+
is defined as [x]+ = max(x, 0). This intensity measure says that the occurrence of
exceeding the threshold is proportional to the length of the time interval [D1,D2]
and the probability is governed by a survival function similar to the exponent of
the CDF F∗(r) in Eq. (7.16). A survival function of a random variable X is defined
as S(x) = Pr(X>x) = 1 − Pr(X ≤ x) = 1 − CDF(x). When ξ = 0, the intensity
measure is taken as the limit of ξ → 0; that is,

�[(D2,D1) × (r,∞)] = D2 − D1

D
exp

[−(r − β)

α

]
.

In Eq. (7.33), the length of time interval is measured with respect to the baseline
interval D.
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The idea of using the intensity measure in Eq. (7.33) becomes clear when one
considers its implied conditional probability of r = x + η given r >η over the time
interval [0,D], where x > 0,

�[(0,D) × (x + η,∞)]

�[(0,D) × (η,∞)]
=
[

1 + ξ(x + η − β)/α

1 + ξ(η − β)/α

]−1/ξ

=
[
1 + ξx

α + ξ(η − β)

]−1/ξ

,

which is precisely the survival function of the conditional distribution given in
Eq. (7.30). This survival function is obtained from the extreme limiting distribution
for maximum in Eq. (7.16). We use survival function here because it denotes the
probability of exceedance.

The relationship between the limiting extreme value distribution in Eq. (7.16)
and the intensity measure in Eq. (7.33) directly connects the new approach of
extreme value theory to the traditional one.

Mathematically, the intensity measure in Eq. (7.33) can be written as an integral
of an intensity function:

�[(D2,D1) × (r,∞)] =
∫ D2

D1

∫ ∞

r

λ(t, z; ξ, α, β) dz dt,

where the intensity function λ(t, z; ξ, α, β) is defined as

λ(t, z; ξ, α, β) = 1

D
g(z; ξ, α, β), (7.34)

where

g(z; ξ, α, β) =


1
α

[
1 + ξ(z−β)

α

]−(1+ξ)/ξ

if ξ �= 0,

1
α

exp
[

−(z−β)

α

]
if ξ = 0.

Using the results of a Poisson process, we can write down the likelihood function
for the observed exceeding times and their corresponding returns {(ti , rti )} over the
two-dimensional space [0, T ] × (η,∞) as

L(ξ, α, β) =
 Nη∏

i=1

1

D
g(rti ; ξ, α, β)

 exp

[
− T

D
S(η; ξ, α, β)

]
. (7.35)

The parameters ξ, α, and β can then be estimated by maximizing the logarithm of
this likelihood function. Since the scale parameter α is nonnegative, we use ln(α)
in the estimation.

Example 7.7. Consider again the daily log returns of IBM stock from July 3,
1962, to December 31, 1998. There are 9190 daily returns. Table 7.3 gives some
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TABLE 7.3 Estimation Results of a Two-Dimensional Homogeneous Poisson Model
for Daily Negative Log Returns of IBM Stock from July 3, 1962 to December 31,
1998a

Thr. Exc. Shape Parameter ξ Log(Scale) ln(α) Location β

Original Log Returns

3.0% 175 0.30697(0.09015) 0.30699(0.12380) 4.69204(0.19058)
2.5% 310 0.26418(0.06501) 0.31529(0.11277) 4.74062(0.18041)
2.0% 554 0.18751(0.04394) 0.27655(0.09867) 4.81003(0.17209)

Removing the Sample Mean

3.0% 184 0.30516(0.08824) 0.30807(0.12395) 4.73804(0.19151)
2.5% 334 0.28179(0.06737) 0.31968(0.12065) 4.76808(0.18533)
2.0% 590 0.19260(0.04357) 0.27917(0.09913) 4.84859(0.17255)

aThe baseline time interval is 252 (i.e., 1 year). The numbers in parentheses are standard errors, where
Thr. and Exc. stand for threshold and the number of exceedings.

estimation results of the parameters ξ, α, and β for three choices of the threshold
when the negative series {−rt } is used. As mentioned before, we use the negative
series {−rt }, instead of {rt } because we focus on holding a long financial position.
The table also shows the number of exceeding times for a given threshold. It is seen
that the chance of dropping 2.5% or more in a day for IBM stock occurred with
probability 310/9190 ≈ 3.4%. Because the sample mean of IBM stock returns
is not zero, we also consider the case when the sample mean is removed from
the original daily log returns. From the table, removing the sample mean has
little impact on the parameter estimates. These parameter estimates are used next
to calculate VaR, keeping in mind that in a real application one needs to check
carefully the adequacy of a fitted Poisson model. We discuss methods of model
checking in the next section.

7.7.4 VaR Calculation Based on the New Approach

As shown in Eq. (7.30), the two-dimensional Poisson process model used, which
employs the intensity measure in Eq. (7.33), has the same parameters as those
of the extreme value distribution in Eq. (7.16). Therefore, one can use the same
formula as that of Eq. (7.28) to calculate VaR of the new approach. More specifi-
cally, for a given upper tail probability p, the (1 − p)th quantile of the log return
rt is

VaR =
{

β − α
ξ

{
1 − [−D ln(1 − p)

]−ξ
}

if ξ �= 0,

β − α ln[−D ln(1 − p)] if ξ = 0,
(7.36)

where D is the baseline time interval used in estimation. In the United States, one
typically uses D = 252, which is approximately the number of trading days in a
year.
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Example 7.8. Consider again the case of holding a long position of IBM stock
valued at $10 million. We use the estimation results of Table 7.3 to calculate 1-day
horizon VaR for the tail probabilities of 0.05 and 0.01.

• Case I: Use the original daily log returns. The three choices of threshold η

result in the following VaR values:

1. η = 3.0%: VaR(5%) = $228,239, VaR(1%) = $359.303.

2. η = 2.5%: VaR(5%) = $219,106, VaR(1%) = $361,119.

3. η = 2.0%: VaR(5%) = $212,981, VaR(1%) = $368.552.
• Case II: The sample mean of the daily log returns is removed. The three

choices of threshold η result in the following VaR values:

1. η = 3.0%: VaR(5%) = $232,094, VaR(1%) = $363,697.

2. η = 2.5%: VaR(5%) = $225,782, VaR(1%) = $364,254.

3. η = 2.0%: VaR(5%) = $217,740, VaR(1%) = $372,372.

As expected, removing the sample mean, which is positive, slightly increases the
VaR. However, the VaR is rather stable among the three threshold values used. In
practice, we recommend that one removes the sample mean first before applying
this new approach to VaR calculation.

Discussion. Compared with the VaR of Example 7.6 that uses the traditional
extreme value theory, the new approach provides a more stable VaR calcula-
tion. The traditional approach is rather sensitive to the choice of the subperiod
length n. �

The command pot of the R package evir can be used to perform the estimation
of the POT model. We demonstrate it below using the negative log returns of IBM
stock. As expected, the results are very close to those obtained before.

R Demonstration Using POT Command

> library(evir)
> m3=pot(nibm,0.025)
> m3
$n
[1] 9190
$period
[1] 1 9190
$data

[1] 0.03288483 0.02648772 0.02817316 .....
$span
[1] 9189
$threshold
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[1] 0.025
$p.less.thresh
[1] 0.9662677
$n.exceed
[1] 310
$par.ests

xi sigma mu beta
0.264078835 0.003182365 0.007557534 0.007788551
$par.ses

xi sigma mu
0.0229175739 0.0001808472 0.0007675515
$varcov

[,1] [,2] [,3]
[1,] 5.252152e-04 -2.873160e-06 -6.970497e-07
[2,] -2.873160e-06 3.270571e-08 -7.907532e-08
[3,] -6.970497e-07 -7.907532e-08 5.891353e-07
$intensity %intensity function of exceeding the threshold
[1] 0.03373599
> plot(m3) % model checking
Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots
Selection:

> riskmeasures(m3,c(0.95,0.99,0.999))
p quantile sfall

[1,] 0.950 0.02208860 0.03162728
[2,] 0.990 0.03616686 0.05075740
[3,] 0.999 0.07019419 0.09699513

7.7.5 Alternative Parameterization

As mentioned before, for a given threshold η, the GPD can also be parameterized
by the shape parameter ξ and the scale parameter ψ(η) = α + ξ(η − β). This
is the parameterization used in the evir package of R and S-Plus. Specifically,
(xi,beta) of R and S-Plus corresponds to [ξ, ψ(η)] of this chapter. The command
for estimating a GPD model in R and S-Plus is gpd. The output format for S-Plus
is slightly different from that of R. For illustration, consider the daily negative IBM
log return series from 1962 to 1998. The results of R are given below.
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R Demonstration
Data are negative IBM log returns. The following output was edited:

> library(evir)
> mgpd=gpd(nibm,threshold=0.025)
> names(mgpd)
[1] "n" "data" "threshold" "p.less.thresh"
[5] "n.exceed" "method" "par.ests" "par.ses"
[9] "varcov" "information" "converged" "nllh.final"

> mgpd
$n
[1] 9190
$data
[1] 0.03288483 0.02648772 0.02817316 0.03618692 ....

$threshold
[1] 0.025
$p.less.thresh %Percentage of data below the threshold.
[1] 0.9662677
$n.exceed % Number of exceedances
[1] 310
$method
[1] "ml"
$par.ests

xi beta
0.264184649 0.007786063
$par.ses

xi beta
0.0662137508 0.0006427826
$varcov

[,1] [,2]
[1,] 4.384261e-03 -2.461142e-05
[2,] -2.461142e-05 4.131694e-07
> par(mfcol=c(2,2)) %Plots for residual analysis
> plot(mgpd)

Make a plot selection (or 0 to exit):
1: plot: Excess Distribution
2: plot: Tail of Underlying Distribution
3: plot: Scatterplot of Residuals
4: plot: QQplot of Residuals
Selection:

Note that the results are very close to those in Table 7.3, where percentage log
returns are used. The estimates of ξ and ψ(η) are 0.26418 and α + ξ(η − β) =
exp(0.31529) + (0.26418)(2.5 − 4.7406) = 0.77873, respectively, in Table 7.3. In
terms of log returns, the estimate of ψ(η) is 0.007787, which is the same as the R
and S-Plus estimate.
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Figure 7.7 Diagnostic plots for GPD fit to daily negative log returns of IBM stock from July 3, 1962,
to December 31, 1998.

Figure 7.7 shows the diagnostic plots for the GPD fit to the daily negative log
returns of IBM stock. The QQ plot (lower right panel) and the tail probability
estimate (in log scale and in the lower left panel) show some minor deviation from
a straight line, indicating further improvement is possible.

From the conditional distributions in Eqs. (7.29) and (7.30) and the GPD in Eq.
(7.31), we have

F(y) − F(η)

1 − F(η)
≈ Gη,ψ(η)(x),

where y = x + η with x > 0. If we estimate the CDF F(η) of the returns by the
empirical CDF, then

F̂ (η) = T − Nη

T
,

where Nη is the number of exceedances of the threshold η and T is the sample
size. Consequently, by Eq. (7.31),

F(y) = F(η) + G(x)[1 − F(η)]

≈ 1 − Nη

T

[
1 + ξ(y − η)

ψ(η)

]−1/ξ

.
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This leads to an alternative estimate of the quantile of F(y) for use in VaR calcu-
lation. Specifically, for a small upper tail probability p, let q = 1 − p. Then, by
solving for y, we can estimate the qth quantile of F(y), denoted by VaRq , by

VaRq = η − ψ(η)

ξ

{
1 −

[
T

Nη

(1 − q)

]−ξ
}
, (7.37)

where, as before, η is the threshold, T is the sample size, Nη is the number of
exceedances, and ψ(η) and ξ are the scale and shape parameters of the GPD
distribution. This method to VaR calculation is used in R and S-Plus.

As mentioned before in Section 7.2.3, expected shortfall (ES) associated with a
given VaR is a useful risk measure. It is defined as the expected loss given that the
VaR is exceeded. For generalized Pareto distribution, ES assumes a simple form.
Specifically, for a given tail probability p, let q = 1 − p and denote the value at
risk by VaRq . Then, the expected shortfall is defined by

ESq = E(r|r >VaRq) = VaRq + E(r − VaRq |r >VaRq). (7.38)

Using properties of the GPD, it can be shown that

E(r − VaRq |r >VaRq) = ψ(η) + ξ(VaRq − η)

1 − ξ
,

provided that 0 < ξ < 1. Consequently, we have

ESq = VaRq

1 − ξ
+ ψ(η) − ξη

1 − ξ
.

To illustrate the new method to VaR and ES calculations, we again use the daily
negative log returns of IBM stock with threshold 2.5%. In the evir package of
R and S-Plus, the command to compute VaR and ES via the peak over threshold
method is riskmeasures:

> riskmeasures(mgpd,c(0.95,0.99,0.999))
p quantile sfall

[1,] 0.950 0.02208959 0.03162619
[2,] 0.990 0.03616405 0.05075390
[3,] 0.999 0.07018944 0.09699565

From the output, the VaR values for the financial position of $10 million are
$220, 889 and $361, 661, respectively, for tail probability of 0.05 and 0.01. These
two values are rather close to those given in Example 7.8 that are based on the
method of the previous section. The expected shortfalls for the financial position
are $316, 272 and $507, 576, respectively, for tail probability of 0.05 and 0.01.
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7.7.6 Use of Explanatory Variables

The two-dimensional Poisson process model discussed earlier is homogeneous
because the three parameters ξ, α, and β are constant over time. In practice, such
a model may not be adequate. Furthermore, some explanatory variables are often
available that may influence the behavior of the log returns rt . A nice feature of
the new extreme value theory approach to VaR calculation is that it can easily
take explanatory variables into consideration. We discuss such a framework in this
section. In addition, we also discuss methods that can be used to check the adequacy
of a fitted two-dimensional Poisson process model.

Suppose that x t = (x1t , . . . , xvt )
′ is a vector of v explanatory variables that are

available prior to time t . For asset returns, the volatility σ 2
t of rt discussed in

Chapter 3 is an example of explanatory variables. Another example of explanatory
variables in the U.S. equity markets is an indicator variable denoting the meetings
of the Federal Open Market Committee. A simple way to make use of explanatory
variables is to postulate that the three parameters ξ, α, and β are time varying and
are linear functions of the explanatory variables. Specifically, when explanatory
variables x t are available, we assume that

ξt = γ0 + γ1x1t + · · · + γvxvt ≡ γ0 + γ ′xt ,

ln(αt ) = δ0 + δ1x1t + · · · + δvxvt ≡ δ0 + δ′xt , (7.39)

βt = θ0 + θ1x1t + · · · + θvxvt ≡ θ0 + θ ′x t .

If γ = 0, then the shape parameter ξt = γ0, which is time invariant. Thus, testing the
significance of γ can provide information about the contribution of the explanatory
variables to the shape parameter. Similar methods apply to the scale and location
parameters. In Eq. (7.39), we use the same explanatory variables for all three
parameters ξt , ln(αt ), and βt . In an application, different explanatory variables may
be used for different parameters.

When the three parameters of the extreme value distribution are time varying,
we have an inhomogeneous Poisson process. The intensity measure becomes

�[(D1,D2) × (r,∞)] = D2 − D1

D

[
1 + ξt (r − βt)

αt

]−1/ξt

+
, r > η. (7.40)

The likelihood function of the exceeding times and returns {(ti , rti )} becomes

L =
 Nη∏

i=1

1

D
g(rti ; ξti , αti , βti )

 exp

[
− 1

D

∫ T

0
S(η; ξt , αt , βt )dt

]
,

which reduces to

L =
 Nη∏

i=1

1

D
g(rti ; ξti , αti , βti )

 exp

[
− 1

D

T∑
t=1

S(η; ξt , αt , βt )

]
(7.41)
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if one assumes that the parameters ξt , αt , and βt are constant within each trading
day, where g(z; ξt , αt , βt ) and S(η; ξt , αt , βt ) are given in Eqs. (7.34) and (7.33),
respectively. For given observations {rt , xt |t = 1, . . . , T }, the baseline time interval
D, and the threshold η, the parameters in Eq. (7.39) can be estimated by maximizing
the logarithm of the likelihood function in Eq. (7.41). Again we use ln(αt ) to satisfy
the positive constraint of αt .

Remark. The parameterization in Eq. (7.39) is similar to that of the volatility
models of Chapter 3 in the sense that the three parameters are exact functions of the
available information at time t . Other functions can be used if necessary. �

7.7.7 Model Checking

Checking an entertained two-dimensional Poisson process model for exceedance
times and excesses involves examining three key features of the model. The
first feature is to verify the adequacy of the exceedance rate, the second
feature is to examine the distribution of exceedances, and the final feature is
to check the independence assumption of the model. We discuss briefly some
statistics that are useful for checking these three features. These statistics are
based on some basic statistical theory concerning distributions and stochastic
processes.

Exceedance Rate
A fundamental property of univariate Poisson processes is that the time durations
between two consecutive events are independent and exponentially distributed. To
exploit a similar property for checking a two-dimensional process model, Smith
and Shively (1995) propose examining the time durations between consecutive
exceedances. If the two-dimensional Poisson process model is appropriate for
the exceedance times and excesses, the time duration between the ith and (i − 1)th
exceedances should follow an exponential distribution. More specifically, letting
t0 = 0, we expect that

zti =
∫ ti

ti−1

1

D
g(η; ξs, αs, βs) ds, i = 1, 2, . . .

are iid as a standard exponential distribution. Because daily returns are discrete-time
observations, we employ the time durations

zti = 1

D

ti∑
t=ti−1+1

S(η; ξt , αt , βt ) (7.42)

and use the QQ plot to check the validity of the iid standard exponential distribution.
If the model is adequate, the QQ plot should show a straight line through the origin
with unit slope.
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Distribution of Excesses
Under the two-dimensional Poisson process model considered, the conditional dis-
tribution of the excess xt = rt − η over the threshold η is a GPD with shape
parameter ξt and scale parameter ψt = αt + ξt (η − βt). Therefore, we can make
use of the relationship between a standard exponential distribution and GPD, and
define

wti =


1
ξti

ln
(

1 + ξti
rti −η

ψti

)
+

if ξti �= 0,

rti −η

ψti
if ξti = 0.

(7.43)

If the model is adequate, {wti } are independent and exponentially distributed with
mean 1; see also Smith (1999). We can then apply the QQ plot to check the validity
of the GPD assumption for excesses.

Independence
A simple way to check the independence assumption, after adjusting for the effects
of explanatory variables, is to examine the sample autocorrelation functions of zti
and wti . Under the independence assumption, we expect that both zti and wti have
no serial correlations.

7.7.8 An Illustration

In this section, we apply a two-dimensional inhomogeneous Poisson process model
to the daily log returns, in percentages, of IBM stock from July 3, 1962, to
December 31, 1998. We focus on holding a long position of $10 million. The
analysis enables us to compare the results with those obtained before by using
other approaches to calculating VaR.

We begin by pointing out that the two-dimensional homogeneous model of
Example 7.7 needs further refinements because the fitted model fails to pass the
model checking statistics of the previous section. Figures 7.8(a) and 7.8(b) show
the autocorrelation functions of the statistics zti and wti , defined in Eqs. (7.42) and
(7.43), of the homogeneous model when the threshold is η = 2.5%. The horizontal
lines in the plots denote asymptotic limits of two standard errors. It is seen that both
zti and wti series have some significant serial correlations. Figures 7.9(a) and 7.9(b)
show the QQ plots of the zti and wti series. The straight line in each plot is the
theoretical line, which passes through the origin and has a unit slope under the
assumption of a standard exponential distribution. The QQ plot of zti shows some
discrepancy.

To refine the model, we use the mean-corrected log return series

rot = rt − r̄ , r̄ = 1

9190

9190∑
t=1

rt ,
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Figure 7.8 Sample autocorrelation functions of the z and w measures for two-dimensional Poisson
models. Parts (a) and (b) are for homogeneous model and parts (c) and (d) are for inhomogeneous
model. Data are daily mean-corrected log returns, in percentages, of IBM stock from July 3, 1962, to
December 31, 1998, and the threshold is 2.5%. A long financial position is used.

where rt is the daily log return in percentages, and employ the following explana-
tory variables:

1. x1t : an indicator variable for October, November, and December. That is,
x1t = 1 if t is in October, November, or December. This variable is chosen
to take care of the fourth-quarter effect (or year-end effect), if any, on the
daily IBM stock returns.

2. x2t : an indicator variable for the behavior of the previous trading day. Specif-
ically, x2t = 1 if and only if the log return rot−1 ≤ −2.5%. Since we focus on
holding a long position with threshold 2.5%, an exceedance occurs when the
daily price drops over 2.5%. Therefore, x2t is used to capture the possibility
of panic selling when the price of IBM stock dropped 2.5% or more on the
previous trading day.

3. x3t : a qualitative measurement of volatility, which is the number of days
between t − 1 and t − 5 (inclusive) that has a log return with magnitude
exceeding the threshold. In our case, x3t is the number of rot−i satisfying
|rot−i | ≥ 2.5% for i = 1, . . . , 5.

4. x4t : an annual trend defined as x4t = (year of time t − 1961)/38. This vari-
able is used to detect any trend in the behavior of extreme returns of IBM
stock.
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5. x5t : a volatility series based on a Gaussian GARCH(1,1) model for the
mean-corrected series rot . Specifically, x5t = σt , where σ 2

t is the conditional
variance of the GARCH(1,1) model

rot = at , at = σtεt , εt ∼ N(0, 1),

σ 2
t = 0.04565 + 0.0807a2

t−1 + 0.9031σ 2
t−1.

These five explanatory variables are all available at time t − 1. We use two volatil-
ity measures (x3t and x5t ) to study the effect of market volatility on VaR. As
shown in Example 7.3 by the fitted AR(2)–GARCH(1,1) model, the serial corre-
lations in rt are weak so that we do not entertain any ARMA model for the mean
equation.

Using the prior five explanatory variables and deleting insignificant parameters,
we obtain the estimation results shown in Table 7.4. Figures 7.8(c) and 7.8(d)
and Figures 7.9(c) and 7.9(d) show the model checking statistics for the fitted
two-dimensional inhomogeneous Poisson process model when the threshold is
η = 2.5%. All autocorrelation functions of zti and wti are within the asymptotic
two standard error limits. The QQ plots also show marked improvements as they
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Figure 7.9 Quantile-to-quantile plot of z and w measures for two-dimensional Poisson models. Parts
(a) and (b) are for homogeneous model and parts (c) and (d) are for inhomogeneous model. Data are
daily mean-corrected log returns, in percentages, of IBM stock from July 3, 1962, to December 31,
1998, and the threshold is 2.5%. A long financial position is used.
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TABLE 7.4 Estimation Results of Two-Dimensional Inhomogeneous Poisson Process
Model for Daily Log Returns, in Percentages, of IBM Stock from July 3, 1962 to
December 31, 1998a

Parameter Constant Coefficient of x3t Coefficient of x4t Coefficient of x5t

Threshold 2.5% with 334 Exceedances

βt 0.3202 1.4772 2.1991
(Std.err) (0.3387) (0.3222) (0.2450)
ln(αt ) −0.8119 0.3305 1.0324
(Std.err) (0.1798) (0.0826) (0.2619)
ξt 0.1805 0.2118 0.3551 −0.2602
(Std.err) (0.1290) (0.0580) (0.1503) (0.0461)

Threshold 3.0% with 184 Exceedances

βt 1.1569 2.1918
(Std.err) (0.4082) (0.2909)
ln(αt ) −0.0316 0.3336
(Std.err) (0.1201) (0.0861)
ξt 0.6008 0.2480 −0.3175
(Std.err) (0.1454) (0.0731) (0.0685)

aFour explanatory variables defined in the text are used. The model is for holding a long position on
IBM stock. The sample mean of the log returns is removed from the data.

indicate no model inadequacy. Based on these checking results, the inhomogeneous
model seems adequate.

Consider the case of threshold 2.5%. The estimation results show the following:

1. All three parameters of the intensity function depend significantly on the
annual time trend. In particular, the shape parameter has a negative annual
trend, indicating that the log returns of IBM stock are moving farther away
from normality as time passes. Both the location and scale parameters
increase over time.

2. Indicators for the fourth quarter, x1t , and for panic selling, x2t , are not sig-
nificant for all three parameters.

3. The location and shape parameters are positively affected by the volatility of
the GARCH(1,1) model; see the coefficients of x5t . This is understandable
because the variability of log returns increases when the volatility is high.
Consequently, the dependence of log returns on the tail index is reduced.

4. The scale and shape parameters depend significantly on the qualitative mea-
sure of volatility. Signs of the estimates are also plausible.

The explanatory variables for December 31, 1998, assumed the values x3,9190 =
0, x4,9190 = 0.9737, and x5,9190 = 1.9766. Using these values and the fitted model
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in Table 7.4, we obtain

ξ9190 = 0.01195, ln(α9190) = 0.19331, β9190 = 6.105.

Assume that the tail probability is 0.05. The VaR quantile shown in Eq. (7.36) gives
VaR = 3.03756%. Consequently, for a long position of $10 million, we have

VaR = $10,000,000 × 0.0303756 = $303,756.

If the tail probability is 0.01, the VaR is $497, 425. The 5% VaR is slightly larger
than that of Example 7.3, which uses a Gaussian AR(2)–GARCH(1,1) model. The
1% VaR is larger than that of Case 1 of Example 7.3. Again, as expected, the
effect of extreme values (i.e., heavy tails) on VaR is more pronounced when the
tail probability used is small.

An advantage of using explanatory variables is that the parameters are adaptive
to the change in market conditions. For example, the explanatory variables for
December 30, 1998, assumed the values x3,9189 = 1, x4,9189 = 0.9737, and x5,9189 =
1.8757. In this case, we have

ξ9189 = 0.2500, ln(α9189) = 0.52385, β9189 = 5.8834.

The 95% quantile (i.e., the tail probability is 5%) then becomes 2.69139%. Con-
sequently, the VaR is

VaR = $10,000,000 × 0.0269139 = $269,139.

If the tail probability is 0.01, then VaR becomes $448, 323. Based on this example,
the homogeneous Poisson model shown in Example 7.8 seems to underestimate
the VaR.

7.8 THE EXTREMAL INDEX

So far our discussions of extreme values are based on the assumption that the
data are iid random variables. However, in reality extremal events tend to occur in
clusters because of the serial dependence in the data. For instance, we often observe
large returns (both positive and negative) of an asset after some news event. In this
section we extend the theory and applications of extreme values to cases in which
the data form a strictly stationary time series. The basic concept of the extension
is extremal index , which allows one to characterize the relationship between the
dependence structure of the data and their extremal behavior. Our discussion will
be brief. Interested readers are referred to Beirlant et al. (2004, Chapter 10) and
Embrechts et al. (1997).

Let x1, x2, . . . be a strictly stationary sequence of random variables with marginal
distribution function F(x). Consider the case of n observations {xi |i = 1, . . . , n}.
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As before, let x(n) be the maximum of the data, that is, x(n) = max{xi}. We seek
the limiting distribution of (x(n) − βn)/αn for some suitably chosen normalizing
constants αn > 0 and βn. If {xi} were iid, Section 7.5 shows that the only possi-
ble nondegenerate limits are the extreme value distributions. What is the limiting
distribution when {xi} are serially dependent?

To answer this question, we start with a heuristic argument. Suppose that the
serial dependence of the stationary series xi decays quickly so that xi and xi+� are
essentially independent when � is sufficiently large. In other words, assume that the
long-range dependence of xi vanishes quickly. Now divide the data into disjoint
blocks of size k. Specifically, let g = [n/k] be the largest integer less than or equal
to n/k. The ith block of the data is then {xj |j = (i − 1) ∗ k + 1, . . . , i ∗ k}, where
it is understood that the (g + 1)th block may contain less than k observations.
Let xk,i be the maximum of the ith block, that is, xk,i = max{xj |j = (i − 1) ∗ k +
1, . . . , i ∗ k}. The collection of block maxima is {xk,i |i = 1, . . . , g + 1}. From the
definitions, it is easy to see that

x(n) = max
i=1,...,g+1

xk,i . (7.44)

That is, the sample maximum is also the maximum of the block maxima. If the
block size k is sufficiently large and the block maximum xk,i does not occur near
the end of the ith block, then xk,i and xk,i+1 are sufficiently far apart and essen-
tially independent under the assumption of weak long-range dependence in {xi}.
Consequently, {xk,i |i = 1, . . . , g + 1} can be regarded as a sample of iid random
variables, and the limiting distribution of its maximum, which is x(n), should be
the extreme value distribution. The prior discussion shows that, under some proper
condition, the limiting distribution of the maximum of a strictly stationary time
series is also the extreme value distribution.

The proper condition needed for the maximum x(n) of a strictly stationary time
series to have the extreme value limiting distribution is obtained by Leadbetter
(1974) and known as the D(un) condition. Details are given in the next section.
The prior heuristic argument also suggests that, even though the limiting distribu-
tion of x(n) is also the extreme value distribution, the parameters associated with
the limiting distribution, however, will not be the same as those when {xi} are iid
random samples because the limiting distribution depends on the marginal distri-
bution of the underlying sequences. For the iid sequences, the marginal distribution
is F(x), but for a stationary series the underlying sequences are the block max-
ima xk,i whose marginal distribution is not F(x). The marginal distribution of xk,i
depends on k and the strength of serial dependence in {xi}.

7.8.1 The D(un) Condition

Consider the sample x1, x2, . . . , xn. To place limits on the long-range dependence
of {xi}, let un be a sequence of thresholds increasing at a rate for which the expected
number of exceedances of xi over un remains bounded. Mathematically, this says
that lim sup n[1 − F(un)] < ∞, where F(·) is the marginal cumulative distribution
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function of xi . For any positive integers p and q, suppose that iv (v = 1, . . . , p)
and jt (t = 1, . . . , q) are arbitrary integers satisfying

1 ≤ i1 < i2 < · · · < ip < j1 < · · · < jq ≤ n,

where j1 − ip ≥ �n, where �n is a function of the sample size n such that �n/n → 0
as n → ∞. Let A1 = {i1, i2, . . . , ip} and A2 = {j1, j2, . . . , jq} be two sets of time
indices. From the prior condition, elements in A1 and A2 are separated by at least
�n time periods. The condition D(un) is satisfied if

|P ( max
i∈A1∪A2

xi ≤ un) − P (max
i∈A1

xi ≤ un)P (max
i∈A2

xi ≤ un)| ≤ δn,�n , (7.45)

where δn,�n → 0 as n → ∞. This condition says that any two events of the form
{maxi∈A1 xi ≤ un} and {maxi∈A2 xi ≤ un} can become asymptotically independent
as the sample size n increases when the index subsets A1 and A2 of {1, 2, . . . , n}
are separated by a distance �n which satisfies �n/n → 0 as n → ∞. The D(un)

condition looks complicated, but it is relatively weak. For instance, consider Gaus-
sian sequences with autocorrelation ρn for lag n. The D(un) condition is satisfied
if ρn ln(n) → 0 as n → ∞; see Berman (1964).

Leadbetter’s Theorem 1. Suppose that {xi |i = 1, . . . , n} is a strictly station-
ary time series for which there exist sequences of constants αn > 0 and βn and a
nondegenerate distribution function F∗(·) such that

P

[
x(n) − βn

αn

≤ x

]
→d F∗(x), n → ∞,

where →d denotes convergence in distribution. If D(un) holds with un = αnx + βn

for each x such that F∗(x)> 0, then F∗(x) is an extreme value distribution function.
The prior theorem shows that the possible limiting distributions for the maxima

of strictly stationary time series satisfying the D(un) condition are also the extreme
value distributions. As noted before, the dependence can affect the limiting distri-
bution, however. The effect of the dependence appears in the marginal distribution
of the block maxima xk,i . To state the effect more precisely, let {x̃1, x̃2, . . . , x̃n}
be a sequence of iid random variables such that the marginal distribution of x̃i is
the same as that of the stationary time series xi . Let x̃(n) be the maximum of {x̃i}.
Leadbetter (1983) establishes the following result.

Leadbetter’s Theorem 2. If there exist sequences of constants αn > 0 and βn

and a nondegenerate distribution function F̃∗(x) such that

P

[
x̃(n) − βn

αn

≤ x

]
→d F̃∗(x), n → ∞,
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if the condition D(un) holds with un = αnx + βn for each x such that F̃∗(x)> 0,
and if P [(x(n) − βn)/αn ≤ x] converges for some x, then

P

[
x(n) − βn

αn

≤ x

]
→d F∗(x) = F̃ θ

∗ (x), n → ∞,

for some constant θ ∈ (0, 1].

The constant θ is called the extremal index . It plays an important role in deter-
mining the limiting distribution F∗(x) for the maximum of a strictly stationary time
series. To see this, we provide some simple derivations for the case of ξ �= 0. From
the result of Eq. (7.16), F̃∗(x) is the generalized extreme value distribution and
assumes the form

F̃∗(x) = exp

[
−

(
1 + ξ

x − β

α

)−1/ξ
]
,

where ξ �= 0 and 1 + ξ(x − β)/α > 0. In other words, we assume that for the iid
sequence {x̃i}, the limiting extreme distribution of x̃(n) has parameters ξ, β and α.
Based on Theorem 2 of Leadbetter (1983), we have

F∗(x) = F̃ θ
∗ (x) = exp

[
−θ

(
1 + ξ

x − β

α

)−1/ξ
]

= exp

[
−

(
1

θξ
+ ξ

x − β

αθξ

)−1/ξ
]

= exp

[
−

(
ξ
α/ξ + x − β

αθξ

)−1/ξ
]

= exp

[
−

(
1 + ξ

x − β + α/ξ − αθξ/ξ

αθξ

)−1/ξ
]

= exp

−
(

1 + ξ
x − [β − α

ξ
(1 − θξ )]

αθξ

)−1/ξ


= exp

[
−

(
1 + ξ∗

x − β∗
α∗

)−1/ξ∗
]
, (7.46)

where ξ∗ = ξ , α∗ = αθξ , and β∗ = β − α(1 − θξ )/ξ . Therefore, for a stationary
time series {xi} satisfying the D(un) condition, the limiting distribution of the
sample maximum is the generalized extreme value distribution with the shape
parameter ξ , which is the same as that of the iid sequences. On the other hand, the
location and scale parameters are affected by the extremal index θ . Specifically,
α∗ = αθξ and β∗ = β − α(1 − θξ )/ξ . Results for the case of ξ = 0 can be derived
via the same approach and we have α∗ = α and β∗ = β + α ln(θ).
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A formal definition of the extremal index is as follows: Let {xi} be a strictly
stationary time series with marginal cumulative distribution function F(x) and θ

a nonnegative number. Assume that for every τ > 0 there exists a sequence of
thresholds un such that

lim
n→∞ n[1 − F(un)] = τ, (7.47)

lim
n→∞P (x(n) ≤ un) = exp(−θτ). (7.48)

Then θ is called the extremal index of the time series {xi}. See Embrechts et al.
(1997). Note that, for the corresponding iid sequence {x̃i}, under the assumption
that Eq. (7.47) holds, we have

lim
n→∞P (x̃(n) ≤ un) = lim

n→∞[F(un)]
n = lim

n→∞

{
1 − 1

n
n[1 − F(un)]

}n

→ exp(−τ ),

where we have used the property limn→∞(1 − y/n)n = exp(−y). Thus, the defi-
nition also highlights the role played by the extremal index θ .

7.8.2 Estimation of the Extremal Index

There are several ways to estimate the extremal index θ of a strictly stationary
time series {xi}. Each estimation method is associated with an interpretation of the
extremal index. In what follows, we discuss some of the estimation methods.

The Blocks Method
From the definition of the extremal index θ , we have, for a large n, that

P (x(n) ≤ un) ≈ P θ(x̃(n) ≤ un) = [F(un)]
nθ ,

provided that n[1 − F(un)] → τ > 0. Hence

lim
n→∞

lnP (x(n) ≤ un)

n ln F(un)
= θ. (7.49)

This limiting relationship suggests a method to estimate θ . The denominator can
be estimated by the sample quantile, namely

F̂ (un) = 1

n

n∑
i=1

I (xi ≤ un) = 1 − 1

n

n∑
i=1

I (xi >un) = 1 − N(un)

n
,

where I (C) = 1 if the augment C holds and = 0 otherwise, that is, I (C) is the indi-
cator variable for the statement C, and N(un) denotes the number of exceedances
of the sample over the threshold un. The numerator P (x(n) ≤ un) is harder to esti-
mate. One possibility is to use the block maxima. Specifically, let k = k(n) be a
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properly chosen block size that depends on the sample size n and, as before, let
g = [n/k] be the integer part of n/k. For simplicity, assume that n = gk. The ith
block consists of {xj |j = (i − 1) ∗ k + 1, . . . , i ∗ k} and let xk,i be the maximum
of the ith block. Using Eq. (7.44) and the approximate independence of block
maxima, we have

P (x(n) ≤ un) = P ( max
1≤i≤g

xk,i ≤ un) ≈ [P (xk,i ≤ un)]
g.

The probability P (xk,i ≤ un) can be estimated from the block maxima, that is,

P̂ (xk,i ≤ un) = 1

g

g∑
i=1

I (xk,i ≤ un) = 1 − 1

g

g∑
i=1

I (xk,i > un) = 1 − G(un)

g
,

where G(un) is the number of blocks such that the block maximum exceeds the
threshold un. Combining the estimators for numerator and denominator, we obtain

θ̂
(1)
b = g

n

ln[1 − G(un)/g]

ln[1 − N(un)/n]
= 1

k

ln[1 − G(un)/g]

ln[1 − N(un)/n]
, (7.50)

where the subscript b signifies the blocks method. Note that N(un) is the number
of exceedances of the sample {xi} over the threshold un and G(un) is the number
of blocks with one or more exceedances. Using approximation based on Taylor
expansion of ln(1 − x), we obtain a second estimator:

θ̂
(2)
b = 1

k

G(un)/g

N(un)/n
= G(un)

N(un)
.

Based on the results of Hsing et al. (1988), this estimator can also be interpreted as
the reciprocal of the mean cluster size of the limiting compound Poisson process
N(un).

The Runs Method
O’Brien (1987) proved, under certain weak mixing condition, that

lim
n→∞P (x∗

(n) ≤ un|x1 >un) = θ,

where x∗
(n) = max2≤i≤s xi , where s is a function of the sample size n satisfying

some growth conditions, including s → ∞ and s/n → 0 as n → ∞. See Beirlant
et al. (2004) and Embrechts et al. (1997) for details. This result has been used to
construct an estimator of θ based on runs :

θ̂ (3)
r =

∑n−k
i=1 I (Ai,n)∑n

i=1 I (xi >un)
=

∑n−k
i=1 I (Ai,n)

N(un)
,
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where N(un) is the number of exceedances of the sample {xi} over the threshold
un, k is a function of n, and Ai,n = {xi > un, xi+1 ≤ un, . . . , xi+k ≤ un}. Note that
Ai,n denotes the event that an exceedance is followed by a run of k observations
below the threshold. Since k/n → 0 as n → ∞, we can write the runs estimator as

θ̂ (3)
r ≈ (n − k)−1 ∑n−k

i=1 I (Ai,n)

n−1N(un)
.

Finally, other estimators of θ are available in the literature. See, for instance, the
methods discussed in Beirlant et al. (2004). For demonstration, we consider, again,
the negative daily log returns of IBM stock from July 3, 1962, to December 31,
1998. Figure 7.10 shows the estimates of the extremal index for various thresholds
when the block size k = 10. We chose k = 10 because the daily log returns have
weak serial dependence. The estimates are based on the blocks method, that is,
θ̂
(1)
b . From the plot, we see that θ̂

(1)
b ≈ 0.82 for threshold 0.025. Indeed, a simple

direct calculation using k = 10 and threshold 0.025 gives θ̂
(1)
b = 0.823. The plot

also shows that the estimate θ̂
(1)
b of the extremal index might be sensitive to the

choices of threshold and block size k.
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Figure 7.10 Estimates of extremal index for negative daily log returns of IBM stock from July 3,
1962, to December 31, 1998. Block size is k = 10 and lower horizontal axis of plot K denotes number
of blocks whose maximum exceeds threshold.
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7.8.3 Value at Risk for a Stationary Time Series

The relationship between F∗(x) of the maximum of a stationary time series and
F̃∗(x) of its iid counterpart established in Theorem 2 of Leadbetter (1983) can be
used to calculate the VaR of a financial position when the associated log returns
form a stationary time series. Specifically, from P (x(n) ≤ un) ≈ [F(x)]nθ , the (1 −
p)th quantile of F(x) is the (1 − p)nθ th quantile of the limiting extreme value
distribution of x(n). Consequently, the VaR of Eq. (7.28) based on the extreme
value theory becomes

VaR =
{

βn − αn
ξn

{
1 − [−nθ ln(1 − p)

]−ξn
}

if ξn �= 0

βn − αn ln[−nθ ln(1 − p)] if ξn = 0,
(7.51)

where n is the length of the subperiod. From the formula, we risk underestimating
the VaR if the extremal index is overlooked.

As an illustration, again consider the negative daily log returns of IBM stock
from July 3, 1962, to December 31, 1998. Using θ̂

(1)
b = 0.823, the 1% VaR for the

long position of $10 millions on the stock for the next trading day becomes 3.2714
for the case of choosing n = 63 days in parameter estimation. As expected, this is
higher than the 3.0497 of Example 7.6 when the extremal index is neglected.

R Demonstration

> library(evir)
> help(exindex)
> m1=exindex(nibm,10) %Estimate the extremal index

of Figure 7.10.
> % VaR calculation.
> 2.583-(.945/.335)*(1-(-63*.823*log(.99))^-.335)
[1] 3.271388

EXERCISES

7.1. Consider the daily returns of GE stock from January 2, 1998, to December 31,
2008. The data can be obtained from CRSP or the file d-ge9808.txt. Convert
the simple returns into log returns. Suppose that you hold a long position on
the stock valued at $1 million. Use the tail probability 0.01. Compute the
value at risk of your position for 1-day horizon and 15-day horizon using the
following methods:

(a) The RiskMetrics method.

(b) A Gaussian ARMA–GARCH model.

(c) An ARMA–GARCH model with a Student-t distribution. You should also
estimate the degrees of freedom.

(d) The traditional extreme value theory with subperiod length n = 21.
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7.2. The file d-csco9808.txt contains the daily simple returns of Cisco Systems
stock from 1998 to 2008 with 2767 observations. Transform the simple returns
to log returns. Suppose that you hold a long position of Cisco stock valued
at $1 million. Compute the value at risk of your position for the next trading
day using probability p = 0.01.

(a) Use the RiskMetrics method.

(b) Use a GARCH model with a conditional Gaussian distribution.

(c) Use a GARCH model with a Student-t distribution. You may also estimate
the degrees of freedom.

(d) Use the unconditional sample quantile.

(e) Use a two-dimensional homogeneous Poisson process with threshold 2%,
that is, focusing on the exceeding times and exceedances that the daily
stock price drops 2% or more. Check the fitted model.

(f) Use a two-dimensional nonhomogeneous Poisson process with threshold
2%. The explanatory variables are (1) an annual time trend, (2) a dummy
variable for October, November, and December, and (3) a fitted volatility
based on a Gaussian GARCH(1,1) model. Perform a diagnostic check on
the fitted model.

(g) Repeat the prior two-dimensional nonhomogeneous Poisson process with
threshold 2.5 or 3%. Comment on the selection of threshold.

7.3. Use Hill’s estimator and the data d-csco9808.txt to estimate the tail index
for daily log returns of Cisco stock.

7.4. The file d-hpq3dx9808.txt contains dates and the daily simple returns of
Hewlett-Packard, the CRSP value-weighted index, equal-weighted index, and
the S&P 500 index from 1998 to 2008. The returns include dividend dis-
tributions. Transform the simple returns to log returns. Assume that the tail
probability of interest is 0.01. Calculate value at risk for the following financial
positions for the first trading day of year 2009.

(a) Long on Hewlett-Packard stock of $1 million and S&P 500 index of $1
million using RiskMetrics. The α coefficient of the IGARCH(1,1) model
for each series should be estimated.

(b) The same position as part (a) but using a univariate ARMA–GARCH
model for each return series.

(c) A long position on Hewlett-Packard stock of $1 million using a two-
dimensional nonhomogeneous Poisson model with the following explana-
tory variables: (1) an annual time trend, (2) a fitted volatility based on a
Gaussian GARCH model for Hewlett-Packard stock, (3) a fitted volatility
based on a Gaussian GARCH model for the S&P 500 index returns, and
(4) a fitted volatility based on a Gaussian GARCH model for the value-
weighted index return. Perform a diagnostic check for the fitted models.
Are the market volatility as measured by the S&P 500 index and value-
weighted index returns helpful in determining the tail behavior of stock
returns of Hewlett-Packard? You may choose several thresholds.
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7.5. Consider the daily returns of Alcoa (AA) stock and the S&P 500 composite
index (SPX) from 1998 to 2008. The simple returns and dates are in the file
d-aaspx9808.txt. Transform the simple returns to log returns and focus on
the daily negative log returns of AA stock.
(a) Fit the generalized extreme value distribution to the negative AA log

returns, in percentages, with subperiods of 21 trading days. Write down
the parameter estimates and their standard errors. Obtain a scatterplot and
a QQ plot of the residuals.

(b) What is the return level of the prior fitted model when 24 subperiods of
21 days are used?

(c) Obtain a QQ plot (against exponential distribution) of the negative log
returns with threshold 2.5% and a mean excess plot of the returns.

(d) Fit a generalize Pareto distribution to the negative log returns with thresh-
old 3.5%. Write down the parameter estimates and their standard errors.

(e) Obtain (i) a plot of excess distribution, (ii) a plot of the tail of the under-
lying distribution, (iii) a scatterplot of residuals, and (iv) a QQ plot of the
residuals for the fitted GPD.

(f) Based on the fitted GPD model, compute the VaR and expected shortfall
for probabilities q = 0.99 and 0.999.

7.6. Consider, again, the daily log returns of Alcoa (AA) stock in Exercise 7.5.
Focus now on the daily positive log returns. Answer the same questions as in
Exercise 7.5. However, use threshold 3% in fitting the GPD model.

7.7. Consider the daily returns of SPX in d-aaspx9808.txt. Transform the
returns into log returns and focus on the daily negative log returns.
(a) Fit the generalized extreme value distribution to the negative SPX log

returns, in percentage, with subperiods of 21 trading days. Write down the
parameter estimates and their standard errors. Obtain a scatterplot and a
QQ plot of the residuals.

(b) What is the return level of the prior fitted model when 24 subperiods of
21 days are used?

(c) Obtain a QQ plot (against exponential distribution) of the negative log
returns with threshold 2.5% and a mean excess plot of the returns.

(d) Fit a generalize Pareto distribution to the negative log returns with thresh-
old 2.5%. Write down the parameter estimates and their standard errors.

(e) Obtain (i) a plot of excess distribution, (ii) a plot of the tail of the under-
lying distribution, (iii) a scatterplot of residuals, and (iv) a QQ plot of the
residuals for the fitted GPD.

(f) Based on the fitted GPD model, compute the VaR and expected shortfall
for probabilities q = 0.99 and 0.999.

7.8. Consider the daily log returns of the GE stock of Exercise 7.1. Obtain esti-
mates θ̂

(1)
b and θ̂

(3)
r of the extremal index of (a) the positive return series

and (b) the negative return series, using block sizes k = 5 and 10 and
threshold 2.5%.
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Hsing, T., Hüsler, J. and Leadbetter, M. R. (1988). On the exceedance point process for a
stationary sequence. Probability Theory and Related Fields 78: 97–112.

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum)
of meteorological elements. Quarterly Journal of the Royal Meteorological Society 81:
158–171.

Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk , 3rd ed.
McGraw-Hill, Chicago.

Koenker, R. W. and Bassett, G. W. (1978). Regression quantiles. Econometrica 46: 33–50.

Koenker, R. W. and D’Orey, V. (1987). Computing regression quantiles. Applied Statistics
36: 383–393.

Leadbetter, M. R. (1974). On extreme values in stationary sequences. Zeitschrift für
Wahrscheinlichkeitsthorie und Verwandte Gebiete 28: 289–303.

Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Zeitschrift
für Wahrscheinlichkeitsthorie und Verwandte Gebiete 65: 291–306.



388 extreme values, quantiles, and value at risk

Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983). Extremes and Related Properties
of Random Sequences and Processes . Springer, New York.

Longerstaey, J. and More, L. (1995). Introduction to RiskMetricsTM, 4th ed. Morgan Guar-
anty Trust Company, New York.

Longin, F. M. (1996). The asymptotic distribution of extreme stock market returns. Journal
of Business 69: 383–408.

Longin, F. M. (1999a). Optimal margin level in futures markets: Extreme price movements.
Journal of Futures Markets 19: 127–152.

Longin, F. M. (1999b). From value at risk to stress testing: The extreme value approach.
Working paper, Centre for Economic Policy Research, London.

O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. Annals of
Probability 15: 281–291.

Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics
3: 119–131.

Smith, R. L. (1989). Extreme value analysis of environmental time series: An application to
trend detection in ground-level ozone (with discussion). Statistical Science 4: 367–393.

Smith, R. L. (1999). Measuring risk with extreme value theory. Working paper, Department
of Statistics, University of North Carolina at Chapel Hill.

Smith, R. L. and Shively, T. S. (1995). A point process approach to modeling trends in
troposheric ozone. Atmospheric Environment 29: 3489–3499.

Tsay, R. S. (1999). Extreme value analysis of financial data. Working paper, Graduate School
of Business, University of Chicago.

Zivot, E. and Wang, J. (2003). Modeling Financial Time Series with S-Plus . Springer, New
York.



C H A P T E R 8

Multivariate Time Series Analysis
and Its Applications

Economic globalization and Internet communication have accelerated the integra-
tion of world financial markets in recent years. Price movements in one market can
spread easily and instantly to another market. For this reason, financial markets
are more dependent on each other than ever before, and one must consider them
jointly to better understand the dynamic structure of the global finance. One market
may lead the other market under some circumstances, yet the relationship may be
reversed under other circumstances. Consequently, knowing how the markets are
interrelated is of great importance in finance. Similarly, for an investor or a finan-
cial institution holding multiple assets, the dynamic relationships between returns
of the assets play an important role in decision making. In this and the next two
chapters, we introduce econometric models and methods useful for studying jointly
multiple return series. In the statistical literature, these models and methods belong
to vector or multivariate time series analysis.

A multivariate time series consists of multiple single series referred to as com-
ponents . As such, concepts of vector and matrix are useful in understanding
multivariate time series analysis. We use boldface notation to indicate vectors
and matrices. If necessary, readers may consult Appendix A of this chapter for
some basic operations and properties of vectors and matrices. Appendix B pro-
vides some results of multivariate normal distribution, which is widely used in
multivariate statistical analysis (e.g., Johnson and Wichern, 1998).

Let r t = (r1t , r2t , . . . , rkt )
′ be the log returns of k assets at time t , where a′

denotes the transpose of a. For example, an investor holding stocks of IBM,
Microsoft, Exxon Mobil, General Motors, and Wal-Mart may consider the five-
dimensional daily log returns of these companies. Here r1t denotes the daily log
return of IBM stock, r2t is that of Microsoft, and so on. As a second example,
an investor who is interested in global investment may consider the return series
of the S&P 500 index of the United States, the FTSE 100 index of the United
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Kingdom, and the Nikkei 225 index of Japan. Here the series is three-dimensional,
with r1t denoting the return of the S&P 500 index, r2t the return of the Financial
Times Stock Exchange (FTSE) 100 index, and r3t the return of the Nikkei 225.
The goals of this chapter are (a) to explore the basic properties of r t and (b) to
study econometric models for analyzing the multivariate data {r t |t = 1, . . . , T }.

Many of the models and methods discussed in previous chapters can be gen-
eralized directly to the multivariate case. But there are situations in which the
generalization requires some attention. In some situations, one needs new models
and methods to handle the complicated relationships between multiple series. In
this chapter, we discuss these issues with emphasis on intuition and applications.
For statistical theory of multivariate time series analysis, readers are referred to
Lütkepohl (2005) and Reinsel (1993).

8.1 WEAK STATIONARITY AND CROSS-CORRELATION MATRICES

Consider a k-dimensional time series r t = (r1t , . . . , rkt )
′. The series r t is weakly

stationary if its first and second moments are time invariant. In particular, the
mean vector and covariance matrix of a weakly stationary series are constant over
time. Unless stated explicitly to the contrary, we assume that the return series of
financial assets are weakly stationary.

For a weakly stationary time series r t , we define its mean vector and covariance
matrix as

µ = E(r t ), 
0 = E[(r t − µ)(r t − µ)′], (8.1)

where the expectation is taken element by element over the joint distribution of r t .
The mean µ is a k-dimensional vector consisting of the unconditional expectations
of the components of r t . The covariance matrix 
0 is a k × k matrix. The ith
diagonal element of 
0 is the variance of rit , whereas the (i, j)th element of 
0 is
the covariance between rit and rjt . We write µ = (µ1, . . . , µk)

′ and 
0 = [�ij (0)]
when the elements are needed.

8.1.1 Cross-Correlation Matrices

Let D be a k × k diagonal matrix consisting of the standard deviations of rit for
i = 1, . . . , k. In other words, D = diag{√�11(0), . . . ,

√
�kk(0)}. The concurrent,

or lag-zero, cross-correlation matrix of r t is defined as

ρ0 ≡ [ρij (0)] = D−1
0D
−1.

More specifically, the (i, j)th element of ρ0 is

ρij (0) = �ij (0)√
�ii(0)�jj (0)

= Cov(rit , rj t )

std(rit )std(rjt )
,
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which is the correlation coefficient between rit and rjt . In time series analysis,
such a correlation coefficient is referred to as a concurrent, or contemporaneous,
correlation coefficient because it is the correlation of the two series at time t . It is
easy to see that ρij (0) = ρji(0), −1 ≤ ρij (0) ≤ 1, and ρii(0) = 1 for 1 ≤ i, j ≤ k.
Thus, ρ(0) is a symmetric matrix with unit diagonal elements.

An important topic in multivariate time series analysis is the lead–lag relation-
ships between component series. To this end, the cross-correlation matrices are
used to measure the strength of linear dependence between time series. The lag-�
cross-covariance matrix of r t is defined as


� ≡ [�ij (�)] = E[(r t − µ)(r t−� − µ)′], (8.2)

where µ is the mean vector of r t . Therefore, the (i, j)th element of 
� is the covari-
ance between rit and rj,t−�. For a weakly stationary series, the cross-covariance
matrix 
� is a function of �, not the time index t .

The lag-� cross-correlation matrix (CCM) of r t is defined as

ρ� ≡ [ρij (�)] = D−1
�D
−1, (8.3)

where, as before, D is the diagonal matrix of standard deviations of the individual
series rit . From the definition,

ρij (�) = �ij (�)√
�ii(0)�jj (0)

= Cov(rit , rj,t−�)

std(rit )std(rjt )
, (8.4)

which is the correlation coefficient between rit and rj,t−�. When �> 0, this corre-
lation coefficient measures the linear dependence of rit on rj,t−�, which occurred
prior to time t . Consequently, if ρij (�) �= 0 and �> 0, we say that the series rjt
leads the series rit at lag �. Similarly, ρji(�) measures the linear dependence of rjt
and ri,t−�, and we say that the series rit leads the series rjt at lag � if ρji(�) �= 0
and �> 0. Equation (8.4) also shows that the diagonal element ρii(�) is simply the
lag-� autocorrelation coefficient of rit .

Based on this discussion, we obtain some important properties of the cross
correlations when �> 0. First, in general, ρij (�) �= ρji(�) for i �= j because the
two correlation coefficients measure different linear relationships between {rit } and
{rjt }. Therefore, 
� and ρ� are in general not symmetric. Second, using Cov(x, y)
= Cov(y, x) and the weak stationarity assumption, we have

Cov(rit , rj,t−�) = Cov(rj,t−�, rit ) = Cov(rjt , ri,t+�) = Cov(rjt , ri,t−(−�)),

so that �ij (�) = �ji(−�). Because �ji(−�) is the (j, i)th element of the matrix 
−�

and the equality holds for 1 ≤ i, j ≤ k, we have 
� = 
′
−� and ρ� = ρ′

−�. Conse-
quently, unlike the univariate case, ρ� �= ρ−� for a general vector time series when
�> 0. Because ρ� = ρ′

−�, it suffices in practice to consider the cross-correlation
matrices ρ� for � ≥ 0.
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8.1.2 Linear Dependence

Considered jointly, the cross-correlation matrices {ρ�|� = 0, 1, . . .} of a weakly
stationary vector time series contain the following information:

1. The diagonal elements {ρii (�)|� = 0, 1, . . .} are the autocorrelation function
of rit .

2. The off-diagonal element ρij (0) measures the concurrent linear relationship
between rit and rjt .

3. For �> 0, the off-diagonal element ρij (�) measures the linear dependence of
rit on the past value rj,t−�.

Therefore, if ρij (�) = 0 for all �> 0, then rit does not depend linearly on any
past value rj,t−� of the rjt series.

In general, the linear relationship between two time series {rit } and {rjt } can be
summarized as follows:

1. rit and rjt have no linear relationship if ρij (�) = ρji(�) = 0 for all � ≥ 0.

2. rit and rjt are concurrently correlated if ρij (0) �= 0.

3. rit and rjt have no lead–lag relationship if ρij (�) = 0 and ρji(�) = 0 for all
�> 0. In this case, we say the two series are uncoupled.

4. There is a unidirectional relationship from rit to rjt if ρij (�) = 0 for all
�> 0, but ρji(v) �= 0 for some v > 0. In this case, rit does not depend on
any past value of rjt , but rjt depends on some past values of rit .

5. There is a feedback relationship between rit and rjt if ρij (�) �= 0 for some
�> 0 and ρji(v) �= 0 for some v > 0.

The conditions stated earlier are sufficient conditions. A more informative approach
to study the relationship between time series is to build a multivariate model for
the series because a properly specified model considers simultaneously the serial
and cross correlations among the series.

8.1.3 Sample Cross-Correlation Matrices

Given the data {r t |t = 1, . . . , T }, the cross-covariance matrix 
� can be esti-
mated by


̂� = 1

T

T∑
t=�+1

(r t − r̄)(r t−� − r̄)′, � ≥ 0, (8.5)

where r̄ = (
∑T

t=1 r t )/T is the vector of sample means. The cross-correlation matrix
ρ� is estimated by

ρ̂� = D̂
−1


̂�D̂
−1

, � ≥ 0, (8.6)
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where D̂ is the k × k diagonal matrix of the sample standard deviations of the
component series.

Similar to the univariate case, asymptotic properties of the sample cross-
correlation matrix ρ̂� have been investigated under various assumptions; see, for
instance, Fuller (1976, Chapter 6). The estimate is consistent but is biased in a
finite sample. For asset return series, the finite sample distribution of ρ̂� is rather
complicated partly because of the presence of conditional heteroscedasticity and
high kurtosis. If the finite-sample distribution of cross correlations is needed,
we recommend that proper bootstrap resampling methods be used to obtain
an approximate estimate of the distribution. For many applications, a crude
approximation of the variance of ρ̂ij (�) is sufficient.

Example 8.1. Consider the monthly log returns of IBM stock and the S&P 500
index from January 1926 to December 2008 with 996 observations. The returns
include dividend payments and are in percentages. Denote the returns of IBM
stock and the S&P 500 index by r1t and r2t , respectively. These two returns form a
bivariate time series r t = (r1t , r2t )

′. Figure 8.1 shows the time plots of r t . Figure 8.2
shows some scatterplots of the two series. The plots show that the two return series
are concurrently correlated. Indeed, the sample concurrent correlation coefficient
between the two returns is 0.65, which is statistically significant at the 5% level.
However, the cross correlations at lag 1 are weak if any.
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Figure 8.1 Time plots of monthly log returns, in percentages, for (a) IBM stock and (b) the S&P 500
index from January 1926 to December 2008.
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Figure 8.2 Some scatterplots for monthly log returns of IBM stock and S&P 500 index: (a) concurrent
plot of IBM vs. S&P 500, (b) S&P 500 vs. lag-1 IBM, (c) IBM vs. lag-1 S&P 500, and (d) S&P 500
vs. lag-1 S&P 500.

Table 8.1 provides some summary statistics and cross-correlation matrices of the
two series. For a bivariate series, each CCM is a 2 × 2 matrix with four correlations.
Empirical experience indicates that it is rather hard to absorb simultaneously many
cross-correlation matrices, especially when the dimension k is greater than 3. To
overcome this difficulty, we use the simplifying notation of Tiao and Box (1981)
and define a simplified cross-correlation matrix consisting of three symbols “+,”
“−,” and “.” where they have the following meaning:

1. Plus sign (+) means that the corresponding correlation coefficient is greater
than or equal to 2/

√
T .

2. Minus sign (−) means that the corresponding correlation coefficient is less
than or equal to −2/

√
T .

3. Period (.) means that the corresponding correlation coefficient is between
−2/

√
T and 2/

√
T .

And 1/
√
T is the asymptotic 5% critical value of the sample correlation under the

assumption that r t is a white noise series.
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TABLE 8.1 Summary Statistics and Cross-Correlation Matrices of Monthly Log
Returns of IBM Stock and S&P 500 Index: January 1926 to December 2008

(a) Summary Statistics

Standard Excess
Ticker Mean Error Skewness Kurtosis Minimum Maximum

IBM 1.089 7.033 −0.068 2.622 −30.37 38.57
SP5 0.430 5.537 −0.521 7.927 −35.59 35.22

(b) Cross-Correlation Matrices

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

0.04 0.10 0.00 −0.08 −0.01 −0.06 −0.03 −0.03 0.02 0.08
0.04 0.08 0.02 −0.02 −0.06 −0.10 0.04 0.03 0.00 0.09

(c) Simplified notation[· +
· +

] [· −
· ·

] [· ·
· −

] [· ·
· ·

] [· +
· +

]

Table 8.1(c) shows the simplified CCM for the monthly log returns of IBM
stock and the S&P 500 index. It is easily seen that significant cross correlations at
the approximate 5% level appear mainly at lags 1 and 3. An examination of the
sample CCMs at these two lags indicates that (a) S&P 500 index returns have some
marginal autocorrelations at lags 1, 2, 3, and 5 and (b) IBM stock returns depend
weakly on the previous returns of the S&P 500 index. The latter observation is
based on the significance of cross correlations at the (1, 2)th element of lag-1, lag-2
and lag-5 CCMs.

Figure 8.3 shows the sample autocorrelations and cross correlations of the two
series. The upper-left plot is the sample ACF of IBM stock returns and the upper-
right plot shows the dependence of IBM stock returns on the lagged S&P 500 index
returns. The dashed lines in the plots are the asymptotic two standard error limits
of the sample auto- and cross-correlation coefficients. From the plots, the dynamic
relationship is weak between the two return series, but their contemporaneous
correlation is statistically significant.

Example 8.2. Consider the simple returns of monthly indexes of U.S. gov-
ernment bonds with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year.
The data obtained from the CRSP database have 696 observations starting from
January 1942 to December 1999. Let r t = (r1t , . . . , r5t )

′ be the return series with
decreasing time to maturity. Figure 8.4 shows the time plots of r t on the same scale.
The variability of the 1-year bond returns is much smaller than that of returns with
longer maturities. The sample means and standard deviations of the data are µ̂ =
10−2(0.43, 0.45, 0.45, 0.46, 0.44)′ and σ̂ = 10−2(2.53, 2.43, 1.97, 1.39, 0.53)′.
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Figure 8.3 Sample auto- and cross-correlation functions (CCF) of two monthly log return series:
(a) sample ACF of IBM stock returns, (b) cross-correlations between S&P 500 index and lagged IBM
stock returns (lower left), (c) cross correlations between IBM stock and lagged S&P 500 index returns,
and (d) sample ACF of S&P 500 index returns. Dashed lines denote 95% limits.

The concurrent correlation matrix of the series is

ρ̂0 =


1.00 0.98 0.92 0.85 0.63
0.98 1.00 0.91 0.86 0.64
0.92 0.91 1.00 0.90 0.68
0.85 0.86 0.90 1.00 0.82
0.63 0.64 0.68 0.82 1.00

 .

It is not surprising that (a) the series have high concurrent correlations, and (b) the
correlations between long-term bonds are higher than those between short-term
bonds.

Table 8.2 gives the lag-1 and lag-2 cross-correlation matrices of r t and the
corresponding simplified matrices. Most of the significant cross correlations are at
lag 1, and the five return series appear to be intercorrelated. In addition, lag-1 and
lag-2 sample ACFs of the 1-year bond returns are substantially higher than those
of other series with longer maturities.
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Figure 8.4 Time plots of monthly simple returns of five indexes of U.S. government bonds with
maturities in (a) 30 years, (b) 20 years, (c) 10 years, (d) 5 years, and (e) 1 year. Sample period is from
January 1942 to December 1999.

8.1.4 Multivariate Portmanteau Tests

The univariate Ljung–Box statistic Q(m) has been generalized to the multivariate
case by Hosking (1980, 1981) and Li and McLeod (1981). For a multivariate
series, the null hypothesis of the test statistic is H0 : ρ1 = · · · = ρm = 0, and the
alternative hypothesis Ha : ρi �= 0 for some i ∈ {1, . . . , m}. Thus, the statistic is
used to test that there are no auto- and cross correlations in the vector series r t .
The test statistic assumes the form

Qk(m) = T 2
m∑

�=1

1

T − �
tr(
̂

′
�
̂

−1
0 
̂�
̂

−1
0 ), (8.7)

where T is the sample size, k is the dimension of r t , and tr(A) is the trace of
the matrix A, which is the sum of the diagonal elements of A. Under the null
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TABLE 8.2 Sample Cross-Correlation Matrices of Monthly Simple Returns of Five
Indexes of U.S. Government Bonds: January 1942 to December 1999

Lag 1 Lag 2

Cross-Correlations

0.10 0.08 0.11 0.12 0.16 −0.01 0.00 0.00 −0.03 0.03
0.10 0.08 0.12 0.14 0.17 −0.01 0.00 0.00 −0.04 0.02
0.09 0.08 0.09 0.13 0.18 0.01 0.01 0.01 −0.02 0.07
0.14 0.12 0.15 0.14 0.22 −0.02 −0.01 0.00 −0.04 0.07
0.17 0.15 0.21 0.22 0.40 −0.02 0.00 0.02 0.02 0.22

Simplified Cross-Correlation Matrices
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +




· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · +



hypothesis and some regularity conditions, Qk(m) follows asymptotically a chi-
squared distribution with k2m degrees of freedom.

Remark. The Qk(m) statistics can be rewritten in terms of the sample cross-
correlation matrices ρ̂�. Using the Kronecker product ⊗ and vectorization of matri-
ces discussed in Appendix A of this chapter, we have

Qk(m) = T 2
m∑

�=1

1

T − �
b′
�(̂ρ

−1
0 ⊗ ρ̂−1

0 )b�,

where b� = vec(̂ρ ′
�). The test statistic proposed by Li and McLeod (1981) is

Q∗
k(m) = T

m∑
�=1

b′
�(̂ρ

−1
0 ⊗ ρ̂−1

0 )b� + k2m(m + 1)

2T
,

which is asymptotically equivalent to Qk(m). �

Applying the Qk(m) statistics to the bivariate monthly log returns of IBM stock
and the S&P 500 index of Example 8.1, we have Q2(1) = 9.81, Q2(5) = 47.06,
and Q2(10) = 71.65. Based on asymptotic chi-squared distributions with degrees
of freedom 4, 20, and 40, the p values of these Q2(m) statistics are 0.044, 0.001,
and 0.002, respectively. The portmanteau tests thus confirm the existence of serial
dependence in the bivariate return series at the 5% significance level. For the five-
dimensional monthly simple returns of bond indexes in Example 8.2, we have
Q5(5) = 1065.63, which is highly significant compared with a chi-squared distri-
bution with 125 degrees of freedom.
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The Qk(m) statistic is a joint test for checking the first m cross-correlation matri-
ces of r t being zero. If it rejects the null hypothesis, then we build a multivariate
model for the series to study the lead–lag relationships between the component
series. In what follows, we discuss some simple vector models useful for modeling
the linear dynamic structure of a multivariate financial time series.

8.2 VECTOR AUTOREGRESSIVE MODELS

A simple vector model useful in modeling asset returns is the vector autoregressive
(VAR) model. A multivariate time series r t is a VAR process of order 1, or VAR(1)
for short, if it follows the model

r t = φ0 + �r t−1 + at , (8.8)

where φ0 is a k-dimensional vector, � is a k × k matrix, and {at } is a sequence of
serially uncorrelated random vectors with mean zero and covariance matrix �. In
application, the covariance matrix � is required to be positive definite; otherwise,
the dimension of r t can be reduced. In the literature, it is often assumed that at is
multivariate normal.

Consider the bivariate case [i.e., k = 2, r t = (r1t , r2t )
′, and at = (a1t , a2t )

′]. The
VAR(1) model consists of the following two equations:

r1t = φ10 + �11r1,t−1 + �12r2,t−1 + a1t ,

r2t = φ20 + �21r1,t−1 + �22r2,t−1 + a2t ,

where �ij is the (i, j)th element of � and φi0 is the ith element of φ0. Based on
the first equation, �12 denotes the linear dependence of r1t on r2,t−1 in the presence
of r1,t−1. Therefore, �12 is the conditional effect of r2,t−1 on r1t given r1,t−1. If
�12 = 0, then r1t does not depend on r2,t−1, and the model shows that r1t only
depends on its own past. Similarly, if �21 = 0, then the second equation shows
that r2t does not depend on r1,t−1 when r2,t−1 is given.

Consider the two equations jointly. If �12 = 0 and �21 �= 0, then there is a
unidirectional relationship from r1t to r2t . If �12 = �21 = 0, then r1t and r2t are
uncoupled. If �12 �= 0 and �21 �= 0, then there is a feedback relationship between
the two series.

8.2.1 Reduced and Structural Forms

In general, the coefficient matrix � of Eq. (8.8) measures the dynamic dependence
of r t . The concurrent relationship between r1t and r2t is shown by the off-diagonal
element σ12 of the covariance matrix � of at . If σ12 = 0, then there is no con-
current linear relationship between the two component series. In the econometric
literature, the VAR(1) model in Eq. (8.8) is called a reduced-form model because it
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does not show explicitly the concurrent dependence between the component series.
If necessary, an explicit expression involving the concurrent relationship can be
deduced from the reduced-form model by a simple linear transformation. Because
� is positive definite, there exists a lower triangular matrix L with unit diago-
nal elements and a diagonal matrix G such that � = LGL′; see Appendix A on
Cholesky decomposition. Therefore, L−1�(L′)−1 = G.

Define bt = (b1t , . . . , bkt )
′ = L−1at . Then

E(bt ) = L−1E(at ) = 0, Cov(bt ) = L−1�(L−1)′ = L−1�(L′)−1 = G.

Since G is a diagonal matrix, the components of bt are uncorrelated. Multiplying
L−1 from the left to model (8.8), we obtain

L−1r t = L−1φ0 + L−1�r t−1 + L−1at = φ∗
0 + �∗r t−1 + bt , (8.9)

where φ∗
0 = L−1φ0 is a k-dimensional vector and �∗ = L−1� is a k × k matrix.

Because of the special matrix structure, the kth row of L−1 is in the form
(wk1, wk2, . . . , wk,k−1, 1). Consequently, the kth equation of model (8.9) is

rkt +
k−1∑
i=1

wkirit = φ∗
k,0 +

k∑
i=1

�∗
kiri,t−1 + bkt , (8.10)

where φ∗
k,0 is the kth element of φ∗

0 and �∗
ki is the (k, i)th element of �∗. Because

bkt is uncorrelated with bit for 1 ≤ i < k, Eq. (8.10) shows explicitly the concurrent
linear dependence of rkt on rit , where 1 ≤ i ≤ k − 1. This equation is referred to
as a structural equation for rkt in the econometric literature.

For any other component rit of r t , we can rearrange the VAR(1) model so that
rit becomes the last component of r t . The prior transformation method can then be
applied to obtain a structural equation for rit . Therefore, the reduced-form model
(8.8) is equivalent to the structural form used in the econometric literature. In time
series analysis, the reduced-form model is commonly used for two reasons. The
first reason is ease in estimation. The second and main reason is that the concurrent
correlations cannot be used in forecasting.

Example 8.3. To illustrate the transformation from a reduced-form model to
structural equations, consider the bivariate AR(1) model[

r1t

r2t

]
=

[
0.2
0.4

]
+

[
0.2 0.3

−0.6 1.1

] [
r1,t−1

r2,t−1

]
+

[
a1t

a2t

]
, � =

[
2 1
1 1

]
.

For this particular covariance matrix �, the lower triangular matrix

L−1 =
[

1.0 0.0
−0.5 1.0

]
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provides a Cholesky decomposition [i.e., L−1�(L′)−1 is a diagonal matrix]. Pre-
multiplying L−1 to the previous bivariate AR(1) model, we obtain[

1.0 0.0
−0.5 1.0

] [
r1t

r2t

]
=

[
0.2
0.3

]
+

[
0.2 0.3

−0.7 0.95

] [
r1,t−1

r2,t−1

]
+

[
b1t

b2t

]
,

G =
[

2 0
0 0.5

]
,

where G = Cov(bt ). The second equation of this transformed model gives

r2t = 0.3 + 0.5r1t − 0.7r1,t−1 + 0.95r2,t−1 + b2t ,

which shows explicitly the linear dependence of r2t on r1t .
Rearranging the order of elements in r t , the bivariate AR(1) model becomes[
r2t

r1t

]
=

[
0.4
0.2

]
+

[
1.1 −0.6
0.3 0.2

] [
r2,t−1

r1,t−1

]
+

[
a2t

a1t

]
, � =

[
1 1
1 2

]
.

The lower triangular matrix needed in the Cholesky decomposition of � becomes

L−1 =
[

1.0 0.0
−1.0 1.0

]
.

Premultiplying L−1 to the earlier rearranged VAR(1) model, we obtain[
1.0 0.0

−1.0 1.0

] [
r2t

r1t

]
=

[
0.4

−0.2

]
+

[
1.1 −0.6

−0.8 0.8

] [
r2,t−1

r1,t−1

]
+

[
c1t

c2t

]
,

G =
[

1 0
0 1

]
,

where G = Cov(ct ). The second equation now gives

r1t = −0.2 + 1.0r2t − 0.8r2,t−1 + 0.8r1,t−1 + c2t .

Again this equation shows explicitly the concurrent linear dependence of r1t on r2t .

8.2.2 Stationarity Condition and Moments of a VAR(1) Model

Assume that the VAR(1) model in Eq. (8.8) is weakly stationary. Taking expectation
of the model and using E(at ) = 0, we obtain

E(r t ) = φ0 + �E(r t−1).

Since E(r t ) is time invariant, we have

µ ≡ E(r t ) = (I − �)−1φ0
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provided that the matrix I − � is nonsingular, where I is the k × k identity matrix.
Using φ0 = (I − �)µ, the VAR(1) model in Eq. (8.8) can be written as

(r t − µ) = �(r t−1 − µ) + at .

Let r̃ t = r t − µ be the mean-corrected time series. Then the VAR(1) model
becomes

r̃ t = �r̃ t−1 + at . (8.11)

This model can be used to derive properties of a VAR(1) model. By repeated
substitutions, we can rewrite Eq. (8.11) as

r̃ t = at + �at−1 + �2at−2 + �3at−3 + · · · .

This expression shows several characteristics of a VAR(1) process. First, since
at is serially uncorrelated, it follows that Cov(at , r t−1) = 0. In fact, at is not
correlated with r t−� for all �> 0. For this reason, at is referred to as the shock or
innovation of the series at time t . It turns out that, similar to the univariate case, at

is uncorrelated with the past value r t−j (j > 0) for all time series models. Second,
postmultiplying the expression by a′

t , taking expectation, and using the fact of no
serial correlations in the at process, we obtain Cov(r t , at ) = �. Third, for a VAR(1)
model, r t depends on the past innovation at−j with coefficient matrix �j . For such
dependence to be meaningful, �j must converge to zero as j → ∞. This means
that the k eigenvalues of � must be less than 1 in modulus; otherwise, �j will
either explode or converge to a nonzero matrix as j → ∞. As a matter of fact, the
requirement that all eigenvalues of � are less than 1 in modulus is the necessary
and sufficient condition for weak stationarity of r t provided that the covariance
matrix of at exists. Notice that this stationarity condition reduces to that of the
univariate AR(1) case in which the condition is |φ| < 1. Furthermore, because

|λI − �| = λk | I − �
1

λ
|,

the eigenvalues of � are the inverses of the zeros of the determinant |I − �B|.
Thus, an equivalent sufficient and necessary condition for stationarity of r t is that all
zeros of the determinant |�(B)| are greater than one in modulus; that is, all zeros are
outside the unit circle in the complex plane. Fourth, using the expression, we have

Cov(r t ) = 
0 = � + ���′ + �2�(�2)′ + · · · =
∞∑
i=0

�i�(�i )′,

where it is understood that �0 = I , the k × k identity matrix.
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Postmultiplying r̃ ′
t−� to Eq. (8.11), taking expectation, and using the result

Cov(at , r t−j ) = E(at r̃
′
t−j ) = 0 for j > 0, we obtain

E(r̃ t r̃
′
t−�) = �E(r̃ t−1r̃ t−�)

′, �> 0.

Therefore,


� = �
�−1, �> 0, (8.12)

where 
j is the lag-j cross-covariance matrix of r t . Again this result is a general-
ization of that of a univariate AR(1) process. By repeated substitutions, Eq. (8.12)
shows that


� = ��
0, for �>0.

Pre- and postmultiplying Eq. (8.12) by D−1/2, we obtain

ρ� = D−1/2�
�−1D
−1/2 = D−1/2�D1/2D−1/2
�−1D

−1/2 = ϒρ�−1,

where ϒ = D−1/2�D1/2. Consequently, the CCM of a VAR(1) model satisfies

ρ� = ϒ�ρ0, for �>0.

8.2.3 Vector AR(p) Models

The generalization of VAR(1) to VAR(p) models is straightforward. The time series
r t follows a VAR(p) model if it satisfies

r t = φ0 + �1r t−1 + · · · + �pr t−p + at , p>0, (8.13)

where φ0 and at are defined as before, and �j are k × k matrices. Using the
back-shift operator B, the VAR(p) model can be written as

(I − �1B − · · · − �pB
p)r t = φ0 + at ,

where I is the k × k identity matrix. This representation can be written in a compact
form as

�(B)r t = φ0 + at ,

where �(B) = I − �1B − · · · − �pB
p is a matrix polynomial. If r t is weakly

stationary, then we have

µ = E(r t ) = (I − �1 − · · · − �p)
−1φ0 = [�(1)]−1φ0



404 multivariate time series analysis and its applications

provided that the inverse exists. Let r̃ t = r t − µ. The VAR(p) model becomes

r̃ t = �1r̃ t−1 + · · · + �p r̃ t−p + at . (8.14)

Using this equation and the same techniques as those for VAR(1) models, we
obtain that

• Cov(r t , at ) = �, the covariance matrix of at .
• Cov(r t−�, at ) = 0 for �> 0.
• 
� = �1
�−1 + · · · + �p
�−p for �> 0.

The last property is called the moment equations of a VAR(p) model. It is a
multivariate version of the Yule–Walker equation of a univariate AR(p) model. In
terms of CCM, the moment equations become

ρ� = ϒ1ρ�−1 + · · · + ϒpρ�−p for �>0,

where ϒ i = D−1/2�iD
1/2.

A simple approach to understanding properties of the VAR(p) model in Eq.
(8.13) is to make use of the results of the VAR(1) model in Eq. (8.8). This can be
achieved by transforming the VAR(p) model of r t into a kp-dimensional VAR(1)
model. Specifically, let xt = (r̃ ′

t−p+1, r̃
′
t−p+2, . . . , r̃

′
t )

′ and bt = (0, . . . , 0, a′
t )

′ be
two kp-dimensional processes. The mean of bt is zero and the covariance matrix
of bt is a kp × kp matrix with zero everywhere except for the lower right corner,
which is �. The VAR(p) model for r t can then be written in the form

xt = �∗xt−1 + bt , (8.15)

where �∗ is a kp × kp matrix given by

�∗ =



0 I 0 0 · · · 0

0 0 I 0 · · · 0
...

...
...

...

0 0 0 0 · · · I

�p �p−1 �p−2 �p−3 · · · �1


,

where 0 and I are the k × k zero matrix and identity matrix, respectively. In
the literature, �∗ is called the companion matrix of the matrix polynomial
�(B).

Equation (8.15) is a VAR(1) model for xt , which contains r t as its last k com-
ponents. The results of a VAR(1) model shown in the previous section can now be
used to derive properties of the VAR(p) model via Eq. (8.15). For example, from
the definition, x t is weakly stationary if and only if r t is weakly stationary. There-
fore, the necessary and sufficient condition of weak stationarity for the VAR(p)



vector autoregressive models 405

model in Eq. (8.13) is that all eigenvalues of �∗ in Eq. (8.15) are less than 1 in
modulus. It is easy to show that |I − �∗B| = |�(B)|. Therefore, similar to the
VAR(1) case, the necessary and sufficient condition is equivalent to all zeros of
the determinant |�(B)| being outside the unit circle.

Of particular relevance to financial time series analysis is the structure of the
coefficient matrices �� of a VAR(p) model. For instance, if the (i, j)th element
�ij (�) of �� is zero for all �, then rit does not depend on the past values of rjt . The
structure of the coefficient matrices �� thus provides information on the lead–lag
relationship between the components of r t .

8.2.4 Building a VAR(p) Model

We continue to use the iterative procedure of order specification, estimation, and
model checking to build a vector AR model for a given time series. The concept of
partial autocorrelation function of a univariate series can be generalized to specify
the order p of a vector series. Consider the following consecutive VAR models:

r t = φ0 + �1r t−1 + at

r t = φ0 + �1r t−1 + �2r t−2 + at

...

r t = φ0 + �1r t−1 + · · · + �ir t−i + at (8.16)

...

Parameters of these models can be estimated by the ordinary least-squares (OLS)
method. This is called the multivariate linear regression estimation in multivariate
statistical analysis; see Johnson and Wichern (1998).

For the ith equation in Eq. (8.16), let �̂
(i)

j be the OLS estimate of �j and φ̂
(i)

0
be the estimate of φ0, where the superscript (i) is used to denote that the estimates
are for a VAR(i) model. Then the residual is

â
(i)
t = r t − φ̂

(i)

0 − �̂
(i)

1 r t−1 − · · · − �̂
(i)

i r t−i .

For i = 0, the residual is defined as r̂
(0)
t = r t − r̄ , where r̄ is the sample mean of

r t . The residual covariance matrix is defined as

�̂i = 1

T − 2i − 1

T∑
t=i+1

â
(i)
t (̂a

(i)
t )′, i ≥ 0. (8.17)

To specify the order p, one can test the hypothesis H0 : �� = 0 versus the alter-
native hypothesis Ha : �� �= 0 sequentially for � = 1, 2, . . .. For example, using
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the first equation in Eq. (8.16), we can test the hypothesis H0 : �1 = 0 versus the
alternative hypothesis Ha : �1 �= 0. The test statistic is

M(1) = −
(
T − k − 5

2

)
ln

(
|�̂1|
|�̂0|

)
,

where �̂i is defined in Eq. (8.17) and |A| denotes the determinant of the matrix
A. Under some regularity conditions, the test statistic M(1) is asymptotically a
chi-squared distribution with k2 degrees of freedom; see Tiao and Box (1981).

In general, we use the ith and (i − 1)th equations in Eq. (8.16) to test H0 : �i =
0 versus Ha : �i �= 0; that is, testing a VAR(i) model versus a VAR(i − 1) model.
The test statistic is

M(i) = −
(
T − k − i − 3

2

)
ln

(
|�̂i |

|�̂i−1|

)
. (8.18)

Asymptotically, M(i) is distributed as a chi-squared distribution with k2 degrees
of freedom.

Alternatively, one can use the Akaike information criterion (AIC) or its variants
to select the order p. Assume that at is multivariate normal and consider the ith
equation in Eq. (8.16). One can estimate the model by the maximum-likelihood
(ML) method. For AR models, the OLS estimates φ̂0 and �̂j are equivalent to the
(conditional) ML estimates. However, there are differences between the estimates
of �. The ML estimate of � is

�̃i = 1

T

T∑
t=i+1

â
(i)
t [̂a(i)

t ]′. (8.19)

The AIC of a VAR(i) model under the normality assumption is defined as

AIC(i) = ln(|�̃i |) + 2k2i

T
.

For a given vector time series, one selects the AR order p such that AIC(p) =
min0≤i≤p0 AIC(i), where p0 is a prespecified positive integer.

Other information criteria available for VAR(i) models are

BIC(i) = ln(|�̃i |) + k2i ln(T )

T
,

HQ(i) = ln(|�̃i |) + 2k2i ln[ln(T )]

T
.

The HQ criterion is proposed by Hannan and Quinn (1979).
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Example 8.4. Assuming that the bivariate series of monthly log returns of IBM
stock and the S&P 500 index discussed in Example 8.1 follows a VAR model, we
apply the M(i) statistics and AIC to the data. Table 8.3 shows the results of these
statistics. Both statistics indicate that a VAR(5) model might be adequate for the
data. The M(i) statistics are marginally significant at lags 1, 3, and 5 at the 5%
level. The minimum of AIC occurs at order 5. For this particular instance, the M(i)

statistic is only marginally significant at the 1% level when i = 2, confirming the
previous observation that the dynamic linear dependence between the two return
series is weak.

Estimation and Model Checking
For a specified VAR model, one can estimate the parameters using either the OLS
method or the ML method. The two methods are asymptotically equivalent. Under
some regularity conditions, the estimates are asymptotically normal; see Reinsel
(1993). A fitted model should then be checked carefully for any possible inad-
equacy. The Qk(m) statistic can be applied to the residual series to check the
assumption that there are no serial or cross correlations in the residuals. For a
fitted VAR(p) model, the Qk(m) statistic of the residuals is asymptotically a chi-
squared distribution with k2m − g degrees of freedom, where g is the number of
estimated parameters in the AR coefficient matrices; see Lütkepohl (2005).

Example 8.4 (Continued). Table 8.4(a) shows the estimation results of a
VAR(5) model for the bivariate series of monthly log returns of IBM stock and the
S&P 500 index. The specified model is in the form

r t = φ0 + �1r t−1 + �2r t−2 + �3r t−3 + �5r t−5 + at , (8.20)

where the first component of r t denotes IBM stock returns. For this particular
instance, we do not use AR coefficient matrix at lag 4 because of the weak serial
dependence of the data. In general, when the M(i) statistics and the AIC criterion
specify a VAR(5) model, all five AR lags should be used. Table 8.4(b) shows the
estimation results after some statistically insignificant parameters are set to zero.
The Qk(m) statistics of the residual series for the fitted model in Table 8.4(b)
give Q2(4) = 16.64 and Q2(8) = 31.55. Since the fitted VAR(5) model has six
parameters in the AR coefficient matrices, these two Qk(m) statistics are distributed
asymptotically as a chi-squared distribution with degrees of freedom 10 and 26,

TABLE 8.3 Order Specification Statistics for Monthly Log Returns of IBM Stock
and S&P 500 Index from January 1926 to December 2008a

Order 1 2 3 4 5 6

M(i) 10.76 13.41 10.34 7.78 12.07 1.93
AIC 6.795 6.789 6.786 6.786 6.782 6.788
aThe 5% and 1% critical values of a chi-squared distribution with 4 degrees of freedom are 9.5 and 13.3.
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respectively. The p-values of the test statistics are 0.083 and 0.208, and hence the
fitted model is adequate at the 5% significance level. As shown by the univariate
analysis, the return series are likely to have conditional heteroscedasticity. We
discuss multivariate volatility in Chapter 10.

From the fitted model in Table 8.4(b), we make the following observations:
(a) The concurrent correlation coefficient between the two innovational series is
24/

√
48 × 30 = 0.63, which, as expected, is close to the sample correlation coeffi-

cient between r1t and r2t . (b) The two log return series have positive and significant
means, implying that the log prices of the two series had an upward trend over the
data span. (c) The model shows that

IBMt = 1.0 + 0.13SP5t−1 − 0.09SP5t−2 + 0.09SP5t−5 + a1t ,

SP5t = 0.4 + 0.08SP5t−1 − 0.06SP5t−3 + 0.09SP5t−5 + a2t .

Consequently, at the 5% significance level, there is a unidirectional dynamic rela-
tionship from the monthly S&P 500 index return to the IBM return. If the S&P
500 index represents the U.S. stock market, then IBM return is affected by the past
movements of the market. However, past movements of IBM stock returns do not
significantly affect the U.S. market, even though the two returns have substantial
concurrent correlation. Finally, the fitted model can be written as[

IBMt

SP5t

]
=

[
1.0
0.4

]
+

[
0.13
0.08

]
SP5t−1 −

[
0.09

0

]
SP5t−2 −

[
0

0.06

]
SP5t−3

+
[

0.09
0.09

]
SP5t−5 +

[
a1t

a2t

]
,

indicating that SP5t is the driving factor of the bivariate series.

TABLE 8.4 Estimation Results of a VAR(5) Model for the Monthly Log Returns, in
Percentages, of IBM Stock and S&P 500 Index from January 1926 to December 2008

Parameter φ0 �1 �2 �3 �5 �

(a) Full Model

Estimate 1.0 −0.03 0.15 0.10 −0.17 0.05 −0.11 −0.06 0.14 48 24
0.4 −0.03 0.11 0.04 −0.04 0.02 −0.11 −0.07 0.15 24 30

Standard
error

0.23 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05
0.18 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04

(b) Simplified Model

Estimate 1.0 0 0.13 0 −0.09 0 0 0 0.09 48 24
0.4 0 0.08 0 0 0 −0.06 0 0.09 24 30

Standard
error

0.22 − 0.04 − 0.03 − − − 0.04
0.18 − 0.03 − − − −0.06 − 0.03
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Forecasting
Treating a properly built model as the true model, one can apply the same techniques
as those in the univariate analysis to produce forecasts and standard deviations of
the associated forecast errors. For a VAR(p) model, the 1-step-ahead forecast at the
time origin h is rh(1) = φ0 + ∑p

i=1 �irh+1−i , and the associated forecast error is
eh(1) = ah+1. The covariance matrix of the forecast error is �. For 2-step-ahead
forecasts, we substitute rh+1 by its forecast to obtain

rh(2) = φ0 + �1rh(1) +
p∑

i=2

�irh+2−i ,

and the associated forecast error is

eh(2) = ah+2 + �1[r t − rh(1)] = ah+2 + �1ah+1.

The covariance matrix of the forecast error is � + �1��′
1. If r t is weakly sta-

tionary, then the �-step-ahead forecast rh(�) converges to its mean vector µ as
the forecast horizon � increases and the covariance matrix of its forecast error
converges to the covariance matrix of r t .

Table 8.5 provides 1-step- to 6-step-ahead forecasts of the monthly log returns,
in percentages, of IBM stock and the S&P 500 index at the forecast origin h =
996. These forecasts are obtained by the refined VAR(5) model in Table 8.4(b).
As expected, the standard errors of the forecasts converge to the sample standard
errors 7.03 and 5.53, respectively, for the two log return series.

In summary, building a VAR model involves three steps: (a) Use the test statistic
M(i) or some information criterion to identify the order, (b) estimate the specified
model by using the least-squares method and, if necessary, reestimate the model
by removing statistically insignificant parameters, and (c) use the Qk(m) statistic
of the residuals to check the adequacy of a fitted model. Other characteristics of
the residual series, such as conditional heteroscedasticity and outliers, can also be
checked. If the fitted model is adequate, then it can be used to obtain forecasts and
make inference concerning the dynamic relationship between the variables.

We used SCA to perform the analysis in this section. The commands used include
miden, mtsm, mest, and mfore, where the prefix m stands for multivariate. Details
of the commands and output are shown below.

TABLE 8.5 Forecasts of a VAR(5) Model for Monthly Log Returns, in Percentages,
of IBM Stock and S&P 500 Index: Forecast Origin Is December 2008

Step 1 2 3 4 5 6

IBM forecast 1.95 0.30 −0.82 0.14 1.16 1.29
Standard error 6.95 6.99 7.00 7.00 7.00 7.00
SP forecast 1.70 0.17 −1.26 −0.49 0.41 0.65
Standard error 5.48 5.50 5.50 5.51 5.51 5.53
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SCA Demonstration
Output has been edited and % denotes explanation in the following:

input date, ibm, sp5. file ‘m-ibmsp2608.txt’.
--% compute percentage log returns.

ibm=ln(ibm+1)*100
--

sp5=ln(sp5+1)*100
--% model identification
miden ibm,sp5. arfits 1 to 12.

TIME PERIOD ANALYZED . . . . . . . . . . . . 1 TO 996
EFFECTIVE NUMBER OF OBSERVATIONS (NOBE). . . 996

SERIES NAME MEAN STD. ERROR
1 IBM 1.0891 7.0298
2 SP5 0.4301 5.5346

NOTE: THE APPROX. STD. ERROR FOR THE ESTIMATED CORRELA-
TIONS BELOW

IS (1/NOBE**.5) = 0.03169

SAMPLE CORRELATION MATRIX OF THE SERIES
1.00
0.65 1.00

SUMMARIES OF CROSS CORRELATION MATRICES USING +,-,., WHERE
+ DENOTES A VALUE GREATER THAN 2/SQRT(NOBE)

- DENOTES A VALUE LESS THAN -2/SQRT(NOBE)
. DENOTES A NON-SIGNIFICANT VALUE BASED ON THE ABOVE

CRITERION

CROSS CORRELATION MATRICES IN TERMS OF +,-,.
LAGS 1 THROUGH 6

. + . - . . . . . + . .

. + . . . - . . . + . .
LAGS 7 THROUGH 12

. . + . . . . . . . . .

. . + . . + . . . . . .

======== STEPWISE AUTOREGRESSION SUMMARY ========
--------------------------------------------------------------

I RESIDUAL I EIGENVAL.I CHI-SQ I I SIGN.
LAG I VARIANCESI OF SIGMA I TEST I AIC I PAR. AR
----+----------+----------+---------+----------+--------------
1 I .492E+02 I .133E+02 I 10.76 I 6.795 I . +

I .306E+02 I .665E+02 I I I . +
----+----------+----------+---------+----------+--------------
2 I .486E+02 I .133E+02 I 13.41 I 6.789 I + -
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I .306E+02 I .659E+02 I I I . .
----+----------+----------+---------+----------+--------------
3 I .484E+02 I .132E+02 I 10.34 I 6.786 I . .

I .303E+02 I .655E+02 I I I . -
----+----------+----------+---------+----------+--------------
4 I .484E+02 I .131E+02 I 7.78 I 6.786 I . .

I .302E+02 I .655E+02 I I I . .
----+----------+----------+---------+----------+--------------
5 I .480E+02 I .131E+02 I 12.07 I 6.782 I . +

I .299E+02 I .648E+02 I I I - +
----+----------+----------+---------+----------+--------------
6 I .479E+02 I .131E+02 I 1.93 I 6.788 I . .

I .298E+02 I .647E+02 I I I . .
----+----------+----------+---------+----------+--------------
7 I .479E+02 I .130E+02 I 2.68 I 6.793 I . .

I .298E+02 I .647E+02 I I I . .
----+----------+----------+---------+----------+--------------
8 I .477E+02 I .130E+02 I 7.09 I 6.794 I . .

I .296E+02 I .643E+02 I I I . .
----+----------+----------+---------+----------+--------------
9 I .476E+02 I .130E+02 I 5.23 I 6.797 I . .

I .295E+02 I .642E+02 I I I . .
----+----------+----------+---------+----------+--------------
10 I .476E+02 I .130E+02 I 1.43 I 6.803 I . .

I .295E+02 I .641E+02 I I I . .
----+----------+----------+---------+----------+--------------
11 I .475E+02 I .130E+02 I 1.81 I 6.809 I . .

I .294E+02 I .640E+02 I I I . .
----+----------+----------+---------+----------+--------------
12 I .475E+02 I .129E+02 I 1.88 I 6.815 I . .

I .294E+02 I .640E+02 I I I . .
----+----------+----------+---------+----------+--------------
NOTE:CHI-SQUARED CRITICAL VALUES WITH 4 DEGREES OF FREEDOM ARE

5 PERCENT: 9.5 1 PERCENT: 13.3
-- % model specification of a VAR(5) model without lag 4.

mtsm m1. series ibm, sp5. model @
(i-p2*b-p2*b**2-p3*b**3-p5*b**5)series=c+noise.
-- % estimation
mestim m1. hold resi(r1,r2).
-- % demonstration of setting zero constraint

p2(2,2)=0
--

cp2(2,2)=1
--

p3(1,2)=0
--

cp3(1,2)=1
--

mestim m1. hold resi(r1,r2)
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FINAL MODEL SUMMARY WITH CONDITIONAL LIKELIHOOD PAR. EST.
----- CONSTANT VECTOR (STD ERROR) -----

1.039 ( 0.223 )
0.390 ( 0.176 )

----- PHI MATRICES -----
ESTIMATES OF PHI( 1 ) MATRIX AND SIGNIFICANCE

.000 .129 . +

.000 .080 . +
STANDARD ERRORS

-- .040
-- .031

ESTIMATES OF PHI( 2 ) MATRIX AND SIGNIFICANCE
.000 -.090 . -
.000 .000 . .

STANDARD ERRORS
-- .031
-- --

ESTIMATES OF PHI( 3 ) MATRIX AND SIGNIFICANCE
.000 .000 . .
.000 -.061 . -

STANDARD ERRORS
-- --
-- .024

ESTIMATES OF PHI( 5 ) MATRIX AND SIGNIFICANCE
.000 .093 . +
.000 .087 . +

STANDARD ERRORS
-- .040
-- .032

------------------------
ERROR COVARIANCE MATRIX
------------------------

1 2
1 48.328570
2 24.361464 30.027406

--------------------------------------------------------------
-- % compute residual cross-correlation matrices
miden r1,r2. maxl 12.
-- % prediction

mfore m1. nofs 6.
--------------------------------------------------------------

6 FORECASTS, BEGINNING AT ORIGIN = 996
--------------------------------------------------------------
SERIES: IBM SP5
TIME FORECAST STD ERR FORECAST STD ERR
997 1.954 6.952 1.698 5.480
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998 0.304 6.988 0.173 5.497
999 -0.815 7.001 -1.263 5.497
1000 0.138 7.001 -0.494 5.507
1001 1.162 7.002 0.408 5.508
1002 1.294 7.022 0.649 5.528

8.2.5 Impulse Response Function

Similar to the univariate case, a VAR(p) model can be written as a linear function
of the past innovations, that is,

r t = µ + at + �1at−1 + �2at−2 + · · · , (8.21)

where µ = [�(1)]−1φ0 provided that the inverse exists, and the coefficient matrices
ψ i can be obtained by equating the coefficients of Bi in the equation

(I − �1B − · · · − �pB
p)(I + �1B + �2B

2 + · · ·) = I ,

where I is the identity matrix. This is a moving-average representation of r t with
the coefficient matrix � i being the impact of the past innovation at−i on r t . Equiv-
alently, � i is the effect of at on the future observation r t+i . Therefore, � i is often
referred to as the impulse response function of r t . However, since the components
of at are often correlated, the interpretation of elements in � i of Eq. (8.21) is
not straightforward. To aid interpretation, one can use the Cholesky decomposition
mentioned earlier to transform the innovations so that the resulting components
are uncorrelated. Specifically, there exists a lower triangular matrix L such that
� = LGL′, where G is a diagonal matrix and the diagonal elements of L are
unity. See Eq. (8.9). Let bt = L−1at . Then, Cov(bt ) = G so that the elements bjt
are uncorrelated. Rewrite Eq. (8.21) as

r t = µ + at + �1at−1 + �2at−2 + · · ·
= µ + LL−1at + �1LL−1at−1 + �2LL−1at−2 + · · ·
= µ + �∗

0bt + �∗
1bt−1 + �∗

2bt−2 + · · · , (8.22)

where �∗
0 = L and �∗

i = � iL. The coefficient matrices �∗
i are called the impulse

response function of r t with respect to the orthogonal innovations bt . Specifically,
the (i, j)th element of �∗

� ; that is, �∗
ij (�), is the impact of bj,t on the future

observation ri,t+�. In practice, one can further normalize the orthogonal innovation
bt such that the variance of bit is one. A weakness of the above orthogonalization
is that the result depends on the ordering of the components of r t . In particular,
b1t = a1t so that a1t is not transformed. Different orderings of the components of
r t may lead to different impulse response functions. Interpretation of the impulse
response function is, therefore, associated with the innovation series bt .

Both SCA and S-Plus enable one to obtain the impulse response function of a
fitted VAR model. To demonstrate analysis of VAR models in S-Plus, we again use
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the monthly log return series of IBM stock and the S&P 500 index of Example
8.1. For details of S-Plus commands, see Zivot and Wang (2003).

S-Plus Demonstration
The following output has been edited and % denotes explanation:

> module(finmetrics)
> da=read.table("m-ibmsp2608.txt",header=T) % Load data
> ibm=log(da[,2]+1)*100 % Compute percentage log returns
> sp5=log(da[,3]+1)*100
> y=cbind(ibm,sp5) % Create a vector series
> y1=data.frame(y) % Crate a data frame
> ord.choice=VAR(y1,max.ar=10) % Order selection using BIC
> names(ord.choice)
[1] "R" "coef" "fitted" "residuals" "Sigma" "df.resid"
[7] "rank" "call" "ar.order" "n.na" "terms" "Y0"

[13] "info"
> ord.choice$ar.order % selected order
[1] 1
> ord.choice$info

ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)
BIC 12325.41 12339.42 12356.58 12376.28 12391.57 12417.2

ar(7) ar(8) ar(9) ar(10)
BIC 12442.03 12462.5212484.78 12510.91
> ord=VAR(y1,max.ar=10,criterion=’AIC’) % Using AIC
> ord$ar.order
[1] 5
> ord$info

ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)
AIC 12296.04 12290.48 12288.07 12288.2 12283.91 12289.96

ar(7) ar(8) ar(9) ar(10)
AIC 12295.22 12296.13 12298.82 12305.37

The AIC selects a VAR(5) model as before, but BIC selects a VAR(1) model.
For simplicity, we shall use VAR(1) specification in the demonstration. Note that
different normalizations are used between the two packages so that the values of
information criteria appear to be different; see the AIC in Table 8.3. This is not
important because normalization does not affect order selection. Turn to estimation.

> var1.fit=VAR(y∼ar(1)) % Estimate a VAR(1) model
> summary(var1.fit)
Call:
VAR(formula = y ∼ ar(1))
Coefficients:

ibm sp5
(Intercept) 1.0614 0.4087
(std.err) 0.2249 0.1773
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(t.stat) 4.7198 2.3053

ibm.lag1 -0.0320 -0.0223
(std.err) 0.0413 0.0326
(t.stat) -0.7728 -0.6855

sp5.lag1 0.1503 0.1020
(std.err) 0.0525 0.0414
(t.stat) 2.8612 2.4637

Regression Diagnostics:
ibm sp5

R-squared 0.0101 0.0075
Adj. R-squared 0.0081 0.0055
Resid. Scale 7.0078 5.5247

Information Criteria:
logL AIC BIC HQ

-6193.988 12399.977 12429.393 12411.159

total residual
Degree of freedom: 995 992

> plot(var1.fit)
Make a plot selection (or 0 to exit):
1: plot: All
2: plot: Response and Fitted Values
3: plot: Residuals
....

8: plot: PACF of Squared Residuals
Selection: 3

The fitted model is

IBMt = 1.06 − 0.03IBMt−1 + 0.15SP5t−1 + a1t ,

SP5t = 0.41 − 0.02IBMt−1 + 0.10SP5t−1 + a2t .

Based on t statistics of the coefficient estimates, only the lagged variable SP5t−1 is
informative in both equations. Figure 8.5 shows the time plots of the two residual
series, where the two horizontal lines indicate the two standard error limits. As
expected, there exist clusters of outlying observations.

Next, we compute 1-step- to 6-step-ahead forecasts and the impulse response
function of the fitted VAR(1) model when the IBM stock return is the first com-
ponent of r t . Compared with those of a VAR(5) model in Table 8.5, the forecasts
of the VAR(1) model converge faster to the sample mean of the series.

> var1.pred=predict(var1.fit,n.predict=6) % Compute forecasts
> summary(var1.pred)
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Figure 8.5 Residual plots of fitting a VAR(1) model to the monthly log returns, in percentages, of
IBM stock and S&P 500 index. Sample period is from January 1926 to December 2008.

Predicted Values with Standard Errors:
ibm sp5

1-step-ahead 1.0798 0.4192
(std.err) 7.0078 5.5247

2-step-ahead 1.0899 0.4274
(std.err) 7.0434 5.5453

3-step-ahead 1.0908 0.4280
(std.err) 7.0436 5.5454

...
6-step-ahead 1.0909 0.4280

(std.err) 7.0436 5.5454
> plot(var1.pred,y,n.old=12) % Obtain forecast plot
% Below is to compute the impulse response function
> var1.irf=impRes(var1.fit,period=6,std.err=′asymptotic′)
> summary(var1.irf)
Impulse Response Function:
(with responses in rows, and innovations in columns)
, , lag.0

ibm sp5
ibm 6.9973 0.0000

(std.err) 0.1569 0.0000
sp5 3.5432 4.2280

(std.err) 0.1558 0.0948

, , lag.1
ibm sp5

ibm 0.3088 0.6353
(std.err) 0.2217 0.2221
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Figure 8.6 Forecasting plots of fitted VAR(1) model to monthly log returns, in percentages, of IBM
stock and S&P 500 index. Sample period is from January 1926 to December 2008.

sp5 0.2050 0.4312
(std.err) 0.1746 0.1750
.....

> plot(var1.irf)

Figure 8.6 shows the forecasts and their pointwise 95% confidence intervals
along with the last 12 data points of the series. Figure 8.7 shows the impulse
response functions of the fitted VAR(1) model where the IBM stock return is the
first component of r t . Since the dynamic dependence of the returns is weak, the
impulse response functions exhibit simple patterns and decay quickly.

8.3 VECTOR MOVING-AVERAGE MODELS

A vector moving-average model of order q, or VMA(q), is in the form

r t = θ0 + at − �1at−1 − · · · − �qat−q or r t = θ0 + �(B)at , (8.23)

where θ0 is a k-dimensional vector, �i are k × k matrices, and �(B) = I −
�1B − · · · − �qB

q is the MA matrix polynomial in the back-shift operator B.
Similar to the univariate case, VMA(q) processes are weakly stationary provided
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Figure 8.7 Plots of impulse response functions of orthogonal innovations for fitted VAR(1) model to
monthly log returns, in percentages, of IBM stock and S&P 500 index. Sample period is from January
1926 to December 2008.

that the covariance matrix � of at exists. Taking expectation of Eq. (8.23), we
obtain that µ = E(r t ) = θ0. Thus, the constant vector θ0 is the mean vector of r t

for a VMA model.
Let r̃ t = r t − θ0 be the mean-corrected VAR(q) process. Then using Eq. (8.23)

and the fact that {at } has no serial correlations, we have

1. Cov(r t , at ) = �.

2. 
0 = � + �1��′
1 + · · · + �q��′

q .

3. 
� = 0 if �>q.

4. 
� = ∑q

j=� �j��′
j−� if 1 ≤ � ≤ q, where �0 = −I .

Since 
� = 0 for �>q, the cross-correlation matrices (CCMs) of a VMA(q) pro-
cess r t satisfy

ρ� = 0, �>q. (8.24)

Therefore, similar to the univariate case, the sample CCMs can be used to identify
the order of a VMA process.
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To better understand the VMA processes, let us consider the bivariate MA(1)
model

r t = θ0 + at − �at−1 = µ + at − �at−1, (8.25)

where, for simplicity, the subscript of �1 is removed. This model can be written
explicitly as[

r1t

r2t

]
=

[
µ1

µ2

]
+

[
a1t

a2t

]
−

[
�11 �12

�21 �22

] [
a1,t−1

a2,t−1

]
. (8.26)

It says that the current return series r t only depends on the current and past shocks.
Therefore, the model is a finite-memory model.

Consider the equation for r1t in Eq. (8.26). The parameter �12 denotes the linear
dependence of r1t on a2,t−1 in the presence of a1,t−1. If �12 = 0, then r1t does not
depend on the lagged values of a2t and, hence, the lagged values of r2t . Similarly,
if �21 = 0, then r2t does not depend on the past values of r1t . The off-diagonal
elements of � thus show the dynamic dependence between the component series.
For this simple VMA(1) model, we can classify the relationships between r1t and
r2t as follows:

1. They are uncoupled series if �12 = �21 = 0.

2. There is a unidirectional dynamic relationship from r1t to r2t if �′
12 = 0,

but �21 �= 0. The opposite unidirectional relationship holds if �21 = 0, but
�12 �= 0.

3. There is a feedback relationship between r1t and r2t if �12 �= 0 and �21 �= 0.

Finally, the concurrent correlation between rit is the same as that between ait . The
previous classification can be generalized to a VMA(q) model.

Estimation
Unlike the VAR models, estimation of VMA models is much more involved;
see Hillmer and Tiao (1979), Lütkepohl (2005), and the references therein.
For the likelihood approach, there are two methods available. The first is the
conditional-likelihood method that assumes that at = 0 for t ≤ 0. The second is
the exact-likelihood method that treats at with t ≤ 0 as additional parameters of
the model. To gain some insight into the problem of estimation, we consider the
VMA(1) model in Eq. (8.25). Suppose that the data are {r t |t = 1, . . . , T } and at

is multivariate normal. For a VMA(1) model, the data depend on a0.

Conditional MLE
The conditional-likelihood method assumes that a0 = 0. Under such an assumption
and rewriting the model as at = r t − θ0 + �at−1, we can compute the shock at

recursively as

a1 = r1 − θ0, a2 = r2 − θ0 + �1a1, . . . .
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Consequently, the likelihood function of the data becomes

f (r1, . . . , rT |θ0,�1,�) =
T∏

t=1

1

(2π)k/2|�|1/2
exp

(
−1

2
a′
t�

−1at

)
,

which can be evaluated to obtain the parameter estimates.

Exact MLE
For the exact-likelihood method, a0 is an unknown vector that must be estimated
from the data to evaluate the likelihood function. For simplicity, let r̃t = r t − θ0

be the mean-corrected series. Using r̃ t and Eq. (8.25), we have

at = r̃ t + �at−1. (8.27)

By repeated substitutions, a0 is related to all r̃ t as

a1 = r̃1 + �a0,

a2 = r̃2 + �a1 = r̃2 + �r̃1 + �2a0,

... (8.28)

aT = r̃T + �r̃T−1 + · · · + �T−1r̃1 + �T a0.

Thus, a0 is a linear function of the data if θ0 and � are given. This result enables
us to estimate a0 using the data and initial estimates of θ0 and �. More specifically,
given θ0, �, and the data, we can define

r∗
t = r̃ t + �r̃ t−1 + · · · + �t−1r̃1, for t = 1, 2, . . . , T .

Equation (8.28) can then be rewritten as

r∗
1 = −�a0 + a1,

r∗
2 = −�2a0 + a2,

...

r∗
T = −�T a0 + aT .

This is in the form of a multiple linear regression with parameter vector a0, even
though the covariance matrix � of at may not be a diagonal matrix. If initial
estimate of � is also available, one can premultiply each equation of the prior
system by �−1/2, which is the square root matrix of �. The resulting system is
indeed a multiple linear regression, and the ordinary least-squares method can be
used to obtain an estimate of a0. Denote the estimate by â0.
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Using the estimate â0, we can compute the shocks at recursively as

a1 = r1 − θ0 + �â0, a2 = r2 − θ0 + �a1, . . . .

This recursion is a linear transformation from (a0, r1, . . . , rT ) to (a0, a1, . . . , aT ),
from which we can (a) obtain the joint distribution of a0 and the data, and (2)
integrate out a0 to derive the exact-likelihood function of the data. The resulting
likelihood function can then be evaluated to obtain the exact ML estimates. For
details, see Hillmer and Tiao (1979).

In summary, the exact-likelihood method works as follows. Given initial esti-
mates of θ0, �, and �, one uses Eq. (8.28) to derive an estimate of a0. This
estimate is in turn used to compute at recursively using Eq. (8.27) and starting
with a1 = r̃1 + �â0. The resulting {at }Tt=1 are then used to evaluate the exact-
likelihood function of the data to update the estimates of θ0, �, and �. The whole
process is then repeated until the estimates converge. This iterative method to
evaluate the exact-likelihood function applies to the general VMA(q) models.

From the previous discussion, the exact-likelihood method requires more inten-
sive computation than the conditional-likelihood approach does. But it provides
more accurate parameter estimates, especially when some eigenvalues of � are
close to 1 in modulus. Hillmer and Tiao (1979) provide some comparison between
the conditional- and exact-likelihood estimations of VMA models. In multivariate
time series analysis, the exact maximum-likelihood method becomes important if
one suspects that the data might have been overdifferenced. Overdifferencing may
occur in many situations (e.g., differencing individual components of a cointegrated
system; see discussion later on cointegration).

In summary, building a VMA model involves three steps: (a) Use the sample
cross-correlation matrices to specify the order q—for a VMA(q) model, ρ� = 0 for
�>q; (b) estimate the specified model by using either the conditional- or exact-
likelihood method—the exact method is preferred when the sample size is not
large; and (c) the fitted model should be checked for adequacy [e.g., applying the
Qk(m) statistics to the residual series]. Finally, forecasts of a VMA model can be
obtained by using the same procedure as a univariate MA model.

Example 8.5. Consider again the bivariate series of monthly log returns in
percentages of IBM stock and the S&P 500 index from January 1926 to Decem-
ber 2008. Since significant cross correlations occur mainly at lags 1, 2, 3 and 5,
we employ the VMA(5) model

r t = θ0 + at − �1at−1 − �2at−2 − �3at−3 − �5at−5 (8.29)

for the data. Table 8.6 shows the estimation results of the model. The Qk(m)

statistics for the residuals of the simplified model give Q2(4) = 16.00 and Q2(8) =
29.46. Compared with chi-squared distributions with 10 and 26 degrees of freedom,
the p values of these statistics are 0.10 and 0.291, respectively. Thus, the model
is adequate at the 5% significance level.
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TABLE 8.6 Estimation Results for Monthly Log Returns of IBM Stock and S&P
500 Index Using the Vector Moving-Average Model in Eq. (8.29)a

Parameter θ0 �1 �2 �3 �5

(a) Full Model with Conditional-Likelihood Method

Estimate 1.1 0.02 −0.15 −0.09 0.15 −0.05 0.11 0.05 −0.15
0.4 0.02 −0.10 −0.04 0.04 −0.01 0.11 0.07 −0.15

Standard error 0.24 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05
0.19 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04

(b) Full Model with Exact-Likelihood Method

Estimate 1.1 0.02 −0.05 −0.09 0.15 −0.05 0.11 0.05 −0.15
0.4 0.02 −0.10 −0.04 0.04 −0.01 0.11 0.07 −0.15

Standard error 0.24 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05
0.19 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04

(c) Simplified Model with Exact-Likelihood Method

Estimate 1.1 0.0 −0.13 0.0 0.08 0.0 0.0 0.0 −0.10
0.4 0.0 −0.09 0.0 0.0 0.0 0.07 0.0 −0.09

Standard error 0.24 — 0.04 — 0.03 — — — 0.04
0.19 — 0.03 — — — 0.02 — 0.03

aThe sample period is from January 1926 to December 2008. The residual covariance matrix is not
shown as it is similar to that in Table 8.4

From Table 8.6, we make the following observations:

1. The difference between conditional- and exact-likelihood estimates is small
for this particular example. This is not surprising because the sample size is
not small and, more important, the dynamic structure of the data is weak.

2. The VMA(5) model provides essentially the same dynamic relationship for
the series as that of the VAR(5) model in Example 8.4. The monthly log
return of IBM stock depends on the previous returns of the S&P 500 index.
The market return, in contrast, does not depend on lagged returns of IBM
stock. In other words, the dynamic structure of the data is driven by the
market return, not by the IBM return. The concurrent correlation between
the two returns remains strong, however.

8.4 VECTOR ARMA MODELS

Univariate ARMA models can also be generalized to handle vector time series. The
resulting models are called VARMA models. The generalization, however, encoun-
ters some new issues that do not occur in developing VAR and VMA models. One
of the issues is the identifiability problem. Unlike the univariate ARMA models,
VARMA models may not be uniquely defined. For example, the VMA(1) model[

r1t

r2t

]
=

[
a1t

a2t

]
−

[
0 2
0 0

] [
a1,t−1

a2,t−1

]
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is identical to the VAR(1) model[
r1t

r2t

]
−

[
0 −2
0 0

] [
r1,t−1

r2,t−1

]
=

[
a1t

a2t

]
.

The equivalence of the two models can easily be seen by examining their compo-
nent models. For the VMA(1) model, we have

r1t = a1t − 2a2,t−1, r2t = a2t .

For the VAR(1) model, the equations are

r1t + 2r2,t−1 = a1t , r2t = a2t .

From the model for r2t , we have r2,t−1 = a2,t−1. Therefore, the models for r1t are
identical. This type of identifiability problem is harmless because either model can
be used in a real application.

Another type of identifiability problem is more troublesome. Consider the
VARMA(1,1) model[

r1t

r2t

]
−

[
0.8 −2
0 0

] [
r1,t−1

r2,t−1

]
=

[
a1t

a2t

]
−

[ −0.5 0
0 0

] [
a1,t−1

a2,t−1

]
.

This model is identical to the VARMA(1,1) model[
r1t

r2t

]
−

[
0.8 −2 + η

0 ω

] [
r1,t−1

r2,t−1

]
=

[
a1t

a2t

]
−

[ −0.5 η

0 ω

] [
a1,t−1

a2,t−1

]
,

for any nonzero ω and η. In this particular instance, the equivalence occurs
because we have r2t = a2t in both models. The effects of the parameters ω and
η on the system cancel out between AR and MA parts of the second model.
Such an identifiability problem is serious because, without proper constraints, the
likelihood function of a vector ARMA(1,1) model for the data is not uniquely
defined, resulting in a situation similar to the exact multicollinearity in a regression
analysis. This type of identifiability problem can occur in a vector model even if
none of the components is a white noise series.

These two simple examples highlight the new issues involved in the general-
ization to VARMA models. Building a VARMA model for a given data set thus
requires some attention. In the time series literature, methods of structural specifi-
cation have been proposed to overcome the identifiability problem; see Tiao and
Tsay (1989), Tsay (1991), and the references therein. We do not discuss the detail of
structural specification here because VAR and VMA models are sufficient in most
financial applications. When VARMA models are used, only lower order models
are entertained [e.g., a VARMA(1,1) or VARMA(2,1) model] especially when the
time series involved are not seasonal.
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A VARMA(p, q) model can be written as

�(B)r t = φ0 + �(B)at ,

where �(B) = I − �1B − · · · − �pB
p and �(B) = I − �1B − · · · − �qB

q are
two k × k matrix polynomials. We assume that the two matrix polynomials have
no left common factors; otherwise, the model can be simplified. The necessary
and sufficient condition of weak stationarity for r t is the same as that for the
VAR(p) model with matrix polynomial �(B). For v > 0, the (i, j)th elements
of the coefficient matrices �v and �v measure the linear dependence of r1t on
rj,t−v and aj,t−v, respectively. If the (i, j)th element is zero for all AR and MA
coefficient matrices, then rit does not depend on the lagged values of rjt . However,
the converse proposition does not hold in a VARMA model. In other words, nonzero
coefficients at the (i, j)th position of AR and MA matrices may exist even when
rit does not depend on any lagged value of rjt .

To illustrate, consider the following bivariate model[
�11(B) �12(B)

�21(B) �22(B)

] [
r1t

r2t

]
=

[
�11(B) �12(B)

�21(B) �22(B)

] [
a1t

a2t

]
.

Here the necessary and sufficient conditions for the existence of a unidirectional
dynamic relationship from r1t to r2t are

�22(B)�12(B) − �12(B)�22(B) = 0,

but

�11(B)�21(B) − �21(B)�11(B) �= 0. (8.30)

These conditions can be obtained as follows. Letting

�(B) = |�(B)| = �11(B)�22(B) − �12(B)�21(B)

be the determinant of the AR matrix polynomial and premultiplying the model by
the matrix [

�22(B) −�12(B)

−�21(B) �11(B)

]
,

we can rewrite the bivariate model as

�(B)

[
r1t

r2t

]
=

[
�22(B)�11(B) − �12(B)�21(B) �22(B)�12(B) − �12(B)�22(B)

�11(B)�21(B) − �21(B)�11(B) �11(B)�22(B) − �21(B)�12(B)

]
×

[
a1t

a2t

]
.
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Figure 8.8 Time plots of log U.S. monthly interest rates from April 1953 to January 2001. Solid line
denotes 1-year Treasury constant maturity rate and dashed line denotes 3-year rate.

Consider the equation for r1t . The first condition in Eq. (8.30) shows that r1t does
not depend on any past value of a2t or r2t . From the equation for r2t , the second
condition in Eq. (8.30) implies that r2t indeed depends on some past values of
a1t . Based on Eq. (8.30), �12(B) = �12(B) = 0 is a sufficient, but not necessary,
condition for the unidirectional relationship from r1t to r2t .

Estimation of a VARMA model can be carried out by either the conditional or
exact maximum-likelihood method. The Qk(m) statistic continues to apply to the
residual series of a fitted model, but the degrees of freedom of its asymptotic chi-
squared distribution are k2m − g, where g is the number of estimated parameters
in both the AR and MA coefficient matrices.

Example 8.6. To demonstrate VARMA modeling, we consider two U.S.
monthly interest rate series. The first series is the 1-year Treasury constant maturity
rate, and the second series is the 3-year Treasury constant maturity rate. The data
are obtained from the Federal Reserve Bank of St. Louis, and the sampling period
is from April 1953 to January 2001. There are 574 observations. To ensure the
positiveness of U.S. interest rates, we analyze the log series. Figure 8.8 shows the
time plots of the two log interest rate series. The solid line denotes the 1-year
maturity rate. The two series moved closely in the sampling period.

The M(i) statistics and AIC criterion specify a VAR(4) model for the data. How-
ever, we employ a VARMA(2,1) model because the two models provide similar
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TABLE 8.7 Parameter Estimates of VARMA(2,1) Model for Two Monthly U.S.
Interest Rate Series Based on Exact-Likelihood Method

Parameter �1 �2 φ0 �1 � × 103

Estimate 1.82 −0.97 −0.84 0.98 0.028 0.90 −1.66 3.58 2.50
— 0.99 — — 0.025 — −0.47 2.50 2.19

Standard error 0.03 0.08 0.03 0.08 0.014 0.03 0.10
— 0.01 — — 0.011 — 0.04

fits. Table 8.7 shows the parameter estimates of the VARMA(2,1) model obtained
by the exact-likelihood method. We removed the insignificant parameters and rees-
timated the simplified model. The residual series of the fitted model has some minor
serial and cross correlations at lags 7 and 11. Figure 8.9 shows the residual plots
and indicates the existence of some outlying data points. The model can be further
improved, but it seems to capture the dynamic structure of the data reasonably well.

The final VARMA(2,1) model shows some interesting characteristics of the
data. First, the interest rate series are highly contemporaneously correlated. The
concurrent correlation coefficient is 2.5/

√
3.58 × 2.19 = 0.893. Second, there is a
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Figure 8.9 Residual plots for log U.S. monthly interest rate series of Example 8.6. Fitted model is
VARMA(2,1): (a) 1-year rate and (b) 3-year rate.
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unidirectional linear relationship from the 3-year rate to the 1-year rate because the
(2, 1)th elements of all AR and MA matrices are zero, but some (1, 2)th element
is not zero. As a matter of fact, the model in Table 8.7 shows that

r3t = 0.025 + 0.99r3,t−1 + a3t + 0.47a3,t−1,

r1t = 0.028 + 1.82r1,t−1 − 0.84r1,t−2 − 0.97r3,t−1 + 0.98r3,t−2

+ a1t − 0.90a1,t−1 + 1.66a3,t−1,

where rit is the log series of i-year interest rate and ait is the corresponding shock
series. Therefore, the 3-year interest rate does not depend on the past values of
the 1-year rate, but the 1-year rate depends on the past values of the 3-year rate.
Third, the two interest rate series appear to be unit-root nonstationary. Using the
back-shift operator B, the model can be rewritten approximately as

(1 − B)r3t = 0.03 + (1 + 0.47B)a3t ,

(1 − B)(1 − 0.82B)r1t = 0.03 − 0.97B(1 − B)r3,t + (1 − 0.9B)a1t + 1.66Ba3,t .

Finally, the SCA commands used in the analysis are given in Appendix C.

8.4.1 Marginal Models of Components

Given a vector model for r t , the implied univariate models for the components rit
are the marginal models. For a k-dimensional ARMA(p, q) model, the marginal
models are ARMA[kp, (k − 1)p + q]. This result can be obtained in two steps.
First, the marginal model of a VMA(q) model is univariate MA(q). Assume that
r t is a VMA(q) process. Because the cross-correlation matrix of r t vanishes after
lag q (i.e., ρ� = 0 for �>q), the ACF of rit is zero beyond lag q. Therefore, rit is
an MA process and its univariate model is in the form rit = θi,0 + ∑q

j=1 θi,j bi,t−j ,
where {bit } is a sequence of uncorrelated random variables with mean zero and
variance σ 2

ib. The parameters θi,j and σib are functions of the parameters of the
VMA model for r t .

The second step to obtain the result is to diagonalize the AR matrix polynomial
of a VARMA(p, q) model. For illustration, consider the bivariate AR(1) model[

1 − �11B −�12B

−�21B 1 − �22B

] [
r1t

r2t

]
=

[
a1t

a2t

]
.

Premultiplying the model by the matrix polynomial[
1 − �22B �12B

�21B 1 − �11B

]
,

we obtain

[(1 − �11B)(1 − �22B) − �12�22B
2]

[
r1t

r2t

]
=

[
1 − �22B −�12B

−�21B 1 − �11B

] [
a1t

a2t

]
.
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The left-hand side of the prior equation shows that the univariate AR polynomials
for rit are of order 2. In contrast, the right-hand side of the equation is in a VMA(1)
form. Using the result of VMA models in step 1, we show that the univariate
model for rit is ARMA(2,1). The technique generalizes easily to the k-dimensional
VAR(1) model, and the marginal models are ARMA(k, k − 1). More generally, for
a k-dimensional VAR(p) model, the marginal models are ARMA[kp, (k − 1)p].
The result for VARMA models follows directly from those of VMA and VAR
models.

The order [kp, (k − 1)p + q] is the maximum order (i.e., the upper bound) for
the marginal models. The actual marginal order of rit can be much lower.

8.5 UNIT-ROOT NONSTATIONARITY AND COINTEGRATION

When modeling several unit-root nonstationary time series jointly, one may
encounter the case of cointegration . Consider the bivariate ARMA(1,1) model[

x1t

x2t

]
−

[
0.5 −1.0

−0.25 0.5

] [
x1,t−1

x2,t−1

]
=

[
a1t

a2t

]
−

[
0.2 −0.4

−0.1 0.2

] [
a1,t−1

a2,t−1

]
, (8.31)

where the covariance matrix � of the shock at is positive definite. This is not a
weakly stationary model because the two eigenvalues of the AR coefficient matrix
are 0 and 1. Figure 8.10 shows the time plots of a simulated series of the model with
200 data points and � = I , whereas Figure 8.11 shows the sample autocorrelations
of the two component series xit . It is easy to see that the two series have high
autocorrelations and exhibit features of unit-root nonstationarity. The two marginal
models of xt are indeed unit-root nonstationary. Rewrite the model as[

1 − 0.5B B

0.25B 1 − 0.5B

] [
x1t

x2t

]
=

[
1 − 0.2B 0.4B

0.1B 1 − 0.2B

] [
a1t

a2t

]
.

Premultiplying the above equation by[
1 − 0.5B −B

−0.25B 1 − 0.5B

]
,

we obtain the result[
1 − B 0

0 1 − B

] [
x1t

x2t

]
=

[
1 − 0.7B −0.6B
−0.15B 1 − 0.7B

] [
a1t

a2t

]
.

Therefore, each component xit of the model is unit-root nonstationary and follows
an ARIMA(0,1,1) model.
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Figure 8.10 Time plots of simulated series based on model (8.31) with identity covariance matrix for
shocks.

However, we can consider a linear transformation by defining[
y1t

y2t

]
=

[
1.0 −2.0
0.5 1.0

] [
x1t

x2t

]
≡ Lx t ,

[
b1t

b2t

]
=

[
1.0 −2.0
0.5 1.0

] [
a1t

a2t

]
≡ Lat .

The VARMA model of the transformed series yt can be obtained as follows:

Lx t = L�x t−1 + Lat − L�at−1

= L�L−1Lxt−1 + Lat − L�L−1Lat−1

= L�L−1(Lx t−1) + bt − L�L−1bt−1.

Thus, the model for yt is[
y1t

y2t

]
−

[
1.0 0
0 0

] [
y1,t−1

y2,t−1

]
=

[
b1t

b2t

]
−

[
0.4 0
0 0

] [
b1,t−1

b2,t−1

]
. (8.32)

From the prior model, we see that (a) y1t and y2t are uncoupled series with con-
current correlation equal to that between the shocks b1t and b2t , (b) y1t follows a
univariate ARIMA(0,1,1) model, and (c) y2t is a white noise series (i.e., y2t = b2t ).
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Figure 8.11 Sample autocorrelation functions of two simulated component series. There are 200
observations, and model is given by Eq. (8.31) with identity covariance matrix for shocks.

In particular, the model in Eq. (8.32) shows that there is only a single unit root in
the system. Consequently, the unit roots of x1t and x2t are introduced by the unit
root of y1t . In the literature, y1t is referred to as the common trend of x1t and x2t .

The phenomenon that both x1t and x2t are unit-root nonstationary, but there is
only a single unit root in the vector series, is referred to as cointegration in the
econometric and time series literature. Another way to define cointegration is to
focus on linear transformations of unit-root nonstationary series. For the simulated
example of model (8.31), the transformation shows that the linear combination
y2t = 0.5x1t + x2t does not have a unit root. Consequently, x1t and x2t are coin-
tegrated if (a) both of them are unit-root nonstationary, and (b) they have a linear
combination that is unit-root stationary.

Generally speaking, for a k-dimensional unit-root nonstationary time series, coin-
tegration exists if there are less than k unit roots in the system. Let h be the number
of unit roots in the k-dimensional series x t . Cointegration exists if 0 < h < k, and
the quantity k − h is called the number of cointegrating factors. Alternatively, the
number of cointegrating factors is the number of different linear combinations
that are unit-root stationary. The linear combinations are called the cointegrating
vectors. For the prior simulated example, y2t = (0.5, 1)x t so that (0.5, 1)′ is a
cointegrating vector for the system. For more discussions on cointegration and
cointegration tests, see Box and Tiao (1977), Engle and Granger (1987), Stock
and Watson (1988), and Johansen (1988). We discuss cointegrated VAR models in
Section 8.6.

The concept of cointegration is interesting and has attracted a lot of attention in
the literature. However, there are difficulties in testing for cointegration in a real
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application. The main source of difficulties is that cointegration tests overlook the
scaling effects of the component series. Interested readers are referred to Cochrane
(1988) and Tiao, Tsay, and Wang (1993) for further discussion.

While I have some misgivings on the practical value of cointegration tests, the
idea of cointegration is highly relevant in financial study. For example, consider the
stock of Finnish Nokia Corporation. Its price on the Helsinki Stock Market must
move in unison with the price of its American Depositary Receipts on the New York
Stock Exchange; otherwise there exists some arbitrage opportunity for investors.
If the stock price has a unit root, then the two price series must be cointegrated.
In practice, such a cointegration can exist after adjusting for transaction costs and
exchange rate risk. We discuss issues like this later in Section 8.7.

8.5.1 An Error Correction Form

Because there are more unit-root nonstationary components than the number of
unit roots in a cointegrated system, differencing individual components to achieve
stationarity results in overdifferencing. Overdifferencing leads to the problem of
unit roots in the MA matrix polynomial, which in turn may encounter difficulties in
parameter estimation. If the MA matrix polynomial contains unit roots, the vector
time series is said to be noninvertible.

Engle and Granger (1987) discuss an error correction representation for a coin-
tegrated system that overcomes the difficulty of estimating noninvertible VARMA
models. Consider the cointegrated system in Eq. (8.31). Let x t = x t − x t−1 be
the differenced series. Subtracting x t−1 from both sides of the equation, we obtain
a model for x t as[

x1t

x2t

]
=

[ −0.5 −1.0
−0.25 −0.5

] [
x1,t−1

x2,t−1

]
+

[
a1t

a2t

]
−

[
0.2 −0.4

−0.1 0.2

] [
a1,t−1

a2,t−1

]
=

[ −1
−0.5

]
[0.5, 1.0]

[
x1,t−1

x2,t−1

]
+

[
a1t

a2t

]
−

[
0.2 −0.4

−0.1 0.2

] [
a1,t−1

a2,t−1

]
.

This is a stationary model because both x t and [0.5, 1.0]x t = y2t are unit-root
stationary. Because x t−1 is used on the right-hand side of the previous equation,
the MA matrix polynomial is the same as before and, hence, the model does not
encounter the problem of noninvertibility. Such a formulation is referred to as an
error correction model for x t , and it can be extended to the general cointegrated
VARMA model. For a cointegrated VARMA(p, q) model with m cointegrating
factors (m < k), an error correction representation is

xt = αβ ′x t−1 +
p−1∑
i=1

�∗
i x t−i + at −

q∑
j=1

�jat−j , (8.33)
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where α and β are k × m full-rank matrices. The AR coefficient matrices �∗
i are

functions of the original coefficient matrices �j . Specifically, we have

�∗
j = −

p∑
i=j+1

�i , j = 1, . . . , p − 1,

αβ ′ = �p + �p−1 + · · · + �1 − I = −�(1). (8.34)

These results can be obtained by equating coefficient matrices of the AR matrix
polynomials. The time series β ′x t is unit-root stationary, and the columns of β are
the cointegrating vectors of x t .

Existence of the stationary series β ′x t−1 in the error correction representation
(8.33) is natural. It can be regarded as a “compensation” term for the overdif-
ferenced system x t . The stationarity of β ′x t−1 can be justified as follows. The
theory of unit-root time series shows that the sample correlation coefficient between
a unit-root nonstationary series and a stationary series converges to zero as the sam-
ple size goes to infinity; see Tsay and Tiao (1990) and the references therein. In an
error correction representation, x t−1 is unit-root nonstationary, but x t is station-
ary. Therefore, the only way that x t can relate meaningfully to x t−1 is through
a stationary series β ′xt−1.

Remark. Our discussion of cointegration assumes that all unit roots are of
multiplicity 1, but the concept can be extended to cases in which the unit roots have
different multiplicities. Also, if the number of cointegrating factors m is given, then
the error correction model in Eq. (8.33) can be estimated by likelihood methods.
We discuss the simple case of cointegrated VAR models in the next section. Finally,
there are many ways to construct an error correction representation. In fact, one
can use any αβ ′x t−v for 1 ≤ v ≤ p in Eq. (8.33) with some modifications to the
AR coefficient matrices �∗

i . �

8.6 COINTEGRATED VAR MODELS

To better understand cointegration, we focus on VAR models for their simplicity
in estimation. Consider a k-dimensional VAR(p) time series x t with possible time
trend so that the model is

x t = µt + �1xt−1 + · · · + �px t−p + at , (8.35)

where the innovation at is assumed to be Gaussian and µt = µ0 + µ1t , where µ0
and µ1 are k-dimensional constant vectors. Write �(B) = I − �1B − · · · − �pB

p.
Recall that if all zeros of the determinant |�(B)| are outside the unit circle, then
x t is unit-root stationary. In the literature, a unit-root stationary series is said to
be an I (0) process; that is, it is not integrated. If |�(1)| = 0, then xt is unit-root
nonstationary. For simplicity, we assume that xt is at most an integrated process of
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order 1; that is, an I (1) process. This means that (1 − B)xit is unit-root stationary
if xit itself is not.

An error correction model (ECM) for the VAR(p) process x t is

x t = µt + �x t−1 + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at , (8.36)

where �∗
j are defined in Eq. (8.34) and � = αβ ′ = −�(1). We refer to the term

�x t−1 of Eq. (8.36) as the error correction term , which plays a key role in coin-
tegration study. Notice that �i can be recovered from the ECM representation via

�1 = I + � + �∗
1,

�i = �∗
i − �∗

i−1, i = 2, . . . , p,

where �∗
p = 0, the zero matrix. Based on the assumption that xt is at most I (1),

x t of Eq. (8.36) is an I (0) process.
If xt contains unit roots, then |�(1)| = 0 so that � = −�(1) is singular. There-

fore, three cases are of interest in considering the ECM in Eq. (8.36):

1. Rank(�) = 0. This implies � = 0 and x t is not cointegrated. The ECM of
Eq. (8.36) reduces to

x t = µt + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at ,

so that x t follows a VAR(p − 1) model with deterministic trend µt .

2. Rank(�) = k. This implies that |�(1)| �= 0 and x t contains no unit roots;
that is, xt is I (0). The ECM model is not informative and one studies xt

directly.

3. 0 < Rank(�) = m < k. In this case, one can write � as

� = αβ ′, (8.37)

where α and β are k × m matrices with Rank(α) = Rank(β) = m. The ECM
of Eq. (8.36) becomes

x t = µt + αβ ′x t−1 + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at . (8.38)

This means that x t is cointegrated with m linearly independent cointegrat-
ing vectors, wt = β ′x t , and has k − m unit roots that give k − m common
stochastic trends of xt .

If x t is cointegrated with Rank(�) = m, then a simple way to obtain a presen-
tation of the k − m common trends is to obtain an orthogonal complement matrix
α⊥ of α; that is, α⊥ is a k × (k − m) matrix such that α′

⊥α = 0, a (k − m) × m

zero matrix, and use y t = α′
⊥x t . To see this, one can premultiply the ECM by α′

⊥
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and use � = αβ ′ to see that there would be no error correction term in the result-
ing equation. Consequently, the (k − m)-dimensional series yt should have k − m

unit roots. For illustration, consider the bivariate example of Section 8.5.1. For this
special series, α = (−1,−0.5)′ and α⊥ = (1,−2)′. Therefore, yt = (1,−2)xt =
x1t − 2x2t , which is precisely the unit-root nonstationary series y1t in Eq. (8.32).

Note that the factorization in Eq. (8.37) is not unique because for any m × m

orthogonal matrix � satisfying ��′ = I , we have a

αβ ′ = α��′β ′ = (α�)(β�)′ ≡ α∗β ′
∗,

where both α∗ and β∗ are also of rank m. Additional constraints are needed to
uniquely identify α and β. It is common to require that β ′ = [Im,β

′
1], where Im

is the m × m identity matrix and β1 is a (k − m) × m matrix. In practice, this may
require reordering of the elements of x t such that the first m components all have
a unit root. The elements of α and β must also satisfy other constraints for the
process wt = β ′x t to be unit-root stationary. For example, consider the case of a
bivariate VAR(1) model with one cointegrating vector. Here k = 2, m = 1, and the
ECM is

x t = µt +
[

α1

α2

]
[1, β1]x t−1 + at .

Premultiplying the prior equation by β ′, using wt−i = β ′xt−i , and moving wt−1 to
the right-hand side of the equation, we obtain

wt = β ′µt + (1 + α1 + α2β1)wt−1 + bt ,

where bt = β ′at . This implies that wt is a stationary AR(1) process. Consequently,
αi and β1 must satisfy the stationarity constraint |1 + α1 + α2β1| < 1.

The prior discussion shows that the rank of � in the ECM of Eq. (8.36) is the
number of cointegrating vectors. Thus, to test for cointegration, one can examine
the rank of �. This is the approach taken by Johansen (1988, 1995) and Reinsel
and Ahn (1992).

8.6.1 Specification of the Deterministic Function

Similar to the univariate case, the limiting distributions of cointegration tests depend
on the deterministic function µt . In this section, we discuss some specifications of
µt that have been proposed in the literature. To understand some of the statements
made below, keep in mind that α′

⊥x t provides a presentation for the common
stochastic trends of x t if it is cointegrated.

1. µt = 0: In this case, all the component series of x t are I (1) without drift
and the stationary series wt = β ′x t has mean zero.
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2. µt = µ0 = αc0, where c0 is an m-dimensional nonzero constant vector. The
ECM becomes

x t = α(β ′x t−1 + c0) + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at ,

so that the components of x t are I (1) without drift, but wt have a nonzero
mean −c0. This is referred to as the case of restricted constant.

3. µt = µ0, which is nonzero. Here the component series of xt are I (1) with
drift µ0 and wt may have a nonzero mean.

4. µt = µ0 + αc1t , where c1 is a nonzero vector. The ECM becomes

x t = µ0 + α(β ′x t−1 + c1t) + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at ,

so that the components of xt are I (1) with drift µ0 and wt has a linear time
trend related to c1t . This is the case of restricted trend.

5. µt = µ0 + µ1t , where µi are nonzero. Here both the constant and trend are
unrestricted. The components of x t are I (1) and have a quadratic time trend
and wt have a linear trend.

Obviously, the last case is not common in empirical work. The first case is not
common for economic time series but may represent the log price series of some
assets. The third case is also useful in modeling asset prices.

8.6.2 Maximum-Likelihood Estimation

In this section, we briefly outline the maximum-likelihood estimation (MLE) of a
cointegrated VAR(p) model. Suppose that the data are {x t |t = 1, . . . , T }. Without
loss of generality, we write µt = µd t , where d t = [1, t]′, and it is understood that
µt depends on the specification of the previous section. For a given m, which is
the rank of �, the ECM model becomes

x t = µd t + αβ ′x t−1 + �∗
1x t−1 + · · · + �∗

p−1x t−p+1 + at , (8.39)

where t = p + 1, . . . , T . A key step in the estimation is to concentrate the likeli-
hood function with respect to the deterministic term and the stationary effects. This
is done by considering the following two multivariate linear regressions:

x t = γ 0d t + �1 x t−1 + · · · + �p−1 x t−p+1 + ut , (8.40)

x t−1 = γ 1d t + �1 x t−1 + · · · + �p−1 x t−p+1 + vt . (8.41)

Let ût and v̂t be the residuals of Eqs. (8.40) and (8.41), respectively. Define the
sample covariance matrices

S00 = 1

T − p

T∑
t=p+1

ût û
′
t , S01 = 1

T − p

T∑
t=p+1

ût v̂
′
t , S11 = 1

T − p

T∑
t=p+1

v̂t v̂
′
t .
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Next, compute the eigenvalues and eigenvectors of S10S
−1
00 S01 with respect to S11.

This amounts to solving the eigenvalue problem

|λS11 − S10S
−1
00 S01| = 0.

Denote the eigenvalue and eigenvector pairs by (λ̂i, ei ), where λ̂1 > λ̂2 > · · ·> λ̂k.
Here the eigenvectors are normalized so that e′S11e = I , where e = [e1, . . . , ek]
is the matrix of eigenvectors.

The unnormalized MLE of the cointegrating vector β is β̂ = [e1, . . . , em] and
from which we can obtain an MLE for β that satisfies the identifying constraint
and normalization condition. Denote the resulting estimate by β̂c with the subscript
c signifying constraints. The MLE of other parameters can then be obtained by the
multivariate linear regression

x t = µd t + αβ̂
′
cx t−1 + �∗

1x t−1 + · · · + �∗
p−1x t−p+1 + at .

The maximized value of the likelihood function based on m cointegrating vectors is

L
−2/T
max ∝ |S00|

m∏
i=1

(1 − λ̂i).

This value is used in the maximum-likelihood ratio test for testing Rank(�) = m.
Finally, estimates of the orthogonal complements of α and β can be obtained using

α̂⊥ = S−1
00 S11[em+1, . . . , ek], β̂⊥ = S11[em+1, . . . , ek].

8.6.3 Cointegration Test

For a specified deterministic term µt , we now discuss the maximum-likelihood test
for testing the rank of the � matrix in Eq. (8.36). Let H(m) be the null hypothesis
that the rank of � is m. For example, under H(0), Rank(�) = 0 so that � = 0
and there is no cointegration. The hypotheses of interest are

H(0) ⊂ · · · ⊂ H(m) ⊂ · · · ⊂ H(k).

For testing purpose, the ECM in Eq. (8.39) becomes

x t = µd t + �x t−1 + �∗
1 x t−1 + · · · + �∗

p−1 x t−p+1 + at ,

where t = p + 1, . . . , T . Our goal is to test the rank of �. Mathematically, the
rank of � is the number of nonzero eigenvalues of �, which can be obtained if a
consistent estimate of � is available. Based on the prior equation, which is in the
form of a multivariate linear regression, we see that � is related to the covariance
matrix between xt−1 and x t after adjusting for the effects of d t and x t−i for i
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= 1, . . . , p − 1. The necessary adjustments can be achieved by the techniques of
multivariate linear regression shown in the previous section. Indeed, the adjusted
series of x t−1 and x t are v̂t and ût , respectively. The equation of interest for the
cointegration test then becomes

ût = �v̂t + at .

Under the normality assumption, the likelihood ratio test for testing the rank of
� in the prior equation can be done by using the canonical correlation analysis
between ût and v̂t . See Johnson and Wichern (1998) for information on canonical
correlation analysis. The associated canonical correlations are the partial canonical
correlations between x t−1 and x t−1 because the effects of d t and x t−i have
been adjusted. The quantities {λ̂i} are the squared canonical correlations between
ût and v̂t .

Consider the hypotheses

H0 : Rank(�) = m versus Ha : Rank(�)>m.

Johansen (1988) proposes the likelihood ratio (LR) statistic

LRtr(m) = −(T − p)

k∑
i=m+1

ln(1 − λ̂i) (8.42)

to perform the test. If Rank(�) = m, then λ̂i should be small for i >m and hence
LRtr(m) should be small. This test is referred to as the trace cointegration test. Due
the presence of unit roots, the asymptotic distribution of LRtr(m) is not chi squared
but a function of standard Brownian motions. Thus, critical values of LRtr(m) must
be obtained via simulation.

Johansen (1988) also considers a sequential procedure to determine the number
of cointegrating vectors. Specifically, the hypotheses of interest are

H0 : Rank(�) = m versus Ha : Rank(�) = m + 1.

The LR ratio test statistic, called the maximum eigenvalue statistic, is

LRmax(m) = −(T − p) ln(1 − λ̂m+1).

Again, critical values of the test statistics are nonstandard and must be evaluated
via simulation.

8.6.4 Forecasting of Cointegrated VAR Models

The fitted ECM can be used to produce forecasts. First, conditioned on the estimated
parameters, the ECM equation can be used to produce forecasts of the differenced
series x t . Such forecasts can in turn be used to obtain forecasts of x t . A difference
between ECM forecasts and the traditional VAR forecasts is that the ECM approach
imposes the cointegration relationships in producing the forecasts.
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Figure 8.12 Time plots of weekly U.S. interest rate from December 12, 1958, to August 6, 2004.
(a) The 3-month Treasury bill rate and (b) 6-month Treasury bill rate. Rates are from secondary market.

8.6.5 An Example

To demonstrate the analysis of cointegrated VAR models, we consider two weekly
U.S. short-term interest rates. The series are the 3-month Treasury bill (TB) rate
and 6-month Treasury bill rate from December 12, 1958, to August 6, 2004, for
2383 observations. The TB rates are from the secondary market and obtained from
the Federal Reserve Bank of St. Loius. Figure 8.12 shows the time plots of the
interest rates. As expected, the two series move closely together.

Our analysis uses the S-Plus software with commands VAR for VAR analy-
sis, coint for cointegration test, and VECM for vector error correction estima-
tion. Denote the two series by tb3m and tb6m and define the vector series x t =
(tb3mt , tb6mt )

′. The augmented Dickey–Fuller unit-root tests fail to reject the
hypothesis of a unit root in the individual series; see Chapter 2. Indeed, the test
statistics are −2.34 and −2.33 with p value about 0.16 for the 3-month and 6-month
interest rate when an AR(3) model is used. Thus, we proceed to VAR modeling.

For the bivariate series x t , the BIC criterion selects a VAR(3) model:

> x=cbind(tb3m,tb6m)
> y=data.frame(x)
> ord.choice$ar.order
[1] 3
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To perform a cointegration test, we choose a restricted constant for µt because
there is no reason a priori to believe the existence of a drift in the U.S. interest
rate. Both Johansen’s tests confirm that the two series are cointegrated with one
cointegrating vector when a VAR(3) model is entertained.

> cointst.rc=coint(x,trend=’rc’, lags=2) % lags = p-1.
> cointst.rc
Call:
coint(Y = x, lags = 2, trend = "rc")

Trend Specification:
H1*(r): Restricted constant

Trace tests sign. at the 5% level are flagged by ’ +’.
Trace tests sign. at the 1% level are flagged by ’++’.
Max Eig. tests sign. at the 5% level are flagged by ’ *’.
Max Eig. tests sign. at the 1% level are flagged by ’**’.

Tests for Cointegration Rank:
Eigenvalue Trace Stat 95% CV 99% CV

H(0)++** 0.0322 83.2712 19.96 24.60
H(1) 0.0023 5.4936 9.24 12.97

Max Stat 95% CV 99% CV
H(0)++** 77.7776 15.67 20.20
H(1) 5.4936 9.24 12.97

Next, we perform the maximum-likelihood estimation of the specified cointe-
grated VAR(3) model using an ECM presentation. The results are as follows:

> vecm.fit=VECM(cointst.rc)
> summary(vecm.fit)
Call:
VECM(test = cointst.rc)

Cointegrating Vectors:
coint.1
1.0000

tb6m -1.0124
(std.err) 0.0086
(t.stat) -118.2799

Intercept* 0.2254
(std.err) 0.0545
(t.stat) 4.1382

VECM Coefficients:
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tb3m tb6m
coint.1 -0.0949 -0.0211

(std.err) 0.0199 0.0179
(t.stat) -4.7590 -1.1775

tb3m.lag1 0.0466 -0.0419
(std.err) 0.0480 0.0432
(t.stat) 0.9696 -0.9699

tb6m.lag1 0.2650 0.3164
(std.err) 0.0538 0.0484
(t.stat) 4.9263 6.5385

tb3m.lag2 -0.2067 -0.0346
(std.err) 0.0481 0.0433
(t.stat) -4.2984 -0.8005

tb6m.lag2 0.2547 0.0994
(std.err) 0.0543 0.0488
(t.stat) 4.6936 2.0356

Regression Diagnostics:
tb3m tb6m

R-squared 0.1081 0.0913
Adj. R-squared 0.1066 0.0898
Resid. Scale 0.2009 0.1807

> plot(vecm.fit)
Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Response and Fitted Values
3: plot: Residuals
...
13: plot: PACF of Squared Cointegrating Residuals
Selection:

As expected, the output shows that the stationary series is wt ≈ tb3mt − tb6mt

and the mean of wt is about −0.225. The fitted ECM is

x t =
[ −0.09

−0.02

]
(wt−1 + 0.23) +

[
0.05 0.27

−0.04 0.32

]
xt−1

+
[ −0.21 0.25

−0.03 0.10

]
xt−2 + at ,

and the estimated standard errors of ait are 0.20 and 0.18, respectively. Ade-
quacy of the fitted ECM can be examined via various plots. For illustration,
Figure 8.13 shows the cointegrating residuals. Some large residuals are shown
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Figure 8.13 Time plot of cointegrating residuals for an ECM fit to weekly U.S. interest rate series.
Data span is from December 12, 1958, to August 6, 2004.

in the plot, which occurred in the early 1980s when the interest rates were high
and volatile.

Finally, we use the fitted ECM to produce 1-step- to 10-step-ahead forecasts for
both x t and x t . The forecast origin is August 6, 2004.

> vecm.fst=predict(vecm.fit, n.predict=10)
> summary(vecm.fst)
Predicted Values with Standard Errors:

tb3m tb6m
1-step-ahead -0.0378 -0.0642

(std.err) 0.2009 0.1807
2-step-ahead -0.0870 -0.0864

(std.err) 0.3222 0.2927
...

10-step-ahead -0.2276 -0.1314
(std.err) 0.8460 0.8157

> plot(vecm.fst,xold=diff(x),n.old=12)

> vecm.fit.level=VECM(cointst.rc,levels=T)
> vecm.fst.level=predict(vecm.fit.level, n.predict=10)
> summary(vecm.fst.level)

Predicted Values with Standard Errors:
tb3m tb6m

1-step-ahead 1.4501 1.7057
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Figure 8.14 Forecasting plots of fitted ECM model for weekly U.S. interest rate series. Forecasts are
for differenced series and forecast origin is August 6, 2004.

(std.err) 0.2009 0.1807
2-step-ahead 1.4420 1.7017

(std.err) 0.3222 0.2927
...

10-step-ahead 1.4722 1.7078
(std.err) 0.8460 0.8157

> plot(vecm.fst.level, xold=x, n.old=50)

The forecasts are shown in Figures 8.14 and 8.15 for the differenced data and the
original series, respectively, along with some observed data points. The dashed
lines in the plots are pointwise 95% confidence intervals. Because of unit-root
nonstationarity, the intervals are wide and not informative.

Remark. The package urca of R can be used to perform Johansen’s co-
integration test. The command is ca.jo. It requires specification of some sub-
commands. See the section of pairs trading for demonstration. �

8.7 THRESHOLD COINTEGRATION AND ARBITRAGE

In this section, we focus on detecting arbitrage opportunities in index trading by
using multivariate time series methods. We also demonstrate that simple univariate
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Figure 8.15 Forecasting plots of fitted ECM model for weekly U.S. interest rate series. Forecasts are
for interest rates and forecast origin is August 6, 2004.

nonlinear models of Chapter 4. can be extended naturally to the multivariate case
in conjunction with the idea of cointegration.

Our study considers the relationship between the price of the S&P 500 index
futures and the price of the shares underlying the index on the cash market. Let
ft,� be the log price of the index futures at time t with maturity �, and let st be
the log price of the shares underlying the index on the cash market at time t . A
version of the cost-of-carry model in the finance literature states

ft,� − st = (rt,� − qt,�)(� − t) + z∗
t , (8.43)

where rt,� is the risk-free interest rate, qt,� is the dividend yield with respect to
the cash price at time t , and (� − t) is the time to maturity of the futures contract;
see Brenner and Kroner (1995), Dwyer, Locke, and Yu (1996), and the references
therein.

The z∗
t process of model (8.43) must be unit-root stationary; otherwise there

exist persistent arbitrage opportunities. Here an arbitrage trading consists of simul-
taneously buying (short-selling) the security index and selling (buying) the index
futures whenever the log prices diverge by more than the cost of carrying the index
over time until maturity of the futures contract. Under the weak stationarity of z∗

t ,
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for arbitrage to be profitable, z∗
t must exceed a certain value in modulus determined

by transaction costs and other economic and risk factors.
It is commonly believed that the ft,� and st series of the S&P 500 index contain

a unit root, but Eq. (8.43) indicates that they are cointegrated after adjusting for
the effect of interest rate and dividend yield. The cointegrating vector is (1,−1)
after the adjustment, and the cointegrated series is z∗

t . Therefore, one should use
an error correction form to model the return series r t = (ft ,st )

′, where ft =
ft,� − ft−1,� and st = st − st−1, where for ease in notation we drop the maturity
time � from the subscript of ft .

8.7.1 Multivariate Threshold Model

In practice, arbitrage tradings affect the dynamic of the market, and hence the
model for r t may vary over time depending on the presence or absence of arbitrage
tradings. Consequently, the prior discussions lead naturally to the following model:

r t =


c1 + ∑p

i=1 �
(1)
i r t−i + β1zt−1 + a

(1)
t if zt−1 ≤ γ1,

c2 + ∑p

i=1 �
(2)
i r t−i + β2zt−1 + a

(2)
t if γ1 < zt−1 ≤ γ2,

c3 + ∑p

i=1 �
(3)
i r t−i + β3zt−1 + a

(3)
t if γ2 < zt−1,

(8.44)

where zt = 100z∗
t , γ1 < 0 < γ2 are two real numbers, and {a(i)

t } are sequences
of two-dimensional white noises and are independent of each other. Here we use
zt = 100z∗

t because the actual value of z∗
t is relatively small.

The model in Eq. (8.44) is referred to as a multivariate threshold model with
three regimes. The two real numbers γ1 and γ2 are the thresholds and zt−1 is
the threshold variable. The threshold variable zt−1 is supported by the data; see
Tsay (1998). In general, one can select zt−d as a threshold variable by considering
d ∈ {1, . . . , d0}, where d0 is a prespecified positive integer.

Model (8.44) is a generalization of the threshold autoregressive model of
Chapter 4. It is also a generalization of the error correlation model of Eq.
(8.33). As mentioned earlier, an arbitrage trading is profitable only when z∗

t or,
equivalently, zt is large in modulus. Therefore, arbitrage tradings only occurred in
regimes 1 and 3 of model (8.44). As such, the dynamic relationship between ft,�

and st in regime 2 is determined mainly by the normal market force, and hence
the two series behave more or less like a random walk. In other words, the two
log prices in the middle regime should be free from arbitrage effects and, hence,
free from the cointegration constraint. From an econometric viewpoint, this means
that the estimate of β2 in the middle regime should be insignificant.

In summary, we expect that the cointegration effects between the log price of
the futures and the log price of security index on the cash market are significant
in regimes 1 and 3, but insignificant in regime 2. This phenomenon is referred to
as a threshold cointegration; see Balke and Fomby (1997).
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Figure 8.16 Time plots of 1-minute log returns of S&P 500 index futures and cash prices and asso-
ciated threshold variable in May 1993: (a) log returns of index futures, (b) log returns of index cash
prices, and (c) zt series.

8.7.2 The Data

The data used in this case study are the intraday transaction data of the S&P 500
index in May 1993 and its June futures contract traded at the Chicago Mercantile
Exchange; see Forbes, Kalb, and Kofman (1999), who used the data to construct a
minute-by-minute bivariate price series with 7060 observations. To avoid the undue
influence of unusual returns, I replaced 10 extreme values (5 on each side) by the
simple average of their two nearest neighbors. This step does not affect the qual-
itative conclusion of the analysis but may affect the conditional heteroscedasticity
in the data. For simplicity, we do not consider conditional heteroscedasticity in the
study. Figure 8.16 shows the time plots of the log returns of the index futures and
cash prices and the associated threshold variable zt = 100z∗

t of model (8.43).

8.7.3 Estimation

A formal specification of the multivariate threshold model in Eq. (8.44) includes
selecting the threshold variable, determining the number of regimes, and choosing
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the order p for each regime. Interested readers are referred to Tsay (1998) and
Forbes, Kalb, and Kofman (1999). The thresholds γ1 and γ2 can be estimated
by using some information criteria [e.g., the Akaike information criterion (AIC)
or the sum of squares of residuals]. Assuming p = 8, d ∈ {1, 2, 3, 4}, γ1 ∈
[−0.15,−0.02], and γ2 ∈ [0.025, 0.145], and using a grid search method with
300 points on each of the two intervals, the AIC selects zt−1 as the threshold
variable with thresholds γ̂1 = −0.0226 and γ̂2 = 0.0377. Details of the parameter
estimates are given in Table 8.8.

From Table 8.8, we make the following observations. First, the t ratios of β̂2 in
the middle regime show that, as expected, the estimates are insignificant at the 5%
level, confirming that there is no cointegration between the two log prices in the
absence of arbitrage opportunities. Second, ft depends negatively on ft−1 in all
three regimes. This is in agreement with the bid–ask bounce discussed in Chapter 5.
Third, past log returns of the index futures seem to be more informative than the
past log returns of the cash prices because there are more significant t ratios in
ft−i than in st−i . This is reasonable because futures series are in general more
liquid. For more information on index arbitrage, see Dwyer, Locke, and Yu (1996).

8.8 PAIRS TRADING

Pairs trading is a market-neutral trading strategy. There are several versions of pairs
trading in the equity markets. In this section, we focus on the statistical arbitrage
pairs trading, which makes use of the ideas of cointegration and error correction
model discussed in the chapter. Our discussion will be brief. For more information
concerning pairs trading and statistical arbitrage, see Vidyamurthy (2004) and Pole
(2007).

The general theme for trading in the equity markets is to buy undervalued stocks
and sell overvalued ones. However, the true price of a stock is hard to assess.
Pairs trading attempts to resolve this difficulty using the idea of relative pricing.
Based on the arbitrage pricing theory (APT) in finance, if two stocks have similar
characteristics, then the prices of both stocks must be more or less the same. If
the prices differ, then it is likely that one of the stocks is overpriced and the other
underpriced. Pairs trading involves selling the higher priced stock and buying the
lower priced stock with the hope that the mispricing will correct itself in the future.
Note that the true prices of the two stocks are not important. The observed prices
may be wrong. What is important is that the observed prices be the same. The
gap (properly scaled) between the two observed prices is called the spread. For
pairs trading, the greater the spread, the larger the magnitude of mispricing and the
greater the profit potential. Before discussing a trading strategy, we first introduce
the theoretical framework.

8.8.1 Theoretical Framework

Consider two stocks. Let Pit be the observed price of stock i at time t and pit =
ln(Pit ) be the corresponding log price. As mentioned in earlier chapters, it is
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TABLE 8.8 Least-Squares Estimates and Their t Ratios of Multivariate Threshold
Model in Eq. (8.43) for S&P 500 Index Data in May 1993a

Regime 1 Regime 2 Regime 3

ft st ft st ft st

φ0 0.00002 0.00005 0.00000 0.00000 −0.00001 −0.00005
t (1.47) (7.64) (−0.07) (0.53) (−0.74) (−6.37)
ft−1 −0.08468 0.07098 −0.03861 0.04037 −0.04102 0.02305
t (−3.83) (6.15) (−1.53) (3.98) (−1.72) (1.96)
ft−2 −0.00450 0.15899 0.04478 0.08621 −0.02069 0.09898
t (−0.20) (13.36) (1.85) (8.88) (−0.87) (8.45)
ft−3 0.02274 0.11911 0.07251 0.09752 0.00365 0.08455
t (0.95) (9.53) (3.08) (10.32) (0.15) (7.02)
ft−4 0.02429 0.08141 0.01418 0.06827 −0.02759 0.07699
t (0.99) (6.35) (0.60) (7.24) (−1.13) (6.37)
ft−5 0.00340 0.08936 0.01185 0.04831 −0.00638 0.05004
t (0.14) (7.10) (0.51) (5.13) (−0.26) (4.07)
ft−6 0.00098 0.07291 0.01251 0.03580 −0.03941 0.02615
t (0.04) (5.64) (0.54) (3.84) (−1.62) (2.18)
ft−7 −0.00372 0.05201 0.02989 0.04837 −0.02031 0.02293
t (−0.15) (4.01) (1.34) (5.42) (−0.85) (1.95)
ft−8 0.00043 0.00954 0.01812 0.02196 −0.04422 0.00462
t (0.02) (0.76) (0.85) (2.57) (−1.90) (0.40)
st−1 −0.08419 0.00264 −0.07618 −0.05633 0.06664 0.11143
t (−2.01) (0.12) (−1.70) (−3.14) (1.49) (5.05)
st−2 −0.05103 0.00256 −0.10920 −0.01521 0.04099 −0.01179
t (−1.18) (0.11) (−2.59) (−0.90) (0.92) (−0.53)
st−3 0.07275 −0.03631 −0.00504 0.01174 −0.01948 −0.01829
t (1.65) (−1.58) (−0.12) (0.71) (−0.44) (−0.84)
st−4 0.04706 0.01438 0.02751 0.01490 0.01646 0.00367
t (1.03) (0.60) (0.71) (0.96) (0.37) (0.17)
st−5 0.08118 0.02111 0.03943 0.02330 −0.03430 −0.00462
t (1.77) (0.88) (0.97) (1.43) (−0.83) (−0.23)
st−6 0.04390 0.04569 0.01690 0.01919 0.06084 −0.00392
t (0.96) (1.92) (0.44) (1.25) (1.45) (−0.19)
st−7 −0.03033 0.02051 −0.08647 0.00270 −0.00491 0.03597
t (−0.70) (0.91) (−2.09) (0.16) (−0.13) (1.90)
st−8 −0.02920 0.03018 0.01887 −0.00213 0.00030 0.02171
t (−0.68) (1.34) (0.49) (−0.14) (0.01) (1.14)
zt−1 0.00024 0.00097 −0.00010 0.00012 0.00025 0.00086
t (1.34) (10.47) (−0.30) (0.86) (1.41) (9.75)

aThe numbers of data points for the three regimes are 2234, 2410, and 2408, respectively.
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reasonable to assume that pit is unit-root nonstationary and follows a random-walk
model; that is, pit = pi,t−1 + rit , where {rit } is the return and forms a sequence
of uncorrelated innovations. If the two stocks have similar risk factors, then they
should have similar returns based on APT. Therefore, p1t and p2t are likely to be
driven by a common component and are cointegrated. In other words, there exists a
linear combination wt = p1t − γp2t , which is unit-root stationary and, hence, mean
reverting. The two price series {p1t } and {p2t } thus assume an error correction form[

p1t − p1,t−1

p2t − p2,t−1

]
=

[
α1

α2

]
(wt−1 − µw) +

[
ε1t

ε2t

]
, (8.45)

where µw = E(wt) denotes the mean of wt . The four parameters γ , µw, α1, and
α2 can be estimated, for instance, by the maximum-likelihood or least-squares
methods; see Section 8.6.2. We refer to the stationary series wt as the spread
between the two log stock prices.

The left-hand side of Eq. (8.45) consists the log returns of the two stocks. The
equation says that the returns depend on wt−1, which is the stationary. Specifically,
wt−1 − µw denotes the deviation from the log-run equilibrium between the two
stocks. Equation (8.45) shows that, for cointegrated stocks, the returns depend on
the past deviation from equilibrium. The coefficients α1 and α2 show the effect of
past deviation on the returns r1t and r2t , respectively. In practice, α1 and α2 should
have opposite signs, indicating reversion to the equilibrium.

Next, consider a portfolio with long one share of stock 1 and short γ shares of
stock 2. The return of the portfolio for a given time period i is

rp,t+i = (p1,t+i − p1t ) − γ (p2,t+i − p2t )

= (p1,t+i − γp2,t+i ) − (p1t − γp2t )

= wt+i − wt .

Therefore, the return rp,t+i of the portfolio is the increment of the spread in the
time period. As expected, the return of the portfolio does not depend on the mean
of wt .

8.8.2 Trading Strategy

The idea behind a pairs-trading strategy is to trade on the oscillations about the
equilibrium value of the spread. The oscillations in spread occur because the spread
is mean reverting. Since the equilibrium value is the mean of wt , that is, µw, we
can put on a trade when wt deviates substantially from its mean and unwind the
trade when the equilibrium is restored. In practice, how big the deviation needs
to be in order for the trading to be profitable depends on several factors. Trading
costs, marginal interest rates, and bid–ask spreads of the two stocks are three
obvious factors. Mathematically, let η be the cost involved in carrying out a pairs
trading. Let  be a target deviation of wt from its mean µw for pairs trading. Then,
conditioned on 2>η, a simple trading strategy is as follows:



pairs trading 449

• Buy a share of stock 1 and short γ shares of stock 2 at time t if wt =
p1t − γp2t = µw − .

• Unwind the position at time t + i (i > 0) if wt+i = p1,i+i − γp2,t+i = µw +
.

One can identify the time point t so long as  is not too large compared with
the standard deviation of wt . The time point t + i will occur because of the mean
reverting of the spread series. In this particular instance, the return of the portfolio
wt+i − wt = 2 and the net profit of the trade is 2 − η> 0.

Discussion. The aforementioned trading strategy is just one of many possibil-
ities. For instance, if >η, one can unwind the position when wt+i = µw. The
net profit of the pairs trading then is  − η> 0. This may result in more trans-
actions and trading costs, but it shortens the holding period of the portfolio. If 

is negative, then one can short one share of stock 1 and buy γ shares of stock 2
to make a net profit −2 − η. The quantity η is the threshold for trading and is
likely to depend on several factors such as transaction fees and bid–ask spreads of
the two stocks. �

8.8.3 Simple Illustration

To demonstrate pairs trading, we consider two stocks traded on the New York
Stock Exchange. The two companies are the Billiton Ltd. of Australia and the
Vale S.A. of Brazil with stock symbols BHP and VALE, respectively. BHP of
Australia is a natural resources company with business in Australia, the Americans,
and Southern Africa. Vale of Brazil is a worldwide metals and mining company.
Thus, both multinational companies belong to the natural resources industry and
encounter similar risk factors. The daily prices of the two stocks were downloaded
from Yahoo Finance, and we employ adjusted closing prices from July 1, 2002, to
March 31, 2006, in our study.

Figure 8.17 shows the time plots of the daily log prices of the two stocks
(adjusted closing prices). The upper plot is for the BHP stock. From the plots, the
prices of the two stocks exhibit certain characteristics of comovement. Let p1t and
p2t be the daily log closing prices of BHP and VALE, respectively. We analyze
the series using both the least-squares and maximum-likelihood methods.

Least-Squares Estimation
A simple way to verify that the two stocks are suitable for pairs trading is to check
the cointegration of their log stock prices. To this end, we consider the simple
linear regression p1t = β0 + β1p2t + wt , where wt denotes the residual series. For
the BHP and VALE stocks, we have

p1t = 1.823 + 0.717p2t + ŵt , σw = 0.044.
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Figure 8.17 Daily log (adjusted) closing prices of BHP and VALE stocks from July 1, 2002, to March
31, 2006. Upper plot is for BHP stock.

Figure 8.18(a) shows the time plot of the residual series ŵt . The plot shows that the
residual series has certain characteristics of a stationary time series. In particular, it
has mean zero and fluctuates around its mean within a fixed range. Figure 8.18(b)
gives the sample ACF of ŵt . The ACFs decay exponentially, supporting that ŵt

is indeed stationary. To further confirm the stationarity assertion, we fit an AR(2)
model to ŵt and obtain

(1 − 0.805B − 0.122B2)ŵt = at , σa = 0.018.

Following the discussion of Chapter 2, we can obtain the two characteristic
roots of the fitted AR(2) model. Indeed, the model can be rewritten as
(1 − 0.935B)(1 − 0.130B)ŵt = at . Hence, ŵt is stationary. Finally, we conduct
an augmented Dickey–Fuller unit-root test on ŵt using an AR(2) model and find
that the test statistic is −6.04 with a p value of 0.01. The unit-root hypothesis is
clearly rejected.

Maximum-Likelihood Estimation
A formal approach to verify the cointegration of the two log stock prices is to per-
form a cointegration test. Let xt = (p1t , p2t )

′. Using information criteria, a VAR(1)
model is specified for x t . We then conduct cointegration tests with restricted and
unrestricted constant. Both tests give similar results so that we only report the
results for the case of restricted constant.



pairs trading 451

Year

(a)

S
pr

ea
d

2003 2004 2005 2006−0
.1

5
−0

.0
5

0.
05

0.
15

Lag

(b)

A
C

F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.18 Results of least-squares estimation: (a) Time plot of the estimated spread between BHP
and VALE daily log stock prices. (b) Sample autocorrelation functions of estimated spread.

> coint2=coint(xx,trend="rc")
> coint2
coint(Y = xt, trend = "rc")

Trend Specification:
H1*(r): Restricted constant

Trace tests signif. at the 5% level are flagged by ’ +’.
Trace tests signif. at the 1% level are flagged by ’++’.
Max Eigenvalue tests signif. at the 5% level are

flagged by ’ *’.
Max Eigenvalue tests signif. at the 1% level are

flagged by ’**’.

Tests for Cointegration Rank:
Eigenvalue TraceSt 95%-CV 99%-CV Max-St 95%-CV 99%-

CV
H(0)++** 0.0415 47.7400 19.960 24.600 39.965 15.670 20.200
H(1) 0.0082 7.7748 9.240 12.970 7.774 9.240 12.970

The test confirms that x t is cointegrated. Next, we perform the maximum-
likelihood estimation of the error correction model. The results are given below:

> n3=VECM(coint2)
> summary(n3)
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VECM(test = coint2)

Cointegrating Vectors:
coint.1
1.0000

vale -0.7177
(std.err) 0.0112
(t.stat) -64.0913

Intercept* -1.8144
(std.err) 0.0169
(t.stat) -107.0430

VECM Coefficients:
bhp vale

coint.1 -0.0671 0.0263
(std.err) 0.0145 0.0168
(t.stat) -4.6462 1.5659

bhp.lag1 -0.1119 0.0659
(std.err) 0.0366 0.0425
(t.stat) -3.0596 1.5516

vale.lag1 0.0732 0.0445
(std.err) 0.0320 0.0371
(t.stat) 2.2920 1.1986

Regression Diagnostics:
bhp vale

R-squared 0.0370 0.0104
Adj. R-squared 0.0350 0.0083
Resid. Scale 0.0193 0.0224

Based on the estimation result, we have the model

x t =
[ −0.067

0.026

]
(wt−1 − 1.81) +

[ −0.11 0.07
0.07 0.04

]
xt−1 + at ,

where the estimated standard errors of ait are 0.019 and 0.022, respectively. In
addition, the spread series is wt = p1t − 0.718p2t , which is stationary with mean
1.81. Clearly, the result is very close to that of the least-squares estimation. In
particular, the γ parameter for the pairs trading is γ̂ = 0.718. Also, as expected,
α1 is negative whereas α2 is positive.

Trading Strategy
Since the standard error of the spread series wt is 0.044, we can select  = 0.045,
which is slightly greater than one standard error of wt , for pairs trading. This choice
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Figure 8.19 Time plot of fitted spread series between daily log prices of BHP and VALE stocks.
Three horizontal lines denotes µw , µw + 0.045, and µw − 0.045 with µw = E(wt).

of  ensures that the probability for the spread wt to deviate  away from its mean
is not small. In fact, under the normality assumption, the probability is about 30%.
Figure 8.19 shows the time plot of the spread series wt of the fitted error correction
model. Three horizontal lines are imposed on the plot. They are µw, µw + 0.045,
and µw − 0.045 with the latter two serving as boundaries for pairs trading. Since
wt varies from the lower boundary to the upper one (or from the upper boundary
to the lower one) several times, there are many pairs-trading opportunities. From
the discussion of Section 8.8.2, the log return of each pairs trading is 2 = 0.09,
which is not small. A more realistic demonstration is to implement the trading in
a out-of-sample period. However, the example shows that pairs trading is feasible.

Finally, an important question in pairs trading is to identify the cointegrated
pairs of stocks. There are some procedures available in the literature. It seems
reasonable to consider pairs of stocks that have similar risk factors. In other words,
one should make use of finance theory to guide the selection.

R Demonstration
The following output has been edited:

> library(urca)
> help(ca.jo)
> da=read.table("d-bhp0206.txt",header=T)
> da1=read.table("d-vale0206.txt",header=T)
> bhp=log(da[,9])
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> vale=log(da1[,9])
> m1=lm(bhp~vale)
> summary(m1)
Call:
lm(formula = bhp ~ vale)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.822648 0.003662 497.7 >2e-16 ***
vale 0.716664 0.002354 304.4 >2e-16 ***
---
Residual standard error: 0.04421 on 944 degrees of freedom
Multiple R-squared: 0.9899, Adjusted R-squared: 0.9899
F-statistic: 9.266e+04 on 1 and 944 DF, p-value: < 2.2e-16

> wt=m1$residuals
> m3=arima(wt,order=c(2,0,0),include.mean=F)
> m3
Call:
arima(x = wt, order = c(2, 0, 0), include.mean = F)

Coefficients:
ar1 ar2

0.8051 0.1219
s.e. 0.0322 0.0325

sigma^2 estimated as 0.0003326: log likelihood=2444.76
> p1=c(1,-m3$coef)
> x=polyroot(p1)
> x
[1] 1.069100+0i -7.675365-0i
> 1/Mod(x)
[1] 0.9353661 0.1302870

> xt=cbind(bhp,vale)
> mm=ar(xt)
> mm$order
[1] 2
> cot=ca.jo(xt,ecdet="const",type=’trace’,K=2,
spec=’transitory’)
> summary(cot)
######################
# Johansen-Procedure #
######################
Test type: trace statistic, without linear trend and
constant in cointegration

Eigenvalues (lambda):
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[1] 4.148282e-02 8.206470e-03 -4.610389e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct
r <= 1 | 7.78 7.52 9.24 12.97
r = 0 | 47.77 17.85 19.96 24.60

Eigenvectors, normalised to first column:
(These are the cointegration relations)

bhp.l1 vale.l1 constant
bhp.l1 1.000000 1.0000000 1.000000
vale.l1 -0.717704 -0.7327542 2.047274
constant -1.828460 -1.5411890 -5.712629

Weights W:
(This is the loading matrix)

bhp.l1 vale.l1 constant
bhp.d -0.06731196 0.004568985 9.341093e-18
vale.d 0.02545606 0.007541565 1.015639e-18

> co1=ca.jo(xt,ecdet="const",type=’eigen’,K=2,
spec=’transitory’)
> summary(co1)
######################
# Johansen-Procedure #
######################
Test type: maximal eigenvalue statistic (lambda max), without
linear trend and constant in cointegration

Eigenvalues (lambda):
[1] 4.148282e-02 8.206470e-03 -4.610389e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct
r <= 1 | 7.78 7.52 9.24 12.97
r = 0 | 40.00 13.75 15.67 20.20

Eigenvectors, normalised to first column:
(These are the cointegration relations)

bhp.l1 vale.l1 constant
bhp.l1 1.000000 1.0000000 1.000000
vale.l1 -0.717704 -0.7327542 2.047274
constant -1.828460 -1.5411890 -5.712629



456 multivariate time series analysis and its applications

Weights W:
(This is the loading matrix)

bhp.l1 vale.l1 constant
bhp.d -0.06731196 0.004568985 9.341093e-18
vale.d 0.02545606 0.007541565 1.015639e-18

APPENDIX A: REVIEW OF VECTORS AND MATRICES

In this appendix, we briefly review some algebra and properties of vectors and
matrices. No proofs are given as they can be found in standard textbooks on
matrices (e.g., Graybill, 1969).

An m × n real-valued matrix is an m × n array of real numbers. For example,

A =
[

2 5 8
−1 3 4

]
is a 2 × 3 matrix. This matrix has two rows and three columns. In general, an
m × n matrix is written as

A ≡ [aij ] =


a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n
...

...
...

...

am1 am2 · · · am,n−1 amn

 . (8.46)

The positive integers m and n are the row dimension and column dimension of A.
The real number aij is referred to as the (i, j)th element of A. In particular, the
elements aii are the diagonal elements of the matrix.

An m × 1 matrix forms an m-dimensional column vector, and a 1 × n matrix
is an n-dimensional row vector. In the literature, a vector is often meant to be a
column vector. If m = n, then the matrix is a square matrix. If aij = 0 for i �= j

and m = n, then the matrix A is a diagonal matrix . If aij = 0 for i �= j and aii = 1
for all i, then A is the m × m identity matrix , which is commonly denoted by Im

or simply I if the dimension is clear.
The n × m matrix

A′ =


a11 a21 · · · am−1,1 am1

a12 a22 · · · am−1,2 am2
...

...
...

...

a1n a2n · · · am−1,n amn


is the transpose of the matrix A. For example, 2 −1

5 3
8 4

 is the transpose of

[
2 5 8

−1 3 4

]
.
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We use the notation A′ = [a′
ij ] to denote the transpose of A. From the definition,

a′
ij = aji and (A′)′ = A. If A′ = A, then A is a symmetric matrix .

Basic Operations

Suppose that A = [aij ]m×n and C = [cij ]p×q are two matrices with dimensions
given in the subscript. Let b be a real number. Some basic matrix operations are
defined next:

• Addition: A + C = [aij + cij ]m×n if m = p and n = q.
• Subtraction: A − C = [aij − cij ]m×n if m = p and n = q.
• Scalar multiplication: bA = [baij ]m×n.
• Multiplication: AC = [

∑n
v=1 aivcvj ]m×q provided that n = p.

When the dimensions of matrices satisfy the condition for multiplication to
take place, the two matrices are said to be conformable. An example of matrix
multiplication is[

2 1
1 1

] [
1 2 3

−1 2 −4

]
=

[
2 · 1 − 1 · 1 2 · 2 + 1 · 2 2 · 3 − 1 · 4
1 · 1 − 1 · 1 1 · 2 + 1 · 2 1 · 3 − 1 · 4

]
=

[
1 6 2
0 4 −1

]
.

Important rules of matrix operations include (a) (AC)′ = C ′A′ and (b) AC �= CA

in general.

Inverse, Trace, Eigenvalue, and Eigenvector

A square matrix Am×m is nonsingular or invertible if there exists a unique matrix
Cm×m such that AC = CA = Im, the m × m identity matrix. In this case, C is
called the inverse matrix of A and is denoted by C = A−1.

The trace of Am×m is the sum of its diagonal elements [i.e., tr(A) = ∑m
i=1 aii].

It is easy to see that (a) tr(A + C) = tr(A) + tr(C), (b) tr(A) = tr(A′), and (c)
tr(AC) = tr(CA) provided that the two matrices are conformable.

A number λ and an m × 1 vector b, possibly complex valued, are a right eigen-
value and eigenvector pair of the matrix A if Ab = λb. There are m possible
eigenvalues for the matrix A. For a real-valued matrix A, complex eigenvalues
occur in conjugated pairs. The matrix A is nonsingular if and only if all of its
eigenvalues are nonzero. Denote the eigenvalues by {λi |i = 1, . . . , m}: We have
tr(A) = ∑m

i=1 λi . In addition, the determinant of the matrix A can be defined as
|A| = ∏m

i=1 λi . For a general definition of determinant of a matrix, see a standard
textbook on matrices (e.g., Graybill, 1969).

Finally, the rank of the matrix Am×n is the number of nonzero eigenvalues of
the symmetric matrix AA′. Also, for a nonsingular matrix A, (A−1)′ = (A′)−1.
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Positive-Definite Matrix

A square matrix A (m × m) is a positive-definite matrix if (a) A is symmetric and
(b) all eigenvalues of A are positive. Alternatively, A is a positive-definite matrix
if for any nonzero m-dimensional vector b, we have b′Ab> 0.

Useful properties of a positive-definite matrix A include (a) all eigenvalues of
A are real and positive, and (b) the matrix can be decomposed as

A = P�P ′,

where � is a diagonal matrix consisting of all eigenvalues of A and P is an m × m

matrix consisting of the m right eigenvectors of A. It is common to write the
eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λm and the eigenvectors as e1, . . . , em such that
Aei = λiei and e′

iei = 1. In addition, these eigenvectors are orthogonal to each
other—namely, e′

iej = 0 if i �= j —if the eigenvalues are distinct. The matrix
P is an orthogonal matrix and the decomposition is referred to as the spectral
decomposition of the matrix A. Consider, for example, the simple 2 × 2 matrix

� =
[

2 1
1 2

]
,

which is positive definite. Simple calculations show that[
2 1
1 2

] [
1
1

]
= 3

[
1
1

]
,

[
2 1
1 2

] [
1

−1

]
=

[
1

−1

]
.

Therefore, 3 and 1 are eigenvalues of � with normalized eigenvectors
(1/

√
2, 1/

√
2)′ and (1/

√
2,−1/

√
2)′, respectively. It is easy to verify that the

spectral decomposition holds—that is,[
1√
2

1√
2

1√
2

−1√
2

][
2 1
1 2

][
1√
2

1√
2

1√
2

−1√
2

]
=

[
3 0
0 1

]
.

For a symmetric matrix A, there exists a lower triangular matrix L with diagonal
elements being 1 and a diagonal matrix G such that A = LGL′; see Chapter 1
of Strang (1980). If A is positive definite, then the diagonal elements of G are
positive. In this case, we have

A = L
√

G
√

GL′ = (L
√

G)(L
√

G)′,

where L
√

G is again a lower triangular matrix and the square root is taken element
by element. Such a decomposition is called the Cholesky decomposition of A. This
decomposition shows that a positive-definite matrix A can be diagonalized as

L−1A(L′)−1 = L−1A(L−1)′ = G.
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Since L is a lower triangular matrix with unit diagonal elements, L−1 is also lower
triangular matrix with unit diagonal elements. Consider again the prior 2 × 2 matrix
�. It is easy to verify that

L =
[

1.0 0.0
0.5 1.0

]
and G =

[
2.0 0.0
0.0 1.5

]
satisfy � = LGL′. In addition,

L−1 =
[

1.0 0.0
−0.5 1.0

]
and L−1�(L−1)′ = G.

Vectorization and Kronecker Product

Writing an m × n matrix A in its columns as A = [a1, . . . , an], we define the
stacking operation as vec(A) = (a′

1, a
′
2, . . . , a

′
m)

′, which is an mn × 1 vector. For
two matrices Am×n and Cp×q , the Kronecker product between A and C is

A ⊗ C =


a11C a12C · · · a1nC

a21C a22C · · · a2nC
...

...
...

am1C am2C · · · amnC


mp×nq

.

For example, assume that

A =
[

2 1
−1 3

]
, C =

[
4 −1 3

−2 5 2

]
.

Then vec(A) = (2,−1, 1, 3)′, vec(C) = (4,−2,−1, 5, 3, 2)′, and

A ⊗ C =


8 −2 6 4 −1 3

−4 10 4 −2 5 2
−4 1 −3 12 −3 9

2 −5 −2 −6 15 6

 .

Assuming that the dimensions are appropriate, we have the following useful prop-
erties for the two operators:

1. A ⊗ C �= C ⊗ A in general.

2. (A ⊗ C)′ = A′ ⊗ C′.
3. A ⊗ (C + D) = A ⊗ C + A ⊗ D.

4. (A ⊗ C)(F ⊗ G) = (AF ) ⊗ (CG).

5. If A and C are invertible, then (A ⊗ C)−1 = A−1 ⊗ C−1.

6. For square matrices A and C, tr(A ⊗ C) = tr(A)tr(C).
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7. vec(A + C) = vec(A) + vec(C).
8. vec(ABC) = (C ′ ⊗ A) vec(B).

9. tr(AC) = vec(C ′)′vec(A) = vec(A′)′vec(C).
10. tr(ABC) = vec(A′)′(C ′ ⊗ I )vec(B) = vec(A′)′(I ⊗ B)vec(C)

= vec(B ′)′(A′ ⊗ I )vec(C) = vec(B ′)′(I ⊗ C)vec(A)

= vec(C ′)′(B ′ ⊗ I )vec(A) = vec(C ′)′(I ⊗ A)vec(B).

In multivariate statistical analysis, we often deal with symmetric matrices. It
is therefore convenient to generalize the stacking operation to the half-stacking
operation, which consists of elements on or below the main diagonal. Specifically,
for a symmetric square matrix A = [aij ]k×k , define

vech(A) = (a′
1., a

′
2∗, . . . , a

′
k∗)

′,

where a1. is the first column of A, and ai∗ = (aii , ai+1,i , . . . , aki)
′ is a (k − i + 1)-

dimensional vector. The dimension of vech(A) is k(k + 1)/2. For example, suppose
that k = 3. Then we have vech(A) = (a11, a21, a31, a22, a32, a33)

′, which is a six-
dimensional vector.

APPENDIX B: MULTIVARIATE NORMAL DISTRIBUTIONS

A k-dimensional random vector x = (x1, . . . , xk)
′ follows a multivariate normal

distribution with mean µ = (µ1, . . . , µk)
′ and positive-definite covariance matrix

� = [σij ] if its probability density function (pdf) is

f (x|µ,�) = 1

(2π)k/2|�|1/2
exp

[
−1

2
(x − µ)′�−1(x − µ)

]
. (8.47)

We use the notation x ∼ Nk(µ,�) to denote that x follows such a distribution.
This normal distribution plays an important role in multivariate statistical analysis
and it has several nice properties. Here we consider only those properties that are
relevant to our study. Interested readers are referred to Johnson and Wichern (1998)
for details.

To gain insight into multivariate normal distributions, consider the bivariate case
(i.e., k = 2). In this case, we have

� =
[

σ11 σ12

σ12 σ22

]
, �−1 = 1

σ11σ22 − σ 2
12

[
σ22 −σ12

−σ12 σ11

]
.

Using the correlation coefficient ρ = σ12/(σ1σ2), where σi = √
σii is the standard

deviation of xi , we have σ12 = ρ
√
σ11σ22 and |�| = σ11σ22(1 − ρ2). The pdf of x

then becomes

f (x1, x2|µ,�) = 1

2πσ1σ2

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)
[Q(x,µ,�)]

}
,
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where

Q(x,µ,�) =
(
x1 − µ1

σ1

)2

+
(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
.

Chapter 4 of Johnson and Wichern (1998) contains some plots of this pdf function.
Let c = (c1, . . . , ck)

′ be a nonzero k-dimensional vector. Partition the random
vector as x = (x ′

1, x
′
2)

′, where x1 = (x1, . . . , xp)
′ and x2 = (xp+1, . . . , xk)

′ with
1 ≤ p < k. Also partition µ and � accordingly as[

x1

x2

]
∼ N

([
µ1
µ2

]
,

[
�11 �12

�21 �22

])
.

Some properties of x are as follows:

1. c′x ∼ N(c′µ, c′�c). That is, any nonzero linear combination of x is uni-
variate normal. The inverse of this property also holds. Specifically, if c′x is
univariate normal for any nonzero vector c, then x is multivariate normal.

2. The marginal distribution of xi is normal. In fact, xi ∼ Nki (µi ,�ii ) for i =
1 and 2, where k1 = p and k2 = k − p.

3. �12 = 0 if and only if x1 and x2 are independent.

4. The random variable y = (x − µ)′�−1(x − µ) follows a chi-squared distri-
bution with m degrees of freedom.

5. The conditional distribution of x1 given x2 = b is also normally distributed
as

(x1|x2 = b) ∼ Np[µ1 + �12�
−1
22 (b − µ2),�11 − �12�

−1
22 �21].

The last property is useful in many scientific areas. For instance, it forms the
basis for time series forecasting under the normality assumption and for recursive
least-squares estimation.

APPENDIX C: SOME SCA COMMANDS

The following SCA commands are used in the analysis of Example 8.6:

input x1,x2. file ‘m-gs1n3-5301.txt’ % Load data
--

r1=ln(x1) % Take log transformation
--

r2=ln(x2)
--

miden r1,r2. no ccm. arfits 1 to 8.
-- % Denote the model by v21.

mtsm v21. series r1,r2. model (i-p1*b-p2*b**2)series= @
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c+(i-t1*b)noise.
--

mestim v21. % Initial estimation
--

p1(2,1)=0 % Set zero constraints
--

cp1(2,1)=1
--

p2(2,1)=0
--

cp2(2,1)=1
--

p2(2,2)=0
--

cp2(2,2)=1
--

t1(2,1)=0
--

ct1(2,1)=1
-- % Refine estimation and store residuals
mestim v21. method exact. hold resi(res1,res2)
--

miden res1,res2.

EXERCISES

8.1. Consider the monthly log stock returns, in percentages and including divi-
dends, of Merck & Company, Johnson & Johnson, General Electric, General
Motors, Ford Motor Company, and value-weighted index from January 1960
to December 2008; see the file m-mrk2vw.txt.

(a) Compute the sample mean, covariance matrix, and correlation matrix of
the data.

(b) Test the hypothesis H0 : ρ1 = · · · = ρ6 = 0, where ρi is the lag-i cross-
correlation matrix of the data. Draw conclusions based on the 5% signifi-
cance level.

(c) Is there any lead–lag relationship among the six return series?

8.2. The Federal Reserve Bank of St. Louis publishes selected interest rates and
U.S. financial data on its website: http://research.stlouisfed.org/fred2/.
Consider the monthly 1-year and 10-year Treasury constant maturity rates from
April 1953 to October 2009 for 679 observations; see the file m-gs1n10.txt.
The rates are in percentages.

(a) Let ct = rt − rt−1 be the change series of the monthly interest rate rt .
Build a bivariate autoregressive model for the two change series. Discuss
the implications of the model. Transform the model into a structural form.
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(b) Build a bivariate moving-average model for the two change series. Discuss
the implications of the model and compare it with the bivariate AR model
built earlier.

8.3. Again consider the monthly 1-year and 10-year Treasury constant maturity
rates from April 1953 to October 2009. Consider the log series of the data
and build a VARMA model for the series. Discuss the implications of the
model obtained.

8.4. Again consider the monthly 1-year and 10-year Treasury constant maturity
rates from April 1953 to October 2009. Are the two interest rate series
threshold cointegrated? Use the interest spread st = r10,t − r1,t as the thresh-
old variable, where rit is the i-year Treasury constant maturity rate. If they
are threshold cointegrated, build a multivariate threshold model for the two
series.

8.5. The bivariate AR(4) model x t − �4x t−4 = φ0 + at is a special seasonal model
with periodicity 4, where {at } is a sequence of independent and identically
distributed normal random vectors with mean zero and covariance matrix �.
Such a seasonal model may be useful in studying quarterly earnings of a
company. (a) Assume that x t is weakly stationary. Derive the mean vector
and covariance matrix of xt . (b) Derive the necessary and sufficient condition
of weak stationarity for xt . (c) Show that 
� = �4
�−4 for �> 0, where 
�

is the lag-� autocovariance matrix of xt .

8.6. The bivariate MA(4) model xt = at − �4at−4 is another seasonal model with
periodicity 4, where {at } is a sequence of independent and identically dis-
tributed normal random vectors with mean zero and covariance matrix �.
Derive the covariance matrices 
� of x t for � = 0, . . . , 5.

8.7. Consider the monthly U.S. 1-year and 3-year Treasury constant maturity rates
from April 1953 to March 2004. The data can be obtained from the Federal
Reserve Bank of St. Louis or from the file m-gs1n3-5304.txt (1-year, 3-
year, dates). See also Example 8.6, which uses a shorter data span. Here we
use the interest rates directly without the log transformation and define x t =
(x1t , x2t )

′, where x1t is the 1-year maturity rate and x2t is the 3-year maturity
rate.

(a) Identify a VAR model for the bivariate interest rate series. Write down the
fitted model.

(b) Compute the impulse response functions of the fitted VAR model. It suf-
fices to use the first 6 lags.

(c) Use the fitted VAR model to produce 1-step- to 12-step-ahead forecasts
of the interest rates, assuming that the forecast origin is March 2004.

(d) Are the two interest rate series cointegrated, when a restricted constant
term is used? Use 5% significance level to perform the test.

(e) If the series are cointegrated, build an ECM for the series. Write down
the fitted model.
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(f) Use the fitted ECM to produce 1-step- to 12-step-ahead forecasts of the
interest rates, assuming that the forecast origin is March 2004.

(g) Compare the forecasts produced by the VAR model and the ECM.
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C H A P T E R 9

Principal Component Analysis
and Factor Models

Most financial portfolios consist of multiple assets, and their returns depend con-
currently and dynamically on many economic and financial variables. Therefore, it
is important to use proper multivariate statistical analyses to study the behavior and
properties of portfolio returns. However, as demonstrated in the previous chapter,
analysis of multiple asset returns often requires high-dimensional statistical models
that are complicated and hard to apply. To simplify the task of modeling multiple
returns, we discuss in this chapter some dimension reduction methods to search
for the underlying structure of the assets. Principal component analysis (PCA) is
perhaps the most commonly used statistical method in dimension reduction, and
we start our discussion with the method. In practice, observed return series often
exhibit similar characteristics leading to the belief that they might be driven by
some common sources, often referred to as common factors. To study the common
pattern in asset returns and to simplify portfolio analysis, various factor models
have been proposed in the literature to analyze multiple asset returns. The second
goal of this chapter is to introduce some useful factor models and demonstrate their
applications in finance.

Three types of factor models are available for studying asset returns; see Connor
(1995) and Campbell, Lo, and MacKinlay (1997). The first type is the macroeco-
nomic factor models that use macroeconomic variables such as growth rate of GDP,
interest rates, inflation rate, and unemployment rate to describe the common behav-
ior of asset returns. Here the factors are observable and the model can be estimated
via linear regression methods. The second type is the fundamental factor models
that use firm or asset specific attributes such as firm size, book and market val-
ues, and industrial classification to construct common factors. The third type is the
statistical factor models that treat the common factors as unobservable or latent
variables to be estimated from the returns series. In this chapter, we discuss all
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three types of factor models and their applications in finance. Principal component
analysis and factor models for asset returns are also discussed in Alexander (2001)
and Zivot and Wang (2003).

The chapter is organized as follows. Section 9.1 introduces a general factor
model for asset returns, and Section 9.2 discusses macroeconomic factor models
with some simple examples. The fundamental factor model and its applications are
given in Section 9.3. Section 9.4 introduces principal component analysis that serves
as the basic method for statistical factor analysis. The PCA can also be used to
reduce the dimension in multivariate analysis. Section 9.5 discusses the orthogonal
factor models, including factor rotation and its estimation, and provides several
examples. Finally, Section 9.6 introduces asymptotic principal component analysis.

9.1 A FACTOR MODEL

Suppose that there are k assets and T time periods. Let rit be the return of asset i
in the time period t . A general form for the factor model is

rit = αi + βi1f1t + · · · + βimfmt + εit , t = 1, . . . , T ; i = 1, . . . , k, (9.1)

where αi is a constant representing the intercept, {fjt |j = 1, . . . , m} are m common
factors, βij is the factor loading for asset i on the j th factor, and εit is the specific
factor of asset i.

For asset returns, the factor f t = (f1t , . . . , fmt )
′ is assumed to be an

m-dimensional stationary process such that

E(f t ) = µf ,

Cov(f t ) = �f , an m × m matrix,

and the asset specific factor εit is a white noise series and uncorrelated with the
common factors fjt and other specific factors. Specifically, we assume that

E(εit ) = 0 for all i and t ,

Cov(fjt , εis) = 0 for all j , i, t and s,

Cov(εit , εjs) =
{

σ 2
i , if i = j and t = s,

0, otherwise.

Thus, the common factors are uncorrelated with the specific factors, and the specific
factors are uncorrelated among each other. The common factors, however, need not
be uncorrelated with each other in some factor models.

In some applications, the number of assets k may be larger than the number
of time periods T . We discuss an approach to analyze such data in Section 9.6. It
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is also common to assume that the factors, hence r t , are serially uncorrelated in
factor analysis. In applications, if the observed returns are serially dependent, then
the models in Chapter 8 can be used to remove the serial dependence.

In matrix form, the factor model in Eq. (9.1) can be written as

rit = αi + β if t + εit ,

where β i = (βi1, . . . , βim) is a row vector of loadings, and the joint model for the
k assets at time t is

r t = α + βf t + εt , t = 1, . . . , T (9.2)

where r t = (r1t , . . . , rkt )
′, α = (α1, . . . , αk)

′, β = [βij ] is a k × m factor-
loading matrix, and εt = (ε1t , . . . , εkt )

′ is the error vector with Cov(εt ) = D =
diag{σ 2

1 , . . . , σ
2
k }, a k × k diagonal matrix. The covariance matrix of the return r t

is then

Cov(r t ) = β�f β ′ + D.

The model presentation in Eq. (9.2) is in a cross-sectional regression form if the
factors fjt are observed.

Treating the factor model in Eq. (9.1) as a time series, we have

Ri = αi1T + Fβ ′
i + Ei , (9.3)

for the ith asset (i = 1, . . . , k), where Ri = (ri1, . . . , riT )
′, 1T is a T -dimensional

vector of ones, F is a T × m matrix whose t th row is f ′
t , and Ei = (εi1, . . . , εiT )

′.
The covariance matrix of Ei is Cov(Ei ) = σ 2

i I , a T × T diagonal matrix.
Finally, we can rewrite Eq. (9.2) as

r t = ξgt + εt ,

where gt = (1,f ′
t )

′ and ξ = [α,β], which is a k × (m + 1) matrix. Taking the
transpose of the prior equation and stacking all data together, we have

R = Gξ ′ + E, (9.4)

where R is a T × k matrix of returns whose t th row is r ′
t or, equivalently, whose

ith column is Ri of Eq. (9.3), G is a T × (m + 1) matrix whose t th row is g′
t ,

and E is a T × k matrix of specific factors whose t th row is ε′
t . If the common

factors f t are observed, then Eq. (9.4) is a special form of the multivariate linear
regression (MLR) model; see Johnson and Wichern (2007). For a general MLR
model, the covariance matrix of εt need not be diagonal.
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9.2 MACROECONOMETRIC FACTOR MODELS

For macroeconomic factor models, the factors are observed and we can apply the
least-squares method to the MLR model in Eq. (9.4) to perform estimation. The
estimate is

ξ̂ ′ =
[

α̂′

β̂
′
]

= (G′G)−1(G′R),

from which the estimates of α and β are readily available. The residuals of Eq.
(9.4) are

Ê = R − Gξ̂ ′.

Based on the model assumption, the covariance matrix of εt is estimated by

D̂ = diag{σ̂ 2
1 , . . . , σ̂

2
k },

where σ̂ 2
i is the (i, i)th element of Ê

′
Ê/(T − m − 1). Furthermore, the R2 of the

ith asset of Eq. (9.3) is

R2
i = 1 − [Ê

′
Ê]i,i

[R′R]i,i
, i = 1, . . . , k,

where Ai,i denotes the (i, i)th element of the matrix A.
Note that the aforementioned least-squares estimation does not impose the con-

straint that the specific factors εit are uncorrelated with each other. Consequently,
the estimates obtained are not efficient in general. However, imposing the orthog-
onalization constraint requires nontrivial computation and is often ignored. One
can check the off-diagonal elements of the matrix Ê

′
Ê/(T − m − 1) to verify the

adequacy of the fitted model. These elements should be close to zero.

9.2.1 Single-Factor Model

The best known macroeconomic factor model in finance is the market model ; see
Sharpe (1970). This is a single-factor model and can be written as

rit = αi + βirmt + εit , i = 1, . . . , k; t = 1, . . . , T , (9.5)

where rit is the excess return of the ith asset, rmt is the excess return of the market,
and βi is the well-known β for stock returns. To illustrate, we consider monthly
returns of 13 stocks and use the return of the S&P 500 index as the market return.
The stocks used and their tick symbols are given in Table 9.1, and the sample
period is from January 1990 to December 2003 so that k = 13 and T = 168. We
use the monthly series of 3-month Treasury bill rates of the secondary market as
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TABLE 9.1 Stocks Used and Their Tick Symbols in Analysis of Single-Factor Modela

Tick Company r̄ (σr) Tick Company r̄(σr )

AA Alcoa 1.09(9.49) KMB Kimberly-Clark 0.78(6.50)
AGE A.G. Edwards 1.36(10.2) MEL Mellon Financial 1.36(7.80)
CAT Caterpillar 1.23(8.71) NYT New York Times 0.81(7.37)
F Ford Motor 0.97(9.77) PG Procter & Gamble 1.08(6.75)
FDX FedEx 1.14(9.49) TRB Chicago Tribune 0.95(7.84)
GM General Motors 0.64(9.28) TXN Texas Instrument 2.19(13.8)
HPQ Hewlett-Packard 1.37(11.8) SP5 S&P 500 Index 0.42(4.33)
aSample means (standard errors) of excess returns are also given. The sample period is from January
1990 to December 2003.

the risk-free interest rate to obtain simple excess returns of the stock and market
index. The returns are in percentages.

We use S-Plus to implement the estimation method discussed in the previous
section. Most of the commands used also apply to the software R.

> x=read.matrix(‘‘m-fac9003.txt’’,header=T)
> xmtx=cbind(rep(1,168),x[,14])
> rtn=x[,1:13]
> xit.hat=solve(xmtx,rtn)
> beta.hat=t(xit.hat[2,])
> E.hat=rtn-xmtx%*%xit.hat
> D.hat=diag(crossprod(E.hat)/(168-2))
> r.square=1-(168-2)*D.hat/diag(var(rtn,SumSquares=T))

The estimates of βi , σ 2
i , and R2 for the ith asset return are given below:

> t(rbind(beta.hat,sqrt(D.hat),r.square))
beta.hat sigma(i) r.square

AA 1.292 7.694 0.347
AGE 1.514 7.808 0.415
CAT 0.941 7.725 0.219

F 1.219 8.241 0.292
FDX 0.805 8.854 0.135
GM 1.046 8.130 0.238

HPQ 1.628 9.469 0.358
KMB 0.550 6.070 0.134
MEL 1.123 6.120 0.388
NYT 0.771 6.590 0.205
PG 0.469 6.459 0.090

TRB 0.718 7.215 0.157
TXN 1.796 11.474 0.316

Figure 9.1 shows the bar plots of β̂i and R2 of the 13 stocks. The financial
stocks, AGE and MEL, and the high-tech stocks, HPQ and TXN, seem to have
higher β and R2. On the other hand, KMB and PG have lower β and R2. The R2
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Figure 9.1 Bar plots of (a) beta and (b) R2 for fitting single-factor market model to monthly excess
returns of 13 stocks. S&P 500 index excess return is used as market index. Sample period is from
January 1990 to December 2003.

ranges from 0.09 to 0.41, indicating that the market return explains less than 50%
of the variabilities of the individual stocks used.

The covariance and correlation matrices of r t under the market model can be
estimated using the following:

> cov.r=var(x[,14])*(t(beta.hat)%*%beta.hat)+diag(D.hat)
> sd.r=sqrt(diag(cov.r))
> corr.r=cov.r/outer(sd.r,sd.r)
> print(corr.r,digits=1,width=2)

AA AGE CAT F FDX GM HPQ KMB MEL NYT PG TRB TXN
AA 1.0 0.4 0.3 0.3 0.2 0.3 0.4 0.2 0.4 0.3 0.2 0.2 0.3

AGE 0.4 1.0 0.3 0.3 0.2 0.3 0.4 0.2 0.4 0.3 0.2 0.3 0.4
CAT 0.3 0.3 1.0 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.1 0.2 0.3
F 0.3 0.3 0.3 1.0 0.2 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.3

FDX 0.2 0.2 0.2 0.2 1.0 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.2
GM 0.3 0.3 0.2 0.3 0.2 1.0 0.3 0.2 0.3 0.2 0.1 0.2 0.3

HPQ 0.4 0.4 0.3 0.3 0.2 0.3 1.0 0.2 0.4 0.3 0.2 0.2 0.3
KMB 0.2 0.2 0.2 0.2 0.1 0.2 0.2 1.0 0.2 0.2 0.1 0.1 0.2
MEL 0.4 0.4 0.3 0.3 0.2 0.3 0.4 0.2 1.0 0.3 0.2 0.2 0.3
NYT 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.2 0.3 1.0 0.1 0.2 0.3
PG 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 1.0 0.1 0.2

TRB 0.2 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 1.0 0.2
TXN 0.3 0.4 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.2 1.0
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We can compare these estimated correlations with the sample correlations of the
excess returns.

> print(cor(rtn),digits=1,width=2)
AA AGE CAT F FDX GM HPQ KMB MEL NYT PG TRB TXN

AA 1.0 0.3 0.6 0.5 0.2 0.4 0.5 0.3 0.4 0.4 0.1 0.3 0.5
AGE 0.3 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.2 0.2 0.3
CAT 0.6 0.3 1.0 0.4 0.2 0.3 0.2 0.3 0.4 0.3 0.1 0.4 0.3
F 0.5 0.3 0.4 1.0 0.3 0.6 0.3 0.3 0.4 0.4 0.1 0.3 0.3

FDX 0.2 0.3 0.2 0.3 1.0 0.2 0.3 0.3 0.2 0.2 0.1 0.3 0.2
GM 0.4 0.3 0.3 0.6 0.2 1.0 0.3 0.3 0.4 0.2 0.1 0.3 0.3

HPQ 0.5 0.3 0.2 0.3 0.3 0.3 1.0 0.1 0.3 0.3 0.1 0.2 0.6
KMB 0.3 0.3 0.3 0.2 0.3 0.3 0.1 1.0 0.3 0.2 0.3 0.3 0.1
MEL 0.4 0.4 0.4 0.4 0.2 0.4 0.3 0.4 1.0 0.3 0.4 0.3 0.3
NYT 0.4 0.4 0.3 0.4 0.3 0.2 0.3 0.2 0.3 1.0 0.2 0.5 0.2
PG 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.2 1.0 0.3 0.1

TRB 0.3 0.2 0.4 0.3 0.3 0.3 0.2 0.3 0.3 0.5 0.3 1.0 0.2
TXN 0.5 0.3 0.3 0.3 0.2 0.3 0.6 0.1 0.3 0.2 0.1 0.2 1.0

In finance, one can use the concept of global minimum variance portfolio
(GMVP) to compare the covariance matrix implied by a fitted factor model with
the sample covariance matrix of the returns. For a given covariance matrix �, the
global minimum variance portfolio is the portfolio ω that solves

min
ω

σ 2
p,ω = ω′�ω such that ω′1 = 1,

where σ 2
p,ω is the variance of the portfolio. The solution is given by

ω = �−11

1′�−11
,

where 1 is the k-dimensional vector of ones.
For the market model considered, the GMVP for the fitted model and the data

are as follows:

> w.gmin.model=solve(cov.r)%*%rep(1,nrow(cov.r))
> w.gmin.model=w.gmin.model/sum(w.gmin.model)
> t(w.gmin.model)

AA AGE CAT F FDX GM
[1,] 0.0117 -0.0306 0.0792 0.0225 0.0802 0.0533

HPQ KMB MEL NYT PG TRB TXN
[1,] -0.0354 0.2503 0.0703 0.1539 0.2434 0.1400 -0.0388
> w.gmin.data=solve(var(rtn))%*%rep(1,nrow(cov.r))
> w.gmin.data=w.gmin.data/sum(w.gmin.data)
> t(w.gmin.data)
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AA AGE CAT F FDX GM
[1,] -0.0073 -0.0085 0.0866 -0.0232 0.0943 0.0916

HPQ KMB MEL NYT PG TRB TXN
[1,] 0.0345 0.2296 0.0495 0.1790 0.2651 0.0168 -0.0080

Comparing the two GMVPs, the weights assigned to TRB stock differ markedly.
The two portfolios, however, have larger weights for KMB, NYT, and PG stocks.

Finally, we examine the residual covariance and correlation matrices to verify
the assumption that the special factors are not correlated among the 13 stocks. The
first four columns of the residual correlation matrix are given below and there exist
some large values in the residual cross correlations, for example, Cor(CAT,AA) =
0.45 and Cor(GM,F) = 0.48.

> resi.cov=t(E.hat)%*%E.hat/(168-2)
> resi.sd=sqrt(diag(resi.cov))
> resi.cor=resi.cov/outer(resi.sd,resi.sd)
> print(resi.cor,digits=1,width=2)

AA AGE CAT F
AA 1.00 -0.13 0.45 0.22

AGE -0.13 1.00 -0.03 -0.01
CAT 0.45 -0.03 1.00 0.23
F 0.22 -0.01 0.23 1.00

FDX 0.00 0.14 0.05 0.07
GM 0.14 -0.09 0.15 0.48

HPQ 0.24 -0.13 -0.07 -0.00
KMB 0.16 0.06 0.18 0.05
MEL -0.02 0.06 0.09 0.10
NYT 0.13 0.10 0.07 0.19
PG -0.15 -0.02 -0.01 -0.07

TRB 0.12 -0.02 0.25 0.16
TXN 0.19 -0.17 0.09 -0.02

9.2.2 Multifactor Models

Chen, Roll, and Ross (1986) consider a multifactor model for stock returns. The fac-
tors used consist of unexpected changes or surprises of macroeconomic variables.
Here unexpected changes denote the residuals of the macroeconomic variables after
removing their dynamic dependence. A simple way to obtain unexpected changes
is to fit a VAR model of Chapter 8 to the macroeconomic variables. For illustration,
we consider the following two monthly macroeconomic variables:

1. Consumer price index (CPI) for all urban consumers: all items and with index
1982−1984 = 100.

2. Civilian employment numbers 16 years and over (CE16): measured in thou-
sands.
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Both CPI and CE16 series are seasonally adjusted, and the data span is from January
1975 to December 2003. We use a longer period to obtain the surprise series of the
variables. For both series, we construct the growth rate series by taking the first
difference of the logged data. The growth rates are in percentages.

To obtain the surprise series, we use the BIC criterion to identify a VAR(3)
model. Thus, the two macroeconomic factors used in the factor model are the
residuals of a VAR(3) model from 1990 to 2003. For the excess returns, we use
the same 13 stocks as before. Details of the analysis follow:

> da=read.table(’m-cpice16-dp7503.txt’),header=T)
> cpi=da[,1]
> cen=da[,2]
> x1=cbind(cpi,cen)
> y1=data.frame(x1)
> ord.choice=VAR(y1,max.ar=13)
> ord.choice$info

ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)
BIC 36.992 38.093 28.234 46.241 60.677 75.810

ar(7) ar(8) ar(9) ar(10) ar(11) ar(12) ar(13)
BIC 86.23 99.294 111.27 125.46 138.01 146.71 166.92
> var3.fit=VAR(x1~ar(3))
> res=var3.fit$residuals[166:333,1:2]
> da=matrix(scan(file=’m-fac9003.txt’),14)
> xmtx = cbind(rep(1,168),res)
> da=t(da)
> rtn=da[,1:13]
> xit.hat=solve(xmtx,rtn)
> beta.hat=t(xit.hat[2:3,])
> E.hat=rtn - xmtx%*%xit.hat
> D.hat=diag(crossprod(E.hat)/(168-3))
> r.square=1-(168-3)*D.hat/diag(var(rtn,SumSquares=T))

Figure 9.2 shows the bar plots of the beta estimates and R2 for the 13 stocks. It
is interesting to see that all excess returns are negatively related to the unexpected
changes of CPI growth rate. This seems reasonable. However, the R2 of all excess
returns are low, indicating that the two macroeconomic variables used have very
little explanatory power in understanding the excess returns of the 13 stocks.

The estimated covariance and correlation matrices of the two-factor model can
be obtained using the following:

> cov.rtn=beta.hat%*%var(res)%*%t(beta.hat)+diag(D.hat)
> sd.rtn=sqrt(diag(cov.rtn))
> cor.rtn = cov.rtn/outer(sd.rtn,sd.rtn)
> print(cor.rtn,diits=1,width=2)
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Figure 9.2 Bar plots of betas and R2 for fitting two-factor model to monthly excess returns of 13
stocks. Sample period is from January 1990 to December 2003.

The correlation matrix is very close to the identity matrix, indicating that the two-
factor model used does not fit the excess returns well. Finally, the correlation matrix
of the residuals of the two-factor model is given by the following:

> cov.resi=t(E.hat)%*%E.hat/(168-3)
> sd.resi=sqrt(diag(cov.resi))
> cor.resi=cov.resi/outer(sd.resi,sd.resi)
> print(cor.resi,digits=1,width=2)

As expected, this correlation matrix is close to that of the original excess returns
given before and is omitted.

9.3 FUNDAMENTAL FACTOR MODELS

Fundamental factor models use observable asset specific fundamentals such as
industrial classification, market capitalization, book value, and style classification
(growth or value) to construct common factors that explain the excess returns.
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There are two approaches to fundamental factor models available in the literature.
The first approach is proposed by Bar Rosenberg, founder of BARRA Inc., and is
referred to as the BARRA approach; see Grinold and Kahn (2000). In contrast to
the macroeconomic factor models, this approach treats the observed asset specific
fundamentals as the factor betas, β i , and estimates the factors f t at each time
index t via regression methods. The betas are time invariant, but the realizations
f t evolve over time. The second approach is the Fama–French approach proposed
by Fama and French (1992). In this approach, the factor realization fjt for a given
specific fundamental is obtained by constructing some hedge portfolio based on
the observed fundamental. We briefly discuss the two approaches in the next two
sections.

9.3.1 BARRA Factor Model

Assume that the excess returns and, hence, the factor realizations are mean cor-
rected. At each time index t , the factor model in Eq. (9.2) reduces to

r̃ t = βf t + εt , (9.6)

where r̃ t denotes the (sample) mean-corrected excess returns and, for simplicity in
notation, we continue to use f t as factor realizations. Since β is given, the model
in Eq. (9.6) is a multiple linear regression with k observations and m unknowns.
Because the number of common factors m should be less than the number of
assets k, the regression is estimable. However, the regression is not homogeneous
because the covariance matrix of εt is D = diag{σ 2

1 , . . . , σ
2
k } with σ 2

i = Var(εit ),
which depends on the ith asset. Consequently, the factor realization at time index t

can be estimated by the weighted least-squares (WLS) method using the standard
errors of the specific factors as the weights. The resulting estimate is

f̂ t = (
β ′D−1β

)−1 (
β ′D−1r̃ t

)
. (9.7)

In practice, the covariance matrix D is unknown so that we use a two-step procedure
to perform the estimation.

In step one, the ordinary least-squares (OLS) method is used at each time index
t to obtain a preliminary estimate of f t as

f̂ t,o = (β ′β)−1(β ′r̃ t ),

where the second subscript o is used to denote the OLS estimate. This estimate of
factor realization is consistent, but not efficient. The residual of the OLS regres-
sion is

εt,o = r̃ t − βf̂ t,o.
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Since the residual covariance matrix is time invariant, we can pool the residuals
together (for t = 1, . . . , T ) to obtain an estimate of D as

D̂o = diag

{
1

T − 1

T∑
t=1

(εt,oε
′
t,o)

}
.

In step two, we plug in the estimate D̂o to obtain a refined estimate of the factor
realization

f̂ t,g =
(
β ′D̂−1

o β
)−1 (

β ′D̂−1
o r̃ t

)
, (9.8)

where the second subscript g denotes the generalized least-squares (GLS) esti-
mate, which is a sample version of the WLS estimate. The residual of the refined
regression is

εt,g = r̃ t − βf̂ t,g,

from which we estimate the residual variance matrix as

D̂g = diag

{
1

T − 1

T∑
t=1

(εt,gε
′
t,g)

}
.

Finally, the covariance matrix of the estimated factor realizations is

�̂f = 1

T − 1

T∑
t=1

(f̂ t,g − f̄ g)(f̂ t,g − f̄ g)
′,

where

f̄ g = 1

T

T∑
t=1

f̂ t,g.

From Eq. (9.6), the covariance matrix of the excess returns under the BARRA
approach is

Cov(r t ) = β�̂f β ′ + D̂g.

Industry Factor Model
For illustration, we consider monthly excess returns of 10 stocks and use
industrial classification as the specific asset fundamental. The stocks used are
given in Table 9.2 and can be classified into three industrial sectors—namely,
financial services, computer and high-tech industry, and other. The sample period
is again from January 1990 to December 2003. Under the BARRA framework,
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TABLE 9.2 Stocks Used and Their Tick Symbols in Analysis of Industrial Factor
Modela

Tick Company r̄(σr ) Tick Company r̄(σr )

AGE A.G. Edwards 1.36(10.2) HPQ Hewlett-Packard 1.37(11.8)
C Citigroup 2.08(9.60) IBM Int. Bus. Machines 1.06(9.47)
MWD Morgan Stanley 1.87(11.2) AA Alcoa 1.09(9.49)
MER Merrill Lynch 2.08(10.4) CAT Caterpillar 1.23(8.71)
DELL Dell Inc. 4.82(16.4) PG Procter & Gamble 1.08(6.75)
aSample mean and standard deviation of the excess returns are also given. The sample span is from
January 1990 to December 2003.

there are three common factors representing the three industrial sectors and the
betas are indicators for the three industrial sectors; that is,

r̃it = βi1f1t + βi2f2t + βi3f3t + εit , i = 1, . . . , 10, (9.9)

with the betas being

βij =
{

1 if asset i belongs to the j industrial sector,
0 otherwise,

}
(9.10)

where j = 1, 2, 3 representing the financial, high-tech, and other sectors, respec-
tively. For instance, the beta vector for the IBM stock return is β i = (0, 1, 0)′ and
that for Alcoa stock return is β i = (0, 0, 1)′.

In Eq. (9.9), f1t is the factor realization of the financial services sector, f2t is
that of the computer and high-tech sector, and f3t is for the other sector. Because
the βij are indicator variables, the OLS estimate of f t is extremely simple. Indeed,
f t is the vector consisting of the averages of sector excess returns at time t .
Specifically,

f̂ t,o =


AGEt+Ct+MDWt+MERt

4

DELLt+HPQt+IBMt

3

AAt+CATt+PGt

3

 .

The specific factor of the ith asset is simply the deviation of its excess return
from its industrial sample average. One can then obtain an estimate of the residual
variance matrix D to perform the generalized least-squares estimation. We use
S-Plus to perform the analysis. The commands also apply to R. First, load the
returns into S-Plus, remove the sample means, create the industrial dummies, and
compute the sample correlation matrix of the returns.

> da=read.table(’m-barra-9003.txt’),header=T)
> rm = matrix(apply(da,2,mean),1)
> rtn = da - matrix(1,168,1)%*%rm
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> fin = c(rep(1,4),rep(0,6))
> tech = c(rep(0,4),rep(1,3),rep(0,3)
> oth = c(rep(0,7),rep(1,3))
> ind.dum = cbind(fin,tech,oth)
> ind.dum

fin tech oth
[1,] 1 0 0
[2,] 1 0 0
[3,] 1 0 0
[4,] 1 0 0
[5,] 0 1 0
[6,] 0 1 0
[7,] 0 1 0
[8,] 0 0 1
[9,] 0 0 1

[10,] 0 0 1
> cov.rtn=var(rtn)
> sd.rtn=sqrt(diag(cov.rtn))
> corr.rtn=cov.rtn/outer(sd.rtn,sd.rtn)
> print(corr.rtn,digits=1,width=2)

AGE C MWD MER DELL HPQ IBM AA CAT PG
AGE 1.0 0.6 0.6 0.6 0.3 0.3 0.3 0.3 0.3 0.2
C 0.6 1.0 0.7 0.7 0.2 0.4 0.4 0.4 0.4 0.3
MWD 0.6 0.7 1.0 0.8 0.3 0.5 0.4 0.4 0.3 0.3
MER 0.6 0.7 0.8 1.0 0.2 0.5 0.3 0.4 0.3 0.3
DELL 0.3 0.2 0.3 0.2 1.0 0.5 0.4 0.3 0.1 0.1
HPQ 0.3 0.4 0.5 0.5 0.4 1.0 0.5 0.5 0.2 0.1
IBM 0.3 0.4 0.4 0.3 0.4 0.5 1.0 0.4 0.3-0.0
AA 0.3 0.4 0.4 0.4 0.3 0.5 0.4 1.0 0.6 0.1
CAT 0.3 0.4 0.3 0.3 0.1 0.2 0.3 0.6 1.0 0.1
PG 0.2 0.3 0.3 0.3 0.1 0.1-0.0 0.1 0.1 1.0

The OLS estimates, their residuals, and residual variances are estimated as fol-
lows:

> F.hat.o = solve(crossprod(ind.dum))%*%t(ind.dum)%*%rtn.rm
> E.hat.o = rtn.rm - ind.dum%*%F.hat.o
> diagD.hat.o=rowVars(E.hat.o)

One can then obtain the generalized least-squares estimates.

> Dinv.hat = diag(diagD.hat.o^(-1))
> Hmtx=solve(t(ind.dum)%*%Dinv.hat%*%ind.dum)%*%t(ind.dum)

%*%Dinv.hat
> F.hat.g = Hmtx%*%rtn.rm
> F.hat.gt=t(F.hat.g)
> E.hat.g = rtn.rm - ind.dum%*%F.hat.g
> diagD.hat.g = rowVars(E.hat.g)
> t(Hmtx)
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fin tech oth
[1,] 0.1870 0.0000 0.0000
[2,] 0.2548 0.0000 0.0000
[3,] 0.2586 0.0000 0.0000
[4,] 0.2995 0.0000 0.0000
[5,] 0.0000 0.2272 0.0000
[6,] 0.0000 0.4015 0.0000
[7,] 0.0000 0.3713 0.0000
[8,] 0.0000 0.0000 0.3319
[9,] 0.0000 0.0000 0.4321

[10,] 0.0000 0.0000 0.2360
> cov.ind=ind.dum%*%var(F.hat.gt)%*%t(ind.dum)

+ diag(diagD.hat.g)
> sd.ind=sqrt(diag(cov.ind))
> corr.ind=cov.ind/outer(sd.ind,sd.ind)
> print(corr.ind,digits=1,width=2)

AGE C MWD MER DELL HPQ IBM AA CAT PG
AGE 1.0 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3
C 0.7 1.0 0.8 0.8 0.3 0.4 0.4 0.3 0.3 0.3
MWD 0.7 0.8 1.0 0.8 0.3 0.4 0.4 0.3 0.4 0.3
MER 0.7 0.8 0.8 1.0 0.3 0.4 0.4 0.3 0.4 0.3
DELL 0.3 0.3 0.3 0.3 1.0 0.5 0.5 0.2 0.2 0.2
HPQ 0.3 0.4 0.4 0.4 0.5 1.0 0.7 0.3 0.3 0.2
IBM 0.3 0.4 0.4 0.4 0.5 0.7 1.0 0.3 0.3 0.2
AA 0.3 0.3 0.3 0.3 0.2 0.3 0.3 1.0 0.7 0.5
CAT 0.3 0.3 0.4 0.4 0.2 0.3 0.3 0.7 1.0 0.6
PG 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.5 0.6 1.0

The model-based correlations of stocks within an industrial sector are larger
than their sample counterparts. For instance, the sample correlation between CAT
and PG stock returns is only 0.1, but the correlation based on the fitted model is
0.6. Finally, Figure 9.3 shows the time plots of the factor realizations based on the
generalized least-squares estimation.

Factor Mimicking Portfolio
Consider the special case of BARRA factor models with a single factor. Here the
WLS estimate of ft in Eq. (9.7) has a nice interpretation. Consider a portfolio
ω = (ω1, . . . , ωk)

′ of the k assets that solves

min
ω

( 1
2ω′Dω) such that ω′β = 1.

It turns out that the solution to this portfolio problem is given by

ω′ = (β ′D−1β)−1(β ′D−1).

Thus, the estimated factor realization is the portfolio return

f̂t = ω′r t .
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Figure 9.3 Estimated factor realizations of BARRA industrial factor model for 10 monthly stock
returns in 3 industrial sectors: (a) factor realizations: financial sector, (b) high-tech sector, and (c) other
sector.

If the portfolio ω is normalized such that
∑k

i=1 ωi = 1, it is referred to as a factor
mimicking portfolio. For multiple factors, one can apply the idea to each factor
individually.

Remark. In practice, the sample mean of an excess return is often not signif-
icantly different from zero. Thus, one may not need to remove the sample mean
before fitting a BARRA factor model. �

9.3.2 Fama–French Approach

For a given asset fundamental (e.g., ratio of book-to-market value), Fama and
French (1992) determined factor realizations using a two-step procedure. First, they
sorted the assets based on the values of the observed fundamental. Then they formed
a hedge portfolio, which is long in the top quintile ( 1

3 ) of the sorted assets and
short in the bottom quintile of the sorted assets. The observed return on this hedge
portfolio at time t is the observed factor realization for the given asset fundamental.
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The procedure is repeated for each asset fundamental under consideration. Finally,
given the observed factor realizations {f t |t = 1, . . . , T }, the betas for each asset
are estimated using a time series regression method. These authors identify three
observed fundamentals that explain high percentages of variability in excess returns.
The three fundamentals used by Fama and French are (a) the overall market return
(market excess return), (b) the performance of small stocks relative to large stocks
(SMB, small minus big), and (c) the performance of value stocks relative to growth
stocks (HML, high minus low). The size sorted by market equity and the ratio of
book equity to market equity is used to define value and growth stocks with value
stocks having high book equity to market equity ratio.

Remark. The concepts of factor may differ between factor models. The three
factors used in the Fama–French approach are three financial fundamentals. One
can combine the fundamentals to create a new attribute of the stocks and refer to the
resulting model as a single-factor model. This is particularly so because the model
used is a linear statistical model. Thus, care must be exercised when one refers to
the number of factors in a factor model. On the other hand, the number of factors
is more well defined in statistical factor models, which we discuss next. �

9.4 PRINCIPAL COMPONENT ANALYSIS

An important topic in multivariate time series analysis is the study of the covariance
(or correlation) structure of the series. For example, the covariance structure of a
vector return series plays an important role in portfolio selection. In what follows,
we discuss some statistical methods useful in studying the covariance structure of
a vector time series.

Given a k-dimensional random variable r = (r1, . . . , rk)
′ with covariance matrix

�r , a principal component analysis (PCA) is concerned with using a few linear
combinations of ri to explain the structure of �r . If r denotes the monthly log
returns of k assets, then PCA can be used to study the main source of variations
of these k asset returns. Here the keyword is few so that simplification can be
achieved in multivariate analysis.

9.4.1 Theory of PCA

Principal component analysis applies to either the covariance matrix �r or the
correlation matrix ρr of r . Since the correlation matrix is the covariance matrix
of the standardized random vector r∗ = S−1r , where S is the diagonal matrix
of standard deviations of the components of r , we use covariance matrix in our
theoretical discussion. Let wi = (wi1, . . . , wik)

′ be a k-dimensional real-valued
vector, where i = 1, . . . , k. Then

yi = w′
ir =

k∑
j=1

wij rj
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is a linear combination of the random vector r . If r consists of the simple returns
of k stocks, then yi is the return of a portfolio that assigns weight wij to the
j th stock. Since multiplying a constant to wi does not affect the proportion
of allocation assigned to the j th stock, we standardize the vector wi so that
w′

iwi=
∑k

j=1 w
2
ij = 1.

Using properties of a linear combination of random variables, we have

Var(yi) = w′
i�rwi , i = 1, . . . , k, (9.11)

Cov(yi, yj ) = w′
i�rwj , i, j = 1, . . . , k. (9.12)

The idea of PCA is to find linear combinations wi such that yi and yj are uncorre-
lated for i �= j and the variances of yi are as large as possible. More specifically:

1. The first principal component of r is the linear combination y1 = w′
1r that

maximizes Var(y1) subject to the constraint w′
1w1 = 1.

2. The second principal component of r is the linear combination y2 = w′
2r

that maximizes Var(y2) subject to the constraints w′
2w2 = 1 and Cov(y2, y1)

= 0.

3. The ith principal component of r is the linear combination yi = w′
ir that

maximizes Var(yi) subject to the constraints w′
iwi = 1 and Cov(yi, yj ) = 0

for j = 1, . . . , i − 1.

Since the covariance matrix �r is nonnegative definite, it has a spectral
decomposition; see Appendix A of Chapter 8. Let (λ1, e1), . . ., (λk, ek) be
the eigenvalue–eigenvector pairs of �r , where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and
ei = (ei1, . . . , eik)

′, which is properly normalized. We have the following
statistical result.

Result 9.1. The ith principal component of r is yi = e′
ir = ∑k

j=1 eij rj for
i = 1, . . . , k. Moreover,

Var(yi) = e′
i�rei = λi, i = 1, . . . , k,

Cov(yi, yj ) = e′
i�rej = 0, i �= j.

If some eigenvalues λi are equal, the choices of the corresponding eigenvectors ei
and hence yi are not unique. In addition, we have

k∑
i=1

Var(ri) = tr(�r ) =
k∑

i=1

λi =
k∑

i=1

Var(yi). (9.13)

The result of Eq. (9.13) says that

Var(yi)∑k
i=1 Var(ri)

= λi

λ1 + · · · + λk

.
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Consequently, the proportion of total variance in r explained by the ith princi-
pal component is simply the ratio between the ith eigenvalue and the sum of all
eigenvalues of �r . One can also compute the cumulative proportion of total vari-
ance explained by the first i principal components [i.e., (

∑i
j=1 λj )/(

∑k
j=1 λj )].

In practice, one selects a small i such that the resulting cumulative proportion is
large.

Since tr(ρr ) = k, the proportion of variance explained by the ith principal
component becomes λi/k when the correlation matrix is used to perform the PCA.

A by-product of the PCA is that a zero eigenvalue of �r , or ρr , indicates the
existence of an exact linear relationship between the components of r . For instance,
if the smallest eigenvalue λk = 0, then by Result 9.1 Var(yk) = 0. Therefore, yk =∑k

j=1 ekj rj is a constant and there are only k − 1 random quantities in r . In this
case, the dimension of r can be reduced. For this reason, PCA has been used in
the literature as a tool for dimension reduction.

9.4.2 Empirical PCA

In application, the covariance matrix �r and the correlation matrix ρr of the return
vector r are unknown, but they can be estimated consistently by the sample covari-
ance and correlation matrices under some regularity conditions. Assuming that the
returns are weakly stationary and the data consist of {r t |t = 1, . . . , T }, we have
the following estimates:

�̂r ≡ [σ̂ij,r ] = 1

T − 1

T∑
t=1

(r t − r̄)(r t − r̄)′, r̄ = 1

T

T∑
t=1

r t , (9.14)

ρ̂r = Ŝ
−1

�̂r Ŝ
−1

, (9.15)

where Ŝ = diag{√σ̂11,r , . . . ,
√
σ̂kk,r} is the diagonal matrix of sample standard

errors of r t . Methods to compute eigenvalues and eigenvectors of a symmetric
matrix can then be used to perform the PCA. Most statistical packages now have
the capability to perform principal component analysis. In R and S-Plus, the basic
command of PCA is princomp, and in FinMetrics the command is mfactor.

Example 9.1. Consider the monthly log stock returns of International Business
Machines, Hewlett-Packard, Intel Corporation, J.P. Morgan Chase, and Bank of
America from January 1990 to December 2008. The returns are in percentages and
include dividends. The data set has 228 observations. Figure 9.4 shows the time
plots of these five monthly return series. As expected, returns of companies in the
same industrial sector tend to exhibit similar patterns.

Denote the returns by r ′ = (IBM, HPQ, INTC, JPM, BAC). The sample mean
vector of the returns is (0.70, 0.99, 1.20, 0.82, 0.41)′ and the sample covariance
and correlation matrices are
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Figure 9.4 Time plots of monthly log stock returns in percentages and including dividends for (a)
International Business Machines, (b) Hewlett-Packard, (c) Intel, (d) J.P. Morgan Chase, and (e) Bank
of America from January 1990 to December 2008.

�̂r =


74.64
42.28 112.22
48.03 70.45 146.50
30.10 42.42 44.59 106.04
21.07 26.30 29.24 67.45 91.83

 ,

ρ̂r =


1.00
0.46 1.00
0.46 0.55 1.00
0.34 0.39 0.36 1.00
0.25 0.26 0.25 0.68 1.00

 .

Table 9.3 gives the results of PCA using both the covariance and correlation
matrices. Also given are eigenvalues, eigenvectors, and proportions of variabilities
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TABLE 9.3 Results of Principal Component Analysis for Monthly Log Returns,
Including Dividends of Stocks of IBM, Hewlett-Packard, Intel, J.P. Morgan Chase,
and Bank of America from January 1990 to December 2008a

Using Sample Covariance Matrix

Eigenvalue 284.17 112.93 57.43 46.81 29.87
Proportion 0.535 0.213 0.108 0.088 0.056
Cumulative 0.535 0.748 0.856 0.944 1.000
Eigenvector 0.330 0.139 −0.264 0.895 −0.014

0.483 0.279 −0.701 −0.430 −0.116
0.581 0.478 0.652 −0.096 −0.016
0.448 −0.550 0.013 −0.064 0.702
0.347 −0.610 0.119 −0.009 −0.702

Using Sample Correlation Matrix

Eigenvalue 2.607 1.072 0.569 0.451 0.301
Proportion 0.522 0.214 0.114 0.090 0.060
Cumulative 0.522 0.736 0.850 0.940 1.000
Eigenvector 0.428 0.341 0.837 −0.002 0.008

0.460 0.356 −0.380 0.704 0.145
0.451 0.385 −0.389 −0.704 0.022
0.479 −0.469 −0.046 0.052 −0.739
0.416 −0.623 0.035 −0.073 0.658

aThe eigenvectors are in columns.

explained by the principal components. Consider the correlation matrix and denote
the sample eigenvalues and eigenvectors by λ̂i and êi . We have

λ̂1 = 2.608, ê1 = (0.428, 0.460, 0.451, 0.479, 0.416)′,

λ̂2 = 1.072, ê2 = (0.341, 0.356, 0.385,−0.469,−0.623)′

for the first two principal components. These two components explain about 74%
of the total variability of the data, and they have interesting interpretations. The first
component is a roughly equally weighted linear combination of the stock returns.
This component might represent the general movement of the stock market and
hence is a market component . The second component represents the difference
between the two industrial sectors—namely, technologies versus financial services.
It might be an industrial component . Similar interpretations of principal components
can also be found by using the covariance matrix of r .

An informal but useful procedure to determine the number of principal compo-
nents needed in an application is to examine the scree plot , which is the time plot of
the eigenvalues λ̂i ordered from the largest to the smallest (i.e., a plot of λ̂i versus
i). Figure 9.5(a) shows the scree plot for the five stock returns of Example 9.1. By
looking for an elbow in the scree plot, indicating that the remaining eigenvalues
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Figure 9.5 Scree plots for two 5-dimensional asset returns: (a) series of Example 9.1 and (b) bond
index returns of Example 9.3.

are relatively small and all about the same size, one can determine the appropriate
number of components. For both plots in Figure 9.5, two components appear to be
appropriate. Finally, except for the case in which λj = 0 for j > i, selecting the
first i principal components only provides an approximation to the total variance
of the data. If a small i can provide a good approximation, then the simplification
becomes valuable.

Remark. The R and S-Plus commands used to perform the PCA are given
below. The command princomp gives the square root of the eigenvalue and
denotes it as standard deviation.

> rtn=read.table(‘‘m-5clog-9008.txt’’),header=T)
> pca.cov = princomp(rtn)
> names(pca.cov)
> summary(pca.cov)
> pca.cov$loadings
> screeplot(pca.cov)
> pca.corr=princomp(rtn,cor=T)
> summary(pac.corr) �



statistical factor analysis 489

9.5 STATISTICAL FACTOR ANALYSIS

We now turn to statistical factor analysis. One of the main difficulties in multi-
variate statistical analysis is the “curse of dimensionality.” For serially correlated
data, the number of parameters of a parametric model often increases dramatically
when the order of the model or the dimension of the time series is increased. Sim-
plifying methods are often sought to overcome the curse of dimensionality. From
an empirical viewpoint, multivariate data often exhibit similar patterns indicating
the existence of common structure hidden in the data. Statistical factor analysis is
one of those simplifying methods available in the literature. The aim of statistical
factor analysis is to identify, from the observed data, a few factors that can account
for most of the variations in the covariance or correlation matrix of the data.

Traditional statistical factor analysis assumes that the data have no serial cor-
relations. This assumption is often violated by financial data taken with frequency
less than or equal to a week. However, the assumption appears to be reasonable
for asset returns with lower frequencies (e.g., monthly returns of stocks or market
indexes). If the assumption is violated, then one can use the parametric models
discussed in this book to remove the linear dynamic dependence of the data and
apply factor analysis to the residual series.

In what follows, we discuss statistical factor analysis based on the orthogonal
factor model . Consider the return r t = (r1t , . . . , rkt )

′ of k assets at time period t and
assume that the return series r t is weakly stationary with mean µ and covariance
matrix �r . The statistical factor model postulates that r t is linearly dependent on
a few unobservable random variables f t = (f1t , . . . , fmt )

′ and k additional noises
εt = (ε1t , . . . , εkt )

′. Here m < k, fit are the common factors, and εit are the errors.
Mathematically, the statistical factor model is also in the form of Eq. (9.1) except
that the intercept α is replaced by the mean return µ. Thus, a statistical factor
model is in the form

r t − µ = βf t + εt , (9.16)

where β = [βij ]k×m is the matrix of factor loadings , βij is the loading of the ith
variable on the j th factor, and εit is the specific error of rit . A key feature of
the statistical factor model is that the m factors fit and the factor loadings βij are
unobservable. As such, Eq. (9.16) is not a multivariate linear regression model,
even though it has a similar appearance. This special feature also distinguishes a
statistical factor model from other factor models discussed earlier.

The factor model in Eq. (9.16) is an orthogonal factor model if it satisfies the
following assumptions:

1. E(f t ) = 0 and Cov(f t ) = Im, the m × m identity matrix.

2. E(εt ) = 0 and Cov(εt ) = D = diag{σ 2
1 , . . . , σ

2
k } (i.e., D is a k × k diagonal

matrix).

3. f t and εt are independent so that Cov(f t , εt ) = E(f tε
′
t ) = 0m×k .
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Under the previous assumptions, it is easy to see that

�r = Cov(r t ) = E[(r t − µ)(r t − µ)′]

= E[(βf t + εt )(βf t + εt )
′]

= ββ ′ + D (9.17)

and

Cov(r t ,f t ) = E[(r t − µ)f ′
t ] = βE(f tf

′
t ) + E(εtf

′
t ) = β. (9.18)

Using Eqs. (9.17) and (9.18), we see that for the orthogonal factor model in Eq.
(9.16)

Var(rit ) = β2
i1 + · · · + β2

im + σ 2
i ,

Cov(rit , rj t ) = βi1βj1 + · · · + βimβjm,

Cov(rit , fjt ) = βij .

The quantity β2
i1 + · · · + β2

im, which is the portion of the variance of rit contributed
by the m common factors, is called the communality . The remaining portion σ 2

i

of the variance of rit is called the uniqueness or specific variance. Let c2
i = β2

i1 +
· · · + β2

im be the communality, which is the sum of squares of the loadings of the
ith variable on the m common factors. The variance of component rit becomes
Var(rit ) = c2

i + σ 2
i .

In practice, not every covariance matrix has an orthogonal factor representation.
In other words, there exists a random variable r t that does not have any orthogonal
factor representation. Furthermore, the orthogonal factor representation of a random
variable is not unique. In fact, for any m × m orthogonal matrix P satisfying PP ′
= P ′P = I , let β∗ = βP and f ∗

t = P ′f t . Then

r t − µ = βf t + εt = βPP ′f t + εt = β∗f ∗
t + εt .

In addition, E(f ∗
t ) = 0 and Cov(f ∗

t ) = P ′Cov(f t )P = P ′P = I . Thus, β∗ and
f ∗

t form another orthogonal factor model for r t . This nonuniqueness of orthogonal
factor representation is a weakness as well as an advantage for factor analysis. It
is a weakness because it makes the meaning of factor loading arbitrary. It is an
advantage because it allows us to perform rotations to find common factors that
have nice interpretations. Because P is an orthogonal matrix, the transformation
f ∗

t = P ′f t is a rotation in the m-dimensional space.

9.5.1 Estimation

The orthogonal factor model in Eq. (9.16) can be estimated by two methods.
The first estimation method uses the principal component analysis of the previ-
ous section. This method does not require the normality assumption of the data nor
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the prespecification of the number of common factors. It applies to both the covari-
ance and correlation matrices. But as mentioned in PCA, the solution is often an
approximation. The second estimation method is the maximum-likelihood method
that uses normal density and requires a prespecification for the number of common
factors.

Principal Component Method
Again let (λ̂1, ê1), . . . , (λ̂k, êk) be pairs of the eigenvalues and eigenvectors of the
sample covariance matrix �̂r , where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k . Let m < k be the number
of common factors. Then the matrix of factor loadings is given by

β̂ ≡ [β̂ij ] =
[√

λ̂1̂e1 |
√
λ̂2̂e2 | · · · |

√
λ̂mêm

]
. (9.19)

The estimated specific variances are the diagonal elements of the matrix �̂r − β̂β̂
′
.

That is, D̂ = diag{σ̂ 2
1 , . . . , σ̂

2
k }, where σ̂ 2

i = σ̂ii,r − ∑m
j=1 β̂

2
ij , where σ̂ii,r is the

(i, i)th element of �̂r . The communalities are estimated by

ĉ2
i = β̂2

i1 + · · · + β̂2
im.

The error matrix caused by approximation is

�̂r − (β̂β̂
′ + D̂).

Ideally, we would like this matrix to be close to zero. It can be shown that the
sum of squared elements of �̂r − (β̂β̂

′ + D̂) is less than or equal to λ̂2
m+1 + · · · +

λ̂2
k . Therefore, the approximation error is bounded by the sum of squares of the

neglected eigenvalues.
From the solution in Eq. (9.19), the estimated factor loadings based on the

principal component method do not change as the number of common factors m

is increased.

Maximum-Likelihood Method
If the common factors f t and the specific factors εt are jointly normal, then r t

is multivariate normal with mean µ and covariance matrix �r = ββ ′ + D. The
maximum-likelihood method can then be used to obtain estimates of β and D under
the constraint β ′D−1β = �, which is a diagonal matrix. Here µ is estimated by
the sample mean. For more details of this method, readers are referred to Johnson
and Wichern (2007).

In using the maximum-likelihood method, the number of common factors must
be given a priori. In practice, one can use a modified likelihood ratio test to check
the adequacy of a fitted m-factor model. The test statistic is

LR(m) = − [
T − 1 − 1

6 (2k + 5) − 2
3m

] (
ln |�̂r | − ln |̂ββ̂

′ + D̂|
)
, (9.20)
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which, under the null hypothesis of m factors, is asymptotically distributed as a
chi-squared distribution with 1

2 [(k − m)2 − k − m] degrees of freedom. We discuss
some methods for selecting m in Section 9.6.1.

9.5.2 Factor Rotation

As mentioned before, for any m × m orthogonal matrix P ,

r t − µ = βf t + εt = β∗f ∗
t + εt ,

where β∗ = βP and f ∗
t = P ′f t . In addition,

ββ ′ + D = βPP ′β ′ + D = β∗(β∗)′ + D.

This result indicates that the communalities and the specific variances remain
unchanged under an orthogonal transformation. It is then reasonable to find an
orthogonal matrix P to transform the factor model so that the common factors
have nice interpretations. Such a transformation is equivalent to rotating the com-
mon factors in the m-dimensional space. In fact, there are infinite possible factor
rotations available. Kaiser (1958) proposes a varimax criterion to select the rotation
that works well in many applications. Denote the rotated matrix of factor loadings
by β∗ = [β∗

ij ] and the ith communality by c2
i . Define β̃∗

ij = β∗
ij /ci to be the rotated

coefficients scaled by the (positive) square root of communalities. The varimax
procedure selects the orthogonal matrix P that maximizes the quantity

V = 1

k

m∑
j=1

 k∑
i=1

(β̃∗
ij )

4 − 1

k

(
k∑

i=1

β̃∗2
ij

)2
 .

This complicated expression has a simple interpretation. Maximizing V corresponds
to spreading out the squares of the loadings on each factor as much as possible.
Consequently, the procedure is to find groups of large and negligible coefficients
in any column of the rotated matrix of factor loadings. In a real application, factor
rotation is used to aid the interpretations of common factors. It may be helpful in
some applications, but not informative in others. There are many criteria available
for factor rotation.

9.5.3 Applications

Given the data {r t } of asset returns, the statistical factor analysis enables us to
search for common factors that explain the variabilities of the returns. Since factor
analysis assumes no serial correlations in the data, one should check the validity of
this assumption before using factor analysis. The multivariate portmanteau statistics
can be used for this purpose. If serial correlations are found, one can build a
VARMA model to remove the dynamic dependence in the data and apply the factor
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analysis to the residual series. For many returns series, the correlation matrix of
the residuals of a linear model is often very close to the correlation matrix of the
original data. In this case, the effect of dynamic dependence on factor analysis is
negligible.

We consider three examples in this section. The first and third examples use the
R or S-Plus to perform the analysis and the second example uses Minitab. Other
packages can also be used.

Example 9.2. Consider again the monthly log stock returns of IBM, Hewlett-
Parkard, Intel, J.P. Morgan Chase, and Bank of America used in Example 9.1.
To check the assumption of no serial correlations, we compute the portmanteau
statistics and obtain Q5(1) = 39.99, Q5(5) = 160.60, and Q5(10) = 293.04. Com-
pared with chi-squared distributions with 25, 125, and 250 degrees of freedom, the
p values of these test statistics are 0.029, 0.017, and 0.032, respectively. Therefore,
there exists some minor serial dependence in the returns, but the dependence is not
significant at the 1% level. For simplicity, we ignore the serial dependence in factor
analysis.

Table 9.4 shows the results of factor analysis based on the correlation matrix
using the maximum-likelihood method. We assume that the number of common
factors is 2, which is reasonable according to the principal component analysis of
Example 9.1. From the table, the factor analysis reveals several interesting findings:

• The two factors identified by the maximum-likelihood method explain about
60% of the variability of the stock returns.

• Based on the rotated factor loadings, the two common factors have some
meaningful interpretations. The technology stocks (IBM, Hewlett-Packard,

TABLE 9.4 Factor Analysis of Monthly Log Stock Returns of IBM,
Hewlett-Packard, Intel, J.P. Morgan Chase, and Bank of Americaa

Estimates of Rotated
Factor Loadings Factor Loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 − σ 2
i

Maximum-Likelihood Method

IBM 0.327 0.530 0.593 0.189 0.387
HPQ 0.348 0.669 0.733 0.177 0.568
INTC 0.337 0.647 0.709 0.171 0.531
JPM 0.734 0.186 0.358 0.667 0.573
BAC 0.960 −0.111 0.124 0.958 0.934
Variance 1.801 1.193 1.535 1.459 2.994
Proportion 0.360 0.239 0.307 0.292 0.599

aThe returns include dividends and are from January 1990 to December 2008. The analysis is based on
the sample cross-correlation matrix and assumes two common factors.
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and Intel) load heavily on the first factor, whereas the financial stocks (J.P.
Morgan Chase and Bank of America) load highly on the second factor. These
two rotated factors jointly differentiate the industrial sectors.

• In this particular instance, the varimax rotation seems to alter the ordering of
the two common factors.

• The specific variance of IBM stock returns is relatively large, indicating that
the stock has its own features that are worth further investigation.

Example 9.3. In this example, we consider the monthly log returns of U.S.
bond indexes with maturities in 30 years, 20 years, 10 years, 5 years, and 1 year.
The data are described in Example 8.2 but have been transformed into log returns.
There are 696 observations. As shown in Example 8.2, there is serial dependence
in the data. However, removing serial dependence by fitting a VARMA(2,1) model
has hardly any effects on the concurrent correlation matrix. As a matter of fact, the
correlation matrices before and after fitting a VARMA(2,1) model are

ρ̂o =


1.0
0.98 1.0
0.92 0.91 1.0
0.85 0.86 0.90 1.0
0.63 0.64 0.67 0.81 1.0

 ,

ρ̂ =


1.0
0.98 1.0
0.92 0.92 1.0
0.85 0.86 0.90 1.0
0.66 0.67 0.71 0.84 1.0

 ,

where ρ̂o is the correlation matrix of the original log returns. Therefore, we apply
factor analysis directly to the return series.

Table 9.5 shows the results of statistical factor analysis of the data. For both
estimation methods, the first two common factors explain more than 90% of the
total variability of the data. Indeed, the high communalities indicate that the specific
variances are very small for the five bond index returns. Because the results of the
two methods are close, we only discuss that of the principal component method.
The unrotated factor loadings indicate that (a) all five return series load roughly
equally on the first factor, and (b) the loadings on the second factor are positively
correlated with the time to maturity. Therefore, the first common factor represents
the general U.S. bond returns, and the second factor shows the “time-to-maturity”
effect. Furthermore, the loadings of the second factor sum approximately to zero.
Therefore, this common factor can also be interpreted as the contrast between
long-term and short-term bonds. Here a long-term bond means one with maturity
10 years or longer. For the rotated factors, the loadings are also interesting. The
loadings for the first rotated factor are proportional to the time to maturity, whereas
the loadings of the second factor are inversely proportional to the time to maturity.
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TABLE 9.5 Factor Analysis of Monthly Log Returns of U.S. Bond Indexes with
Maturities in 30 Years, 20 Years, 10 Years, 5 Years, and 1 Yeara

Estimates of Rotated
Factor Loadings Factor Loadings Communalities

Variable f1 f2 f ∗
1 f ∗

2 1 − σ 2
i

Principal Component Method

30 years 0.952 0.253 0.927 0.333 0.970
20 years 0.954 0.240 0.922 0.345 0.968
10 years 0.956 0.140 0.866 0.429 0.934
5 years 0.955 −0.142 0.704 0.660 0.931
1 year 0.800 −0.585 0.325 0.936 0.982
Variance 4.281 0.504 3.059 1.726 4.785
Proportion 0.856 0.101 0.612 0.345 0.957

Maximum-Likelihood Method

30 years 0.849 −0.513 0.895 0.430 0.985
20 years 0.857 −0.486 0.876 0.451 0.970
10 years 0.896 −0.303 0.744 0.584 0.895
5 years 1.000 0.000 0.547 0.837 1.000
1 year 0.813 0.123 0.342 0.747 0.675
Variance 3.918 0.607 2.538 1.987 4.525
Proportion 0.784 0.121 0.508 0.397 0.905

aThe data are from January 1942 to December 1999. The analysis is based on the sample cross-
correlation matrix and assumes two common factors.

Example 9.4. Again, consider the monthly excess returns of the 10 stocks
in Table 9.2. The sample span is from January 1990 to December 2003 and the
returns are in percentages. Our goal here is to demonstrate the use of statistical
factor models using the R or S-Plus command factanal. We started with a two-
factor model, but it is rejected by the likelihood ratio test of Eq. (9.20). The test
statistic is LR(2) = 72.96. Based on the asymptotic χ2

26 distribution, p value of
the test statistic is close to zero.

> rtn=read.table(‘‘m-barra-9003.txt’’,header=T)
> stat.fac=factanal(rtn,factors=2,method=’mle’)
> stat.fac
Sums of squares of loadings:
Factor1 Factor2
2.696479 2.19149

Component names:
"loadings" "uniquenesses" "correlation" "criteria"
"factors" "dof" "method" "center" "scale" "n.obs"
"scores" "call"
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We then applied a three-factor model that appears to be reasonable at the 5%
significance level. The p value of the LR(3) statistic is 0.0892.

> stat.fac=factanal(rtn,factor=3,method=’mle’)
> stat.fac
Test of the hypothesis that 3 factors are sufficient
versus the alternative that more are required:
The chi square statistic is 26.48 on 18 degrees of freedom.
The p-value is 0.0892

> summary(stat.fac)
Importance of factors:

Factor1 Factor2 Factor3
SS loadings 2.635 1.825 1.326

Proportion Var 0.264 0.183 0.133
Cumulative Var 0.264 0.446 0.579

Uniquenesses:
AGE C MWD MER DELL HPQ IBM

0.479 0.341 0.201 0.216 0.690 0.346 0.638
AA CAT PG

0.417 0.000 0.885

Loadings:
Factor1 Factor2 Factor3

AGE 0.678 0.217 0.121
C 0.739 0.259 0.213
MWD 0.817 0.356
MER 0.819 0.329
DELL 0.102 0.547
HPQ 0.230 0.771
IBM 0.200 0.515 0.238
AA 0.194 0.546 0.497
CAT 0.198 0.138 0.970
PG 0.331

The factor loadings can also be shown graphically using

> plot(loadings(stat.fac))

and the plots are in Figure 9.6. From the plots, factor 1 represents essentially the
financial service sector, and factor 2 mainly consists of the excess returns from the
high-tech stocks and the Alcoa stock. Factor 3 depends heavily on excess returns
of CAT and AA stocks and, hence, represents the remaining industrial sector.

Factor rotation can be obtained using the command rotate, which allows for
many rotation methods, and factor realizations are available from the command
predict.
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Figure 9.6 Plots of factor loadings when a 3-factor statistical factor model is fitted to 10 monthly
excess stock returns in Table 9.2.

> stat.fac2 = rotate(stat.fac,rotation=’quartimax’)
> loadings(stat.fac2)

Factor1 Factor2 Factor3
AGE 0.700 0.171
C 0.772 0.216 0.124
MWD 0.844 0.291
MER 0.844 0.264
DELL 0.144 0.536
HPQ 0.294 0.753
IBM 0.258 0.518 0.164
AA 0.278 0.575 0.418
CAT 0.293 0.219 0.931
PG 0.334
> factor.real=predict(stat.fac,type=’weighted.ls’)

Finally, we obtained the correlation matrix of the 10 excess returns based on the
fitted three-factor statistical factor model. As expected, the correlations are closer to
their sample counterparts than those of the industrial factor model in Section 9.3.1.
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One can also use GMVP to compare the covariance matrices of the returns and the
statistical factor model.

> corr.fit=fitted(stat.fac)
> print(corr.fit,digits=1,width=2)

AGE C MWD MER DELL HPQ IBM AA CAT PG
AGE 1.0 0.6 0.6 0.6 0.19 0.3 0.3 0.3 0.3 0.2
C 0.6 1.0 0.7 0.7 0.22 0.4 0.3 0.4 0.4 0.3
MWD 0.6 0.7 1.0 0.8 0.28 0.5 0.4 0.4 0.3 0.3
MER 0.6 0.7 0.8 1.0 0.26 0.5 0.4 0.4 0.3 0.3
DELL 0.2 0.2 0.3 0.3 1.00 0.5 0.3 0.3 0.1 0.0
HPQ 0.3 0.4 0.5 0.4 0.45 1.0 0.5 0.5 0.2 0.1
IBM 0.3 0.3 0.4 0.3 0.31 0.5 1.0 0.4 0.3 0.1
AA 0.3 0.4 0.4 0.4 0.33 0.5 0.4 1.0 0.6 0.1
CAT 0.3 0.4 0.3 0.3 0.11 0.2 0.3 0.6 1.0 0.1
PG 0.2 0.3 0.3 0.3 0.03 0.1 0.1 0.1 0.1 1.0

9.6 ASYMPTOTIC PRINCIPAL COMPONENT ANALYSIS

So far, our discussion of PCA assumes that the number of assets is smaller than the
number of time periods, that is, k < T . To deal with situations of a small T and
large k, Conner and Korajczyk (1986, 1988) developed the concept of asymptotic
principal component analysis (APCA), which is similar to the traditional PCA but
relies on the asymptotic results as the number of assets k increases to infinity. Thus,
the APCA is based on eigenvalue–eigenvector analysis of the T × T matrix

�̂T = 1

k
(R − 1T r̄ ′)(R − 1T r̄ ′)′,

where 1T is the T -dimensional vector of ones and r̄ = (r̄1, . . . , r̄k)
′ with r̄i =

(1′
T Ri )/T being the sample mean of the ith return series. Conner and Korajczyk

(1988) showed that as k → ∞ eigenvalue–eigenvector analysis of �̂T is equivalent
to the traditional statistical factor analysis. In other words, the APCA estimates of
the factors f t are the first m eigenvectors of �̂T . Let F̂ t be the m × T matrix
consisting of the first m eigenvectors of �̂T . Then f̂ t is the t th column of F̂ t .
Using an idea similar to the estimation of BARRA factor models, Connor and
Korajczyk (1988) propose refining the estimation of f̂ t as follows:

1. Use the sample covariance matrix �̂T to obtain an initial estimate of f̂ t for
t = 1, . . . , T .

2. For each asset, perform the OLS estimation of the model

rit = αi + β i f̂ t + εit , t = 1, . . . , T ,

where β i = (βi1, . . . , βim) and compute the residual variance σ̂ 2
i .
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3. Form the diagonal matrix D̂ = diag{σ̂ 2
1 , . . . , σ̂

2
k } and rescale the returns as

R∗ = RD̂
−1/2

.

4. Compute the T × T covariance matrix using R∗ as

�̂∗ = 1

k
(R∗ − 1T r̄ ′

∗)(R∗ − 1T r̄ ′
∗)

′,

where r̄∗ is the k-dimensional vector of the column means of R∗, and perform
eigenvalue–eigenvector analysis of �̂∗ to obtain a refined estimate of f t .

9.6.1 Selecting the Number of Factors

Two methods are available in the literature to help select the number of factors
in factor analysis. The first method proposed by Connor and Korajczyk (1993)
makes use of the idea that if m is the proper number of common factors, then
there should be no significant decrease in the cross-sectional variance of the asset
specific error εit when the number of factors moves from m to m + 1. The second
method proposed by Bai and Ng (2002) adopts some information criteria to select
the number of factors. This latter method is based on the observation that the
eigenvalue–eigenvector analysis of �̂T solves the least-squares problem

min
α,β,f t

1

kT

k∑
i=1

T∑
t=1

(rit − αi − β if t )
2.

Assume that there are m factors so that f t is m-dimensional. Let σ̂ 2
i (m) be the

residual variance of the inner regression of the prior least-squares problem for
asset i. This is done by using f̂ t obtained from the APCA analysis. Define the
cross-sectional average of the residual variances as

σ̂ 2(m) = 1

k

k∑
i=1

σ̂ 2
i (m).

The criteria proposed by Bai and Ng (2002) are

Cp1(m) = σ̂ 2(m) + mσ̂ 2(M)

(
k + T

kT

)
ln

(
kT

k + T

)
,

Cp2(m) = σ̂ 2(m) + mσ̂ 2(M)

(
k + T

kT

)
ln(P 2

kT ),

where M is a prespecified positive integer denoting the maximum number of factors
and PkT = min(

√
k,

√
T ). One selects m that minimizes either Cp1(m) or Cp2(m)

for 0 ≤ m ≤ M . In practice, the two criteria may select different numbers of factors.
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9.6.2 An Example

To demonstrate asymptotic principal component analysis, we consider monthly sim-
ple returns of 40 stocks from January 2001 to December 2003 for 36 observations.
Thus, we have k = 40 and T = 36. The tick symbols of stocks used are given in
Table 9.6. These stocks are among those heavily traded on NASDAQ and the NYSE
on a particular day of September 2004. The main S-Plus command used is mfactor.

To select the number of factors, we used the two methods discussed earlier.
The Connor–Korajczyk method selects m = 1, whereas the Bai–Ng method uses
m = 6. For the latter method, the two criteria provide different results.

> dim(rtn) % rtn is the return data.
[1] 36 40
> nf.ck=mfactor(rtn,k=’ck’,max.k=10,sig=0.05)
> nf.ck
Call:
mfactor(x = rtn, k = "ck", max.k = 10, sig = 0.05)

Factor Model:
Factors Variables Periods

1 40 36
Factor Loadings:

Min. 1st Qu. Median Mean 3rd Qu. Max.
F.1 0.069 0.432 0.629 0.688 1.071 1.612

Regression R-squared:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.090 0.287 0.487 0.456 0.574 0.831
> nf.bn=mfactor(rtn,k=’bn’,max.k=10,sig=0.05)
Warning messages:
Cp1 and Cp2 did not yield same result. The smaller one

is used.
> nf.bn$k
[1] 6

TABLE 9.6 Tick Symbols of Stocks Used in Asymptotic Principal Component
Analysis for Sample Period from January 2001 to December 2003

Market Tick Symbol

NASDAQ INTC MSFT SUNW CSCO AMAT
ORCL SIRI COCO CORV SUPG
YHOO JDSU QCOM CIEN DELL
ERTS EBAY ADCT AAPL JNPR

NYSE LU PFE NT BAC BSX
GE TXN XOM FRX Q
F TWX C MOT JPM
TYC HPQ NOK WMT AMD
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Using m = 6, we apply APCA to the returns. The scree plot and estimated factor
returns can also be obtained.

> apca = mfactor(rtn,k=6)
> apca
Call:
mfactor(x = rtn, k = 6)
Factor Model:
Factors Variables Periods

6 40 36
Factor Loadings:

Min 1st Qu. Median Mean 3rd Qu. Max.
F.1 0.048 0.349 0.561 0.643 0.952 2.222
F.2 -1.737 0.084 0.216 0.214 0.323 1.046
F.3 -1.512 0.002 0.076 0.102 0.255 1.093
F.4 -0.965 -0.035 0.078 0.048 0.202 0.585
F.5 -0.722 -0.008 0.056 0.066 0.214 0.729
F.6 -0.840 -0.088 0.003 0.003 0.071 0.635
Regression R-squared:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.219 0.480 0.695 0.651 0.801 0.999

> screeplot.mfactor(apca)
> fplot(factors(apca))

Figure 9.7 shows the scree plot of the APCA for the 40 stock returns. The 6
common factors used explain about 89.4% of the variability. Figure 9.8 gives the
time plots of the returns of the 6 estimated factors.

EXERCISES

9.1. Consider the monthly simple excess returns, in percentages and including
dividends, of 13 stocks and the S&P 500 composite index from January 1990
to December 2008. The monthly 3-month Treasury bill rate in the secondary
market is used as the risk-free interest rate to compute the excess returns. The
tick symbols for the stocks are AA, AXP, CAT, DE, F, FDX, HPQ, IBM, JNJ,
KMB, MMM, PG, and WFC. The data are in the file m-fac-ex-9008.txt.
Perform the market model analysis of Section 9.2.1 for the 13 stock returns
to obtain the estimates of βi , σ 2

i , and R2 for each stock return series.

9.2. Consider the monthly log stock returns, in percentages and including
dividends, of Merck & Company, Johnson & Johnson, General Electric,
General Motors, Ford Motor Company, and value-weighted index from
January 1960 to December 2008; see the file m-mrk2vw.txt of Exercise 8.1
of Chapter 8.
(a) Perform a principal component analysis of the data using the sample

covariance matrix.
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Figure 9.7 Scree plot of asymptotic principal component analysis applied to monthly simple returns
of 40 stocks. Sample period is from January 2001 to December 2003.

(b) Perform a principal component analysis of the data using the sample cor-
relation matrix.

(c) Perform a statistical factor analysis on the data. Identify the number of
common factors. Obtain estimates of factor loadings using both the prin-
cipal component and maximum-likelihood methods.

9.3. The file m-excess-c10sp-9003.txt contains the monthly simple excess
returns of 10 stocks and the S&P 500 index. The 3-month Treasury bill rate
on the secondary market is used to compute the excess returns. The sample
period is from January 1990 to December 2003 for 168 observations. The 11
columns in the file contain the returns for ABT, LLY, MRK, PFE, F, GM,
BP, CVX, RD, XOM, and SP5, respectively. Analyze the 10 stock excess
returns using the single-factor market model. Plot the beta estimate and R2

for each stock, and use the global minimum variance portfolio to compare the
covariance matrices of the fitted model and the data.

9.4. Again, consider the 10 stock returns in m-excess-c10sp-9003.txt. The
stocks are from companies in 3 industrial sectors. ABT, LLY, MRK, and PFE
are major drug companies, F and GM are automobile companies, and the rest
are big oil companies. Analyze the excess returns using the BARRA industrial
factor model. Plot the 3-factor realizations and comment on the adequacy of
the fitted model.

9.5. Again, consider the 10 excess stock returns in the file m-excess-c10sp-

9003.txt. Perform a principal component analysis on the returns and obtain
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Figure 9.8 Time plots of factor returns derived from applying asymptotic principal component analysis
to monthly simple returns of 40 stocks. Sample period is from January 2001 to December 2003.

the scree plot. How many common factors are there? Why? Interpret the
common factors.

9.6. Again, consider the 10 excess stock returns in the file m-excess-c10sp-

9003.txt. Perform a statistical factor analysis. How many common factors
are there if the 5% significance level is used? Plot the estimated factor loadings
of the fitted model. Are the common factors meaningful?

9.7. The file m-fedip.txt contains year, month, effective federal funds rate,
and the industrial production index from July 1954 to December 2003. The
industrial production index is seasonally adjusted. Use the federal funds rate
and the industrial production index as the macroeconomic variables. Fit a
macroeconomic factor model to the 10 excess returns in m-excess-c10sp-

9003.txt. You can use a VAR model to obtain the surprise series of the
macroeconomic variables. Comment on the fitted factor model.
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Multivariate Volatility Models
and Their Applications

In this chapter, we generalize the univariate volatility models of Chapter 3 to
the multivariate case and discuss some simple methods for modeling the dynamic
relationships between volatility processes of multiple asset returns. By multivariate
volatility, we mean the conditional covariance matrix of multiple asset returns.
Multivariate volatilities have many important financial applications. They play an
important role in portfolio selection and asset allocation, and they can be used to
compute the value at risk of a financial position consisting of multiple assets.

Consider a multivariate return series {r t }. We adopt the same approach as the
univariate case by rewriting the series as

r t = µt + at ,

where µt = E(r t |F t−1) is the conditional expectation of r t given the past informa-
tion F t−1, and at = (a1t , · · · , akt )′ is the shock, or innovation, of the series at time
t . In addition, we assume that r t follows a multivariate time series model of Chapter
8 so that µt is the 1-step-ahead prediction of the model. For most return series, it
suffices to employ a simple vector ARMA structure with exogenous variables for
µt —that is,

µt = ϒx t +
p∑

i=1

�ir t−i −
q∑

i=1

�iat−i , (10.1)

where x t denotes an m-dimensional vector of exogenous (or explanatory) variables
with x1t = 1, ϒ is a k × m matrix, and p and q are nonnegative integers. We refer
to Eq. (10.1) as the mean equation of r t .

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
Copyright  2010 John Wiley & Sons, Inc.
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The conditional covariance matrix of at given F t−1 is a k × k positive-definite
matrix �t defined by �t = Cov(at |F t−1). Multivariate volatility modeling is con-
cerned with the time evolution of �t . We refer to a model for the {�t } process as
a volatility model for the return series r t .

There are many ways to generalize univariate volatility models to the multi-
variate case, but the curse of dimensionality quickly becomes a major obstacle
in applications because there are k(k + 1)/2 quantities in �t for a k-dimensional
return series. To illustrate, there are 15 conditional variances and covariances in
�t for a five-dimensional return series. The goal of this chapter is to introduce
some relatively simple multivariate volatility models that are useful, yet remain
manageable in real application. In particular, we discuss some models that allow
for time-varying correlation coefficients between asset returns. Time-varying cor-
relations are useful in finance. For example, they can be used to estimate the
time-varying beta of the market model for a return series.

We begin by using an exponentially weighted approach to estimate the covari-
ance matrix in Section 10.1. This estimated covariance matrix can serve as a
benchmark for multivariate volatility estimation. Section 10.2 discusses some gen-
eralizations of univariate GARCH models that are available in the literature. We
then introduce two methods to reparameterize �t for volatility modeling in Section
10.3. The reparameterization based on the Cholesky decomposition is found to be
useful. We study some volatility models for bivariate returns in Section 10.4, using
the GARCH model as an example. In this particular case, the volatility model can
be bivariate or three dimensional. Section 10.5 is concerned with volatility models
for higher dimensional returns and Section 10.6 addresses the issue of dimension
reduction. We demonstrate some applications of multivariate volatility models in
Section 10.7. Finally, Section 10.8 gives a multivariate Student-t distribution useful
for volatility modeling.

10.1 EXPONENTIALLY WEIGHTED ESTIMATE

Given the innovations Ft−1 = {a1, . . . , at−1}, the (unconditional) covariance matrix
of the innovation can be estimated by

�̂ = 1

t − 1

t−1∑
j=1

aja
′
j ,

where it is understood that the mean of aj is zero. This estimate assigns equal
weight 1/(t − 1) to each term in the summation. To allow for a time-varying
covariance matrix and to emphasize that recent innovations are more relevant, one
can use the idea of exponential smoothing and estimate the covariance matrix of
at by

�̂t = 1 − λ

1 − λt−1

t−1∑
j=1

λj−1at−ja
′
t−j , (10.2)
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where 0 < λ < 1 and the weights (1 − λ)λj−1/(1 − λt−1) sum to one. For a suf-
ficiently large t such that λt−1 ≈ 0, the prior equation can be rewritten as

�̂t = (1 − λ)at−1a
′
t−1 + λ�̂t−1.

Therefore, the covariance estimate in Eq. (10.2) is referred to as the exponentially
weighted moving-average (EWMA) estimate of the covariance matrix.

Suppose that the return data are {r1, . . . , rT }. For a given λ and initial estimate
�̂1, �̂t can be computed recursively. If one assumes that at = r t − µt follows a
multivariate normal distribution with mean zero and covariance matrix �t , where
µt is a function of parameter �, then λ and � can be estimated jointly by the
maximum-likelihood method because the log-likelihood function of the data is

ln L(�, λ) ∝ −1

2

T∑
t=1

|�t | − 1

2

T∑
t=1

(r t − µt )
′�−1

t (r t − µt ),

which can be evaluated recursively by substituting �̂t for �t .

Example 10.1. To illustrate, consider the daily log returns of the Hang Seng
index of Hong Kong and the Nikkei 225 index of Japan from January 4, 2006, to
December 30, 2008, for 713 observations. The indexes were obtained from Yahoo
Finance. For simplicity, we only employ data when both markets were open to
calculate the log returns, which are in percentages. Figure 10.1 shows the time
plots of the two index returns. The effect of recent global financial crisis is clearly
seen from the plots. Let r1t and r2t be the log returns of the Hong Kong and
Japanese markets, respectively. If univariate GARCH models are entertained, we
obtain the models

r1t = 0.109 + a1t , a1t = σ1t ε1t ,

σ 2
1t = 0.038 + 0.143a2

1,t−1 + 0.855σ 2
1,t−1, (10.3)

r2t = 0.003 + a2t , a2t = σ2t ε2t ,

σ 2
2t = 0.044 + 0.127a2

2,t−1 + 0.861σ 2
2,t−1, (10.4)

where all of the parameter estimates are significant at the 5% level except for
the constant term of the mean equation for the Nikkei 225 index returns. The
Ljung–Box statistics of the standardized residuals and their squared series of the
two univariate models fail to indicate any model inadequacy. The two volatility
equations are close to an IGARCH(1,1) model. This is reasonable because of the
increased volatility caused by the subprime financial crisis. Figure 10.2 shows
the estimated volatilities of the two univariate GARCH(1,1) models. Indeed, the
volatility series confirm that both markets were more volatile than usual in 2008.

Turn to bivariate modeling. We apply the EWMA approach to obtain volatility
estimates, using the command mgarch in S-Plus FinMetrics:
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Figure 10.1 Time plots of daily log returns in percentages of stock market indexes for Hong Kong and
Japan from January 4, 2006, to December 30, 2008: (a) Hong Kong market and (b) Japanese market.
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Figure 10.2 Estimated volatilities (standard error) for daily log returns in percentages of stock market
indexes for Hong Kong and Japan from January 4, 2006, to December 30, 2008: (a) Hong Kong market
and (b) Japanese market. Univariate models are used.
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> m3=mgarch(formula.mean=∼arma(0,0),formula.var=∼ewma1,
series=rtn,trace=F)

> summary(m3)
Call:
mgarch(formula.mean =∼arma(0,0), formula.var=∼ewma1,

series=rtn,trace = F)
Mean Equation: structure(.Data = ∼arma(0,0), class="formula")
Conditional Var. Eq.: structure(.Data=∼ewma1,class="formula")

Conditional Distribution: gaussian
--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 0.082425 0.030900 2.6675 0.007816
C(2) -0.006849 0.030093 -0.2276 0.820020

ALPHA 0.069492 0.004945 14.0517 0.000000

The estimate of λ is 1 − α̂ = 1 − 0.0695 ≈ 0.9305, which is in the typical range
commonly seen in practice. Figure 10.3 shows the estimated volatility series by the
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Figure 10.3 Estimated volatilities (standard error) for daily log returns in percentages of stock market
indices for Hong Kong and Japan from January 4, 2006, to December 30, 2008: (a) Hong Kong market
and (b) Japanese market. Exponentially weighted moving-average approach is used.
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EWMA approach. Compared with those in Figure 10.2, the EWMA approach pro-
duces smoother volatility series, even though the two plots show similar volatility
patterns.

10.2 SOME MULTIVARIATE GARCH MODELS

Many authors have generalized univariate volatility models to the multivariate case.
In this section, we discuss some of the generalizations. For more details, readers
are referred to the survey article of Bauwens, Laurent, and Rombouts (2004).

10.2.1 Diagonal Vectorization (VEC) Model

Bollerslev, Engle, and Wooldridge (1988) generalize the exponentially weighted
moving-average approach to propose the model

�t = A0 +
m∑
i=1

Ai � (at−ia
′
t−i ) +

s∑
j=1

Bj � �t−j , (10.5)

where m and s are nonnegative integers, Ai and Bj are symmetric matrices, and �
denotes the Hadamard product, that is, element-by-element multiplication. This is
referred to as the diagonal VEC(m, s) model or DVEC(m, s) model. To appreciate
the model, consider the bivariate DVEC(1,1) case satisfying[

σ11,t

σ21,t σ22,t

]
=

[
A11,0

A21,0 A22,0

]
+

[
A11,1

A21,1 A22,1

]
�

[
a2

1,t−1
a1,t−1a2,t−1 a2

2,t−1

]
+

[
B11,1

B21,1 B22,1

]
�

[
σ11,t−1

σ21,t−1 σ22,t−1

]
,

where only the lower triangular part of the model is given. Specifically, the model is

σ11,t = A11,0 + A11,1a
2
1,t−1 + B11,1σ11,t−1,

σ21,t = A21,0 + A21,1a1,t−1a2,t−1 + B21,1σ21,t−1,

σ22,t = A22,0 + A22,1a
2
2,t−1 + B22,1σ22,t−1,

where each element of �t depends only on its own past value and the corresponding
product term in at−1a

′
t−1. That is, each element of a DVEC model follows a

GARCH(1,1)-type model. The model is, therefore, simple. However, it may not
produce a positive-definite covariance matrix. Furthermore, the model does not
allow for dynamic dependence between volatility series.
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Figure 10.4 Time plot of monthly simple returns, including dividends, for Pfizer and Merck stocks
from January 1965 to December 2008: (a) Pfizer stock and (b) Merck stock.

Example 10.2. For illustration, consider the monthly simple returns, including
dividends, of two U.S. major drug companies from January 1965 to December 2008
for 528 observations. Let r1t and r2t be the monthly returns of Pfizer and Merck
stock, respectively. The bivariate return series r t = (r1t , r2t )

′, shown in Figure 10.4,
has no significant serial correlations with Q(10) being 10.48(0.40) and 11.42(0.33),
respectively, for the two series. Therefore, the mean equation of r t consists of a
constant term only. We fit a DVEC(1,1) model to the series using the command
mgarch in FinMetrics of S-Plus:

> rtn=cbind(pfe,mrk) % Output edited.
> mdvec=mgarch(rtn∼1,∼dvec(1,1))
> summary(mdvec)
Call:
mgarch(formula.mean=rtn ∼ 1, formula.var= ∼ dvec(1, 1))
Mean Equation: structure(.Data =rtn ∼ 1, class="formula")
Conditional Var. Eq.: structure(.Data=∼dvec(1,1),

class="formula")
Conditional Distribution: gaussian
--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 1.350e-02 3.149e-03 4.285 2.174e-05
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C(2) 1.313e-02 3.043e-03 4.314 1.921e-05
A(1, 1) 7.544e-04 3.939e-04 1.916 5.597e-02
A(2, 1) 7.543e-05 3.468e-05 2.175 3.010e-02
A(2, 2) 7.941e-05 3.871e-05 2.051 4.072e-02

ARCH(1; 1, 1) 7.078e-02 2.757e-02 2.568 1.051e-02
ARCH(1; 2, 1) 2.513e-02 8.492e-03 2.960 3.220e-03
ARCH(1; 2, 2) 4.095e-02 1.213e-02 3.375 7.939e-04
GARCH(1; 1, 1) 7.858e-01 9.055e-02 8.677 0.000e+00
GARCH(1; 2, 1) 9.499e-01 1.671e-02 56.831 0.000e+00
GARCH(1; 2, 2) 9.454e-01 1.469e-02 64.358 0.000e+00

--------------------------------------------------------------
Ljung-Box test for standardized residuals:
--------------------------------------------------------------

Statistic P-value Chi^2-d.f.
pfe 9.531 0.6570 12
mrk 12.349 0.4181 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------

Statistic P-value Chi^2-d.f.
pfe 22.077 0.03666 12
mrk 6.437 0.89246 12
> names(mdvec)
[1] "residuals" "sigma.t" "df.residual" "coef"
[5] "model" "cond.dist" "likelihood" "opt.index"
[9] "cov" "std.residuals" "R.t" "S.t"

[13] "prediction" "call" "series"

From the output, all parameter estimates, but A(1,1), are significant at the 5% level,
and the fitted volatility model is

σ11,t = 0.00075 + 0.071a2
1,t−1 + 0.786σ11,t−1,

σ21,t = 0.00008 + 0.025a1,t−1a2,t−1 + 0.950σ21,t−1,

σ22,t = 0.00008 + 0.041a2
2,t−1 + 0.945σ22,t−1.

The output also provides some model checking statistics for individual stock
returns. For instance, the Ljung–Box statistics for the standardized residual
series and its squared series of Pfizer stock returns give Q(12) = 9.53(0.66) and
Q(12) = 12.35(0.42), respectively, where the number in parentheses denotes
the p value. Thus, checking the fitted model individually, one cannot reject the
DVEC(1,1) model. A more informative model-checking approach is to apply
the multivarite Q statistics to the bivariate standardized residual series and its
squared process. Details are omitted. Interested readers are referred to Li (2004).
Figure 10.5 shows the fitted volatility and correlation series. These series are
stored in “sigma.t” and “R.t”, respectively. The correlations range from 0.37
to 0.83.
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Figure 10.5 Estimated volatilities (standard error) and time-varying correlations of DVEC(1,1) model
for monthly simple returns of two major drug companies from January 1965 to December 2008: (a)
Pfizer stock volatility, (b) Merck stock volatility, and (c) time-varying correlations.

10.2.2 BEKK Model

To guarantee the positive-definite constraint, Engle and Kroner (1995) propose the
Baba-Engle-Kraft-Kroner (BEKK) model,

�t = AA′ +
m∑
i=1

Ai (at−ia
′
t−i)A

′
i +

s∑
j=1

Bj�t−jB
′
j , (10.6)

where A is a lower triangular matrix and Ai and Bj are k × k matrices. Based
on the symmetric parameterization of the model, �t is almost surely positive def-
inite provided that AA′ is positive definite. This model also allows for dynamic
dependence between the volatility series. On the other hand, the model has several
disadvantages. First, the parameters in Ai and Bj do not have direct interpretations
concerning lagged values of volatilities or shocks. Second, the number of param-
eters employed is k2(m + s) + k(k + 1)/2, which increases rapidly with m and s.
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Limited experience shows that many of the estimated parameters are statistically
insignificant, introducing additional complications in modeling.

Example 10.3. To illustrate, we consider the monthly simple returns of Pfizer
and Merck stocks of Example 10.2 and employ a BEKK(1,1) model. Again, S-Plus
is used to perform the estimation:

> mbekk=mgarch(rtn∼1,∼bekk(1,1))
> summary(mbekk)
Call:
mgarch(formula.mean = rtn ∼ 1, formula.var = ∼ bekk(1, 1))
Mean Equation: structure(.Data = rtn ∼ 1, class = "formula")
Conditional Var. Eq.: structure(.Data=∼bekk(1,1),

class="formula")
Conditional Distribution: gaussian
--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

Value Std.Error t value Pr(>|t|)
C(1) 1.329e-02 0.003247 4.094e+00 4.907e-05
C(2) 1.269e-02 0.003095 4.100e+00 4.792e-05

A(1, 1) 2.505e-02 0.008382 2.988e+00 2.938e-03
A(2, 1) 1.349e-02 0.004979 2.710e+00 6.946e-03
A(2, 2) 3.272e-06 8.453262 3.870e-07 1.000e+00

ARCH(1; 1, 1) 2.129e-01 0.084340 2.524e+00 1.190e-02
ARCH(1; 2, 1) 9.963e-02 0.072156 1.381e+00 1.680e-01
ARCH(1; 1, 2) 6.336e-02 0.076065 8.330e-01 4.052e-01
ARCH(1; 2, 2) 1.824e-01 0.062133 2.936e+00 3.467e-03

GARCH(1; 1, 1) 9.090e-01 0.063239 1.437e+01 0.000e+00
GARCH(1; 2, 1) -5.888e-02 0.047766 -1.233e+00 2.182e-01
GARCH(1; 1, 2) -8.231e-03 0.031512 -2.612e-01 7.940e-01
GARCH(1; 2, 2) 9.824e-01 0.022587 4.349e+01 0.000e+00
--------------------------------------------------------------
Ljung-Box test for standardized residuals:
--------------------------------------------------------------

Statistic P-value Chi^2-d.f.
pfe 9.465 0.6628 12
mrk 11.591 0.4791 12

Ljung-Box test for squared standardized residuals:
--------------------------------------------------------------

Statistic P-value Chi^2-d.f.
pfe 21.55 0.04291 12
mrk 9.19 0.68664 12

Model-checking statistics based on the individual residual series and provided
by S-Plus fail to suggest any model inadequacy of the fitted BEKK(1,1) model.
Figure 10.6 shows the fitted volatilities and the time-varying correlations of the
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Figure 10.6 Estimated volatilities (standard error) and time-varying correlations of BEKK(1,1) model
for monthly simple returns of two major drug companies from January 1965 to December 2008: (a)
Pfizer stock volatility, (b) Merck stock volatility, and (c) time-varying correlations.

BEKK(1,1) model. Compared with Figure 10.5, there are some differences between
the two fitted volatility models. For instance, the time-varying correlations of the
BEKK(1,1) model appear to be more volatile.

The volatility equation of the fitted BEKK(1,1) model is[
σ11,t σ12,t

σ21,t σ22,t

]
=

[
0.025 0
0.013 3 × 10−6

] [
0.025 0.013
0 3 × 10−6

]
+

[
0.213 0.063
0.100 0.182

] [
a2

1,t−1 a1,t−1a2,t−1

a2,t−1a1,t−1 a2
2,t−1

]
[

0.213 0.100
0.063 0.182

]
+

[
0.901 −0.008

−0.059 0.982

]
[

σ11,t−1 σ12,t−1

σ21,t−1 σ22,t−1

] [
0.901 −0.059

−0.008 0.982

]
,
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where three estimates are insignificant at the 5% level. In general, the BEKK model
tends to contain some insignificant parameter estimates, and one needs to perform
matrix multiplication to decipher the fitted model.

10.3 REPARAMETERIZATION

A useful step in multivariate volatility modeling is to reparameterize �t by making
use of its symmetric property. We consider two reparameterizations.

10.3.1 Use of Correlations

The first reparameterization of �t is to use the conditional correlation coefficients
and variances of at . Specifically, we write �t as

�t ≡ [σij,t ] = DtρtDt , (10.7)

where ρ t is the conditional correlation matrix of at , and Dt is a k × k diagonal
matrix consisting of the conditional standard deviations of elements of at (i.e.,
Dt = diag{√σ11,t , . . . ,

√
σkk,t}).

Because ρ t is symmetric with unit diagonal elements, the time evolution of �t

is governed by that of the conditional variances σii,t and the elements ρij,t of ρ t ,
where j < i and 1 ≤ i ≤ k. Therefore, to model the volatility of at , it suffices to
consider the conditional variances and correlation coefficients of ait . Define the
k(k + 1)/2-dimensional vector

�t = (σ11,t , . . . , σkk,t , �
′
t )

′, (10.8)

where �t is a k(k − 1)/2-dimensional vector obtained by stacking columns of the
correlation matrix ρt , but using only elements below the main diagonal. Specifi-
cally, for a k-dimensional return series,

�t = (ρ21,t , . . . , ρk1,t |ρ32,t , . . . , ρk2,t | · · · |ρk,k−1,t )
′.

To illustrate, for k = 2, we have �t = ρ21,t and

�t = (σ11,t , σ22,t , ρ21,t )
′, (10.9)

which is a three-dimensional vector, and for k = 3, we have �t = (ρ21,t , ρ31,t ,

ρ32,t )
′ and

�t = (σ11,t , σ22,t , σ33,t , ρ21,t , ρ31,t , ρ32,t )
′, (10.10)

which is a six-dimensional random vector.
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If at is a bivariate normal random variable, then �t is given in Eq. (10.9) and
the conditional density function of at given F t−1 is

f (a1t , a2t |�t ) = 1

2π
√
σ11,tσ22,t (1 − ρ2

21,t )

exp

[
−Q(a1t , a2t ,�t )

2(1 − ρ2
21,t )

]
,

where

Q(a1t , a2t ,�t ) = a2
1t

σ11,t
+ a2

2t

σ22,t
− 2ρ21,t a1t a2t√

σ11,t σ22,t
.

The log probability density function of at relevant to the maximum-likelihood
estimation is

�(a1t , a2t ,�t ) = −1

2

{
ln[σ11,t σ22,t (1 − ρ2

21,t )]

+ 1

1 − ρ2
21,t

(
a2

1t

σ11,t
+ a2

2t

σ22,t
− 2ρ21,t a1t a2t√

σ11,tσ22,t

)}
. (10.11)

This reparameterization is useful because it models covariances and correlations
directly. Yet the approach has several weaknesses. First, the likelihood function
becomes complicated when k ≥ 3. Second, the approach requires a constrained
maximization in estimation to ensure the positive definiteness of �t . The constraint
becomes complicated when k is large.

10.3.2 Cholesky Decomposition

The second reparameterization of �t is to use the Cholesky decomposition; see
Appendix A of Chapter 8. This approach has some advantages in estimation as it
requires no parameter constraints for the positive definiteness of �t ; see Pourah-
madi (1999). In addition, the reparameterization is an orthogonal transformation so
that the resulting likelihood function is extremely simple. Details of the transfor-
mation are given next.

Because �t is positive definite, there exist a lower triangular matrix Lt with
unit diagonal elements and a diagonal matrix Gt with positive diagonal elements
such that

�t = LtGtL
′
t . (10.12)

This is the well-known Cholesky decomposition of �t . A feature of the decompo-
sition is that the lower off-diagonal elements of Lt and the diagonal elements of Gt
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have nice interpretations. We demonstrate the decomposition by studying carefully
the bivariate and three-dimensional cases. For the bivariate case, we have

�t =
[

σ11,t σ21,t

σ21,t σ22,t

]
, Lt =

[
1 0
q21,t 1

]
, Gt =

[
g11,t 0

0 g22,t

]
,

where gii,t > 0 for i = 1 and 2. Using Eq. (10.12), we have

�t =
[

σ11,t σ12,t

σ12,t σ22,t

]
=

[
g11,t q21,t g11,t

q21,t g11,t g22,t + q2
21,t g11,t

]
.

Equating elements of the prior matrix equation, we obtain

σ11,t = g11,t , σ21,t = q21,t g11,t , σ22,t = g22,t + q2
21,t g11,t . (10.13)

Solving the prior equations, we have

g11,t = σ11,t , q21,t = σ21,t

σ11,t
, g22,t = σ22,t − σ 2

21,t

σ11,t
. (10.14)

However, consider the simple linear regression

a2t = βa1t + b2t , (10.15)

where b2t denotes the error term. From the well-known least-squares theory, we
have

β = Cov(a1t , a2t )

Var(a1t )
= σ21,t

σ11,t
,

Var(b2t ) = Var(a2t ) − β2Var(a1t ) = σ22,t − σ 2
21,t

σ11,t
.

Furthermore, the error term b2t is uncorrelated with the regressor a1t . Consequently,
using Eq. (10.14), we obtain

g11,t = σ11,t , q21,t = β, g22,t = Var(b2t ), b2t⊥a1t ,

where ⊥ denotes no correlation. In summary, the Cholesky decomposition of the
2 × 2 matrix �t amounts to performing an orthogonal transformation from at to
bt = (b1t , b2t )

′ such that

b1t = a1t and b2t = a2t − q21,t a1t ,

where q21,t = β is obtained by the linear regression (10.15) and Cov(bt ) is a diag-
onal matrix with diagonal elements gii,t . The transformed quantities q21,t and gii,t
can be interpreted as follows:



reparameterization 519

1. The first diagonal element of Gt is simply the variance of a1t .

2. The second diagonal element of Gt is the residual variance of the simple
linear regression in Eq. (10.15).

3. The element q21,t of the lower triangular matrix Lt is the coefficient β of
the regression in Eq. (10.15).

The prior properties continue to hold for the higher dimensional case. For example,
consider the three-dimensional case in which

Lt =
 1 0 0

q21,t 1 0
q31,t q32,t 1

 , Gt =
 g11,t 0 0

0 g22,t 0
0 0 g3,t

 .

From the decomposition in Eq. (10.12), we have σ11,t σ21,t σ31,t

σ21,t σ22,t σ32,t

σ31,t σ32,t σ33,t


=

 g11,t q21,t g11,t q31,t g11,t

q21,t g11,t q2
21,t g11,t + g22,t q31,t q21,t g11,t + q32,t g22,t

q31,t g11,t q31,t q21,t g11,t + q32,t g22,t q2
31,t g11,t + q2

32,t g22,t + g33,t

 .

Equating elements of the prior matrix equation, we obtain

σ11,t = g11,t , σ21,t = q21,t g11,t ,

σ22,t = q2
21,t g11,t + g22,t , σ31,t = q31,t g11,t ,

σ32,t = q31,t q21,t g11,t + q32,t g22,t , σ33,t = q2
31,t g11,t + q2

32,t g22,t + g33,t

or, equivalently,

g11,t = σ11,t , q21,t = σ21,t

σ11,t
, g22,t = σ22,t − q2

21,t g11,t ,

q31,t = σ31,t

σ11,t
, q32,t = 1

g22,t

(
σ32,t − σ31,t

σ 21,t
σ11,t

)
,

g33,t = σ33,t − q2
31,t g11,t − q2

32,t g22,t .

These quantities look complicated, but they are simply the coefficients and residual
variances of the orthogonal transformation

b1t = a1t ,

b2t = a2t − β21b1t ,

b3t = a3t − β31b1t − β32b2t ,
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where βij are the coefficients of least-squares regressions

a2t = β21b1t + b2t ,

a3t = β31b1t + β32b2t + b3t .

In other words, we have qij,t = βij , gii,t = V ar(bit ) and bit⊥bjt for i �= j .
Based on the prior discussion, using Cholesky decomposition amounts to doing

an orthogonal transformation from at to bt , where b1t = a1t , and bit , for 1 < i ≤ k,
is defined recursively by the least-squares regression

ait = qi1,t b1t + qi2,t b2t + · · · + qi(i−1),t b(i−1)t + bit , (10.16)

where qij,t is the (i, j)th element of the lower triangular matrix Lt for 1 ≤ j < i.
We can write this transformation as

bt = L−1
t at , or at = Ltbt , (10.17)

where, as mentioned before, L−1
t is also a lower triangular matrix with unit diagonal

elements. The covariance matrix of bt is the diagonal matrix Gt of the Cholesky
decomposition because

Cov(bt ) = L−1
t �t (L

−1
t )′ = Gt .

The parameter vector relevant to volatility modeling under such a transformation
becomes

�t = (g11,t , . . . , gkk,t , q21,t , q31,t , q32,t , . . . , qk1,t , . . . , qk(k−1),t )
′, (10.18)

which is also a k(k + 1)/2-dimensional vector.
The previous orthogonal transformation also dramatically simplifies the likeli-

hood function of the data. Using the fact that |Lt | = 1, we have

|�t | = |LtGtL
′
t | = |Gt | =

k∏
i=1

gii,t . (10.19)

If the conditional distribution of at given the past information is multivariate nor-
mal N(0,�t ), then the conditional distribution of the transformed series bt is
multivariate normal N(0,Gt ), and the log-likelihood function of the data becomes
extremely simple. Indeed, we have the log probability density of at as

�(at ,�t ) = �(bt ,�t ) = −1

2

k∑
i=1

[
ln(gii,t ) + b2

it

gii,t

]
, (10.20)

where for simplicity the constant term is omitted and gii,t is the variance of bit .
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Using the Cholesky decomposition to reparameterize �t has several advantages.
First, from Eq. (10.19), �t is positive definite if gii,t > 0 for all i. Consequently,
the positive-definite constraint of �t can easily be achieved by modeling ln(gii,t )
instead of gii,t . Second, elements of the parameter vector �t in Eq. (10.18) have
nice interpretations. They are the coefficients and residual variances of multiple
linear regressions that orthogonalize the shocks to the returns. Third, the correlation
coefficient between a1t and a2t is

ρ21,t = σ21,t√
σ11,tσ22,t

= q21,t ×
√
σ11,t√
σ22,t

,

which is time varying if q21,t �= 0. In particular, if q21,t = c �= 0, then ρ21,t =
c
√
σ11,t /

√
σ22,t , which continues to be time-varying provided that the variance ratio

σ11,t /σ22,t is not a constant. This time-varying property applies to other correlation
coefficients when the dimension of r t is greater than 2 and is a major difference
between the two approaches for reparameterizing �t .

Using Eq. (10.16) and the orthogonality among the transformed shocks bit , we
obtain

σii,t = Var(ait |Ft−1) =
i∑

v=1

q2
iv,tgvv,t , i = 1, . . . , k,

σij,t = Cov(ait , ajt |Ft−1) =
j∑

v=1

qiv,tqjv,tgvv,t , j < i, i = 2, . . . , k,

where qvv,t = 1 for v = 1, . . . , k. These equations show the parameterization of
�t under the Cholesky decomposition.

10.4 GARCH MODELS FOR BIVARIATE RETURNS

Since the same techniques can be used to generalize many univariate volatility mod-
els to the multivariate case, we focus our discussion on the multivariate GARCH
model. Other multivariate volatility models can also be used.

For a k-dimensional return series r t , a multivariate GARCH model uses “exact
equations” to describe the evolution of the k(k + 1)/2-dimensional vector �t over
time. By exact equation, we mean that the equation does not contain any stochastic
shock. However, the exact equation may become complicated even in the simplest
case of k = 2 for which �t is three dimensional. To keep the model simple, some
restrictions are often imposed on the equations.

10.4.1 Constant-Correlation Models

To keep the number of volatility equations low, Bollerslev (1990) considers the
special case in which the correlation coefficient ρ21,t = ρ21 is time invariant, where
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|ρ21| < 1. Under such an assumption, ρ21 is a constant parameter and the volatility
model consists of two equations for �∗

t , which is defined as �∗
t = (σ11,t , σ22,t )

′.
A GARCH(1,1) model for �∗

t becomes

�∗
t = α0 + α1a

2
t−1 + β1�

∗
t−1, (10.21)

where a2
t−1 = (a2

1,t−1, a
2
2,t−1)

′, α0 is a two-dimensional positive vector, and α1 and
β1 are 2 × 2 nonnegative definite matrices. More specifically, the model can be
expressed in detail as[

σ11,t

σ22,t

]
=

[
α10

α20

]
+

[
α11 α12

α21 α22

] [
a2

1,t−1
a2

2,t−1

]
+

[
β11 β12

β21 β22

] [
σ11,t−1

σ22,t−1

]
,

(10.22)

where αi0 > 0 for i = 1 and 2. Defining ηt = a2
t − �∗

t , we can rewrite the prior
model as

a2
t = α0 + (α1 + β1)a

2
t−1 + ηt − β1ηt−1,

which is a bivariate ARMA(1,1) model for the a2
t process. This result is a direct

generalization of the univariate GARCH(1,1) model of Chapter 3. Consequently,
some properties of model (10.22) are readily available from those of the bivariate
ARMA(1,1) model of Chapter 8. In particular, we have the following results:

1. If all of the eigenvalues of α1 + β1 are positive, but less than 1, then the
bivariate ARMA(1,1) model for a2

t is weakly stationary and, hence, E(a2
t )

exists. This implies that the shock process at of the returns has a positive-
definite unconditional covariance matrix. The unconditional variances of the
elements of at are (σ 2

1 , σ
2
2 )

′ = (I − α1 − β1)
−1φ0, and the unconditional

covariance between a1t and a2t is ρ21σ1σ2.

2. If α12 = β12 = 0, then the volatility of a1t does not depend on the past
volatility of a2t . Similarly, if α21 = β21 = 0, then the volatility of a2t does
not depend on the past volatility of a1t .

3. If both α1 and β1 are diagonal, then the model reduces to two univari-
ate GARCH(1,1) models. In this case, the two volatility processes are not
dynamically related.

4. Volatility forecasts of the model can be obtained by using forecasting methods
similar to those of a vector ARMA(1,1) model; see the univariate case in
Chapter 3. The 1-step-ahead volatility forecast at the forecast origin h is

�∗
h(1) = α0 + α1a

2
h + β1�

∗
h.

For the �-step-ahead forecast, we have

�∗
h(�) = α0 + (α1 + β1)�

∗
h(� − 1), �> 1.
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These forecasts are for the marginal volatilities of ait . The �-step-ahead fore-
cast of the covariance between a1t and a2t is ρ̂21[σ11,h(�)σ22,h(�)]0.5, where
ρ̂21 is the estimate of ρ21 and σii,h(�) are the elements of �∗

h(�).

Example 10.4. Again, consider the daily log returns of Hong Kong and
Japanese markets of Example 10.1. Using a bivariate GARCH model, we obtain a
constant correlation model that fits the data reasonably well. The mean equations
of the bivariate model are

r1t = 0.101 + a1t ,

r2t = 0.002 + a2t ,

where the standard errors of the two estimates are 0.050 and 0.048, respectively.
The volatility equations are

[
σ11,t

σ22,t

]
=


0.079
(0.019)
0.054
(0.019)

 +


0.145 ·
(0.022)

0.105
(0.014)

[
a2

1,t−1
a2

2,t−1

]

+


0.833
(0.023)

0.875
(0.020)

[
σ11,t−1

σ22,t−1

]
, (10.23)

where the numbers in parentheses are standard errors. The estimated constant cor-
relation between the two returns is 0.668.

Let ãt = (ã1t , ã2t )
′ be the standardized residuals, where ãit = ait /

√
σii,t . The

Ljung–Box statistics of ãt give Q2(4) = 17.29(0.37) and Q2(12) = 48.21(0.46),
where the number in parentheses denotes the p value. Here the p values are
based on chi-squared distributions with 16 and 48 degrees of freedom, respec-
tively. The Q statistics of individual series ãit shown in S-Plus output also fail
to indicate any model inadequancy. Consequently, the constant correlation model
in Eq. (10.23) fits the data reasonably well. Figure 10.7 shows the fitted volatil-
ity processes of model (10.23), which can be compared with those of Example
10.1.

The model in Eq. (10.23) shows two uncoupled volatility equations, indicat-
ing that the volatilities of the two markets are not dynamically related, but they
are contemporaneously correlated. We refer to the model as a bivariate diagonal
constant-correlation model. In practice, this type of models might not be suitable
because there exists the possibility of dynamic dependence in volatility among
markets, that is, the spillover effect in volatility. Finally, the constant-correlation
model can easily be estimated using S-Plus:
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Figure 10.7 Estimated volatilities for daily log returns in percentages of stock market indexes for
Hong Kong and Japan from January 4, 2006, to December 30, 2008: (a) Hong Kong market and (b)
Japanese market. Model used is Eq. (10.23).

> mccc = mgarch(rtn∼1,∼ccc(1,1),trace=F)
> summary(mccc)

Example 10.5. As a second illustration, consider the monthly log returns, in
percentages, of IBM stock and the S&P 500 index from January 1926 to December
1999 used in Chapter 8. Let r1t and r2t be the monthly log returns for IBM stock
and the S&P 500 index, respectively. If a constant-correlation GARCH(1,1) model
is entertained, we obtain the mean equations

r1t = 1.351 + 0.072r1,t−1 + 0.055r1,t−2 − 0.119r2,t−2 + a1t ,

r2t = 0.703 + a2t ,

where standard errors of the parameters in the first equation are 0.225, 0.029, 0.034,
and 0.044, respectively, and the standard error of the parameter in the second
equation is 0.155. The volatility equations are

[
σ11,t

σ22,t

]
=


2.98
(0.59)
2.09
(0.47)

 +


0.079
(0.013)
0.042 0.045
(0.009) (0.010)

[
a2

1,t−1
a2

2,t−1

]

+


0.873 −0.031
(0.020) (0.009)
−0.066 0.913
(0.015) (0.014)

[
σ11,t−1

σ22,t−1

]
, (10.24)
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where the numbers in parentheses are standard errors. The constant correlation
coefficient is 0.614 with standard error 0.020. Using the standardized residuals, we
obtain the Ljung–Box statistics Q2(4) = 16.77(0.21) and Q2(8) = 32.40(0.30),
where the p values shown in parentheses are obtained from chi-squared distri-
butions with 13 and 29 degrees of freedom, respectively. Here the degrees of
freedom have been adjusted because the mean equations contain three lagged pre-
dictors. For the squared standardized residuals, we have Q∗

2(4) = 18.00(0.16) and
Q∗

2(8) = 39.09(0.10). Therefore, at the 5% significance level, the standardized
residuals ãt have no serial correlations or conditional heteroscedasticities. This
bivariate GARCH(1,1) model shows a feedback relationship between the volatilities
of the two monthly log returns.

10.4.2 Time-Varying Correlation Models

A major drawback of the constant-correlation volatility models is that the cor-
relation coefficient tends to change over time in a real application. Consider the
monthly log returns of IBM stock and the S&P 500 index used in Example 10.5.
It is hard to justify that the S&P 500 index return, which is a weighted aver-
age, can maintain a constant-correlation coefficient with IBM return over the past
70 years. Figure 10.8 shows the sample correlation coefficient between the two
monthly log return series using a moving window of 120 observations (i.e., 10
years). The correlation changes over time and appears to be decreasing in recent
years. The decreasing trend in correlation is not surprising because the ranking of
IBM market capitalization among large U.S. industrial companies has changed in
recent years. A Lagrange multiplier statistic was proposed recently by Tse (2000)
to test constant-correlation coefficients in a multivariate GARCH model.

A simple way to relax the constant-correlation constraint within the GARCH
framework is to specify an exact equation for the conditional correlation coeffi-
cient. This can be done by two methods using the two reparameterizations of �t

discussed in Section 10.3. First, we use the correlation coefficient directly. Because
the correlation coefficient between the returns of IBM stock and S&P 500 index is
positive and must be in the interval [0, 1], we employ the equation

ρ21,t = exp(qt )

1 + exp(qt )
, (10.25)

where

qt = ω0 + ω1ρ21,t−1 + ω2
a1,t−1a2,t−1√
σ11,t−1σ22,t−1

,

where σii,t−1 is the conditional variance of the shock ai,t−1. We refer to this equation
as a GARCH(1,1) model for the correlation coefficient because it uses the lag-1
cross correlation and the lag-1 cross product of the two shocks. If �1 = �2 = 0,
then model (10.25) reduces to the case of constant correlation.
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Figure 10.8 Sample correlation coefficient between monthly log returns of IBM stock and S&P 500
index. Correlation is computed by a moving window of 120 observations. Sample period is from January
1926 to December 1999.

In summary, a time-varying correlation bivariate GARCH(1,1) model consists
of two sets of equations. The first set of equations consists of a bivariate
GARCH(1,1) model for the conditional variances, and the second set of equation
is a GARCH(1,1) model for the correlation in Eq. (10.25). In practice, a negative
sign can be added to Eq. (10.25) if the correlation coefficient is negative.
In general, when the sign of correlation is unknown, we can use the Fisher
transformation for correlation

qt = ln

(
1 + ρ21,t

1 − ρ21,t

)
or ρ21,t = exp(qt ) − 1

exp(qt ) + 1

and employ a GARCH model for qt to model the time-varying correlation between
two returns.

Example 10.5 (Continued). Augmenting Eq. (10.25) to the GARCH(1,1)
model in Eq. (10.24) for the monthly log returns of IBM stock and the S&P
500 index and performing a joint estimation, we obtain the following model for
the two series:

r1t = 1.318 + 0.076r1,t−1 − 0.068r2,t−2 + a1t ,

r2t = 0.673 + a2t ,
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where standard errors of the three parameters in the first equation are 0.215, 0.026,
and 0.034, respectively, and standard error of the parameter in the second equation
is 0.151. The volatility equations are

[
σ11,t

σ22,t

]
=


2.80
(0.58)
1.71
(0.40)

 +


0.084
(0.013)
0.037 0.054
(0.009) (0.010)

[
a2

1,t−1
a2

2,t−1

]

+


0.864 −0.020
(0.021) (0.009)
−0.058 0.914
(0.014) (0.013)

[
σ11,t−1

σ22,t−1

]
, (10.26)

where, as before, standard errors are in parentheses. The conditional correlation
equation is

ρt = exp(qt )

1 + exp(qt )
, qt = −2.024 + 3.983ρt−1 + 0.088

a1,t−1a2,t−1√
σ11,t−1σ22,t−1

,

(10.27)

where standard errors of the estimates are 0.050, 0.090, and 0.019, respectively.
The parameters of the prior correlation equation are highly significant. Apply-
ing the Ljung–Box statistics to the standardized residuals ãt , we have Q2(4) =
20.57(0.11) and Q2(8) = 36.08(0.21). For the squared standardized residuals, we
have Q∗

2(4) = 16.69(0.27) and Q∗
2(8) = 36.71(0.19). Therefore, the standardized

residuals of the model have no significant serial correlations or conditional het-
eroscedasticities.

It is interesting to compare this time-varying correlation GARCH(1,1) model
with the constant-correlation GARCH(1,1) model in Eq. (10.24). First, the mean
and volatility equations of the two models are close. Second, Figure 10.9 shows
the fitted conditional correlation coefficient between the monthly log returns of
IBM stock and the S&P 500 index based on model (10.27). The plot shows that
the correlation coefficient fluctuated over time and became smaller in recent years.
This latter characteristic is in agreement with that of Figure 10.8. Third, the aver-
age of the fitted correlation coefficients is 0.612, which is essentially the estimate
0.614 of the constant-correlation model in Eq. (10.24). Fourth, using the sample
variances of rit as the starting values for the conditional variances and the obser-
vations from t = 4 to t = 888, the maximized log-likelihood function is −3691.21
for the constant-correlation GARCH(1,1) model and −3679.64 for the time-varying
correlation GARCH(1,1) model. Thus, the time-varying correlation model shows
some significant improvement over the constant-correlation model. Finally, con-
sider the 1-step-ahead volatility forecasts of the two models at the forecast origin
h = 888. For the constant-correlation model in Eq. (10.24), we have a1,888 = 3.075,
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Figure 10.9 Fitted conditional correlation coefficient between monthly log returns of IBM stock and
S&P 500 index using time-varying correlation GARCH(1,1) model of Example 10.5. Horizontal line
denotes average of 0.612 of correlation coefficients.

a2,888 = 4.931, σ11,888 = 77.91, and σ22,888 = 21.19. Therefore, the 1-step-ahead
forecast for the conditional covariance matrix is

�̂888(1) =
[

71.09 21.83
21.83 17.79

]
,

where the covariance is obtained by using the constant-correlation coefficient 0.614.
For the time-varying correlation model in Eqs. (10.26) and (10.27), we have
a1,888 = 3.287, a2,888 = 4.950, σ11,888 = 83.35, σ22,888 = 28.56, and ρ888 = 0.546.
The 1-step-ahead forecast for the covariance matrix is

�̂888(1) =
[

75.15 23.48
23.48 24.70

]
,

where the forecast of the correlation coefficient is 0.545.
In the second method, we use the Cholesky decomposition of �t to model

time-varying correlations. For the bivariate case, the parameter vector is �t =
(g11,t , g22,t , q21,t )

′; see Eq. (10.18). A simple GARCH(1,1) type model for at is

g11,t = α10 + α11b
2
1,t−1 + β11g11,t−1,

q21,t = γ0 + γ1q21,t−1 + γ2a2,t−1, (10.28)

g22,t = α20 + α21b
2
1,t−1 + α22b

2
2,t−1 + β21g11,t−1 + β22g22,t−1,
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where b1t = a1t and b2t = a2t − q21,t a1t . Thus, b1t assumes a univariate
GARCH(1,1) model, b2t uses a bivariate GARCH(1,1) model, and q21,t is
autocorrelated and uses a2,t−1 as an additional explanatory variable. The
probability density function relevant to maximum-likelihood estimation is given
in Eq. (10.20) with k = 2.

Example 10.5 (Continued). Again we use the monthly log returns of IBM
stock and the S&P 500 index to demonstrate the volatility model in Eq. (10.28).
Using the same specification as before, we obtain the fitted mean equations as

r1t = 1.364 + 0.075r1,t−1 − 0.058r2,t−2 + a1t ,

r2t = 0.643 + a2t ,

where standard errors of the parameters in the first equation are 0.219, 0.027, and
0.032, respectively, and the standard error of the parameter in the second equation
is 0.154. These two mean equations are close to what we obtained before. The
fitted volatility model is

g11,t = 3.714 + 0.113b2
1,t−1 + 0.804g11,t−1,

q21,t = 0.0029 + 0.9915q21,t−1 − 0.0041a2,t−1, (10.29)

g22,t = 1.023 + 0.021b2
1,t−1 + 0.052b2

2,t−1 − 0.040g11,t−1 + 0.937g22,t−1,

where b1t = a1t , and b2t = a2t − q21,t b1t . Standard errors of the parameters in the
equation of g11,t are 1.033, 0.022, and 0.037, respectively; those of the parameters
in the equation of q21,t are 0.001, 0.002, and 0.0004; and those of the parameters in
the equation of g22,t are 0.344, 0.007, 0.013, and 0.015, respectively. All estimates
are statistically significant at the 1% level.

The conditional covariance matrix �t can be obtained from model (10.29)
by using the Cholesky decomposition in Eq. (10.12). For the bivariate case, the
relationship is given specifically in Eq. (10.13). Consequently, we obtain the time-
varying correlation coefficient as

ρt = σ21,t√
σ11,t σ22,t

= q21,t
√
g11,t√

g22,t + q2
21,t g11,t

. (10.30)

Using the fitted values of σ11,t and σ22,t , we can compute the standardized residuals
to perform model checking. The Ljung–Box statistics for the standardized resid-
uals of model (10.29) give Q2(4) = 19.77(0.14) and Q2(8) = 34.22(0.27). For
the squared standardized residuals, we have Q∗

2(4) = 15.34(0.36) and Q∗
2(8) =

31.87(0.37). Thus, the fitted model is adequate in describing the conditional mean
and volatility. The model shows a strong dynamic dependence in the correlation;
see the coefficient 0.9915 in Eq. (10.29).
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Figure 10.10 Fitted conditional correlation coefficient between monthly log returns of IBM stock and
S&P 500 index using time-varying correlation GARCH(1,1) model of Example 10.5 with Cholesky
decomposition. Horizontal line denotes average of 0.612 of the estimated coefficients.

Figure 10.10 shows the fitted time-varying correlation coefficient in Eq. (10.30).
It shows a smoother correlation pattern than that of Figure 10.9 and confirms
the decreasing trend of the correlation coefficient. In particular, the fitted correla-
tion coefficients in recent years are smaller than those of the other models. The
two time-varying correlation models for the monthly log returns of IBM stock
and the S&P 500 index have comparable maximized-likelihood functions of about
−3672, indicating the fits are similar. However, the approach based on the Cholesky
decomposition may have some advantages. First, it does not require any parameter
constraint in estimation to ensure the positive definiteness of �t . If one also uses
log transformation for gii,t , then no constraints are needed for the entire volatility
model. Second, the log-likelihood function becomes simple under the transforma-
tion. Third, the time-varying parameters qij,t and gii,t have nice interpretations.
However, the transformation makes inference a bit more complicated because the
fitted model may depend on the ordering of elements in at ; recall that a1t is not
transformed. In theory, the ordering of elements in at should have no impact on
volatility.

Finally, the 1-step-ahead forecast of the conditional covariance matrix at the
forecast origin t = 888 for the new time-varying correlation model is

�̂888(1) =
[

73.45 7.34
7.34 17.87

]
.
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The correlation coefficient of the prior forecast is 0.203, which is substantially
smaller than those of the previous two models. However, forecasts of the condi-
tional variances are similar as before.

10.4.3 Dynamic Correlation Models

Using the parameterization in Eq. (10.7), several authors have proposed parsimo-
nious models for ρt to describe the time-varying correlations. We refer to those
models as the dynamic conditional correlation (DCC) models.

For k-dimensional returns, Tse and Tsui (2002) assume that the conditional
correlation matrix ρt follows the model

ρt = (1 − θ1 − θ2)ρ + θ1ρ t−1 + θ2ψ t−1,

where θ1 and θ2 are scalar parameters, ρ is a k × k positive-definite matrix with unit
diagonal elements, and ψ t−1 is the k × k sample correlation matrix using shocks
from t − m, . . . , t − 1 for a prespecified m. Typically, one assumes that 0 ≤ θi < 1
and θ1 + θ2 < 1 so that the resulting correlation matrix ρ t is positive definite for
all t . For a given ρ, the model is parsimonious. In applications, the choice of ρ

and m deserves a careful investigation. One possibility is to let ρ be the sample
correlation matrix of the returns. The correlation equation then only employs two
parameters.

Engle (2002) proposes the model

ρ t = J tQtJ t ,

where Qt = (qij,t )k×k is a positive-definite matrix, J t = diag{q−1/2
11,t , . . . , q

−1/2
kk,t },

and Qt satisfies

Qt = (1 − θ1 − θ2)Q̄ + θ1εt−1ε
′
t−1 + θ2Qt−1,

where εt is the standardized innovation vector with elements εit = ait/
√
σii,t , Q̄

is the unconditional covariance matrix of εt , and θ1 and θ2 are nonnegative scalar
parameters satisfying 0 < θ1 + θ2 < 1. The J t matrix is a normalization matrix to
guarantee that Rt is a correlation matrix.

An obvious drawback of the prior two models is that θ1 and θ2 are scalar so
that all the conditional correlations have the same dynamics. This might be hard
to justify in real applications, especially when the dimension k is large.

Tsay (2006) extends the previous DCC models in two ways. First, the standard-
ized innovations are assumed to follow a multivariate Student-t distribution of Eq.
(10.42). Second, the marginal volatility models have leverage effects. Specifically,
the volatility equation for r t is

D2
t = �0 + �1D

2
t−1 + �2A

2
t−1 + �3L

2
t−1, (10.31)
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where Dt is the diagonal matrix of volatilities as defined in Eq. (10.7), Aj =
diag{a1j , . . . , akj }, �i = diag{�1i , . . . , �ki} are k × k diagonal matrices of param-
eters and Lt−1 = diag{L1,t−1, . . . , Lk,t−1} is also a k × k diagonal matrix with
diagonal elements

Li,t−1 =
{
ai,t−1 if ai,t−1 < 0,

0 otherwise.

In Eq. (10.31), the parameters �ij satisfy 0 ≤ ∑3
j=1 �ij < 1, �i0 > 0 for

i = 1, . . . , k, and �ji ≥ 0 for all positive i and j . The constraint ensures that the
volatilities exist. Of course, if �3 = 0, then there is no leverage effect.

The correlation equation is

ρt = (1 − θ1 − θ2)ρ̂ + θ1ψ t−1 + θ2ρ t−1, (10.32)

where ρ̂ is the sample correlation matrix of the returns and 0 ≤ θ1 + θ2 < 1 with
θi ≥ 0 for i = 1, 2.

Example 10.6. To illustrate the DCC model, we consider the daily exchange
rates between U.S. dollar versus European euro and Japanese yen and the stock
prices of IBM and Dell from January 1999 to December 2004. The exchange rates
are the noon spot rate obtained from the Federal Reserve Bank of St. Louis and
the stock returns are from the Center for Research in Security Prices (CRSP). We
compute the simple returns of the exchange rates and remove returns for those
days when one of the markets was not open. This results in a four-dimensional
return series with 1496 observations. The return vector is r t = (r1t , r2t , r3t , r4t )

′
with r1t and r2t being the returns of euro and yen exchange rate, respectively, and
r3t and r4t are the returns of IBM and Dell stock, respectively. All returns are
in percentages. Figure 10.11 shows the time plot of the return series. From the
plot, equity returns have higher variability than the exchange rate returns, and the
variability of equity returns appears to be decreasing in latter years. Table 10.1
provides some descriptive statistics of the return series. As expected, the means of
the returns are essentially zero and all four series have heavy tails with positive
excess kurtosis.

The equity returns have some serial correlations, but the magnitude is small. If
multivariate Ljung–Box statistics are used, we have Q(3) = 59.12 with a p value
of 0.13 and Q(5) = 106.44 with a p value of 0.03. For simplicity, we use the
sample mean as the mean equation and apply the proposed multivariate volatility
model to the mean-corrected data. In estimation, we start with a general model, but
add some equality constraints as some estimates appear to be close to each other.
The results are given in Table 10.2 along with the value of likelihood function
evaluated at the estimates.

For each estimated multivariate volatility model in Table 10.2, we compute the
standardized residuals as

ε̂t = �̂
−1/2
t at ,
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Figure 10.11 Time plots of daily simple return series from January 1999 to December 2004:
(a) dollar–euro exchange rate, (b) dollar–yen exchange rate, (c) IBM stock, and (d) Dell stock.

TABLE 10.1 Descriptive Statistics of Daily Returns of Example 10.6.a

Asset USEU JPUS IBM DELL

Mean 0.0091 −0.0059 0.0066 0.0028
Standard error 0.6469 0.6626 5.4280 10.1954
Skewness 0.0342 −0.1674 −0.0530 −0.0383
Excess kurtosis 2.7090 2.0332 6.2164 3.3054
Box–Ljung Q(12) 12.5 6.4 24.1 24.1

aThe returns are in percentages, and the sample period is from January 1999 to December 2004 for
1496 observations.

where �̂
1/2
t is the symmetric square root matrix of the estimated volatility matrix

�̂t . We apply the multivariate Ljung–Box statistics to the standardized residuals ε̂t
and its squared process ε̂

2
t of a fitted model to check model adequacy. For the full

model in Table 10.2(a), we have Q(10) = 167.79(0.32) and Q(10) = 110.19(1.00)
for ε̂t and ε̂

2
t , respectively, where the number in parentheses denotes p value.

Clearly, the model adequately describes the first two moments of the return series.
For the model in Table 10.2(b), we have Q(10) = 168.59(0.31) and Q(10) =
109.93(1.00). For the final restricted model in Table 10.2(c), we obtain Q(10) =
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TABLE 10.2 Estimation Results of Multivariate Volatility Models for Example 10.6a

(a) Full Model Estimation with Lmax = −9175.80

�0 �1 �2 (v, θ1, θ2)
′

0.0041(0.0033) 0.9701(0.0114) 0.0214(0.0075) 7.8729(0.4693)
0.0088(0.0038) 0.9515(0.0126) 0.0281(0.0084) 0.9808(0.0029)
0.0071(0.0053) 0.9636(0.0092) 0.0326(0.0087) 0.0137(0.0025)
0.0150(0.0136) 0.9531(0.0155) 0.0461(0.0164)

(b) Restricted Model with Lmax = −9176.62

�0 �1 = λ × I �2 (v, θ1, θ2)
′

0.0066(0.0028) 0.9606(0.0068) 0.0255(0.0068) 7.8772(0.7144)
0.0066(0.0023) 0.0240(0.0059) 0.9809(0.0042)
0.0080(0.0052) 0.0355(0.0068) 0.0137(0.0025)
0.0108(0.0086) 0.0385(0.0073)

(c) Final Restricted Model with Lmax = −9177.44

�0(λ1, λ1, λ3, λ4) �1 = λ × I �2(b1, b1, b2, b2) (v, θ1, θ2)
′

0.0067(0.0021) 0.9603(0.0063) 0.0248(0.0048) 7.9180(0.6952)
0.0067(0.0021) 0.0248(0.0048) 0.9809(0.0042)
0.0061(0.0044) 0.0372(0.0061) 0.0137(0.0028)
0.0148(0.0084) 0.0372(0.0061)

(d) Model with Leverage Effects, Lmax = −9169.04

�0(λ1, λ2, λ3, λ4) �1 = λ × I �2(b1, b2, b3, b4) (v, θ1, θ2)
′

0.0064(0.0027) 0.9600(0.0065) 0.0254(0.0063) 8.4527(0.7556)
0.0066(0.0023) 0.0236(0.0054) 0.9810(0.0044)
0.0128(0.0055) 0.0241(0.0056) 0.0132(0.0027)
0.0210(0.0099) 0.0286(0.0062)

aLmax denotes the value of likelihood function evaluated at the estimates, v is the degrees of freedom of
the multivariate Student-t distribution, and the numbers in parentheses are asymptotic standard errors.

168.50(0.31) and Q(10) = 111.75(1.00). Again, the restricted models are capable
of describing the mean and volatility of the return series.

From Table 10.2, we make the following observations. First, using the likelihood
ratio test, we cannot reject the final restricted model compared with the full model.
This results in a very parsimonious model consisting of only 9 parameters for the
time-varying correlations of the four-dimensional return series. Second, for the two
stock return series, the constant terms in �0 are not significantly different from zero,
and the sum of GARCH parameters is 0.0372 + 0.9603 = 0.9975, which is very
close to unity. Consequently, the volatility series of the two equity returns exhibit
IGARCH behavior. On the other hand, the volatility series of the two exchange rate
returns appear to have a nonzero constant term and high persistence in GARCH
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Figure 10.12 Time plots of estimated volatility series of four asset returns. Solid line is from proposed
model and dashed line is from a rolling estimation with window size 69: (a) dollar–euro exchange rate,
(b) dollar–yen exchange rate, (c) IBM stock, and (d) Dell stock.

parameters. Third, to better understand the efficacy of the proposed model, we
compare the results of the final restricted model with those of rolling estimates.
The rolling estimates of covariance matrix are obtained using a moving window of
size 69, which is the approximate number of trading days in a quarter. Figure 10.12
shows the time plot of estimated volatility. The solid line is the volatility obtained
by the proposed model and the dashed line is for volatility of the rolling estimation.
The overall pattern seems similar, but, as expected, the rolling estimates respond
more slowly than the proposed model to large innovations. This is shown by the
faster rise and decay of the volatility obtained by the proposed model. Figure 10.13
shows the time-varying correlations of the four asset returns. The solid line denotes
correlations obtained by the final restricted model of Table 10.2, whereas the dashed
line is for rolling estimation. The correlations of the proposed model seem to be
smoother.

Table 10.2(d) gives the results of a fitted integrated GARCH-type model with
leverage effects. The leverage effects are statistically significant for equity returns
only and are in the form of an IGARCH model. Specifically, the �3 matrix of the



536 multivariate volatility models and their applications

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

(a) USEU vs JPUS

(b) IBM vs USEU

(c) IBM vs JPUS

(d) Dell vs USEU

(e)

Year

(f) Dell vs IBM

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
ns

1999 2000 2001 2002 2003 2004 2005

−1
.0

−0
.5

0.
0

0.
5

1.
0

Figure 10.13 Time plots of time-varying correlations between percentage simple returns of four assets
from January 1999 to December 2004. Solid line is from the proposed model, whereas dashed line is
from a rolling estimation with window size 69.
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correlation equation in Eq. (10.31) is

�3 = diag {0, 0, (1 − 0.96 − 0.0241), (1 − 0.96 − 0.0286)}
= diag{0, 0, 0.0159, 0.0114}.

Although the magnitudes of the leverage parameters are small, they are statistically
significant. This is shown by the likelihood ratio test. Specifically, comparing the
fitted models in Table 10.2(b) and (d), the likelihood ratio statistic is 15.16, which
has a p value of 0.0005 based on the chi-squared distribution with 2 degrees of
freedom.

10.5 HIGHER DIMENSIONAL VOLATILITY MODELS

In this section, we make use of the sequential nature of Cholesky decomposition to
suggest a strategy for building a high-dimensional volatility model. Again write the
vector return series as r t = µt + at . The mean equations for r t can be specified
by using the methods of Chapter 8. A simple vector AR model is often sufficient.
Here we focus on building a volatility model using the shock process at .

Based on the discussion of Cholesky decomposition in Section 10.3, the orthog-
onal transformation from ait to bit only involves bjt for j < i. In addition, the
time-varying volatility models built in Section 10.4 appear to be nested in the sense
that the model for gii,t depends only on quantities related to bjt for j < i. Con-
sequently, we consider the following sequential procedure to build a multivariate
volatility model:

1. Select a market index or a stock return that is of major interest. Build a
univariate volatility model for the selected return series.

2. Augment a second return series to the system, perform the orthogonal trans-
formation on the shock process of this new return series, and build a bivariate
volatility model for the system. The parameter estimates of the univariate
model in step 1 can be used as the starting values in bivariate estimation.

3. Augment a third return series to the system, perform the orthogonal trans-
formation on this newly added shock process, and build a three-dimensional
volatility model. Again parameter estimates of the bivariate model can be
used as the starting values in the three-dimensional estimation.

4. Continue the augmentation until a joint volatility model is built for all the
return series of interest.

Finally, model checking should be performed in each step to ensure the adequacy
of the fitted model. Experience shows that this sequential procedure can sim-
plify substantially the complexity involved in building a high-dimensional volatility
model. In particular, it can markedly reduce the computing time in estimation.
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Figure 10.14 Time plots of daily log returns in percentages of (a) S&P 500 index and stocks of (b)
Cisco Systems and (c) Intel Corporation from January 2, 1991, to December 31, 1999.

Example 10.7. We demonstrate the proposed sequential procedure by building
a volatility model for the daily log returns of the S&P 500 index and the stocks
of Cisco Systems and Intel Corporation. The data span is from January 2, 1991,
to December 31, 1999, with 2275 observations. The log returns are in percentages
and shown in Figure 10.14. Components of the return series are ordered as r t =
(SP5t ,CSCOt , INTCt )

′. The sample means, standard errors, and correlation matrix
of the data are

µ̂ =
 0.066

0.257
0.156

 ,

 σ̂1

σ̂2

σ̂3

 =
 0.875

2.853
2.464

 , ρ̂ =
 1.00 0.52 0.50

0.52 1.00 0.47
0.50 0.47 1.00

 .

Using the Ljung–Box statistics to detect any serial dependence in the return
series, we obtain Q3(1) = 26.20, Q3(4) = 79.73, and Q3(8) = 123.68. These test
statistics are highly significant with p values close to zero as compared with
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TABLE 10.3 Sample Cross-Correlation Matrices of Daily Log Returns of S&P 500
Index and Stocks of Cisco Systems and Intel Corporation from January 2, 1991, to
December 31, 1999

Lag

1 2 3 4 5 6

· · ·
· · ·
– · ·

· · ·
· – ·
· · ·

– · ·
· · ·
· · ·

· · ·
· · ·
· · ·

– · ·
– · ·
– · ·

· · ·
· – ·
· · ·

chi-squared distributions with degrees of freedom 9, 36, and 72, respectively.
There is indeed some serial dependence in the data. Table 10.3 gives the first
five lags of sample cross-correlation matrices shown in the simplified notation of
Chapter 8. An examination of the table shows that (a) the daily log returns of
the S&P 500 index does not depend on the past returns of Cisco or Intel, (b) the
log return of Cisco stock has some serial correlations and depends on the past
returns of the S&P 500 index (see lags 2 and 5), and (c) the log return of Intel
stock depends on the past returns of the S&P 500 index (see lags 1 and 5). These
observations are similar to those between the returns of IBM stock and the S&P
500 index analyzed in Chapter 8. They suggest that returns of individual large-
cap companies tend to be affected by the past behavior of the market. However,
the market return is not significantly affected by the past returns of individual
companies.

Turning to volatility modeling and following the suggested procedure, we start
with the log returns of the S&P 500 index and obtain the model

r1t = 0.078 + 0.042r1,t−1 − 0.062r1,t−3 − 0.048r1,t−4 − 0.052r1,t−5 + a1t ,

σ11,t = 0.013 + 0.092a2
1,t−1 + 0.894σ11,t−1, (10.33)

where standard errors of the parameters in the mean equation are 0.016, 0.023,
0.020, 0.022, and 0.020, respectively, and those of the parameters in the volatility
equation are 0.002, 0.006, and 0.007, respectively. Univariate Ljung–Box statistics
of the standardized residuals and their squared series fail to detect any remaining
serial correlation or conditional heteroscedasticity in the data. Indeed, we have
Q(10) = 7.38(0.69) for the standardized residuals and Q(10) = 3.14(0.98) for the
squared series.

Augmenting the daily log returns of Cisco stock to the system, we build a
bivariate model with mean equations given by

r1t = 0.065 − 0.046r1,t−3 + a1t ,

r2t = 0.325 + 0.195r1,t−2 − 0.091r2,t−2 + a2t , (10.34)
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where all of the estimates are statistically significant at the 1% level. Using the
notation of Cholesky decomposition, we obtain the volatility equations as

g11,t = 0.006 + 0.051b2
1,t−1 + 0.943g11,t−1,

q21,t = 0.331 + 0.790q21,t−1 − 0.041a2,t−1, (10.35)

g22,t = 0.177 + 0.082b2
2,t−1 + 0.890g22,t−1,

where b1t = a1t , b2t = a2t − q21,t b1t , standard errors of the parameters in the
equation of g11,t are 0.001, 0.005, and 0.006, those of the parameters in the
equation of q21,t are 0.156, 0.099, and 0.011, and those of the parameters in
the equation of g22,t are 0.029, 0.008, and 0.011, respectively. The bivariate
Ljung–Box statistics of the standardized residuals fail to detect any remaining
serial dependence or conditional heteroscedasticity. The bivariate model is
adequate. Comparing with Eq. (10.33), we see that the difference between the
marginal and univariate models of r1t is small.

The next and final step is to augment the daily log returns of Intel stock to the
system. The mean equations become

r1t = 0.065 − 0.043r1,t−3 + a1t ,

r2t = 0.326 + 0.201r1,t−2 − 0.089r2,t−1 + a2t , (10.36)

r3t = 0.192 − 0.264r1,t−1 + 0.059r3,t−1 + a3t ,

where standard errors of the parameters in the first equation are 0.016 and 0.017,
those of the parameters in the second equation are 0.052, 0.059, and 0.021, and
those of the parameters in the third equation are 0.050, 0.057, and 0.022, respec-
tively. All estimates are statistically significant at about the 1% level. As expected,
the mean equations for r1t and r2t are essentially the same as those in the bivariate
case.

The three-dimensional time-varying volatility model becomes a bit more com-
plicated, but it remains manageable as

g11,t = 0.006 + 0.050b2
1,t−1 + 0.943g11,t−1,

q21,t = 0.277 + 0.824q21,t−1 − 0.035a2,t−1,

g22,t = 0.178 + 0.082b2
2,t−1 + 0.889g22,t−1,

q31,t = 0.039 + 0.973q31,t−1 + 0.010a3,t−1, (10.37)

q32,t = 0.006 + 0.981q32,t−1 + 0.004a2,t−1,

g33,t = 1.188 + 0.053b2
3,t−1 + 0.687g33,t−1 − 0.019g22,t−1,

where b1t = a1t , b2t = a2t − q21,t b1t , b3t = a3t − q31,t b1t − q32,t b2t , and standard
errors of the parameters are given in Table 10.4. Except for the constant
term of the q32,t equation, all estimates are significant at the 5% level. Let
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TABLE 10.4 Standard Errors of Parameter Estimates of Three-Dimensional
Volatility Model for Daily Log Returns in Percentages of S&P 500 Index and Stocks
of Cisco Systems and Intel Corporation from January 2, 1991, to December 31, 1999a

Equation Standard Error Equation Standard Error

g11,t 0.001 0.005 0.006 q21,t 0.135 0.086 0.010
g22,t 0.029 0.009 0.011 q31,t 0.017 0.012 0.004
g33,t 0.407 0.015 0.100 0.008 q32,t 0.004 0.013 0.001
aThe ordering of the parameter is the same as appears in Eq. (10.37).

ãt = (a1t /σ̂1t , a2t /σ̂2t , a3t /σ̂3t )
′ be the standardized residual series, where

σ̂it = √
σ̂ii,t is the fitted conditional standard error of the ith return. The

Ljung–Box statistics of ãt give Q3(4) = 34.48(0.31) and Q3(8) = 60.42(0.70),
where the degrees of freedom of the chi-squared distributions are 31 and
67, respectively, after adjusting for the number of parameters used in the
mean equations. For the squared standardized residual series ã2

t , we have
Q∗

3(4) = 28.71(0.58) and Q∗
3(8) = 52.00(0.91). Therefore, the fitted model

appears to be adequate in modeling the conditional means and volatilities.
The three-dimensional volatility model in Eq. (10.37) shows some interest-

ing features. First, it is essentially a time-varying correlation GARCH(1,1) model
because only lag-1 variables are used in the equations. Second, the volatility of
the daily log returns of the S&P 500 index does not depend on the past volatil-
ities of Cisco or Intel stock returns. Third, by taking the inverse transformation
of the Cholesky decomposition, the volatilities of daily log returns of Cisco and
Intel stocks depend on the past volatility of the market return; see the relationships
between elements of �t , Lt , and Gt given in Section 10.3. Fourth, the correlation
quantities qij,t have high persistence with large AR(1) coefficients.

Figure 10.15 shows the fitted volatility processes of the model (i.e., σ̂ii,t ) for
the data. The volatility of the index return is much smaller than those of the two
individual stock returns. The plots also show that the volatility of the index return
has increased in recent years, but this is not the case for the return of Cisco Systems.
Figure 10.16 shows the time-varying correlation coefficients between the three
return series. Of particular interest is to compare Figures 10.15 and 10.16. They
show that the correlation coefficient between two return series increases when the
returns are volatile. This is in agreement with the empirical study of relationships
between international stock market indexes for which the correlation between two
markets tends to increase during a financial crisis.

The volatility model in Eq. (10.37) consists of two sets of equations. The first
set of equations describes the time evolution of conditional variances (i.e., gii,t ),
and the second set of equations deals with correlation coefficients (i.e., qij,t with
i > j ). For this particular data set, an AR(1) model might be sufficient for the
correlation equations. Similarly, a simple AR model might also be sufficient for
the conditional variances. Define vt = (v11,t , v22,t , v33,t )

′, where vii,t = ln(gii,t ),
and q t = (q21,t , q31,t , q32,t )

′. The previous discussion suggests that we can use the
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Figure 10.15 Time plots of fitted volatilities for daily log returns, in percentages, of (a) S&P 500
index and stocks of (b) Cisco Systems and (c) Intel Corporation from January 2, 1991, to December
31, 1999.

simple lag-1 models

vt = c1 + β1vt−1, q t = c2 + β2q t−1

as exact functions to model the volatility of asset returns, where ci are constant
vectors and β i are 3 × 3 real-valued matrices. If a noise term is also included in
the above equations, then the models become

vt = c1 + β1vt−1 + e1t , q t = c2 + β2q t−1 + e2t ,

where eit are random shocks with mean zero and a positive-definite covariance
matrix, and we have a simple multivariate stochastic volatility model. In a recent
manuscript, Chib, Nardari, and Shephard (1999) use Markov chain Monte Carlo
(MCMC) methods to study high-dimensional stochastic volatility models. The
model considered there allows for time-varying correlations, but in a relatively
restrictive manner. Additional references of multivariate volatility model include
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Figure 10.16 Time plots of fitted time-varying correlation coefficients between daily log returns of
S&P 500 index and stocks of Cisco Systems and Intel Corporation from January 2, 1991, to December
31, 1999.

Harvey, Ruiz, and Shephard (1994). We discuss MCMC methods in volatility mod-
eling in Chapter 12.

10.6 FACTOR–VOLATILITY MODELS

Another approach to simplifying the dynamic structure of a multivariate volatility
process is to use factor models. In practice, the “common factors” can be determined
a priori by substantive matter or empirical methods. As an illustration, we use the
factor analysis of Chapter 8 to discuss factor–volatility models. Because volatility
models are concerned with the evolution over time of the conditional covariance
matrix of at , where at = r t − µt , a simple way to identify the “common factors”
in volatility is to perform a principal component analysis (PCA) on at ; see the
PCA of Chapter 8. Building a factor–volatility model thus involves a three-step
procedure:

• Select the first few principal components that explain a high percentage of
variability in at .
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• Build a volatility model for the selected principal components.
• Relate the volatility of each ait series to the volatilities of the selected principal

components.

The objective of such a procedure is to reduce the dimension but maintain an
accurate approximation of the multivariate volatility.

Example 10.8. Consider again the monthly log returns, in percentages, of IBM
stock and the S&P 500 index of Example 10.5. Using the bivariate AR(3) model
of Example 8.4, we obtain an innovational series at . Performing a PCA on at

based on its covariance matrix, we obtained eigenvalues 63.373 and 13.489. The
first eigenvalue explains 82.2% of the generalized variance of at . Therefore, we
may choose the first principal component xt = 0.797a1t + 0.604a2t as the common
factor. Alternatively, as shown by the model in Example 8.4, the serial dependence
in r t is weak and, hence, one can perform the PCA on r t directly. For this particular
instance, the two eigenvalues of the sample covariance matrix of r t are 63.625 and
13.513, which are essentially the same as those based on at . The first principal
component explains approximately 82.5% of the generalized variance of r t , and
the corresponding common factor is xt = 0.796r1t + 0.605r2t . Consequently, for
the two monthly log return series considered, the effect of the conditional mean
equations on PCA is negligible.

Based on the prior discussion and for simplicity, we use xt = 0.796r1t +
0.605r2t as a common factor for the two monthly return series. Figure 10.17(a)
shows the time plot of this common factor. If univariate Gaussian GARCH models
are entertained, we obtain the following model for xt :

xt = 1.317 + 0.096xt−1 + at , at = σtεt ,

σ 2
t = 3.834 + 0.110a2

t−1 + 0.825σ 2
t−1. (10.38)

All parameter estimates of the previous model are highly significant at the 1% level,
and the Ljung–Box statistics of the standardized residuals and their squared series
fail to detect any model inadequacy. Figure 10.17(b) shows the fitted volatility of
xt [i.e., the sample σ 2

t series in Eq. (10.38)].
Using σ 2

t of model (10.38) as a common volatility factor, we obtain the following
model for the original monthly log returns. The mean equations are

r1t = 1.140 + 0.079r1,t−1 + 0.067r1,t−2 − 0.122r2,t−2 + a1t ,

r2t = 0.537 + a2t ,

where standard errors of the parameters in the first equation are 0.211, 0.030, 0.031,
and 0.043, respectively, and standard error of the parameter in the second equation
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Figure 10.17 (a) Time plot of first principal component of monthly log returns of IBM stock and S&P
500 index. (b) Fitted volatility process based on a GARCH(1,1) model.

is 0.165. The conditional variance equation is

[
σ11,t

σ22,t

]
=


19.08
(3.70)
−5.62
(2.36)

 +


0.098
(0.044)

[
a2

1,t−1
a2

2,t−1

]
+


0.333
(0.076)
0.596
(0.050)

 σ 2
t ,

(10.39)

where, as before, standard errors are in parentheses, and σ 2
t is obtained from model

(10.38). The conditional correlation equation is

ρt = exp(qt )

1 + exp(qt )
,

qt = −2.098 + 4.120ρt−1 + 0.078
a1,t−1a2,t−1√
σ11,t−1σ22,t−1

, (10.40)

where standard errors of the three parameters are 0.025, 0.038, and 0.015,
respectively. Defining the standardized residuals as before, we obtain
Q2(4) = 15.37(0.29) and Q2(8) = 34.24(0.23), where the number in parentheses
denotes the p value. Therefore, the standardized residuals have no serial
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correlations. Yet we have Q∗
2(4) = 20.25(0.09) and Q∗

2(8) = 61.95(0.0004) for
the squared standardized residuals. The volatility model in Eq. (10.39) does not
adequately handle the conditional heteroscedasticity of the data especially at
higher lags. This is not surprising as the single common factor only explains about
82.5% of the generalized variance of the data.

Comparing the factor model in Eqs. (10.39) and (10.40) with the time-varying
correlation model in Eqs. (10.26) and (10.27), we see that (a) the correlation
equations of the two models are essentially the same, (b) as expected the factor
model uses fewer parameters in the volatility equation, and (c) the common-
factor model provides a reasonable approximation to the volatility process of
the data.

Remark. In Example 10.8, we used a two-step estimation procedure. In the
first step, a volatility model is built for the common factor. The estimated volatility
is treated as given in the second step to estimate the multivariate volatility model.
Such an estimation procedure is simple but may not be efficient. A more efficient
estimation procedure is to perform a joint estimation. This can be done relatively
easily provided that the common factors are known. For example, for the monthly
log returns of Example 10.8, a joint estimation of Eqs. (10.38)–(10.40) can be per-
formed if the common factor xt = 0.769r1t + 0.605r2t is treated as given. �

10.7 APPLICATION

We illustrate the application of multivariate volatility models by considering the
value at risk (VaR) of a financial position with multiple assets. Suppose that an
investor holds a long position in the stocks of Cisco Systems and Intel Corpora-
tion each worth $1 million. We use the daily log returns for the two stocks from
January 2, 1991, to December 31, 1999, to build volatility models. The VaR is
computed using the 1-step-ahead forecasts at the end of data span and 5% critical
values.

Let VaR1 be the value at risk for holding the position on Cisco Systems stock
and VaR2 for holding Intel stock. Results of Chapter 7 show that the overall daily
VaR for the investor is

VaR =
√

VaR2
1 + VaR2

2 + 2ρVaR1VaR2.

In this illustration, we consider three approaches to volatility modeling for cal-
culating VaR. For simplicity, we do not report standard errors for the parameters
involved or model checking statistics. Yet all of the estimates are statistically signifi-
cant at the 5% level, and the models are adequate based on the Ljung–Box statistics
of the standardized residual series and their squared series. The log returns are in
percentages so that the quantiles are divided by 100 in VaR calculations. Let r1t

be the return of Cisco stock and r2t the return of Intel stock.
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Univariate Models
This approach uses a univariate volatility model for each stock return and uses the
sample correlation coefficient of the stock returns to estimate ρ. The univariate
volatility models for the two stock returns are

r1t = 0.380 + 0.034r1,t−1 − 0.061r1,t−2 − 0.055r1,t−3 + a1t ,

σ 2
1t = 0.599 + 0.117a2

1,t−1 + 0.814σ 2
1,t−1

and

r2t = 0.187 + a2t ,

σ 2
2t = 0.310 + 0.032a2

2,t−1 + 0.918σ 2
2,t−1.

The sample correlation coefficient is 0.473. The 1-step-ahead forecasts needed in
VaR calculation at the forecast origin t = 2275 are

r̂1 = 0.626, σ̂ 2
1 = 4.152, r̂2 = 0.187, σ̂ 2

2 = 6.087, ρ̂ = 0.473.

The 5% quantiles for both daily returns are

q1 = 0.626 − 1.65
√

4.152 = −2.736, q2 = 0.187 − 1.65
√

6.087 = −3.884,

where the negative sign denotes loss. For the individual stocks, VaR1 =
$1000000q1/100 = $27,360andVaR2 = $1000000q2/100 = $38,840. Conse-
quently, the overall VaR for the investor is VaR = $57,117.

Constant-Correlation Bivariate Model
This approach employs a bivariate GARCH(1,1) model for the stock returns. The
correlation coefficient is assumed to be constant over time, but it is estimated jointly
with other parameters. The model is

r1t = 0.385 + 0.038r1,t−1 − 0.060r1,t−2 − 0.047r1,t−3 + a1t ,

r2t = 0.222 + a2t ,

σ11,t = 0.624 + 0.110a2
1,t−1 + 0.816σ11,t−1,

σ22,t = 0.664 + 0.038a2
2,t−1 + 0.853σ22,t−1,

and ρ̂ = 0.475. This is a diagonal bivariate GARCH(1,1) model. The 1-step-ahead
forecasts for VaR calculation at the forecast origin t = 2275 are

r̂1 = 0.373, σ̂ 2
1 = 4.287, r̂2 = 0.222, σ̂ 2

2 = 5.706, ρ̂ = 0.475.

Consequently, we have VaR1 = $30,432 and VaR2 = $37,195. The overall 5%
VaR for the investor is VaR = $58,180.
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Time-Varying Correlation Model
Finally, we allow the correlation coefficient to evolve over time by using the
Cholesky decomposition. The fitted model is

r1t = 0.355 + 0.039r1,t−1 − 0.057r1,t−2 − 0.038r1,t−3 + a1t ,

r2t = 0.206 + a2t ,

g11,t = 0.420 + 0.091b2
1,t−1 + 0.858g11,t−1,

q21,t = 0.123 + 0.689q21,t−1 − 0.014a2,t−1,

g22,t = 0.080 + 0.013b2
2,t−1 + 0.971g22,t−1,

where b1t = a1t and b2t = a2t − q21,t a1t . The 1-step-ahead forecasts for VaR cal-
culation at the forecast origin t = 2275 are

r̂1 = 0.352, r̂2 = 0.206, ĝ11 = 4.252, q̂21 = 0.421, ĝ22 = 5.594.

Therefore, we have σ̂ 2
1 = 4.252, σ̂21 = 1.791, and σ̂ 2

2 = 6.348. The correlation
coefficient is ρ̂ = 0.345. Using these forecasts, we have VaR1 = $30,504,VaR2 =
$39,512, and the overall VaR = $57,648.

The estimated VaR values of the three approaches are similar. The univariate
models give the lowest VaR, whereas the constant-correlation model produces the
highest VaR. The range of the difference is about $1100. The time-varying volatility
model seems to produce a compromise between the two extreme models.

10.8 MULTIVARIATE t DISTRIBUTION

Empirical analysis indicates that the multivariate Gaussian innovations used in the
previous sections may fail to capture the kurtosis of asset returns. In this situation,
a multivariate Student-t distribution might be useful. There are many versions of
the multivariate Student-t distribution. We give a simple version here for volatility
modeling.

A k-dimensional random vector x = (x1, . . . , xk)
′ has a multivariate Student-

t distribution with v degrees of freedom and parameters µ = 0 and � = I (the
identity matrix) if its probability density function (pdf) is

f (x|v) = �[(v + k)/2]

(πv)k/2�(v/2)
(1 + v−1x ′x)−(v+k)/2, (10.41)

where �(y) is the gamma function; see Mardia, Kent, and Bibby (1979, p. 57). The
variance of each component xi in Eq. (10.41) is v/(v − 2), and hence we define
εt = √

(v − 2)/vx as the standardized multivariate Student-t distribution with v

degrees of freedom. By transformation, the pdf of εt is

f (εt |v) = �[(v + k)/2]

[π(v − 2)]k/2�(v/2)
[1 + (v − 2)−1ε′

tεt ]
−(v+k)/2. (10.42)
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For volatility modeling, we write at = �
1/2
t εt and assume that εt follows the

multivariate Student-t distribution in Eq. (10.42). By transformation, the pdf of
at is

f (at |v,�t ) = �[(v + k)/2]

[π(v − 2)]k/2�(v/2)|�t |1/2
[1 + (v − 2)−1a′

t�
−1
t at ]

−(v+k)/2.

Furthermore, if we use the Cholesky decomposition of �t , then the pdf of the
transformed shock bt becomes

f (bt |v,Lt ,Gt ) = �[(v + k)/2]

[π(v − 2)]k/2�(v/2)
∏k

j=1 g
1/2
jj,t

×
1 + (v − 2)−1

k∑
j=1

b2
j t

gjj,t

(v+k)/2

,

where at = Ltbt and gjj,t is the conditional variance of bjt . Because this pdf does
not involve any matrix inversion, the conditional-likelihood function of the data is
easy to evaluate.

APPENDIX: SOME REMARKS ON ESTIMATION

The estimation of multivariate ARMA models in this chapter is done by using
the time series program SCA of Scientific Computing Associates. The estimation
of multivariate volatility models is done by using either the S-Plus package with
FinMetrics or the Regression Analysis for Time Series (RATS) program or Matlab.
Below are some run streams for estimating multivariate volatility models using the
RATS program. A line starting with * means “comment” only.

Estimation of the Diagonal Constant-Correlation AR(2)–GARCH(1,1) Model
for Example 10.5
The program includes some Ljung–Box statistics for each component and some
fitted values for the last few observations. The data file is m-ibmspln.txt, which
has two columns, and there are 888 observations.

all 0 888:1
open data m-ibmspln.txt
data(org=obs) / r1 r2
set h1 = 0.0
set h2 = 0.0
nonlin a0 a1 b1 a00 a11 b11 rho c1 c2 p1
frml a1t = r1(t)-c1-p1*r2(t-1)
frml a2t = r2(t)-c2
frml gvar1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)
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frml gvar2 = a00+a11*a2t(t-1)**2+b11*h2(t-1)
frml gdet = -0.5*(log(h1(t)=gvar1(t))+log(h2(t)=gvar2(t)) $

+log(1.0-rho**2))
frml gln = gdet(t)-0.5/(1.0-rho**2)*((a1t(t)**2/h1(t)) $

+(a2t(t)**2/h2(t))-2*rho*a1t(t)*a2t(t)/sqrt(h1(t)*h2(t)))
smpl 3 888
compute c1 = 1.22, c2 = 0.57, p1 = 0.1, rho = 0.1
compute a0 = 3.27, a1 = 0.1, b1 = 0.6
compute a00 = 1.17, a11 = 0.13, b11 = 0.8
maximize(method=bhhh,recursive,iterations=150) gln
set fv1 = gvar1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv2 = gvar2(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
* Last few observations needed for computing forecasts *
set shock1 = a1t(t)
set shock2 = a2t(t)
print 885 888 shock1 shock2 fv1 fv2

Estimation of the Time-Varying Coefficient Model in Example 10.5

all 0 888:1
open data m-ibmspln.txt
data(org=obs) / r1 r2
set h1 = 45.0
set h2 = 31.0
set rho = 0.8
nonlin a0 a1 b1 f1 a00 a11 b11 d11 f11 c1 c2 p1 p3 q0 q1 q2
frml a1t = r1(t)-c1-p1*r1(t-1)-p3*r2(t-2)
frml a2t = r2(t)-c2
frml gvar1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)+f1*h2(t-1)
frml gvar2 = a00+a11*a2t(t-1)**2+b11*h2(t-1)+f11*h1(t-1) $

+d11*a1t(t-1)**2
frml rh1 = q0 + q1*rho(t-1) $
+ q2*a1t(t-1)*a2t(t-1)/sqrt(h1(t-1)*h2(t-1))

frml rh = exp(rh1(t))/(1+exp(rh1(t)))
frml gdet = -0.5*(log(h1(t)=gvar1(t))+log(h2(t)=gvar2(t)) $

+log(1.0-(rho(t)=rh(t))**2))
frml gln = gdet(t)-0.5/(1.0-rho(t)**2)*((a1t(t)**2/h1(t)) $
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+(a2t(t)**2/h2(t))-2*rho(t)*a1t(t)*a2t(t)/sqrt(h1(t)*h2(t)))
smpl 4 888
compute c1 = 1.4, c2 = 0.7, p1 = 0.1, p3 = -0.1
compute a0 = 2.95, a1 = 0.08, b1 = 0.87, f1 = -.03
compute a00 = 2.05, a11 = 0.05
compute b11 = 0.92, f11=-.06, d11=.04, q0 = -2.0
compute q1 = 3.0, q2 = 0.1
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) gln
set fv1 = gvar1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
set fv2 = gvar2(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
* Last few observations needed for computing forecasts *
set rhohat = rho(t)
set shock1 = a1t(t)
set shock2 = a2t(t)
print 885 888 shock1 shock2 fv1 fv2 rhohat

Estimation of the Time-Varying Coefficient Model in Example 10.5 Using
Cholesky Decomposition

all 0 888:1
open data m-ibmspln.txt
data(org=obs) / r1 r2
set h1 = 45.0
set h2 = 20.0
set q = 0.8
nonlin a0 a1 b1 a00 a11 b11 d11 f11 c1 c2 p1 p3 t0 t1 t2
frml a1t = r1(t)-c1-p1*r1(t-1)-p3*r2(t-2)
frml a2t = r2(t)-c2
frml v1 = a0+a1*a1t(t-1)**2+b1*h1(t-1)
frml qt = t0 + t1*q(t-1) + t2*a2t(t-1)
frml bt = a2t(t) - (q(t)=qt(t))*a1t(t)
frml v2 = a00+a11*bt(t-1)**2+b11*h2(t-1)+f11*h1(t-1) $

+d11*a1t(t-1)**2
frml gdet = -0.5*(log(h1(t) = v1(t))+ log(h2(t)=v2(t)))
frml garchln = gdet-0.5*(a1t(t)**2/h1(t)+bt(t)**2/h2(t))
smpl 5 888
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compute c1 = 1.4, c2 = 0.7, p1 = 0.1, p3 = -0.1
compute a0 = 1.0, a1 = 0.08, b1 = 0.87
compute a00 = 2.0, a11 = 0.05, b11 = 0.8
compute d11=.04, f11=-.06, t0 =0.2, t1 = 0.1, t2 = 0.1
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=150) garchln
set fv1 = v1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
set fv2 = v2(t)+qt(t)**2*v1(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=16,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=16,span=4) residsq
* Last few observations needed for forecasts *
set rhohat = qt(t)*sqrt(v1(t)/fv2(t))
set shock1 = a1t(t)
set shock2 = a2t(t)
set g22 = v2(t)
set q21 = qt(t)
set b2t = bt(t)
print 885 888 shock1 shock2 fv1 fv2 rhohat g22 q21 b2t

Estimation of Three-Dimensional Time-Varying Correlation Volatility Model in
Example 10.7 Using Cholesky Decomposition
Initial estimates are obtained by a sequential modeling procedure.

all 0 2275:1
open data d-cscointc.txt
data(org=obs) / r1 r2 r3
set h1 = 1.0
set h2 = 4.0
set h3 = 3.0
set q21 = 0.8
set q31 = 0.3
set q32 = 0.3
nonlin c1 c2 c3 p3 p21 p22 p31 p33 a0 a1 a2 t0 t1 t2 b0 b1 $

b2 u0 u1 u2 w0 w1 w2 d0 d1 d2 d5
frml a1t = r1(t)-c1-p3*r1(t-3)
frml a2t = r2(t)-c2-p21*r1(t-2)-p22*r2(t-2)
frml a3t = r3(t)-c3-p31*r1(t-1)-p33*r3(t-1)
frml v1 = a0+a1*a1t(t-1)**2+a2*h1(t-1)
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frml q1t = t0 + t1*q21(t-1) + t2*a2t(t-1)
frml bt = a2t(t) - (q21(t)=q1t(t))*a1t(t)
frml v2 = b0+b1*bt(t-1)**2+b2*h2(t-1)
frml q2t = u0 + u1*q31(t-1) + u2*a3t(t-1)
frml q3t = w0 + w1*q32(t-1) + w2*a2t(t-1)
frml b1t = a3t(t)-(q31(t)=q2t(t))*a1t(t)-(q32(t)=q3t(t))*bt(t)
frml v3 = d0+d1*b1t(t-1)**2+d2*h3(t-1)+d5*h2(t-1)
frml gdet = -0.5*(log(h1(t) = v1(t))+ log(h2(t)=v2(t)) $

+log(h3(t)=v3(t)))
frml garchln = gdet-0.5*(a1t(t)**2/h1(t)+bt(t)**2/h2(t) $

+b1t(t)**2/h3(t))
smpl 8 2275
compute c1 = 0.07, c2 = 0.33, c3 = 0.19, p1 = 0.1, p3 = -0.04
compute p21 =0.2, p22 = -0.1, p31 = -0.26, p33 = 0.06
compute a0 = .01, a1 = 0.05, a2 = 0.94
compute t0 = 0.28, t1 =0.82, t2 = -0.035
compute b0 = .17, b1 = 0.08, b2 = 0.89
compute u0= 0.04, u1 = 0.97, u2 = 0.01
compute w0 =0.006, w1=0.98, w2=0.004
compute d0 =1.38, d1 = 0.06, d2 = 0.64, d5 = -0.027
nlpar(criterion=value,cvcrit=0.00001)
maximize(method=bhhh,recursive,iterations=250) garchln
set fv1 = v1(t)
set resi1 = a1t(t)/sqrt(fv1(t))
set residsq = resi1(t)*resi1(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi1
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv2 = v2(t)+q1t(t)**2*v1(t)
set resi2 = a2t(t)/sqrt(fv2(t))
set residsq = resi2(t)*resi2(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi2
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
set fv3 = v3(t)+q2t(t)**2*v1(t)+q3t(t)**2*v2(t)
set resi3 = a3t(t)/sqrt(fv3(t))
set residsq = resi3(t)*resi3(t)
* Checking standardized residuals *
cor(qstats,number=12,span=4) resi3
* Checking squared standardized residuals *
cor(qstats,number=12,span=4) residsq
* print standardized residuals and correlation-coefficients
set rho21 = q1t(t)*sqrt(v1(t)/fv2(t))
set rho31 = q2t(t)*sqrt(v1(t)/fv3(t))
set rho32 = (q2t(t)*q1t(t)*v1(t) $

+q3t(t)*v2(t))/sqrt(fv2(t)*fv3(t))
print 10 2275 resi1 resi2 resi3
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print 10 2275 rho21 rho31 rho32
print 10 2275 fv1 fv2 fv3

EXERCISES

10.1. Consider the monthly simple returns, including dividends, of IBM stock,
Hewlett-Packard (HPQ) stock, and the S&P composite index from January
1962 to December 2008 for 564 observations. The returns are in the file
m-ibmhpqsp6208.txt. Transform into log returns in percentages. Use the
exponentially weighted moving-average method to obtain a multivariate
volatility series for the three return series. What is the estimated λ? Plot the
three volatility series.

10.2. Focus on the monthly log returns of IBM and HPQ stocks from January
1962 to December 2008. Fit a DVEC(1,1) model to the bivariate return
series. Is the model adequate? Plot the fitted volatility series and the time-
varying correlations.

10.3. Focus on the monthly log returns of the S&P composite index and HPQ
stock. Build a BEKK model for the bivariate series. What is the fitted
model? Plot the fitted volatility series and the time-varying correlations.

10.4. Build a constant-correlation volatility model for the three monthly log
returns of IBM stock, HPQ stock, and S&P composite index. Write down
the fitted model. Is the model adequate? Why?

10.5. The file m-geibmsp2608.txt contains the monthly simple returns of Gen-
eral Electric stock, IBM stock, and the S&P composite index from January
1926 to December 2008. The returns include dividends. Transform into log
returns in percentages. Focus on the monthly log returns in percentages of
GE stock and the S&P 500 index. Build a constant-correlation GARCH
model for the bivariate series. Check the adequacy of the fitted model, and
obtain the 1-step-ahead forecast of the covariance matrix at the forecast
origin December 2008.

10.6. Again, consider the monthly log returns of GE, IBM, and S&P composite
index from January 1926 to December 2008. Build a dynamic correla-
tion model for the three-dimensional series. For simplicity, use the sample
correlation matrix for ρ in Eq. (10.32).

10.7. The file m-spibmge.txt contains the monthly log returns in percentages
of the S&P composite index, IBM stock, and GE stock from January 1926
to December 1999. Focus on GE stock and the S&P 500 index. Build a
time-varying correlation GARCH model for the bivariate series using a
logistic function for the correlation coefficient. Check the adequacy of the
fitted model, and obtain the 1-step-ahead forecast of the covariance matrix
at the forecast origin December 1999.

10.8. Focus on the monthly log returns in percentages of GE stock and the S&P
500 index from January 1926 to December 1999. Build a time-varying



references 555

correlation GARCH model for the bivariate series using the Cholesky
decomposition. Check the adequacy of the fitted model, and obtain the
1-step-ahead forecast of the covariance matrix at the forecast origin
December 1999. Compare the model with the other model built in the
previous exercise.

10.9. Consider the three-dimensional return series of the previous exercise jointly.
Build a multivariate time-varying volatility model for the data, using the
Cholesky decomposition. Discuss the implications of the model and com-
pute the 1-step-ahead volatility forecast at the forecast origin t = 888.

10.10. An investor is interested in daily value at risk of his position on holding
long $0.5 million of Dell stock and $1 million of Cisco Systems stock.
Use 5% critical values and the daily log returns from February 20, 1990,
to December 31, 1999, to do the calculation. The data are in the file d-

dellcsco9099.txt. Apply the three approaches to volatility modeling in
Section 10.7 and compare the results.
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C H A P T E R 11

State-Space Models
and Kalman Filter

The state-space model provides a flexible approach to time series analysis, espe-
cially for simplifying maximum-likelihood estimation and handling missing values.
In this chapter, we discuss the relationship between the state-space model and the
ARIMA model, the Kalman filter algorithm, various smoothing methods, and some
applications. We begin with a simple model that shows the basic ideas of the state-
space approach to time series analysis before introducing the general state-space
model. For demonstrations, we use the model to analyze realized volatility series of
asset returns, the time-varying coefficient market models, and the quarterly earnings
per share of a company.

There are many books on statistical analysis using the state-space model. Durbin
and Koopman (2001) provide a recent treatment of the approach, Kim and Nelson
(1999) focus on economic applications and regime switching, and Anderson and
Moore (1979) give a nice summary of theory and applications of the approach for
engineering and optimal control. Many time series textbooks include the Kalman
filter and state-space model. For example, Chan (2002), Shumway and Stoffer
(2000), Hamilton (1994), and Harvey (1993) all have chapters on the topic. West
and Harrison (1997) provide a Bayesian treatment with emphasis on forecasting,
and Kitagawa and Gersch (1996) use a smoothing prior approach.

The derivation of Kalman filter and smoothing algorithms necessarily involves
heavy notation. Therefore, Section 11.4 could be dry for readers who are interested
mainly in the concept and applications of state-space models and can be skipped
on the first read.

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
Copyright  2010 John Wiley & Sons, Inc.
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11.1 LOCAL TREND MODEL

Consider the univariate time series yt satisfying

yt = µt + et , et ∼ N(0, σ 2
e ), (11.1)

µt+1 = µt + ηt , ηt ∼ N(0, σ 2
η ), (11.2)

where {et } and {ηt } are two independent Gaussian white noise series and t =
1, . . . , T . The initial value µ1 is either given or follows a known distribution, and
it is independent of {et } and {ηt } for t > 0. Here µt is a pure random walk of
Chapter 2 with initial value µ1, and yt is an observed version of µt with added
noise et . In the literature, µt is referred to as the trend of the series, which is not
directly observable, and yt is the observed data with observational noise et . The
dynamic dependence of yt is governed by that of µt because {et } is not serially
correlated.

The model in Eqs. (11.1) and (11.2) can readily be used to analyze realized
volatility of an asset price; see Example 11.1. Here µt represents the underlying
log volatility of the asset price and yt is the logarithm of realized volatility. The
true log volatility is not directly observed but evolves over time according to a
random-walk model. On the other hand, yt is constructed from high-frequency
transactions data and subjected to the influence of market microstructure noises.
The standard deviation of et denotes the scale used to measure the impact of market
microstructure noises.

The model in Eqs. (11.1) and (11.2) is a special linear Gaussian state-space
model . The variable µt is called the state of the system at time t and is
not directly observed. Equation (11.1) provides the link between the data yt
and the state µt and is called the observation equation with measurement
error et . Equation (11.2) governs the time evolution of the state variable
and is the state equation (or state transition equation) with innovation ηt .
The model is also called a local-level model in Durbin and Koopman (2001,
Chapter 2), which is a simple case of the structural time series model of
Harvey (1993).

Relationship to ARIMA Model
If there is no measurement error in Eq. (11.1), that is, σe = 0, then yt = µt , which
is an ARIMA(0,1,0) model. If σe > 0, that is, there exist measurement errors, then
yt is an ARIMA(0,1,1) model satisfying

(1 − B)yt = (1 − θB)at , (11.3)

where {at } is a Gaussian white noise with mean zero and variance σ 2
a . The values

of θ and σa are determined by σe and ση. This result can be derived as follows.
From Eq. (11.2), we have

(1 − B)µt+1 = ηt or µt+1 = 1

1 − B
ηt .



local trend model 559

Using this result, Eq. (11.1) can be written as

yt = 1

1 − B
ηt−1 + et .

Multiplying by (1 − B), we have

(1 − B)yt = ηt−1 + et − et−1.

Let (1 − B)yt = wt . We have wt = ηt−1 + et − et−1. Under the model assump-
tions, it is easy to see that (a) wt is Gaussian, (b) Var(wt ) = 2σ 2

e + σ 2
η , (c)

Cov(wt , wt−1) = −σ 2
e , and (d) Cov(wt , wt−j ) = 0 for j > 1. Consequently, wt

follows an MA(1) model and can be written as wt = (1 − θB)at . By equating
the variance and lag-1 autocovariance of wt = (1 − θB)at = ηt−1 + et − et−1, we
have

(1 + θ2)σ 2
a = 2σ 2

e + σ 2
η , (11.4)

θσ 2
a = σ 2

e . (11.5)

For given σ 2
e and σ 2

η , one considers the ratio of the prior two equations to form a
quadratic function of θ . This quadratic form has two solutions so one should select
the one that satisfies |θ | < 1. The value of σ 2

a can then be easily obtained. Thus,
the state-space model in Eqs. (11.1) and (11.2) is also an ARIMA(0,1,1) model,
which is the simple exponential smoothing model of Chapter 2.

On the other hand, for an ARIMA(0,1,1) model with positive θ , one can use
the prior two identities to solve for σ 2

e and σ 2
η , and obtain a local trend model.

If θ is negative, then the model can still be put in a state-space form without
the observational error, that is, σe = 0. In fact, as will be seen later, an ARIMA
model can be transformed into state-space models in many ways. Thus, the linear
state-space model is closely related to the ARIMA model.

In practice, what one observes is the yt series. Thus, based on the data alone,
the decision of using ARIMA models or linear state-space models is not critical.
Both model representations have pros and cons. The objective of data analy-
sis, substantive issues, and experience all play a role in choosing a statistical
model.

Example 11.1. To illustrate the ideas of the state-space model and Kalman
filter, we consider the intradaily realized volatility of Alcoa stock from January 2,
2003, to May 7, 2004, for 340 observations. The daily realized volatility used is
the sum of squares of intraday 10-minute log returns measured in percentage. No
overnight returns or the first 10-minute intraday returns are used. See Chapter 3 for
more information about realized volatility. The series used in the demonstration is
the logarithm of the daily realized volatility.

Figure 11.1 shows the time plot of the logarithms of the realized volatility of
Alcoa stock from January 2, 2003, to May 7, 2004. The transactions data are
obtained from the TAQ database of the NYSE. If ARIMA models are entertained,
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Figure 11.1 Time plot of logarithms of intradaily realized volatility of Alcoa stock from January 2,
2003, to May 7, 2004. Realized volatility is computed from intraday 10-minute log returns measured
in percentage.

we obtain an ARIMA(0,1,1) model

(1 − B)yt = (1 − 0.858B)at , σ̂a = 0.5184, (11.6)

where yt is the log realized volatility, and the standard error of θ̂ is 0.028. The
residuals show Q(12) = 12.4 with a p value of 0.33, indicating that there is
no significant serial correlation in the residuals. Similarly, the squared residuals
give Q(12) = 8.2 with a p value of 0.77, suggesting no ARCH effects in the
series.

Since θ̂ is positive, we can transform the ARIMA(0,1,1) model into a local
trend model in Eqs. (11.1) and (11.2). The maximum-likelihood estimates (MLE)
of the two parameters are σ̂η = 0.0735 and σ̂e = 0.4803. The measurement errors
have a larger variance than the state innovations, confirming that intraday high-
frequency returns are subject to measurement errors. Details of estimation will be
discussed in Section 11.1.7. Here we treat the two estimates as given and use the
model to demonstrate application of the Kalman filter. Note that using the model
in Eq. (11.6) and the relation in Eqs. (11.4) and (11.5), we obtain σe = 0.480 and
ση = 0.0736. These values are close to the MLE shown above.
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11.1.1 Statistical Inference

Return to the state-space model in Eqs. (11.1) and (11.2). The aim of the analysis
is to infer properties of the state µt from the data {yt |t = 1, . . . , T } and the model.
Three types of inference are commonly discussed in the literature. They are filter-
ing , prediction , and smoothing . Let Ft = {y1, . . . , yt } be the information available
at time t (inclusive) and assume that the model is known, including all parameters.
The three types of inference can briefly be described as follows:

• Filtering. Filtering means to recover the state variable µt given Ft , that is,
to remove the measurement errors from the data.

• Prediction. Prediction means to forecast µt+h or yt+h for h> 0 given Ft ,
where t is the forecast origin.

• Smoothing. Smoothing is to estimate µt given FT , where T > t .

A simple analogy of the three types of inference is reading a handwritten note.
Filtering is figuring out the word you are reading based on knowledge accumulated
from the beginning of the note, predicting is to guess the next word, and smoothing
is deciphering a particular word once you have read through the note.

To describe the inference more precisely, we introduce some notation. Let
µt |j = E(µt |Fj ) and �t |j = Var(µt |Fj ) be, respectively, the conditional mean and
variance of µt given Fj . Similarly, yt |j denotes the conditional mean of yt given
Fj . Furthermore, let vt = yt − yt |t−1 and Vt = Var(vt |Ft−1) be the 1-step-ahead
forecast error and its variance of yt given Ft−1. Note that the forecast error vt is
independent of Ft−1 so that the conditional variance is the same as the unconditional
variance; that is, Var(vt |Ft−1) = Var(vt ). From Eq. (11.1),

yt |t−1 = E(yt |Ft−1) = E(µt + et |Ft−1) = E(µt |Ft−1) = µt |t−1.

Consequently,

vt = yt − yt |t−1 = yt − µt |t−1 (11.7)

and

Vt = Var(yt − µt |t−1|Ft−1) = Var(µt + et − µt |t−1|Ft−1)

= Var(µt − µt |t−1|Ft−1) + Var(et |Ft−1) = �t |t−1 + σ 2
e . (11.8)

It is also easy to see that

E(vt ) = E[E(vt |Ft−1)] = E[E(yt − yt |t−1|Ft−1)] = E[yt |t−1 − yt |t−1] = 0,

Cov(vt , yj ) = E(vtyj ) = E[E(vtyj |Ft−1)] = E[yjE(vt |Ft−1)] = 0, j < t.
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Thus, as expected, the 1-step-ahead forecast error is uncorrelated (hence, indepen-
dent) with yj for j < t . Furthermore, for the linear model in Eqs. (11.1) and (11.2),
µt |t = E(µt |Ft) = E(µt |Ft−1, vt ) and �t |t = Var(µt |Ft) = Var(µt |Ft−1, vt ). In
other words, the information set Ft can be written as Ft = {Ft−1, yt } = {Ft−1, vt }.

The following properties of multivariate normal distribution are useful in study-
ing the Kalman filter under normality. They can be shown via the multivariate linear
regression method or factorization of the joint density. See, also, Appendix B of
Chapter 8. For random vectors w and m, denote the mean vectors and covariance
matrix as E(w) = µw, E(m) = µm, and Cov(m,w) = �mw, respectively.

Theorem 11.1. Suppose that x, y, and z are three random vectors such that
their joint distribution is multivariate normal. In addition, assume that the diag-
onal block covariance matrix �ww is nonsingular for w = x, y, z, and �yz = 0.
Then,

1. E(x|y) = µx + �xy�
−1
yy (y − µy).

2. Var(x|y) = �xx− �xx�
−1
yy �yx .

3. E(x|y, z) = E(x|y) + �xz�
−1
zz (z − µz).

4. Var(x|y, z) = Var(x|y) − �xz�
−1
zz �zx .

11.1.2 Kalman Filter

The goal of the Kalman filter is to update knowledge of the state variable recur-
sively when a new data point becomes available. That is, knowing the conditional
distribution of µt given Ft−1 and the new data yt , we would like to obtain the con-
ditional distribution of µt given Ft , where, as before, Fj = {y1, . . . , yj }. Since Ft

= {Ft−1, vt }, giving yt and Ft−1 is equivalent to giving vt and Ft−1. Consequently,
to derive the Kalman filter, it suffices to consider the joint conditional distribution
of (µt , vt )

′ given Ft−1 before applying Theorem 11.1.
The conditional distribution of vt given Ft−1 is normal with mean zero and

variance given in Eq. (11.8), and that of µt given Ft−1 is also normal with mean
µt |t−1 and variance �t |t−1. Furthermore, the joint distribution of (µt , vt )

′ given
Ft−1 is also normal. Thus, what remains to be solved is the conditional covariance
between µt and vt given Ft−1. From the definition,

Cov(µt , vt |Ft−1) = E(µtvt |Ft−1) = E[µt(yt − µt |t−1)|Ft−1] [by Eq. (11.7)]

= E[µt(µt + et − µt |t−1)|Ft−1]

= E[µt(µt − µt |t−1)|Ft−1] + E(µtet |Ft−1)

= E[(µt − µt |t−1)
2|Ft−1] = Var(µt |Ft−1) = �t |t−1, (11.9)

where we have used the fact that E[µt |t−1(µt − µt |t−1)|Ft−1] = 0. Putting the
results together, we have
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[
µt

vt

]
Ft−1

∼ N

([
µt |t−1

0

]
,

[
�t |t−1 �t |t−1

�t |t−1 Vt

])
.

By Theorem 11.1, the conditional distribution of µt given Ft is normal with mean
and variance

µt |t = µt |t−1 + �t |t−1vt

Vt

= µt |t−1 + Ktvt , (11.10)

�t |t = �t |t−1 − �2
t |t−1

Vt

= �t |t−1(1 − Kt), (11.11)

where Kt = �t |t−1/Vt is commonly referred to as the Kalman gain , which is the
regression coefficient of µt on vt . From Eq. (11.10), Kalman gain is the factor that
governs the contribution of the new shock vt to the state variable µt .

Next, one can make use of the knowledge of µt given Ft to predict µt+1 via
Eq. (11.2). Specifically, we have

µt+1|t = E(µt + ηt |Ft) = E(µt |Ft) = µt |t , (11.12)

�t+1|t = Var(µt+1|Ft) = Var(µt |Ft) + Var(ηt ) = �t |t + σ 2
η . (11.13)

Once the new data yt+1 is observed, one can repeat the above procedure to update
knowledge of µt+1. This is the famous Kalman filter algorithm proposed by Kalman
(1960).

In summary, putting Eqs. (11.7) and (11.13) together and conditioning on the
initial assumption that µ1 is distributed as N(µ1|0, �1|0), the Kalman filter for the
local trend model is as follows:

vt = yt − µt |t−1,

Vt = �t |t−1 + σ 2
e ,

Kt = �t |t−1/Vt , (11.14)

µt+1|t = µt |t−1 + Ktvt ,

�t+1|t = �t |t−1(1 − Kt) + σ 2
η , t = 1, . . . , T .

There are many ways to derive the Kalman filter. We use Theorem 11.1, which
describes some properties of multivariate normal distribution, for its simplicity. In
practice, the choice of initial values �1|0 and µ1|0 requires some attention and we
shall discuss it later in Section 11.1.6. For the local trend model in Eqs. (11.1) and
(11.2), the two parameters σe and ση can be estimated via the maximum-likelihood
method. Again, the Kalman filter is useful in evaluating the likelihood function of
the data in estimation. We shall discuss estimation in Section 11.1.7.



564 state-space models and kalman filter

Day

(a)

F
ilt

er
ed

 s
ta

te

0 100 200 300

0.
4

0.
8

1.
2

1.
6

v(
t)

−2
−1

0
1

2

Day

(b)

0 100 200 300

Figure 11.2 Time plots of output of Kalman filter applied to daily realized log volatility of Alcoa
stock based on local trend state-space model: (a) filtered state µt |t and (b) 1-step-ahead forecast error vt .

Example 11.1 (Continued). To illustrate application of the Kalman filter, we
use the fitted state-space model for daily realized volatility of Alcoa stock returns
and apply the Kalman filter algorithm to the data with �1|0 = ∞ and µ1|0 = 0. The
choice of these initial values will be discussed in Section 11.1.6. Figure 11.2(a)
shows the time plot of the filtered state variable µt |t , and Figure 11.2(b) is the time
plot of the 1-step-ahead forecast error vt . Compared with Figure 11.1, the filtered
states are smoother. The forecast errors appear to be stable and center around zero.
These forecast errors are out-of-sample 1-step-ahead prediction errors.

11.1.3 Properties of Forecast Error

The 1-step-ahead forecast errors {vt } are useful in many applications, hence it pays
to study carefully their properties. Given the initial values �1|0 and µ1|0, which
are independent of yt , the Kalman filter enables us to compute vt recursively as a
linear function of {y1, . . . , yt }. Specifically, by repeated substitutions,

v1 = y1 − µ1|0,

v2 = y2 − µ2|1 = y2 − µ1|0 − K1(y1 − µ1|0),

v3 = y3 − µ3|2 = y3 − µ1|0 − K2(y2 − µ1|0) − K1(1 − K2)(y1 − µ1|0),
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and so on. This transformation can be written in matrix form as

v = K(y − µ1|01T ), (11.15)

where v = (v1, . . . , vT )
′, y = (y1, . . . , yT )

′, 1T is the T -dimensional vector of
ones, and K is a lower triangular matrix defined as

K =


1 0 0 · · · 0
k21 1 0 · · · 0
k31 k32 1 0
...

...
...

kT 1 kT 2 kT 3 · · · 1

 ,

where ki,i−1 = −Ki−1 and kij = −(1 − Ki−1)(1 − Ki−2) · · · (1 − Kj+1)Kj for i =
2, . . . , T and j = 1, . . . , i − 2. It should be noted that, from the definition, the
Kalman gain Kt does not depend on µ1|0 or the data {y1, . . . , yt }; it depends on
�1|0 and σ 2

e and σ 2
η .

The transformation in Eq. (11.5) has several important implications. First, {vt }
are mutually independent under the normality assumption. To show this, consider
the joint probability density function of the data

p(y1, . . . , yT ) = p(y1)

T∏
j=2

p(yj |Fj−1).

Equation (11.15) indicates that the transformation from yt to vt has a unit Jacobian
so that p(v) = p(y). Furthermore, since µ1|0 is given, p(v1) = p(y1). Conse-
quently, the joint probability density function of v is

p(v) = p(y) = p(y1)

T∏
j=2

p(yj |Fj−1) = p(v1)

T∏
j

p(vj ) =
T∏

j=1

p(vj ).

This shows that {vt } are mutually independent.
Second, the Kalman filter provides a Cholesky decomposition of the covariance

matrix of y. To see this, let � = Cov(y). Equation (11.15) shows that Cov(v) =
K�K ′. On the other hand, {vt } are mutually independent with Var(vt ) = Vt . There-
fore, K�K ′ = diag{V1, . . . , VT }, which is precisely a Cholesky decomposition of
�. The elements kij of the matrix K thus have some nice interpretations; see
Chapter 10.

State Error Recursion
Turn to the estimation error of the state variable µt . Define

xt = µt − µt |t−1
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as the forecast error of the state variable µt given data Ft−1. From Section 11.1.1,
Var(xt |Ft−1) = �t |t−1. From the Kalman filter in Eq. (11.14),

vt = yt − µt |t−1 = µt + et − µt |t−1 = xt + et ,

and

xt+1 = µt+1 − µt+1|t = µt + ηt − (µt |t−1 + Ktvt )

= xt + ηt − Ktvt = xt + ηt − Kt(xt + et ) = Ltxt + ηt − Ktet ,

where Lt = 1 − Kt = 1 − �t |t−1/Vt = (Vt − �t |t−1)/Vt = σ 2
e /Vt . Consequently,

for the state errors, we have

vt = xt + et , xt+1 = Ltxt + ηt − Ktet , t = 1, . . . , T , (11.16)

where x1 = µ1 − µ1|0. Equation (11.16) is in the form of a time-varying state-space
model with xt being the state variable and vt the observation.

11.1.4 State Smoothing

Next we consider the estimation of the state variables {µ1, . . . , µT } given the data
FT and the model. That is, given the state-space model in Eqs. (11.1) and (11.2),
we wish to obtain the conditional distribution µt |FT for all t . To this end, we first
recall some facts available about the model:

• All distributions involved are normal so that we can write the conditional
distribution of µt given FT as N(µt |T , �t |T ), where t ≤ T . We refer to µt |T
as the smoothed state at time t and �t |T as the smoothed state variance.

• Based on the properties of {vt } shown in Section 11.1.3, {v1, . . . , vT } are
mutually independent and are linear functions of {y1, . . . , yT }.

• If y1, . . . , yT are fixed, then Ft−1 and {vt , . . . , vT } are fixed, and vice versa.
• {vt , . . . , vT } are independent of Ft−1 with mean zero and variance Var(vj ) =
Vj for j ≥ t .

Applying Theorem 11.1(3) to the conditional joint distribution of (µt ,

vt , . . . , vT ) given Ft−1, we have

µt |T = E(µt |FT ) = E(µt |Ft−1, vt , . . . , vT )

= E(µt |Ft−1) + Cov[µt , (vt , . . . , vT )
′]Cov[(vt , . . . , vT )

′]−1(vt , . . . , vT )
′

= µt |t−1 +


Cov(µt , vt )

Cov(µt , vt+1)
...

Cov(µt , vT )


′ 

Vt 0 · · · 0
0 Vt+1 · · · 0
...

...
...

0 0 · · · VT


−1 

vt
vt+1
...

vT
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= µt |t−1 +
T∑

j=t

Cov(µt , vj )V
−1
j vj . (11.17)

From the definition and independence of {vt }, Cov(µt , vj ) = Cov(xt , vj ) for j =
t, . . . , T , and

Cov(xt , vt ) = E[xt (xt + et )] = Var(xt ) = �t |t−1,

Cov(xt , vt+1) = E[xt (xt+1 + et+1)] = E[xt (Ltxt + ηt − Ktet )] = �t |t−1Lt .

Similarly, we have

Cov(xt , vt+2) = E[xt (xt+2 + et+2)] = · · · = �t |t−1LtLt+1,

...

Cov(xt , vT ) = E[xt (xT + eT )] = · · · = �t |t−1

T−1∏
j=t

Lj .

Consequently, Eq. (11.17) becomes

µt |T = µt |t−1 + �t |t−1
vt

Vt

+ �t |t−1Lt

vt+1

Vt+1
+ �t |t−1LtLt+1

vt+2

Vt+2
+ · · ·

≡ µt |t−1 + �t |t−1qt−1,

where

qt−1 = vt

Vt

+ Lt

vt+1

Vt+1
+ LtLt+1

vt+2

Vt+2
+ · · · +

T−1∏
j=t

Lj

 vT

VT

(11.18)

is a weighted linear combination of the innovations {vt , . . . , vT }. This weighted
sum satisfies

qt−1 = vt

Vt

+ Lt

 vt+1

Vt+1
+ Lt+1

vt+2

Vt+2
+ · · · +

 T−1∏
j=t+1

Lj

 vT

VT


= vt

Vt

+ Ltqt .

Therefore, using the initial value qT = 0, we have the backward recursion

qt−1 = vt

Vt

+ Ltqt , t = T , T − 1, . . . , 1. (11.19)

Putting Eqs. (11.17) and (11.19) together, we have a backward recursive algorithm
to compute the smoothed state variables:
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qt−1 = V −1
t vt + Ltqt , µt |T = µt |t−1 + �t |t−1qt−1, t = T , . . . , 1,

(11.20)

where qT = 0, and µt |t−1, �t |t−1 and Lt are available from the Kalman filter in
Eq. (11.14).

Smoothed State Variance
The variance of the smoothed state variable µt |T can be derived in a similar manner
via Theorem 11.1(4). Specifically, letting vT

t = (vt , . . . , vT )
′, we have

�t |T = Var(µt |FT ) = Var(µt |Ft−1, vt , . . . , vT )

= Var(µt |Ft−1) − Cov[µt , (v
T
t )

′]Cov[(vT
t )]

−1Cov[µt, (v
T
t )]

= �t |t−1 −
T∑

j=t

[Cov(µt , vj )]
2V −1

j , (11.21)

where Cov(µt , vj ) = Cov(xt , vj ) are given earlier after Eq. (11.17). Thus,

�t |T = �t |t−1 − �2
t |t−1

1

Vt

− �2
t |t−1L

2
t

1

Vt+1
− · · · − �2

t |t−1

T−1∏
j=t

L2
j

 1

VT

≡ �t |t−1 − �2
t |t−1Mt−1, (11.22)

where

Mt−1 = 1

Vt

+ L2
t

1

Vt+1
+ L2

t L
2
t+1

1

Vt+2
+ · · · +

T−1∏
j=t

L2
j

 1

VT

,

is a weighted linear combination of the inverses of variances of the 1-step-ahead
forecast errors after time t − 1. Let MT = 0 because no 1-step-ahead forecast error
is available after time index T . The statistic Mt−1 can be written as

Mt−1 = 1

Vt

+ L2
t

 1

Vt+1
+ L2

t+1
1

Vt+2
+ · · · +

 T−1∏
j=t+1

L2
j

 1

VT


= 1

Vt

+ L2
t Mt , t = T , T − 1, . . . , 1.

Note that from the independence of {vt } and Eq. (11.18), we have

Var(qt−1) = 1

Vt

+ L2
t

1

Vt+1
+ · · · +

T−1∏
j=t

L2
j

 1

VT

= Mt−1.
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Figure 11.3 Filtered state variable µt |t and its 95% pointwise confidence interval for daily log realized
volatility of Alcoa stock returns based on fitted local-trend state-space model.

Combining the results, variances of the smoothed state variables can be computed
efficiently via the backward recursion

Mt−1 = V −1
t + L2

t Mt , �t |T = �t |t−1 − �2
t |t−1Mt−1, t = T , . . . , 1,

(11.23)

where MT = 0.

Example 11.1 (Continued). Applying the Kalman filter and state-smoothing
algorithms in Eqs. (11.20) and (11.23) to the daily realized volatility of Alcoa stock
using the fitted state-space model, we can easily compute the filtered state µt |t and
the smoothed state µt |T and their variances. Figure 11.3 shows the filtered state
variable and its 95% pointwise confidence interval, whereas Figure 11.4 provides
the time plot of smoothed state variable and its 95% pointwise confidence interval.
As expected, the smoothed state variables are smoother than the filtered state vari-
ables. The confidence intervals for the smoothed state variables are also narrower
than those of the filtered state variables. Note that the width of the 95% confidence
interval of µ1|1 depends on the initial value �1|0.
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Figure 11.4 Smoothed state variable µt |T and its 95% pointwise confidence interval for daily log
realized volatility of Alcoa stock returns based on fitted local-trend state-space model.

11.1.5 Missing Values

An advantage of the state-space model is in handling missing values. Suppose
that the observations {yt }�+h

t=�+1 are missing, where h ≥ 1 and 1 ≤ � < T . There
are several ways to handle missing values in state-space formulation. Here we
discuss a method that keeps the original time scale and model form. For t ∈ {� +
1, . . . , � + h}, we can use Eq. (11.2) to express µt as a linear combination of µ�+1

and {ηj }t−1
j=�+1. Specifically,

µt = µt−1 + ηt−1 = · · · = µ�+1 +
t−1∑

j=�+1

ηj ,

where it is understood that the summation term is zero if its lower limit is greater
than its upper limit. Therefore, for t ∈ {� + 1, . . . , � + h},

E(µt |Ft−1) = E(µt |F�) = µ�+1|�,

Var(µt |Ft−1) = Var(µt |F�) = ��+1|� + (t − � − 1)σ 2
η .

Consequently, we have

µt |t−1 = µt−1|t−2, �t |t−1 = �t−1|t−2 + σ 2
η , (11.24)
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for t = � + 2, . . . , � + h. These results show that we can continue to apply the
Kalman filter algorithm in Eq. (11.14) by taking vt = 0 and Kt = 0 for t = � +
1, . . . , � + h. This is rather natural because when yt is missing, there is no new
innovation or new Kalman gain so that vt = 0 and Kt = 0.

11.1.6 Effect of Initialization

In this section, we consider the effects of initial condition µ1 ∼ N(µ1|0, �1|0) on
the Kalman filter and state smoothing. From the Kalman filter in Eq. (11.14),

v1 = y1 − µ1|0, V1 = �1|0 + σ 2
e ,

and, by Eqs. (11.10)–(11.13),

µ2|1 = µ1|0 + �1|0
V1

v1 = µ1|0 + �1|0
�1|0 + σ 2

e

(y1 − µ1|0),

�2|1 = �1|0
(

1 − �1|0
�1|0 + σ 2

e

)
+ σ 2

η = �1|0
�1|0 + σ 2

e

σ 2
e + σ 2

η .

Therefore, letting �1|0 increase to infinity, we have µ2|1 = y1 and �2|1 = σ 2
e + σ 2

η .
This is equivalent to treating y1 as fixed and assuming µ1 ∼ N(y1, σ

2
e ). In the lit-

erature, this approach to initializing the Kalman filter is called diffuse initialization
because a very large �1|0 means one is uncertain about the initial condition.

Next, turn to the effect of diffuse initialization on state smoothing. It is obvious
that based on the results of Kalman filtering, state smoothing is not affected by the
diffuse initialization for t = T , . . . , 2. Thus, we focus on µ1 given FT . From Eq.
(11.20) and the definition of L1 = 1 − K1 = V −1

1 σ 2
e ,

µ1|T = µ1|0 + �1|0q0

= µ1|0 + �1|0
[

1

�1|0 + σ 2
e

v1 +
(

1 − �1|0
�1|0 + σ 2

e

)
q1

]
= µ1|0 + �1|0

�1|0 + σ 2
e

(v1 + σ 2
e q1).

Letting �1|0 → ∞, we have µ1|T = µ1|0 + v1 + σ 2
e q1 = y1 + σ 2

e q1. Furthermore,
from Eq. (11.23) and using V1 = �1|0 + σ 2

e , we have

�1|T = �1|0 − �2
1|0

[
1

�1|0 + σ 2
e

+
(

1 − �1|0
�1|0 + σ 2

e

)2

M1

]

= �1|0
(

1 − �1|0
�1|0 + σ 2

e

)
−

(
1 − �1|0

�1|0 + σ 2
e

)2

�2
1|0M1

=
(

�1|0
�1|0 + σ 2

e

)
σ 2
e −

(
�1|0

�1|0 + σ 2
e

)2

σ 4
e M1.
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Thus, letting �1|0 → ∞, we obtain �1|T = σ 2
e − σ 4

e M1.
Based on the prior discussion, we suggest using diffuse initialization when little

is known about the initial value µ1. However, it might be hard to justify the use
of a random variable with infinite variance in real applications. If necessary, one
can treat µ1 as an additional parameter of the state-space model and estimate it
jointly with other parameters. This latter approach is closely related to the exact
maximum-likelihood estimation of Chapters 2 and 8.

11.1.7 Estimation

In this section, we consider the estimation of σe and ση of the local trend model
in Eqs. (11.1) and (11.2). Based on properties of forecast errors discussed in
Section 11.1.3, the Kalman filter provides an efficient way to evaluate the like-
lihood function of the data for estimation. Specifically, the likelihood function
under normality is

p(y1, . . . , yT |σe, ση) = p(y1|σe, ση)

T∏
t=2

(yt |Ft−1, σe, ση)

= p(y1|σe, ση)

T∏
t=2

(vt |Ft−1, σe, ση),

where y1 ∼ N(µ1|0, V1) and vt = (yt − µt |t−1) ∼ N(0, Vt ). Consequently, assum-
ing µ1|0 and �1|0 are known, and taking the logarithms, we have

ln[L(σe, ση)] = −T

2
ln(2π) − 1

2

T∑
t=1

[
ln(Vt ) + v2

t

Vt

]
, (11.25)

which involves vt and Vt . Therefore, the log-likelihood function, including cases
with missing values, can be evaluated recursively via the Kalman filter. Many soft-
ware packages perform state-space model estimation via a Kalman filter algorithm
such as Matlab, RATS, and S-Plus. In this chapter, we use the SsfPack program
developed by Koopman, Shephard, and Doornik (1999) and available in S-Plus and
OX. Both Ssfpack and OX are free and can be downloaded from their websites.

11.1.8 S-Plus Commands Used

We provide here the SsfPack commands used to perform analysis of the daily
realized volatility of Aloca stock returns. Only brief explanations are given. For
further details of the commands used, see Durbin and Koopman (2001, Section
6.6). S-Plus uses specific notation to specify a state-space model; see Table 11.1.
The notation must be followed closely. In Table 11.2, we give some commands
and their functions.
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TABLE 11.1 State-Space Form and Notation in S-Plus

State-Space Parameter S-Plus Name

δ mDelta
� mPhi
� mOmega
� mSigma

TABLE 11.2 Some Commands of SsfPack Package

Command Function

SsfFit Maximum-likelihood estimation
CheckSsf Create “Ssf” object in S-Plus
KalmanFil Perform Kalman filtering
KalmanSmo Perform state smoothing
SsfMomentEst with task “STFIL” Compute filtered state and variance
SsfMomentEst with task “STSMO” Compute smoothed state and variance
SsfCondDens with task “STSMO” Compute smoothed state without variance

In our analysis, we first perform maximum-likelihood estimation of the state-
space model in Eqs. (11.1) and (11.2) to obtain estimates of σe and ση. The initial
values used are �1|0 = −1 and µ1|0 = 0, where −1 signifies diffuse initialization,
that is, �1|0 is very large. We then treat the fitted model as given to perform Kalman
filtering and state smoothing.

SsfPack and S-Plus Commands for State-Space Model

> da = read.table(file=’aa-rv-0304.txt’,header=F) % load data
> y = log(da[,1]) % log(RV)
> ltm.start=c(3,1) % Initial parameter values
> P1 = -1 % Initialization of Kalman filter
> a1 = 0
> ltm.m=function(parm){ % Specify a function for the
+ sigma.eta=parm[1] % local trend model.
+ sigma.e=parm[2]
+ ssf.m=list(mPhi=as.matrix(c(1,1)),
+ mOmega=diag(c(sigma.eta^2,sigma.e^2)),
+ mSigma=as.matrix(c(P1,a1)))
+ CheckSsf(ssf.m)
+ }
% perform estimation
> ltm.mle=SsfFit(ltm.start,y,"ltm.m",lower=c(0,0),
+ upper=c(100,100))
> ltm.mle$parameters
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[1] 0.07350827 0.48026284
> sigma.eta=ltm.mle$parameters[1]
> sigma.eta
[1] 0.07350827
> sigma.e=ltm.mle$parameters[2]
> sigma.e
[1] 0.4802628
% Specify a state-space model in S-Plus.
> ssf.ltm.list=list(mPhi=as.matrix(c(1,1)),
+ mOmega=diag(c(sigma.eta^2,sigma.e^2)),
+ mSigma=as.matrix(c(P1,a1)))
% check validity of the specified model.
> ssf.ltm=CheckSsf(ssf.ltm.list)
> ssf.ltm
$mPhi:

[,1]
[1,] 1
[2,] 1
$mOmega:

[,1] [,2]
[1,] 0.0054035 0.0000000
[2,] 0.0000000 0.2306524
$mSigma:

[,1]
[1,] -1
[2,] 0
$mDelta:

[,1]
[1,] 0
[2,] 0
$mJPhi:
[1] 0
$mJOmega:
[1] 0
$mJDelta:
[1] 0
$mX:
[1] 0
$cT:
[1] 0
$cX:
[1] 0
$cY:
[1] 1
$cSt:
[1] 1
attr(, "class"):
[1] "ssf"
% Apply Kalman filter
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> KalmanFil.ltm=KalmanFil(y,ssf.ltm,task="STFIL")
> names(KalmanFil.ltm)
[1] "mOut" "innov" "std.innov" "mGain" "loglike"
[6] "loglike.conc" "dVar" "mEst" "mOffP" "task"

[11] "err" "call"
> par(mfcol=c(2,1)) % Obtain plot
> plot(KalmanFil.ltm$ mEst[,1],xlab=’day’,
+ ylab=’filtered state’,type=’l’)
> title(main=’(a) Filtered state variable’)
> plot(KalmanFil.ltm$ mOut[,1],xlab=’day’,
+ ylab=’v(t)’,type=’l’)
> title(main=’(b) Prediction error’)
% Obtain residuals and their variances
> KalmanSmo.ltm=KalmanSmo(KalmanFil.ltm,ssf.ltm)
> names(KalmanSmo.ltm)
[1] "state.residuals" "response.residuals" "state.variance"
[4] "response.variance" "aux.residuals" "scores"
[7] "call"
% Filtered states
> FiledEst.ltm=SsfMomentEst(y,ssf.ltm,task="STFIL")
> names(FiledEst.ltm)
[1] "state.moment" "state.variance" "response.moment"
[4] "response.variance" "task"
% Smoothed states
> SmoedEst.ltm=SsfMomentEst(y,ssf.ltm,task="STSMO")
> names(SmoedEst.ltm)
[1] "state.moment" "state.variance" "response.moment"
[4] "response.variance" "task"
% Obtain plots of filtered and smoothed states with 95% C.I.
> up=FiledEst.ltm$ state.moment+
+ 2*sqrt(FiledEst.ltm$ state.variance)
> lw=FiledEst.ltm$ state.moment-
+ 2*sqrt(FiledEst.ltm$ state.variance)
> par(mfcol=c(1,1))
> plot(FiledEst.ltm$ state.moment,type=’l’,xlab=’day’,
+ ylab=’value’,ylim=c(-0.1,2.5))
> lines(1:340,up,lty=2)
> lines(1:340,lw,lty=2)
> title(main=’Filed state variable’)
> up=SmoedEst.ltm$ state.moment+
+ 2*sqrt(SmoedEst.ltm$ state.variance)
> lw=SmoedEst.ltm$ state.moment-
+ 2*sqrt(SmoedEst.ltm$ state.variance)
> plot(SmoedEst.ltm$ state.moment,type=’l’,xlab=’day’,
+ ylab=’value’,ylim=c(-0.1,2.5))
> lines(1:340,up,lty=2)
> lines(1:340,lw,lty=2)
> title(main=’Smoothed state variable’)
% Model checking via standardized residuals
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> resi=KalmanFil.ltm$ mOut[,1]*sqrt(KalmanFil.ltm$ mOut[,3])
> archTest(resi)
> autocorTest(resi)

For the daily realized volatility of Alcoa stock returns, the fitted local trend
model is adequate based on residual analysis. Specifically, given the parameter
estimates, we use the Kalman filter to obtain the 1-step-ahead forecast error vt and
its variance Vt . We then compute the standardized forecast error ṽt = vt/

√
Vt and

check the serial correlations and ARCH effects of {ṽt }. We found that Q(25) =
23.37(0.56) for the standardized forecast errors, and the LM test statistic for ARCH
effect is 18.48(0.82) for 25 lags, where the number in parentheses denotes p

value.

11.2 LINEAR STATE-SPACE MODELS

We now consider the general state-space model. Many dynamic time series models
in economics and finance can be represented in state-space form. Examples include
the ARIMA models, dynamic linear models with unobserved components, time-
varying regression models, and stochastic volatility models. A general Gaussian
linear state-space model assumes the form

s t+1 = d t + T t s t + Rtηt , (11.26)

yt = ct + Zt s t + et , (11.27)

where s t = (s1t , . . . , smt )
′ is an m-dimensional state vector, yt = (y1t , . . . , ykt )

′ is a
k-dimensional observation vector, d t and ct are m- and k-dimensional deterministic
vectors, T t and Zt are m × m and k × m coefficient matrices, Rt is an m × n matrix
often consisting of a subset of columns of the m × m identity matrix, and {ηt } and
{et } are n- and k-dimensional Gaussian white noise series such that

ηt ∼ N(0,Qt ), et ∼ N(0,H t ),

where Qt and H t are positive-definite matrices. We assume that {et } and {ηt } are
independent, but this condition can be relaxed if necessary. The initial state s1 is
N(µ1|0,�1|0), where µ1|0 and �1|0 are given, and is independent of et and ηt for
t > 0.

Equation (11.27) is the measurement or observation equation that relates the
vector of observations yt to the state vector s t , the explanatory variable ct , and
the measurement error et . Equation (11.26) is the state or transition equation that
describes a first-order Markov Chain to govern the state transition with innovation
ηt . The matrices T t , Rt , Qt , Zt , and H t are known and referred to as system
matrices . These matrices are often sparse, and they can be functions of some
parameters θ , which can be estimated by the maximum-likelihood method.

The state-space model in Eqs. (11.26) and (11.27) can be rewritten in a compact
form as
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s t+1

yt

]
= δt + �ts t + ut , (11.28)

where

δt =
[

d t

ct

]
, �t =

[
T t

Zt

]
, ut =

[
Rtηt

et

]
,

and {ut } is a sequence of Gaussian white nosies with mean zero and covariance
matrix

�t = Cov(ut ) =
[
RtQtR

′
t 0

0 H t

]
The case of diffuse initialization is achieved by using

�1|0 = �∗ + λ�∞,

where �∗ and �∞ are m × m symmetric positive-definite matrices and λ is a large
real number, which can approach infinity. In S-Plus and SsfPack, the notation

� =
[
�1|0
µ′

1|0

]
(m+1)×m

is used; see the notation in Table 11.1.
In many applications, the system matrices are time invariant. However, these

matrices can be time varying, making the state-space model flexible.

11.3 MODEL TRANSFORMATION

To appreciate the flexibility of the state-space model, we rewrite some well-known
econometric and financial models in state-space form.

11.3.1 CAPM with Time-Varying Coefficients

First, consider the capital asset pricing model (CAPM) with time-varying intercept
and slope. The model is

rt = αt + βtrM,t + et , et ∼ N(0, σ 2
e ), (11.29)

αt+1 = αt + ηt , ηt ∼ N(0, σ 2
η ),

βt+1 = βt + εt , εt ∼ N(0, σ 2
ε ),

where rt is the excess return of an asset, rM,t is the excess return of the market,
and the innovations {et , ηt , εt } are mutually independent. This CAPM allows for
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time-varying α and β that evolve as a random walk over time. We can easily
rewrite the model as [

αt+1

βt+1

]
=

[
1 0
0 1

] [
αt

βt

]
+

[
ηt
εt

]
,

rt = [1, rM,t ]

[
αt

βt

]
+ et .

Thus, the time-varying CAPM is a special case of the state-space model with s t =
(αt , βt )

′, T t = Rt = I 2, the 2 × 2 identity matrix, d t = 0, ct = 0, Zt = (1, rM,t ),
H t = σ 2

e , and Qt = diag{σ 2
η , σ

2
ε }. Furthermore, in the form of Eq. (11.28), we

have δt = 0, ut = (ηt , εt , et )
′,

�t =
 1 0

0 1
1 rM,t

 , �t =
 σ 2

η 0 0
0 σ 2

ε 0
0 0 σ 2

e

 .

If diffuse initialization is used, then

� =
 −1 0

0 −1
0 0

 .

SsfPack/S-Plus Specification of Time-Varying Models
For the CAPM in Eq. (11.29), �t contains rM,t , which is time varying. Some
special input is required to specify such a model in SsfPack. Basically, it requires
two additional variables: (a) a data matrix X that stores Zt and (b) an index matrix
for �t that identifies Zt from the data matrix. The notation for index matrices of
the state-space model in Eq. (11.28) is given in Table 11.3. Note that the matrix
J� must have the same dimension as �t . The elements of J� are all set to −1
except the elements for which the corresponding elements of �t are time varying.
The nonnegative index value of J� indicates the column of the data matrix X,
which contains the time-varying values.

To illustrate, consider the monthly simple excess returns of General Motors
stock from January 1990 to December 2003 used in Chapter 9. The monthly simple

TABLE 11.3 Notation and Name Used in SsfPack/S-Plus for Time-Varying
State-Space Model

Index Matrix Name Used in SsfPack/S-Plus

J δ mJDelta
J� mJPhi
J� mJOmega

Time-Varying Data Matrix Name Used in SsfPack/S-Plus
X mX
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excess return of the S&P 500 composite index is used as the market return. The
specification of a time-varying CAPM requires values of the variances σ 2

η , σ 2
ε , and

σ 2
e . Suppose that (ση, σε , σe) = (0.02, 0.04, 0.1). The state-space specification for

the CAPM under SsfPack/S-Plus is given below:

> X.mtx=cbind(1,sp) % Here ‘‘sp’’ is market excess returns.
> Phi.t = rbind(diag(2),rep(0,2))
> Sigma=-Phi.t
> sigma.eta=.02
> sigma.ep=.04
> sigma.e=.1
> Omega=diag(c(sigma.eta^2,sigma.ep^2,sigma.e^2))
> JPhi = matrix(-1,3,2) % Create a 3-by-2 matrix of -1.
> JPhi[3,1]=1
> JPhi[3,2]=2
> ssf.tv.capm=list(mPhi=Phi.t,
+ mOmega=Omega,
+ mJPhi=JPhi,
+ mSigma=Sigma,
+ mX=X.mtx)
> ssf.tv.capm
$mPhi:

[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0
$mOmega:

[,1] [,2] [,3]
[1,] 4e-04 0.0000 0.00
[2,] 0e+00 0.0016 0.00
[3,] 0e+00 0.0000 0.01
$mJPhi:

[,1] [,2]
[1,] -1 -1
[2,] -1 -1
[3,] 1 2
$mSigma:

[,1] [,2]
[1,] -1 0
[2,] 0 -1
[3,] 0 0
$mX:

numeric matrix: 168 rows, 2 columns.
sp

[1,] 1 -0.075187
...

[168,] 1 0.05002
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11.3.2 ARMA Models

Consider a zero-mean ARMA(p, q) process yt of Chapter 2:

φ(B)yt = θ(B)at , at ∼ N(0, σ 2
a ), (11.30)

where φ(B) = 1 − ∑p

i=1 φiB
i and θ(B) = 1 − ∑q

j=1 θjB
j , and p and q are non-

negative integers. There are many ways to transform such an ARMA model into
a state-space form. We discuss three methods available in the literature. Let m =
max(p, q + 1) and rewrite the ARMA model in Eq. (11.30) as

yt =
m∑
i=1

φiyt−i + at −
m−1∑
j=1

θjat−j , (11.31)

where φi = 0 for i >p and θj = 0 for j > q. In particular, θm = 0 because m>q.

Akaike’s Approach
Akaike (1975) defines the state vector s t as the minimum collection of variables
that contains all the information needed to produce forecasts at the forecast origin
t . It turns out that, for the ARMA process in Eq. (11.30) with m = max(p, q +
1), s t = (yt |t , yt+1|t , . . . , yt+m−1|t )′, where yt+j |t = E(yt+j |Ft) is the conditional
expectation of yt+j given Ft = {y1, . . . , yt }. Since yt |t = yt , the first element of st
is yt . Thus, the observation equation is

yt = Zs t , (11.32)

where Z = (1, 0, . . . , 0)1×m. We derive the transition equation in several steps.
First, from the definition,

s1,t+1 = yt+1 = yt+1|t + (yt+1 − yt+1|t ) = s2t + at+1, (11.33)

where sit is the ith element of s t . Next, consider the MA representation of ARMA
models given in Chapter 2. That is,

yt = at + ψ1at−1 + ψ2at−2 + · · · =
∞∑
i=0

ψiat−i ,

where ψ0 = 1 and other ψ weights can be obtained by equating coefficients of Bi

in 1 + ∑∞
i=1 ψiB

i = θ(B)/φ(B). In particular, we have

ψ1 = φ1 − θ1,

ψ2 = φ1ψ1 + φ2 − θ2,

...
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ψm−1 = φ1ψm−2 + φ2ψm−3 + · · · + φm−2ψ1 + φm−1 − θm−1

=
m−1∑
i=1

φiψm−1−i − θm−1. (11.34)

Using the MA representation, we have, for j > 0,

yt+j |t = E(yt+j |Ft) = E

( ∞∑
i=0

ψiat+j−i |Ft

)
= ψjat + ψj+1at−1 + ψj+2at−2 + · · ·

and

yt+j |t+1 = E(yt+j |Ft+1) = ψj−1at+1 + ψjat + ψj+1at−1 + · · ·
= ψj−1at+1 + yt+j |t .

Thus, for j > 0, we have

yt+j |t+1 = yt+j |t + ψj−1at+1. (11.35)

This result is referred to as the forecast updating formula of ARMA models. It
provides a simple way to update the forecast from origin t to origin t + 1 when
yt+1 becomes available. The new information of yt+1 is contained in the innovation
at+1, and the time-t forecast is revised based on this new information with weight
ψj−1 to compute the time-(t + 1) forecast.

Finally, from Eq. (11.31) and using E(at+j |Ft+1) = 0 for j > 1, we have

yt+m|t+1 =
m∑
i=1

φiyt+m−i|t+1 − θm−1at+1.

Taking Eq. (11.35), the prior equation becomes

yt+m|t+1 =
m−1∑
i=1

φi(yt+m−i|t + ψm−i−1at+1) + φmyt |t − θm−1at+1

=
m∑
i=1

φiyt+m−i|t +
(

m−1∑
i=1

φiψm−1−i − θm−1

)
at+1

=
m∑
i=1

φiyt+m−i|t + ψm−1at+1, (11.36)
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where the last equality uses Eq. (11.34). Combining Eqs. (11.33) and (11.35) for
j = 2, . . . , m − 1, and (11.36) together, we have


yt+1

yt+2|t+1
...

yt+m−1|t+1

yt+m|t+1

 =


0 1 0 · · · 0
0 0 1 0
...

...

0 0 0 · · · 1
φm φm−1 φm−2 · · · φ1




yt

yt+1|t
...

yt+m−2|t
yt+m−1|t



+


1
ψ1
...

ψm−2

ψm−1

 at+1. (11.37)

Thus, the transition equation of Akaike’s approach is

s t+1 = T st + Rηt , ηt ∼ N(0, σ 2
a ), (11.38)

where ηt = at+1, and T and R are the coefficient matrices in Eq. (11.37).

Harvey’s Approach
Harvey (1993, Section 4.4) provides a state-space form with an m-dimensional
state vector s t , the first element of which is yt , that is, s1t = yt . The other elements
of st are obtained recursively. From the ARMA(m,m − 1) model, we have

yt+1 = φ1yt +
m∑
i=2

φiyt+1−i −
m−1∑
j=1

θjat+1−j + at+1

≡ φ1s1t + s2t + ηt ,

where s2t = ∑m
i=2 φiyt+1−i − ∑m−1

j=1 θjat+1−j , ηt = at+1, and as defined earlier
s1t = yt . Focusing on s2,t+1, we have

s2,t+1 =
m∑
i=2

φiyt+2−i −
m−1∑
j=1

θjat+2−j

= φ2yt +
m∑
i=3

φiyt+2−i −
m−1∑
j=2

θjat+2−j − θ1at+1

≡ φ2s1t + s3t + (−θ1)ηt ,
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where s3t = ∑m
i=3 φiyt+2−i − ∑m−1

j=2 θj at+2−j . Next, considering s3,t+1, we have

s3,t+1 =
m∑
i=3

φiyt+3−i −
m−1∑
j=2

θjat+3−j

= φ3yt +
m∑
i=4

φiyt+3−i −
m−1∑
j=3

θj at+3−j + (−θ2)at+1

≡ φ3s1t + s4t + (−θ2)ηt ,

where s4t = ∑m
i=4 φiyt+3−i − ∑m−1

j=3 θj at+3−j . Repeating the procedure, we have
smt = ∑m

i=m φiyt+m−1−i − ∑m−1
j=m−1 θjat+m−1−j = φmyt−1 − θm−1at . Finally,

sm,t+1 = φmyt − θm−1at+1

= φms1t + (−θm−1)ηt .

Putting the prior equations together, we have a state-space form

st+1 = T st + Rηt , ηt ∼ N(0, σ 2
a ), (11.39)

yt = Zs t , (11.40)

where the system matrices are time invariant defined as Z = (1, 0, . . . , 0)1×m,

T =


φ1 1 0 · · · 0
φ2 0 1 0
...

...

φm−1 0 0 1
φm 0 0 · · · 0

 , R =


1

−θ1
...

−θm−1

 ,

and d t , ct , and H t are all zero. The model in Eqs. (11.39) and (11.40) has no
measurement errors. It has an advantage that the AR and MA coefficients are
directly used in the system matrices.

Aoki’s Approach
Aoki (1987, Chapter 4) discusses several ways to convert an ARMA model into a
state-space form. First, consider the MA model, that is, yt = θ(B)at . In this case,
we can simply define st = (at−q, at−q+2, . . . , at−1)

′ and obtain the state-space form
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at−q+1

at−q+2
...

at−1

at

 =


0 1 0 · · · 0
0 0 1 0
...

...

0 0 0 1
0 0 0 · · · 0




at−q

at−q+1
...

at−2

at−1

 +


0
0
...

0
1

 at , (11.41)

yt = (−θq,−θq−1, . . . ,−θ1)s t + at .

Note that, in this particular case, at appears in both state and measurement
equations.

Next, consider the AR model, that is, φ(B)zt = at . Aoki (1987) introduces two
methods. The first method is a straightfoward one by defining st = (zt−p+1, . . . , zt )

′
to obtain

zt−p+2

zt−p+3
...

zt
zt+1

 =


0 1 0 · · · 0
0 0 1 0
...

...

0 0 0 1
φp φp−1 φp−2 · · · φ1




zt−p+1

zt−p+2
...

zt+1

zt

 +


0
0
...

0
1

 at+1,

(11.42)

zt = (0, 0, · · · , 0, 1)st .

The second method defines the state vector in the same way as the first method
except that at is removed from the last element; that is, st = zt − at if p = 1 and
s t = (zt−p+1, . . . , zt−1, zt − at )

′ if p> 1. Simple algebra shows that
zt−p+2

zt−p+3
...

zt
zt+1 − at+1

 =


0 1 0 · · · 0
0 0 1 0
...

...

0 0 0 1
φp φp−1 φp−2 · · · φ1




zt−p+1

zt−p+2
...

zt−1

zt − at



+


0
0
...

1
φ1

 at , (11.43)

zt = (0, 0, . . . , 0, 1)st + at .

Again, at appears in both transition and measurement equations.
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Turn to the ARMA(p, q) model φ(B)yt = θ(B)at . For simplicity, we assume
q < p and introduce an auxiliary variable zt = [1/φ(B)]at . Then, we have

φ(B)zt = at , yt = θ(B)zt .

Since zt is an AR(p) model, we can use the transition equation in Eq. (11.42) or
(11.43). If Eq. (11.42) is used, we can use yt = θ(B)zt to construct the measurement
equation as

yt = (−θp−1,−θp−2, . . . ,−θ1, 1)st , (11.44)

where it is understood that p>q and θj = 0 for j >q. On the other hand, if Eq.
(11.43) is used as the transition equation, we construct the measurement equation
as

yt = (−θp−1,−θp−2, . . . ,−θ1, 1)st + at . (11.45)

In summary, there are many state-space representations for an ARMA model.
Each representation has its pros and cons. For estimation and forecasting purposes,
one can choose any one of those representations. On the other hand, for a time-
invariant coefficient state-space model in Eqs. (11.26) and (11.27), one can use the
Cayley–Hamilton theorem to show that the observation yt follows an ARMA(m,m)
model, where m is the dimension of the state vector.

SsfPack Command
In SsfPack/S-Plus, a command GetSsfArma can be used to transform an ARMA
model into a state-space form. Harvey’s approach is used. To illustrate, consider
the AR(1) model

yt = 0.6yt−1 + at , at ∼ N(0, 0.42).

The state-space form of the model is

> ssf.ar1 = GetSsfArma(ar=0.6,sigma=0.4)
> ssf.ar1
$mPhi:

[,1]
[1,] 0.6
[2,] 1.0
$mOmega:

[,1] [,2]
[1,] 0.16 0
[2,] 0.00 0
$mSigma:

[,1]
[1,] 0.25
[2,] 0.00
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Since the AR(1) model is stationary, the program uses �1|0 = Var(yt ) = (0.4)2/

(1 − 0.62) = 0.25 and µ1|0 = 0. These values appear in the matrix mSigma.
As a second example, consider the ARMA(2,1) model

yt = 1.2yt−1 − 0.35yt−2 + at − 0.25at−1, at ∼ N(0, 1.12).

The state-space form of the model is

> arma21.m = list(ar=c(1.2,-0.35),ma=c(-0.25),sigma=1.1)
> ssf.arma21= GetSsfArma(model=arma21.m)
> ssf.arma21
$mPhi:

[,1] [,2]
[1,] 1.20 1
[2,] -0.35 0
[3,] 1.00 0
$mOmega:

[,1] [,2] [,3]
[1,] 1.2100 -0.302500 0
[2,] -0.3025 0.075625 0
[3,] 0.0000 0.000000 0
$mSigma:

[,1] [,2]
[1,] 4.060709 -1.4874057
[2,] -1.487406 0.5730618
[3,] 0.000000 0.0000000

As expected, the output shows that

T =
[

1.2 1
−0.35 0

]
, Z = (1, 0),

and mPhi and mOmega follow the format of Eq. (11.28), and the covariance matrix
of (s1t , s2t )

′ is used in mSigma, where s1t = yt and s2t = −0.35yt−1 − 0.25yt−2.
Note that in SsfPack, the MA polynomial of an ARMA model assumes the form
θ(B) = 1 + θ1B + . . . + θqB

q , not the form θ(B) = 1 − θ1B − . . . − θqB
q com-

monly used in the literature.

11.3.3 Linear Regression Model

Multiple linear regression models can also be represented in state-space form.
Consider the model

yt = x ′
tβ + et , et ∼ N(0, σ 2

e ),
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where x t is a p-dimensional explanatory variable and β is a p-dimensional param-
eter vector. Let s t = β for all t . Then the model can be written as[

s t+1

yt

]
=

[
Ip

x′
t

]
st +

[
0p

et

]
. (11.46)

Thus, the system matrices are T t = Ip, Zt = x ′
t , d t = 0, ct = 0, Qt = 0, and

H t = σ 2
e . Since the state vector is fixed, a diffuse initialization should be used.

One can extend the regression model so that β t is random, say,

β t+1 = β t + Rt ηt , ηt ∼ N(0, 1),

and Rt = (σ1, . . . , σp)
′ with σi ≥ 0. If σi = 0, then βi is time invariant.

SsfPack Command
In SsfPack, the command GetSsfReg creates a state-space form for the multiple
linear regression model. The command has an input argument that contains the data
matrix of explanatory variables. To illustrate, consider the simple market model

rt = β0 + β1rM,t + et , t = 1, . . . , 168,

where rt is the return of an asset and rM,t is the market return, for example, the
S&P 500 composite index return. The state-space form can be obtained as

> ssf.reg=GetSsfReg(cbind(1,sp)) % ’sp’ is market return.
> ssf.reg
$mPhi:

[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0
$mOmega:

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 1
$mSigma:

[,1] [,2]
[1,] -1 0
[2,] 0 -1
[3,] 0 0
$mJPhi:

[,1] [,2]
[1,] -1 -1
[2,] -1 -1
[3,] 1 2
$mX:
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numeric matrix: 168 rows, 2 columns.
sp

[1,] 1 -0.075187
...
[168,] 1 0.05002

11.3.4 Linear Regression Models with ARMA Errors

Consider the regression model with ARMA(p, q) errors:

yt = x ′
tβ + zt , φ(B)zt = θ(B)at , (11.47)

where at ∼ N(0, σ 2
a ) and xt is a k-dimensional vector of explanatory variables. A

special case of this model is the nonzero mean ARMA(p, q) model in which xt

= 1 for all t and β becomes a scalar parameter. Let st be a state vector for the zt
series, for example, that defined in Eq. (11.39). We can define a state vector s∗

t for
yt as

s∗
t =

[
s t
β t

]
, (11.48)

where β t = β for all t . Then, a state-space form for yt is

s∗
t+1 = T ∗s∗

t + R∗ηt , (11.49)

yt = Z∗
t s

∗
t , (11.50)

where Z∗
t = (1, 0, . . . , 0, x′

t )1×(m+k), m = max(p, q + 1), and

T ∗ =
[

T 0
0 I k

]
, R∗ =

[
R

0

]
,

where T and R are defined in Eq. (11.39). In a compact form, we have the state-
space model [

s∗
t+1
yt

]
=

[
T ∗

Z∗
t

]
s∗
t +

[
R∗ηt

0

]
.

SsfPack Command
SsdPack uses the command GetSsfRegArma to construct a state-space form for
linear regression models with ARMA errors. The arguments of the command can be
found using the command args(GetSsfRegArma). They consist of a data matrix
for the explanatory variables and ARMA model specification. To illustrate, consider
the model
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yt = β0 + β1xt + zt , t = 1, · · · , 168,

zt = 1.2zt−1 − 0.35zt−2 + at − 0.25at−1, at ∼ N(0, σ 2
a ).

We use the notation X to denote the T × 2 matrix of regressors (1, xt ). A state-space
form for the prior model can be obtained as

> ssf.reg.arma21=GetSsfRegArma(X,ar=c(1.2,-0.35),
+ ma=c(-0.25))
> ssf.reg.arma21
$mPhi:

[,1] [,2] [,3] [,4]
[1,] 1.20 1 0 0
[2,] -0.35 0 0 0
[3,] 0.00 0 1 0
[4,] 0.00 0 0 1
[5,] 1.00 0 0 0
$mOmega:

[,1] [,2] [,3] [,4] [,5]
[1,] 1.00 -0.2500 0 0 0
[2,] -0.25 0.0625 0 0 0
[3,] 0.00 0.0000 0 0 0
[4,] 0.00 0.0000 0 0 0
[5,] 0.00 0.0000 0 0 0
$mSigma:

[,1] [,2] [,3] [,4]
[1,] 3.35595 -1.229260 0 0
[2,] -1.22926 0.473604 0 0
[3,] 0.00000 0.000000 -1 0
[4,] 0.00000 0.000000 0 -1
[5,] 0.00000 0.000000 0 0
$mJPhi:

[,1] [,2] [,3] [,4]
[1,] -1 -1 -1 -1
[2,] -1 -1 -1 -1
[3,] -1 -1 -1 -1
[4,] -1 -1 -1 -1
[5,] -1 -1 1 2
$mX:
numeric matrix: 168 rows, 2 columns.

xt
[1,] 1 0.4993

...
[168,] 1 0.7561
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11.3.5 Scalar Unobserved Component Model

The basic univariate unobserved component model, or the structural time series
model (STSM), assumes the form

yt = µt + γt + ωt + et , (11.51)

where µt , γt , and ωt represent the unobserved trend, seasonal , and cycle compo-
nents, respectively, and et is the unobserved irregular component. In the literature,
a nonstationary (possibly double-unit-root) model is commonly used for the trend
component:

µt+1 = µt + βt + ηt , ηt ∼ N(0, σ 2
η ), (11.52)

βt = βt−1 + ςt , ςt ∼ N(0, σ 2
ς ),

where µ1 ∼ N(0, ξ) and β1 ∼ N(0, ξ) with ξ a large real number, for example, ξ =
108. See, for instance, Kitagawa and Gersch (1996). If σς = 0, then µt follows a
random walk with drift β1. If σς = ση = 0, then µt represents a linear deterministic
trend.

The seasonal component γt assumes the form

(1 + B + · · · + Bs−1)γt = ωt, ωt ∼ N(0, σ 2
ω), (11.53)

where s is the number of seasons in a year, that is, the period of the seasonal-
ity. If σω = 0, then the seasonal pattern is deterministic. The cycle component is
postulated as[

ωt+1

ω∗
t+1

]
= δ

[
cos(λc) sin(λc)

− sin(λc) cos(λc)

] [
ωt

ω∗
t

]
+

[
εt
ε∗
t

]
, (11.54)

where [
εt
ε∗
t

]
∼ N

([
0
0

]
, σ 2

ε (1 − δ2)I 2

)
,

ω0 ∼ N(0, σ 2
ε ), ω

∗
0 ∼ N(0, σ 2

ε ), and Cov(ω0, ω
∗
0) = 0, δ ∈ (0, 1] is called a damp-

ing factor, and the frequency of the cycle is λc = 2π/q with q being the period.
If δ = 1, then the cycle becomes a deterministic sine–cosine wave.

SsfPack/S-Plus Command
The command GetSsfStsm constructs a state-space form for the structural time
series model. It allows for 10 cycle components; see the output of the command
args(GetSsfStsm). Table 11.4 provides a summary of the arguments and their
corresponding symbols of the model. To illustrate, consider the local trend model
in Eqs. (11.1) and (11.2) with σe = 0.4 and ση = 0.2. This is a special case of the
scalar unobserved component model. One can obtain a state-space form as
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TABLE 11.4 Arguments of Command GetSsfStsm in SsfPack/S-Plus

Argument STSM parameter

irregular σe

level ση

slope σς

seasonalDummy σω, s
seasonalTrig σω, s
SeasonalHS σω, s
Cycle0 σε , λc, δ
..
.

..

.

Cycle9 σε , λc, δ

> ssf.stsm=GetSsfStsm(irregular=0.4,level=0.2)
> ssf.stsm
$mPhi:

[,1]
[1,] 1
[2,] 1
$mOmega:

[,1] [,2]
[1,] 0.04 0.00
[2,] 0.00 0.16
$mSigma:

[,1]
[1,] -1
[2,] 0

11.4 KALMAN FILTER AND SMOOTHING

In this section, we study the Kalman filter and various smoothing methods for
the general state-space model in Eqs. (11.26) and (11.27). The derivation follows
closely the steps taken in Section 11.1. For readers interested in applications, this
section can be skipped at the first read. A good reference for this section is Durbin
and Koopman (2001, Chapter 4).

11.4.1 Kalman Filter

Recall that the aim of the Kalman filter is to obtain recursively the conditional
distribution of s t+1 given the data Ft = {y1, . . . , yt } and the model. Since the
conditional distribution involved is normal, it suffices to study the conditional mean
and covariance matrix. Let sj |i and �j |i be the conditional mean and covariance
matrix of sj given Fi , that is, sj |Fi ∼ N(sj |i ,�j |i ). From Eq. (11.26),



592 state-space models and kalman filter

s t+1|t = E(d t + T t s t + Rtηt |Ft) = d t + T t s t |t , (11.55)

�t+1|t = Var(T t s t + Rtηt |Ft) = T t�t |tT ′
t + RtQtR

′
t . (11.56)

Similarly to that of Section 11.1, let yt |t−1 be the conditional mean of yt given
Ft−1. From Eq. (11.27),

yt |t−1 = ct + Zt st |t−1.

Let

vt = yt − yt |t−1 = yt − (ct + Zt st |t−1) = Zt (s t − st |t−1) + et , (11.57)

be the 1-step-ahead forecast error of yt given Ft−1. It is easy to see that (a)
E(vt |Ft−1) = 0; (b) vt is independent of Ft−1, that is, Cov(vt , yj ) = 0 for 1 ≤
j < t ; and (c) {vt } is a sequence of independent normal random vectors. Also, let
V t = Var(vt |Ft−1) = Var(vt ) be the covariance matrix of the 1-step-ahead forecast
error. From Eq. (11.57), we have

V t = Var[Zt (s t − st |t−1) + et ] = Zt�t |t−1Z
′
t + H t . (11.58)

Since Ft = {Ft−1, yt } = {Ft−1, vt }, we can apply Theorem 11.1 to obtain

s t |t = E(s t |Ft) = E(s t |Ft−1, vt )

= E(s t |Ft−1) + Cov(s t , vt )[Var(vt )]
−1vt

= s t |t−1 + CtV
−1
t vt , (11.59)

where Ct = Cov(s t , vt |Ft−1) given by

Ct = Cov(s t , vt |Ft−1) = Cov[s t ,Zt (s t − st |t−1) + et |Ft−1]

= Cov[st ,Zt (s t − st |t−1)|Ft−1] = �t |t−1Z
′
t .

Here we assume that V t is invertible because H t is. Using Eqs. (11.55) and (11.59),
we obtain

s t+1|t = d t + T ts t |t−1 + T tCtV
−1
t vt = d t + T ts t |t−1 + K tvt , (11.60)

where

K t = T tCtV
−1
t = T t�t |t−1Z

′
tV

−1
t , (11.61)
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which is the Kalman gain at time t . Applying Theorem 11.1(2), we have

�t |t = Var(s t |Ft−1, vt )

= Var(s t |Ft−1) − Cov(st , vt )[Var(vt )]
−1Cov(s t , vt )

′

= �t |t−1 − CtV
−1
t C ′

t

= �t |t−1 − �t |t−1Z
′
tV

−1
t Zt�t |t−1. (11.62)

Plugging Eq. (11.62) into Eq. (11.56) and using Eq. (11.61), we obtain

�t+1|t = T t�t |t−1L
′
t + RtQtR

′
t , (11.63)

where

Lt = T t − K tZt .

Putting the prior equations together, we obtain the celebrated Kalman filter for the
state-space model in Eqs. (11.26) and (11.27). Given the starting values s1|0 and
�1|0, the Kalman filter algorithm is

vt = yt − ct − Zts t |t−1,

V t = Zt�t |t−1Z
′
t + H t ,

K t = T t�t |t−1Z
′
tV

−1
t , (11.64)

Lt = T t − K tZt ,

s t+1|t = d t + T ts t |t−1 + K tvt ,

�t+1|t = T t�t |t−1L
′
t + RtQtR

′
t , t = 1, . . . , T .

If the filtered quantities s t |t and �t |t are also of interest, then we modify the filter
to include the contemporaneous filtering equations in Eqs. (11.59) and (11.62). The
resulting algorithm is

vt = yt − ct − Zts t |t−1,

Ct = �t |t−1Z
′
t ,

V t = Zt�t |t−1Z
′
t + H t = ZtC t + H t ,

s t |t = s t |t−1 + CtV
−1
t vt ,

�t |t = �t |t−1 − C tV
−1
t C ′

t ,

s t+1|t = d t + T ts t |t ,

�t+1|t = T t�t |tT ′
t + RtQtR

′
t .
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Steady State
If the state-space model is time invariant, that is, all system matrices are time
invariant, then the matrices �t |t−1 converge to a constant matrix �∗, which is a
solution of the matrix equation

�∗ = T �∗T ′ − T �∗ZV −1Z�∗T ′ + RQR′,

where V = Z�∗Z′ + H . The solution that is reached after convergence to �∗ is
referred to as the steady-state solution of the Kalman filter. Once the steady state is
reached, V t , K t , and �t+1|t are all constant. This can lead to considerable saving
in computing time.

11.4.2 State Estimation Error and Forecast Error

Define the state prediction error as

x t = s t − st |t−1.

From the definition, the covariance matrix of xt is Var(x t |Ft−1) = Var(s t |Ft−1) =
�t |t−1. Following Section 11.1, we investigate properties of x t . First, from Eq.
(11.57),

vt = Zt (s t − st |t−1) + et = Ztx t + et .

Second, from Eqs. (11.64) and (11.26), and the prior equation, we have

x t+1 = s t+1 − st+1|t

= T t (st − st |t−1) + Rtηt − K tvt

= T txt + Rtηt − K t (Ztxt + et )

= Ltx t + Rtηt − K tet ,

where, as before, Lt = T t − K tZt . Consequently, we obtain a state-space form for
vt as

vt = Ztx t + et , x t+1 = Ltx t + Rtηt − K tet , (11.65)

with x1 = s1 − s1|0 for t = 1, . . . , T .
Finally, similar to the local-trend model in Section 11.1, we can show that the

1-step-ahead forecast errors {vt } are independent of each other and {vt , . . . , vT } is
independent of Ft−1.
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11.4.3 State Smoothing

State smoothing focuses on the conditional distribution of s t given FT . Notice that
(a) Ft−1 and {vt , . . . , vT } are independent and (b) vt are serially independent. We
can apply Theorem 11.1 to the joint distribution of st and {vt , . . . , vT } given Ft−1

and obtain

s t |T = E(s t |FT ) = E(s t |Ft−1, vt , . . . , vT )

= E(s t |Ft−1) +
T∑

j=t

Cov(s t , vj )[Var(vj )]
−1vj

= s t |t−1 +
T∑

j=t

Cov(s t , vj )V
−1
j vj , (11.66)

where the covariance matrices are conditional on Ft−1. The covariance matrices
Cov(st , vj ) for j = t, . . . , T can be derived as follows. By Eq. (11.65),

Cov(s t , vj ) = E(stv
′
j )

= E[s t (Zjxj + ej )
′] = E(s tx

′
j )Z

′
j , j = t, . . . , T . (11.67)

Furthermore,

E(s tx
′
t ) = E[s t (s t − st |t−1)

′] = Var(s t ) = �t |t−1,

E(stx
′
t+1) = E[s t (Ltx t + Rtηt − K tet )

′] = �t |t−1L
′
t ,

E(stx
′
t+2) = �t |t−1L

′
tL

′
t+1, (11.68)

...

E(s tx
′
T ) = �t |t−1L

′
t · · · L′

T−1.

Plugging the prior two equations into Eq. (11.66), we have

sT |T = sT |T −1 + �T |T−1Z
′
T V −1

T vT ,

sT−1|T = sT−1|T −2 + �T−1|T−2Z
′
T−1V

−1
T−1vT−1 + �T−1|T−2L

′
T−1Z

′
T V −1

T vT ,

s t |T = st |t−1 + �t |t−1Z
′
tV

−1
t vt + �t |t−1L

′
tZ

′
t+1V

−1
t+1vt+1

+ · · · + �t |t−1L
′
tL

′
t+1 · · · L′

T−1Z
′
T V −1

T vT ,

for t = T − 2, T − 3, . . . , 1, where it is understood that L′
t · · ·L′

T−1 = Im when
t = T . These smoothed state vectors can be expressed as

st |T = s t |t−1 + �t |t−1q t−1, (11.69)
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where qT−1 = Z′
T V −1

T vT , qT−2 = Z′
T−1V

−1
T−1vT−1 + L′

T−1Z
′
T V −1

T vT , and

q t−1 = Z′
tV

−1
t vt + L′

tZ
′
t+1V

−1
t+1vt+1 + · · · + L′

tL
′
t+1 · · · L′

T−1Z
′
T V −1

T vT ,

for t = T − 2, T − 3, . . . , 1. The quantity q t−1 is a weighted sum of the 1-step-
ahead forecast errors vj occurring after time t − 1. From the definition in the prior
equation, q t can be computed recursively backward as

q t−1 = Z′
tV

−1
t vt + L′

tq t , t = T , . . . , 1, (11.70)

with qT = 0. Putting the equations together, we have a backward recursion for the
smoothed state vectors as

q t−1 = Z′
tV

−1
t vt + L′

tq t , s t |T = s t |t−1 + �t |t−1q t−1, t = T , . . . , 1,
(11.71)

starting with qT = 0, where st |t−1, �t |t−1, Lt , and V t are available from the Kalman
filter. This algorithm is referred to as the fixed interval smoother in the literature;
see de Jong (1989) and the references therein.

Covariance Matrix of Smoothed State Vector
Next, we derive the covariance matrices of the smoothed state vectors. Applying
Theorem 11.1(4) to the conditional joint distribution of st and {vt , . . . , vT } given
Ft−1, we have

�t |T = �t |t−1 −
T∑

j=t

Cov(s t , vj )[Var(vj )]
−1[Cov(s t , vj )]

′.

Using the covariance matrices in Eqs. (11.67) and (11.68), we further obtain

�t |T = �t |t−1 − �t |t−1Z
′
tV

−1
t Zt�t |t−1 − �t |t−1L

′
tZ

′
t+1V

−1
t+1Zt+1Lt�t |t−1

− · · · − �t |t−1L
′
t · · ·L′

T−1Z
′
T V −1

T ZT LT−1 · · · Lt�t |t−1

= �t |t−1 − �t |t−1M t−1�t |t−1,

where

M t−1 = Z′
tV

−1
t Zt + L′

tZ
′
t+1V

−1
t+1Zt+1Lt

+ · · · + L′
t · · ·L′

T−1Z
′
T V −1

T ZT LT−1 · · ·Lt .

Again, L′
t · · ·LT−1 = Im when t = T . From its definition, the M t−1 matrix satisfies

M t−1 = Z′
tV

−1
t Zt + L′

tM tLt , t = T , . . . , 1, (11.72)
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with the starting value MT = 0. Collecting the results, we obtain a backward
recursion to compute �t |T as

M t−1 = Z′
tV

−1
t Zt ,+L′

tM tLt , �t |T = �t |t−1 − �t |t−1M t−1�t |t−1, (11.73)

for t = T , . . . , 1 with MT = 0. Note that, like that of the local trend model in
Section 11.1, M t = Var(q t ).

Combining the two backward recursions of smoothed state vectors, we have

q t−1 = Z′
tV

−1
t vt + L′

tq t ,

st |T = s t |t−1 + �t |t−1q t−1, (11.74)

M t−1 = Z′
tV

−1
t Zt + L′

tM tLt ,

�t |T = �t |t−1 − �t |t−1M t−1�t |t−1, t = T , . . . , 1,

with qT = 0 and MT = 0.
Suppose that the state-space model in Eqs. (11.26) and (11.27) is known. Appli-

cation of the Kalman filter and state smoothing can proceed in two steps. First, the
Kalman filter in Eq. (11.64) is used for t = 1, . . . , T and the quantities vt ,V t , K t ,
s t |t−1, and �t |t−1 are stored. Second, the state smoothing algorithm in Eq. (11.74)
is applied for t = T , T − 1, . . . , 1 to obtain st |T and �t |T .

11.4.4 Disturbance Smoothing

Let et |T = E(et |FT ) and ηt |T = E(ηt |FT ) be the smoothed disturbances of the
observation and transition equation, respectively. These smoothed disturbances are
useful in many applications, for example, in model checking. In this section, we
study recursive algorithms to compute smoothed disturbances and their covariance
matrices. Again, applying Theorem 11.1 to the conditional joint distribution of et
and {vt , . . . , vT } given Ft−1, we obtain

et |T = E(et |Ft−1, vt , . . . , vT ) =
T∑

j=t

E(etv
′
j )V

−1
j vj , (11.75)

where E(et |Ft−1) = 0 is used. Using Eq. (11.65),

E(etv
′
j ) = E(etx

′
j )Z

′
j + E(ete

′
j ).

Since E(etx
′
t ) = 0, we have

E(etv
′
j ) =

{
H t , if j = t,

E(etx
′
j )Z

′
j , for j = t + 1, . . . , T .

(11.76)
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Using Eq. (11.65) repeatedly and the independence between {et } and {ηt }, we
obtain

E(etx
′
t+1) = −H tK

′
t ,

E(etx
′
t+2) = −H tK

′
tL

′
t+1,

... (11.77)

E(etx
′
T ) = −H tK

′
tL

′
t+1 · · · L′

T−1,

where it is understood that L′
t+1 · · ·L′

T−1 = Im if t = T − 1. Based on Eqs. (11.76)
and (11.77),

et |T = H t (V
−1
t vt − K ′

tZ
′
t+1V

−1
t+1vt+1 − · · · − K ′

tL
′
t+1 · · · L′

T−1Z
′
T V −1

T vT )

= H t (V
−1
t vt − K ′

tq t )

= H tot , t = T , · · · , 1, (11.78)

where q t is defined in Eq. (11.69) and ot = V −1
t vt − K ′

tq t . We refer to ot as the
smoothing measurement error .

The smoothed disturbance ηt |T can be derived analogously, and we have

ηt |T =
T∑

j=t

E(ηtv
′
j )V

−1
j vj . (11.79)

The state-space form in Eq. (11.69) gives

E(ηtv
′
j ) =

{
QtR

′
tZ

′
t+1, if j = t + 1,

E(ηtx
′
j )Z

′
j , if j = t + 2, · · · , T ,

where

E(ηtx
′
t+2) = QtR

′
tL

′
t+1,

E(ηtx
′
t+3) = QtR

′
tL

′
t+1L

′
t+2,

...

E(ηtx
′
T ) = QtR

′
tL

′
t+1 · · ·L′

T−1,

for t = 1, . . . , T . Consequently, Eq. (11.79) implies

ηt |T = QtR
′
t (Z

′
t+1V

−1
t+1vt+1 + L′

t+1Z
′
t+2V

−1
t+2vt+2

+ · · · + L′
t+1 · · ·L′

T−1ZT V −1
T vT )

= QtR
′
tq t , t = T , . . . , 1, (11.80)
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where q t is defined earlier in Eq. (11.70).
Koopman (1993) uses the smoothed disturbance ηt |T to derive a new recursion

for computing s t |T . From the transition equation in Eq. (11.26),

st+1|T = d t + T ts t |T + Rtηt |T .

Using Eq. (11.80), we have

s t+1|T = d t + T t st |T + RtQtR
′
tq t , t = 1, . . . , T , (11.81)

where the initial value is s1|T = s1|0 + �1|0q0 with q0 obtained from the recursion
in Eq. (11.70).

Covariance Matrices of Smoothed Disturbances
The covariance matrix of the smoothed disturbance can also be obtained using
Theorem 11.1. Specifically,

Var(et |FT ) = Var(et |Ft−1, vt , . . . , vT )

= Var(et |Ft−1) −
T∑

j=t

Cov(et , vj )V
−1
j [Cov(et , vj )]

′.

Note that Cov(et , vj ) = E(etv
′
j ), which is given in Eq. (11.76). Thus, we have

Var(et |FT ) = H t − H t (V
−1
t + K ′

tZ
′
t+1V

−1
t+1Zt+1K t

+ K ′
tL

′
t+1Z

′
t+2V

−1
t+2Zt+2Lt+1K t

+ · · · + K ′
tL

′
t+1 · · ·L′

T−1Z
′
T V −1

T ZT LT−1 · · ·Lt+1K t )H t

= H t − H t (V
−1
t + K ′

tM tK t )H t

= H t − H tN tH t ,

where N t = V −1
t + K ′

tM tK t , where M t is given in Eq. (11.72). Similarly,

Var(ηt |FT ) = Var(ηt ) −
T∑

j=t

Cov(ηt , vt )V
−1
t [Cov(ηt , vt )]

−1,

where Cov(ηt , vj ) = E(ηtv
′
j ), which is given before when we derived the formula

for ηt |T . Consequently,

Var(ηt |FT ) = Qt − QtR
′
t (Z

′
t+1V

−1
t+1Zt+1 + L′

t+1Z
′
t+2V

−1
t+2Zt+2Lt+1

+ · · · + L′
t+1 · · · L′

T−1Z
′
T V −1

T ZT LT−1 · · ·Lt+1)RtQt

= Qt − QtR
′
tM tRtQt .
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In summary, the disturbance smoothing algorithm is as follows:

et |T = H t (V
−1
t vt − K ′

tq t ),

ηt |T = QtR
′
tq t ,

q t−1 = Z′
tV

−1
t vt + L′

tq t , (11.82)

Var(et |FT ) = H t − H t (V
−1
t + K ′

tM tK t )H t ,

Var(ηt |FT ) = Qt − QtR
′
tM tRtQt ,

M t−1 = Z′
tV

−1
t Zt + L′

tM tLt , t = T , . . . , 1,

where qT = 0 and MT = 0.

11.5 MISSING VALUES

For the general state-space model in Eqs. (11.26) and (11.27), we consider two
cases of missing values. First, suppose that similar to the local trend model in
Section 11.1 the observations yt at t = � + 1, . . . , � + h are missing. In this case,
there is no new information available at these time points and we set

vt = 0, K t = 0, for t = � + 1, . . . , � + h.

The Kalman filter in Eq. (11.64) can then proceed as usual. That is,

s t+1|t = d t + T t s t |t−1, �t+1|t = T t�t |t−1T
′
t + RtQtR

′
t ,

for t = � + 1, . . . , � + h. Similarly, the smoothed state vectors can be computed
as usual via Eq. (11.74) with

q t−1 = T ′
tq t , M t−1 = T ′

tM tT t ,

for t = � + 1, . . . , � + h.
In the second case, some components of yt are missing. Let y∗

t = Jyt be the
vector of observed data at time t , where J is an indicator matrix identifying the
observed data. More specifically, rows of J are a subset of the rows of the k × k

identity matrix. In this case, the observation equation (11.27) of the model can be
transformed as

y∗
t = c∗

t + Z∗
t s t + e∗

t ,

where c∗
t = Jct , Z∗

t = JZt , and e∗
t = Jet with covariance matrix Var(e∗

t ) = H ∗
t =

JH tJ
′. The Kalman filter and state-smoothing recursion continue to apply except

that the modified observation equation is used at time t . Consequently, the ease in
handling missing values is a nice feature of the state-space model.
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11.6 FORECASTING

Suppose that the forecast origin is t and we are interested in predicting y t+j

for j = 1, . . . , h, where h> 0. Also, we adopt the minimum mean-squared error
forecasts. Similar to the ARMA models, the j -step-ahead forecast yt (j) turns out to
be the expected value of yt+j given Ft and the model. That is, yt (j) = E(yt+j |Ft).
In what follows, we show that these forecasts and the covariance matrices of the
associated forecast errors can be obtained via the Kalman filter in Eq. (11.64) by
treating {yt+1, . . . , yt+h} as missing values, that is, the first case in Section 11.5.

Consider the 1-step-ahead forecast. From Eq. (11.27),

yt (1) = E(yt+1|Ft) = ct+1 + Zt+1s t+1|t ,

where s t+1|t is available via the Kalman filter at the forecast origin t . The associated
forecast error is

et (1) = yt+1 − yt (1) = Zt+1(s t+1 − st+1|t ) + et+1.

Therefore, the covariance matrix of the 1-step-ahead forecast error is

Var[et (1)] = Zt+1�t+1|tZ′
t+1 + H t+1.

This is precisely the covariance matrix V t+1 of the Kalman filter in Eq. (11.64).
Thus, we have showed the case for h = 1.

Now, for h> 1, we consider 1-step- to h-step-ahead forecasts sequentially. From
Eq. (11.27), the j -step-ahead forecast is

yt (j) = ct+j + Zt+j s t+j |t , (11.83)

and the associated forecast error is

et (j) = Zt+j (st+j − st+j |t ) + et+j .

Recall that s t+j |t and �t+j |t are, respectively, the conditional mean and covariance
matrix of st+j given Ft . The prior equation says that

Var[et (j)] = Zt+j�t+j |tZ′
t+j + H t+j . (11.84)

Furthermore, from Eq. (11.26),

s t+j+1|t = d t+j + T t+j s t+j |t ,

which in turn implies that

s t+j+1 − st+j+1|t = T t+j (s t+j − st+j |t ) + Rt+jηt+j .
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Consequently,

�t+j+1|t = T t+j�t+j |tT ′
t+j + Rt+jQt+jR

′
t+j . (11.85)

Note that Var[et (j)] = V t+j and Eqs. (11.83) and (11.85) are the recursion of
the Kalman filter in Eq. (11.64) for t + j with j = 1, . . . , h when vt+j = 0 and
K t+j = 0. Thus, the forecast yt (j) and the covariance matrix of its forecast error
et (j) can be obtained via the Kalman filter with missing values.

Finally, the prediction error series {vt } can be used to evaluate the likelihood
function for estimation and the standardized prediction errors D

−1/2
t vt can be used

for model checking, where Dt = diag{V t (1, 1), . . . ,V t (k, k)} with V t (i, i) being
the (i, i)th element of V t .

11.7 APPLICATION

In this section, we consider some applications of the state-space model in finance
and business. Our objectives are to highlight the applicability of the model and to
demonstrate the practical implementation of the analysis in S-Plus with SsfPack.

Example 11.2. Consider the CAPM for the monthly simple excess returns of
General Motors (GM) stock from January 1990 to December 2003; see Chapter 9.
We use the simple excess returns of the S&P 500 composite index as the market
returns. The returns are in percentages. Our illustration starts with a simple market
model

rt = α + βrM,t + et , et ∼ N(0, σ 2
e ), (11.86)

for t = 1, . . . , 168. This is a fixed-coefficient model and can easily be estimated
by the ordinary least-squares (OLS) method. Denote the GM stock return and the
market return by gm and sp, respectively. The result follows:

> da=read.table(‘‘m-gmsp-excess-9003.txt’’,header=F)
> gm=da[,1]
> sp=da[,2]
> fit=OLS(gm∼sp)
> summary(fit)
Call:
OLS(formula = gm∼sp)
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 0.1982 0.6302 0.3145 0.7535

sp 1.0457 0.1453 7.1962 0.0000

Regression Diagnostics:
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R-Squared 0.2378
Adjusted R-Squared 0.2332
Durbin-Watson Stat 2.0290

Residual Diagnostics:
Stat P-Value

Jarque-Bera 2.5348 0.2816
Ljung-Box 24.2132 0.3362

Residual standard error: 8.13 on 166 degrees of freedom

Thus, the fitted model is

rt = 0.20 + 1.0457rM,t + et , σ̂e = 8.13.

Based on the residual diagnostics, the model appears to be adequate for the GM
stock returns with adjusted R2 = 23.3%.

As shown in Section 11.3, model (11.86) is a special case of the state-space
model. We then estimate the model using SsfPack. The result is as follows:

> reg.m=function(parm,mX=NULL){
+ parm=exp(parm) % log(sigma.e) is used to ensure
positiveness.
+ ssf.reg=GetSsfReg(mX)
+ ssf.reg$mOmega[3,3]=parm[1]
+ CheckSsf(ssf.reg)
+ }
> c.start=c(10)
> X.mtx=cbind(rep(1,168),sp)
> reg.fit=SsfFit(c.start,gm,"reg.m",mX=X.mtx)
RELATIVE FUNCTION CONVERGENCE
> names(reg.fit)
[1] "parameters" "objective" "message" "grad.norm"

"iterations"
[6] "f.evals" "g.evals" "hessian" "scale" "aux"

[11] "call" "vcov"
> sqrt(exp(reg.fit$parameters))
[1] 8.130114
> ssf.reg$mOmega[3,3]=exp(reg.fit$parameters)
> reg.s=SsfMomentEst(gm,ssf.reg,task="STSMO")
> reg.s$state.moment[10,]

state.1 state.2
0.1982025 1.045702

> sqrt(reg.s$state.variance[10,])
state.1 state.2

0.6302091 0.1453139

As expected, the result is in total agreement with that of the OLS method.
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Finally, we entertain the time-varying CAPM of Section 11.3.1. The estimation
result, including time plot of the smoothed response variable, is given below. The
command SsfCondDens is used to compute the smoothed estimates of the state
vector and observation without variance estimation.

> tv.capm =function(parm,mX=NULL){ %setup model for estimation
+ parm=exp(parm) %parameterize in log for positiveness.
+ Phi.t = rbind(diag(2),rep(0,2))
+ Omega=diag(parm)
+ JPhi=matrix(-1,3,2)
+ JPhi[3,1]=1
+ JPhi[3,2]=2
+ Sigma=-Phi.t
+ ssf.tv=list(mPhi=Phi.t,
+ mOmega=Omega,
+ mJPhi=JPhi,
+ mSigma=Sigma,
+ mX=mX)
+ CheckSsf(ssf.tv)
+ }
> tv.start=c(0,0,0) % starting values
> tv.mle=SsfFit(tv.start,gm,"tv.capm",mX=X.mtx) % estimation
> sigma.mle=sqrt(exp(tv.mle$parameters))
> sigma.mle
[1] 4.907845e-05 1.219885e-02 8.125213e+00
% Smoothing
> smoEst.tv=SsfCondDens(gm,tv.capm(tv.mle$parameters,mX=X.
mtx),
+ task="STSMO")
> names(smoEst.tv)
[1] "state" "response" "task"
> par(mfcol=c(2,2)) % plotting
> plot(gm,type=’l’,ylab=’excess return’)
> title(main=’(a) Monthly simple excess returns’)
> plot(smoEst.tv$response,type=’l’,ylab=’rtn’)
> title(main=’(b) Expected returns’)
> plot(smoEst.tv$state[,1],type=’l’,ylab=’value’)
> title(main=’(c) Alpha(t)’)
> plot(smoEst.tv$state[,2],type=’l’,ylab=’value’)
> title(main=’(d) Beta(t)’)

Note that estimates of ση and σε are 4.91 × 10−5 and 1.22 × 10−2, respectively.
These estimates are close to zero, indicating that αt and βt of the time-varying
market model are essentially constant for the GM stock returns. This is in agreement
with the fact that the fixed-coefficient market model fits the data well. Figure 11.5
shows some plots for the time-varying CAPM fit. Part (a) is the monthly simple
excess returns of GM stock from January 1990 to December 2003. Part (b) is the
expected returns of GM stock, that is, rt |T , where T = 168 is the sample size. Parts
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Figure 11.5 Time plots of some statistics for time-varying CAPM applied to monthly simple excess
returns of General Motors stock. S&P 500 composite index return is used as market return: (a) monthly
simple excess return, (b) expected returns r t |T , (c) αt estimate, and (d) βt estimate.

(c) and (d) are the time plots of the estimates of αt and βt . Given the tightness in
the vertical scale, these two time plots confirm the assertion that a fixed-coefficient
market model is adequate for the monthly GM stock return.

Example 11.3. In this example we reanalyze the series of quarterly earnings
per share of Johnson & Johnson from 1960 to 1980 using the unobserved com-
ponent model; see Chapter 2 for details of the data. The model considered is

yt = µt + γt + et , et ∼ N(0, σ 2
e ), (11.87)

where yt is the logarithm of the observed earnings per share, µt is the local trend
component satisfying

µt+1 = µt + ηt , ηt ∼ N(0, σ 2
η ),

and γt is the seasonal component that satisfies

(1 + B + B2 + B3)γt = ωt , ωt ∼ N(0, σ 2
ω),

that is, γt = −∑3
j=1 γt−j + ωt . This model has three parameters—σe, ση, and

σω —and is a simple unobserved component model. It can be put in a state-space
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form as
µt+1

γt+1

γt
γt−1

 =


1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0




µt

γt
γt−1

γt−2

 +


1 0
0 1
0 0
0 0

[
ηt
ωt

]
,

where the covariance matrix of (ηt , ωt )
′ is diag{σ 2

η , σ
2
ω}, and yt = [1, 1, 0, 0]st + et ;

see Section 11.3. This is a special case of the structural time series in SsfPack and
can easily be specified using the command GetSsfStsm. Performing the maximum-
likelihood estimation, we obtain (σ̂e, σ̂η, σ̂ω) = (2.04 × 10−6, 7.27 × 10−2, 2.93 ×
10−2).

> jnj=scan(file=’q-jnj.txt’)
> y=log(jnj)
% Estimation
> jnj.m=function(parm){
+ parm=exp(parm)
+ jnj.sea=GetSsfStsm(irregular=parm[1],level=parm[2],
+ seasonalDummy=c(parm[3],4))
+ CheckSsf(jnj.sea)
+ }
>
> c.start=c(0,0,0) % Starting values
> jnj.est=SsfFit(c.start,y,"jnj.m")
> names(jnj.est)
[1] "parameters" "objective" "message" "grad.norm" "itera-

tions"
[6] "f.evals" "g.evals" "hessian" "scale" "aux"

[11] "call"
> jnjest=exp(jnj.est$parameters)
> jnjest % estimates
[1] 2.044516e-06 7.269655e-02 2.931691e-02
> jnj.ssf=GetSsfStsm(irregular=jnjest[1],level=jnjest[2],
+ seasonalDummy=c(jnjest[3],4)) % specify the model with esti-
mates
> CheckSsf(jnj.ssf)
$mPhi:

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 -1 -1 -1
[3,] 0 1 0 0
[4,] 0 0 1 0
[5,] 1 1 0 0
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$mOmega:
[,1] [,2] [,3] [,4] [,5]

[1,] 0.005284788 0.000000000 0 0 0.000000e+00
[2,] 0.000000000 0.000859481 0 0 0.000000e+00
[3,] 0.000000000 0.000000000 0 0 0.000000e+00
[4,] 0.000000000 0.000000000 0 0 0.000000e+00
[5,] 0.000000000 0.000000000 0 0 4.180047e-12
$mSigma:

[,1] [,2] [,3] [,4]
[1,] -1 0 0 0
[2,] 0 -1 0 0
[3,] 0 0 -1 0
[4,] 0 0 0 -1
[5,] 0 0 0 0
$mDelta:

[,1]
[1,] 0
[2,] 0
[3,] 0
[4,] 0
[5,] 0
$mJPhi:
[1] 0
$mJOmega:
[1] 0
$mJDelta:
[1] 0
$mX:
[1] 0
$cT:
[1] 0
$cX:
[1] 0
$cY:
[1] 1
$cSt:
[1] 4
attr(, "class"):
[1] "ssf" % below: smoothed components
> jnj.smo=SsfMomentEst(y,jnj.ssf,task="STSMO")
> up1=jnj.smo$state.moment[,1]+
+ 2*sqrt(jnj.smo$state.variance[,1])
> lw1=jnj.smo$state.moment[,1]-
+ 2*sqrt(jnj.smo$state.variance[,1])
> max(up1) % obtain the range for plotting
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[1] 2.795702
> min(lw1)
[1] -0.5948943
> up=jnj.smo$state.moment[,2]+
+ 2*sqrt(jnj.smo$state.variance[,2])
> lw=jnj.smo$state.moment[,2]-
+ 2*sqrt(jnj.smo$state.variance[,2])
> max(up)
[1] 0.3788652
> min(lw)
[1] -0.3552441
> par(mfcol=c(2,1)) % plotting
> plot(tdx,jnj.smo$state.moment[,1],type=’l’,xlab=’year’,
+ ylab=’value’,ylim=c(-1,3))
> lines(tdx,up1,lty=2)
> lines(tdx,lw1,lty=2)
> title(main=’(a) Trend component’)
> plot(tdx,jnj.smo$state.moment[,2],type=’l’,xlab=’year’,
+ ylab=’value’,ylim=c(-.5,.5))
> lines(tdx,up,lty=2)
> lines(tdx,lw,lty=2)
> title(main=’(b) Seasonal component’)
% Filtering and smoothing
> jnj.fil=KalmanFil(y,jnj.ssf,task="STFIL")
> jnj.smo1=KalmanSmo(jnj.fil,jnj.ssf)
> plot(tdx,jnj.fil$mOut[,1],type=’l’,xlab=’year’,ylab=’resi’)
> title(main=’(a) 1-Step forecast error’)
> plot(tdx,jnj.smo1$response.residuals[2:85],type=’l’,
+ xlab=’year’,ylab=’resi’)
> title(main=’(b) Smoothing residual’)

Figure 11.6 shows the smoothed estimates of the trend and seasonal compo-
nents, that is, µt |T and γt |T with T = 84, of the data. Of particular interest is that
the seasonal pattern seems to evolve over time. Also shown are 95% pointwise
confidence regions of the unobserved components. Figure 11.7 shows the residual
plots, where part (a) gives the 1-step-ahead forecast errors computed by Kalman
filter and part (b) is the smoothed response residuals of the fitted model. Thus,
state-space modeling provides an alternative approach for analyzing seasonal time
series. It should be noted that the estimated components in Figure 11.6 are not
unique. They depend on the model specified and constraints used. In fact, there
are infinitely many ways to decompose an observed time series into unobserved
components. For instance, one can use a different specification for the seasonal
component, for example, sesonalTrig in SsfPack, to obtain another decomposi-
tion for the earnings series of Johnson & Johnson. Thus, care must be exercised
in interpreting the estimated components. However, for forecasting purposes, the
choice of decomposition does not matter provided that the chosen one is a valid
decomposition.
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Figure 11.6 Smoothed components of fitting model (11.87) to logarithm of quarterly earnings per
share of Johnson & Johnson from 1960 to 1980: (a) trend component and (b) seasonal component.
Dotted lines indicate pointwise 95% confidence regions.

EXERCISES

11.1. Consider the ARMA(1,1) model yt − 0.8yt−1 = at + 0.4at−1 with
at ∼ N(0, 0.49). Convert the model into a state-space form using (a)
Akaike’s method, (b) Harvey’s approach, and (c) Aoki’s approach.

11.2. The file aa-rv-20m.txt contains the realized daily volatility series of Alcoa
stock returns from January 2, 2003, to May 7, 2004; see the example in
Section 11.1. The volatility series is constructed using 20-minute intradaily
log returns.

(a) Fit an ARIMA(0,1,1) model to the log volatility series and write down
the model.

(b) Estimate the local trend model in Eqs. (11.1) and (11.2) for the log
volatility series. What are the estimates of σe and ση? Obtain time plots
for the filtered and smoothed state variables with pointwise 95% confi-
dence interval.

11.3. Consider the monthly simple excess returns of Pfizer stock and the S&P 500
composite index from January 1990 to December 2003. The excess returns
are in m-pfesp-ex9003.txt with Pfizer stock returns in the first column.
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Figure 11.7 Residual series of fitting model (11.87) to logarithm of quarterly earnings per share of
Johnson & Johnson from 1960 to 1980: (a) 1-step-ahead forecast error vt and (b) smoothed residuals
of response variable.

(a) Fit a fixed-coefficient market model to the Pfizer stock return. Write
down the fitted model.

(b) Fit a time-varying CAPM to the Pfizer stock return. What are the esti-
mated standard errors of the innovations to the αt and βt series? Obtain
time plots of the smoothed estimates of αt and βt .

11.4. Consider the AR(3) model

xt = φ1xt−1 + φ2xt−2 + φ3xt−3 + at , at ∼ N(0, σ 2
a ),

and suppose that the observed data are

yt = xt + et , et ∼ N(0, σ 2
e ),

where {et } and {at } are independent and the initial values of xj with j ≤ 0
are independent of et and at for t > 0.

(a) Convert the model into a state-space form.

(b) If E(et ) = c, which is not zero, what is the corresponding state-space
form for the system?
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11.5. The file m-ppiaco4709.txt contains year, month, day, and U.S. producer
price index (PPI) from January 1947 to November 2009. The index is for all
commodities and not seasonally adjusted. Let zt = ln(Zt ) − ln(Zt−1), where
Zt is the observed monthly PPI. It turns out that an AR(3) model is adequate
for zt if the minor seasonal dependence is ignored. Let yt be the sample
mean-corrected series of zt .

(a) Fit an AR(3) model to yt and write down the fitted model.
(b) Suppose that yt has independent measurement errors so that yt = xt + et ,

where xt is a zero-mean AR(3) process and Var(et ) = σ 2
e . Use a state-

space form to estimate parameters, including the innovational variances
to the state and σ 2

e . Write down the fitted model and obtain a time plot of
the smoothed estimate of xt . Also, show the time plot of filtered response
residuals of the fitted state-space model.
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C H A P T E R 12

Markov Chain Monte Carlo Methods
with Applications

Advances in computing facilities and computational methods have dramatically
increased our ability to solve complicated problems. The advances also extend the
applicability of many existing econometric and statistical methods. Examples of
such achievements in statistics include the Markov chain Monte Carlo (MCMC)
method and data augmentation. These techniques enable us to make some statistical
inference that was not feasible just a few years ago. In this chapter, we introduce
the ideas of MCMC methods and data augmentation that are widely applicable
in finance. In particular, we discuss Bayesian inference via Gibbs sampling and
demonstrate various applications of MCMC methods. Rapid developments in the
MCMC methodology make it impossible to cover all the new methods available in
the literature. Interested readers are referred to some recent books on Bayesian and
empirical Bayesian statistics (e.g., Carlin and Louis, 2000; Gelman, Carlin, Stern,
and Rubin, 2003).

For applications, we focus on issues related to financial econometrics. The
demonstrations shown in this chapter represent only a small fraction of all possible
applications of the techniques in finance. As a matter of fact, it is fair to say that
Bayesian inference and the MCMC methods discussed here are applicable to most,
if not all, of the studies in financial econometrics.

We begin the chapter by reviewing the concept of a Markov process . Consider
a stochastic process {Xt }, where each Xt assumes a value in the space �. The
process {Xt } is a Markov process if it has the property that, given the value of Xt ,
the values of Xh, h> t , do not depend on the values Xs , s < t . In other words,
{Xt } is a Markov process if its conditional distribution function satisfies

P (Xh|Xs, s ≤ t) = P (Xh|Xt), h> t.

Analysis of Financial Time Series, Third Edition, By Ruey S. Tsay
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If {Xt } is a discrete-time stochastic process, then the prior property becomes

P (Xh|Xt,Xt−1, . . .) = P (Xh|Xt), h> t.

Let A be a subset of �. The function

Pt(θ, h,A) = P (Xh ∈ A|Xt = θ), h> t

is called the transition probability function of the Markov process. If the transi-
tion probability depends on h − t , but not on t , then the process has a stationary
transition distribution.

12.1 MARKOV CHAIN SIMULATION

Consider an inference problem with parameter vector θ and data X, where θ ∈ �.
To make inference, we need to know the distribution P (θ |X). The idea of Markov
chain simulation is to simulate a Markov process on �, which converges to a
stationary transition distribution that is P (θ |X).

The key to Markov chain simulation is to create a Markov process whose station-
ary transition distribution is a specified P (θ |X) and run the simulation sufficiently
long so that the distribution of the current values of the process is close enough to
the stationary transition distribution. It turns out that, for a given P (θ |X), many
Markov chains with the desired property can be constructed. We refer to methods
that use Markov chain simulation to obtain the distribution P (θ |X) as MCMC
methods.

The development of MCMC methods took place in various forms in the sta-
tistical literature. Consider the problem of “missing value” in data analysis. Most
statistical methods discussed in this book were developed under the assumption of
“complete data” (i.e., there is no missing value). For example, in modeling daily
volatility of an asset return, we assume that the return data are available for all
trading days in the sample period. What should we do if there is a missing value?

Dempster, Laird, and Rubin (1977) suggest an iterative method called the
Expectation-Maximization (EM) algorithm to solve the problem. The method
consists of two steps. First, if the missing value were available, then we could use
methods of complete-data analysis to build a volatility model. Second, given the
available data and the fitted model, we can derive the statistical distribution of the
missing value. A simple way to fill in the missing value is to use the conditional
expectation of the derived distribution of the missing value. In practice, one can
start the method with an arbitrary value for the missing value and iterate the
procedure for many many times until convergence. The first step of the prior
procedure involves performing the maximum-likelihood estimation of a specified
model and is called the M-step. The second step is to compute the conditional
expectation of the missing value and is called the E-step.

Tanner and Wong (1987) generalize the EM algorithm in two ways. First, they
introduce the idea of iterative simulation. For instance, instead of using the con-
ditional expectation, one can simply replace the missing value by a random draw
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from its derived conditional distribution. Second, they extend the applicability of
the EM algorithm by using the concept of data augmentation. By data augmenta-
tion, we mean adding auxiliary variables to the problem under study. It turns out
that many of the simulation methods can often be simplified or speeded up by data
augmentation; see the application sections of this chapter.

12.2 GIBBS SAMPLING

Gibbs sampling (or Gibbs sampler) of Geman and Geman (1984) and Gelfand and
Smith (1990) is perhaps the most popular MCMC method. We introduce the idea
of Gibbs sampling by using a simple problem with three parameters. Here the word
parameter is used in a very general sense. A missing data point can be regarded
as a parameter under the MCMC framework. Similarly, an unobservable variable
such as the “true” price of an asset can be regarded as N parameters when there
are N transaction prices available. This concept of parameter is related to data
augmentation and becomes apparent when we discuss applications of the MCMC
methods.

Denote the three parameters by θ1, θ2, and θ3. Let X be the collection of available
data and M the entertained model. The goal here is to estimate the parameters so
that the fitted model can be used to make inference. Suppose that the likelihood
function of the model is hard to obtain, but the three conditional distributions of
a single parameter given the others are available. In other words, we assume that
the following three conditional distributions are known:

f1(θ1|θ2, θ3,X,M), f2(θ2|θ3, θ1,X,M), f3(θ3|θ1, θ2,X,M), (12.1)

where fi(θi |θj �=i ,X,M) denotes the conditional distribution of the parameter θi
given the data, the model, and the other two parameters. In application, we do not
need to know the exact forms of the conditional distributions. What is needed is the
ability to draw a random number from each of the three conditional distributions.

Let θ2,0 and θ3,0 be two arbitrary starting values of θ2 and θ3. The Gibbs sampler
proceeds as follows:

1. Draw a random sample from f1(θ1|θ2,0, θ3,0,X,M). Denote the random draw
by θ1,1.

2. Draw a random sample from f2(θ2|θ3,0, θ1,1,X,M). Denote the random draw
by θ2,1.

3. Draw a random sample from f3(θ3|θ1,1, θ2,1,X,M). Denote the random draw
by θ3,1.

This completes a Gibbs iteration and the parameters become θ1,1, θ2,1, and θ3,1.
Next, using the new parameters as starting values and repeating the prior itera-

tion of random draws, we complete another Gibbs iteration to obtain the updated
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parameters θ1,2, θ2,2, and θ3,2. We can repeat the previous iterations for m times to
obtain a sequence of random draws:

(θ1,1, θ2,1, θ3,1), . . . , (θ1,m, θ2,m, θ3,m).

Under some regularity conditions, it can be shown that, for a sufficiently large
m, (θ1,m, θ2,m, θ3,m) is approximately equivalent to a random draw from the joint
distribution f (θ1, θ2, θ3|X,M) of the three parameters. The regularity conditions
are weak; they essentially require that for an arbitrary starting value (θ1,0, θ2,0, θ3,0),
the prior Gibbs iterations have a chance to visit the full parameter space. The actual
convergence theorem involves using the Markov chain theory; see Tierney (1994).

In practice, we use a sufficiently large n and discard the first m random draws
of the Gibbs iterations to form a Gibbs sample, say,

(θ1,m+1, θ2,m+1, θ3,m+1), . . . , (θ1,n, θ2,n, θ3,n). (12.2)

Since the previous realizations form a random sample from the joint distribution
f (θ1, θ2, θ3|X,M), they can be used to make inference. For example, a point
estimate of θi and its variance are

θ̂i = 1

n − m

n∑
j=m+1

θi,j , σ̂ 2
i = 1

n − m − 1

n∑
j=m+1

(θi,j − θ̂i )
2. (12.3)

The Gibbs sample in Eq. (12.2) can be used in many ways. For example, if
we are interested in testing the null hypothesis H0 : θ1 = θ2 versus the alternative
hypothesis Ha : θ1 �= θ2, then we can simply obtain the point estimate of θ =
θ1 − θ2 and its variance as

θ̂ = 1

n − m

n∑
j=m+1

(θ1,j − θ2,j ), σ̂ 2 = 1

n − m − 1

n∑
j=m+1

(θ1,j − θ2,j − θ̂ )2.

The null hypothesis can then be tested by using the conventional t-ratio statistic
t = θ̂/σ̂ .

Remark. The first m random draws of a Gibbs sampling, which are discarded,
are commonly referred to as the burn-in sample. The burn-ins are used to ensure
that the Gibbs sample in Eq. (12.2) is indeed close enough to a random sample
from the joint distribution f (θ1, θ2, θ3|X,M). �

Remark. The method discussed before consists of running a single long chain
and keeping all random draws after the burn-ins to obtain a Gibbs sample. Alter-
natively, one can run many relatively short chains using different starting values
and a relatively small n. The random draw of the last Gibbs iteration in each chain
is then used to form a Gibbs sample. �
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From the prior introduction, Gibbs sampling has the advantage of decomposing
a high-dimensional estimation problem into several lower dimensional ones via
full conditional distributions of the parameters. At the extreme, a high-dimensional
problem with N parameters can be solved iteratively by using N univariate con-
ditional distributions. This property makes the Gibbs sampling simple and widely
applicable. However, it is often not efficient to reduce all the Gibbs draws into a
univariate problem. When parameters are highly correlated, it pays to draw them
jointly. Consider the three-parameter illustrative example. If θ1 and θ2 are highly
correlated, then one should employ the conditional distributions f (θ1, θ2|θ3,X,M)

and f3(θ3|θ1, θ2,X,M) whenever possible. A Gibbs iteration then consists of (a)
drawing jointly (θ1, θ2) given θ3, and (b) drawing θ3 given (θ1, θ2). For more infor-
mation on the impact of parameter correlations on the convergence rate of a Gibbs
sampler, see Liu, Wong, and Kong (1994).

In practice, convergence of a Gibbs sample is an important issue. The theory only
states that the convergence occurs when the number of iterations m is sufficiently
large. It provides no specific guidance for choosing m. Many methods have been
devised in the literature for checking the convergence of a Gibbs sample. But there
is no consensus on which method performs best. In fact, none of the available
methods can guarantee 100% that the Gibbs sample under study has converged for
all applications. Performance of a checking method often depends on the problem
at hand. Care must be exercised in a real application to ensure that there is no
obvious violation of the convergence requirement; see Carlin and Louis (2000)
and Gelman et al. (2003) for convergence checking methods. In application, it is
important to repeat the Gibbs sampling several times with different starting values
to ensure that the algorithm has converged.

12.3 BAYESIAN INFERENCE

Conditional distributions play a key role in Gibbs sampling. In the statistical
literature, these conditional distributions are referred to as conditional posterior
distributions because they are distributions of parameters given the data, other
parameter values, and the entertained model. In this section, we review some well-
known posterior distributions that are useful in using MCMC methods.

12.3.1 Posterior Distributions

There are two approaches to statistical inference. The first approach is the classical
approach based on the maximum-likelihood principle. Here a model is estimated by
maximizing the likelihood function of the data, and the fitted model is used to make
inference. The other approach is Bayesian inference that combines prior belief with
data to obtain posterior distributions on which statistical inference is based. Histor-
ically, there were heated debates between the two schools of statistical inference.
Yet both approaches have proved to be useful and are now widely accepted. The
methods discussed so far in this book belong to the classical approach. However,
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Bayesian solutions exist for all of the problems considered. This is particularly so in
recent years with the advances in MCMC methods, which greatly improve the fea-
sibility of Bayesian analysis. Readers can revisit the previous chapters and derive
MCMC solutions for the problems considered. In most cases, the Bayesian solu-
tions are similar to what we had before. In some cases, the Bayesian solutions might
be advantageous. For example, consider the calculation of value at risk in Chapter
7. A Bayesian solution can easily take into consideration the parameter uncertainty
in VaR calculation. However, the approach requires intensive computation.

Let θ be the vector of unknown parameters of an entertained model and X

be the data. Bayesian analysis seeks to combine knowledge about the parameters
with the data to make inference. Knowledge of the parameters is expressed by
specifying a prior distribution for the parameters, which is denoted by P (θ). For
a given model, denote the likelihood function of the data by f (X|θ). Then by the
definition of conditional probability,

f (θ |X) = f (θ,X)

f (X)
= f (X|θ)P (θ)

f (X)
, (12.4)

where the marginal distribution f (X) can be obtained by

f (X) =
∫

f (X, θ) dθ =
∫

f (X|θ)P (θ) dθ .

The distribution f (θ |X) in Eq. (12.4) is called the posterior distribution of θ . In
general, we can use Bayes’s rule to obtain

f (θ |X) ∝ f (X|θ)P (θ), (12.5)

where P (θ) is the prior distribution and f (X|θ) is the likelihood function. From
Eq. (12.5), making statistical inference based on the likelihood function f (X|θ)
amounts to using a Bayesian approach with a constant prior distribution.

12.3.2 Conjugate Prior Distributions

Obtaining the posterior distribution in Eq. (12.4) is not simple in general, but there
are cases in which the prior and posterior distributions belong to the same family
of distributions. Such a prior distribution is called a conjugate prior distribution.
For MCMC methods, use of conjugate priors means that a closed-form solution
for the conditional posterior distributions is available. Random draws of the Gibbs
sampler can then be obtained by using the commonly available computer routines
of probability distributions. In what follows, we review some well-known conjugate
priors. For more information, readers are referred to textbooks on Bayesian statistics
(e.g., DeGroot 1970, Chapter 9).

Result 12.1. Suppose that x1, . . . , xn form a random sample from a normal
distribution with mean µ, which is unknown, and variance σ 2, which is known
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and positive. Suppose that the prior distribution of µ is a normal distribution with
mean µo and variance σ 2

o . Then the posterior distribution of µ given the data and
prior is normal with mean µ∗ and variance σ 2∗ given by

µ∗ = σ 2µo + nσ 2
o x̄

σ 2 + nσ 2
o

and σ 2
∗ = σ 2σ 2

o

σ 2 + nσ 2
o

,

where x̄ = ∑n
i=1 xi/n is the sample mean.

In Bayesian analysis, it is often convenient to use the precision parameter η =
1/σ 2 (i.e., the inverse of the variance σ 2). Denote the precision parameter of the
prior distribution by ηo = 1/σ 2

o and that of the posterior distribution by η∗ = 1/σ 2∗ .
Then Result 12.1 can be rewritten as

η∗ = ηo + nη and µ∗ = ηo

η∗
× µo + nη

η∗
× x̄.

For the normal random sample considered, data information about µ is contained in
the sample mean x̄, which is the sufficient statistic of µ. The precision of x̄ is n/σ 2

= nη. Consequently, Result 12.1 says that (a) precision of the posterior distribution
is the sum of the precisions of the prior and the data, and (b) the posterior mean is
a weighted average of the prior mean and sample mean with weight proportional
to the precision. The two formulas also show that the contribution of the prior
distribution is diminishing as the sample size n increases.

A multivariate version of Result 12.1 is particularly useful in MCMC methods
when linear regression models are involved; see Box and Tiao (1973).

Result 12.1a. Suppose that x1, . . . , xn form a random sample from a multi-
variate normal distribution with mean vector µ and a known covariance matrix
�. Suppose also that the prior distribution of µ is multivariate normal with mean
vector µo and covariance matrix �o. Then the posterior distribution of µ is also
multivariate normal with mean vector µ∗ and covariance matrix �∗, where

�−1
∗ = �−1

o + n�−1 and µ∗ = �∗(�−1
o µo + n�−1x̄),

where x̄ = ∑n
i=1 xi/n is the sample mean, which is distributed as a multivariate

normal with mean µ and covariance matrix �/n. Note that n�−1 is the precision
matrix of x̄ and �−1

o is the precision matrix of the prior distribution.

A random variable η has a gamma distribution with positive parameters α and
β if its probability density function is

f (η|α, β) = βα

�(α)
ηα−1e−βη, η > 0,

where �(α) is a gamma function. For this distribution, E(η) = α/β and Var(η) =
α/β2.
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Result 12.2. Suppose that x1, . . . , xn form a random sample from a normal
distribution with a given mean µ and an unknown precision η. If the prior distri-
bution of η is a gamma distribution with positive parameters α and β, then the
posterior distribution of η is a gamma distribution with parameters α + (n/2) and
β + ∑n

i=1(xi − µ)2/2.

A random variable θ has a beta distribution with positive parameters α and β

if its probability density function is

f (θ |α, β) = �(α + β)

�(α)�(β)
θα−1(1 − θ)β−1, 0 < θ < 1.

The mean and variance of θ are E(θ) = α/(α + β) and Var(θ ) = αβ/[(α + β)2(α +
β + 1)].

Result 12.3. Suppose that x1, . . . , xn form a random sample from a Bernoulli
distribution with parameter θ . If the prior distribution of θ is a beta distribution
with given positive parameters α and β, then the posterior of θ is a beta distribution
with parameters α + ∑n

i=1 xi and β + n − ∑n
i=1 xi .

Result 12.4. Suppose that x1, . . . , xn form a random sample from a Poisson
distribution with parameter λ. Suppose also that the prior distribution of λ is a
gamma distribution with given positive parameters α and β. Then the posterior
distribution of λ is a gamma distribution with parameters α + ∑n

i=1 xi and β + n.

Result 12.5. Suppose that x1, . . . , xn form a random sample from an exponential
distribution with parameter λ. If the prior distribution of λ is a gamma distribution
with given positive parameters α and β, then the posterior distribution of λ is a
gamma distribution with parameters α + n and β + ∑n

i=1 xi .

A random variable X has a negative binomial distribution with parameters m

and λ, where m> 0 and 0 < λ < 1, if X has a probability mass function

p(n|m, λ) =


(

m + n − 1
n

)
λm(1 − λ)n if n = 0, 1, . . . ,

0 otherwise.

A simple example of negative binomial distribution in finance is how many MBA
graduates a firm must interview before finding exactly m “right candidates” for its
m openings, assuming that the applicants are independent and each applicant has
a probability λ of being a perfect fit. Denote the total number of interviews by Y .
Then X = Y − m is distributed as a negative binomial with parameters m and λ.

Result 12.6. Suppose that x1, . . . , xn form a random sample from a negative
binomial distribution with parameters m and λ, where m is positive and fixed. If
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the prior distribution of λ is a beta distribution with positive parameters α and β,
then the posterior distribution of λ is a beta distribution with parameters α + mn

and β + ∑n
i=1 xi .

Next we consider the case of a normal distribution with an unknown mean µ

and an unknown precision η. The two-dimensional prior distribution is partitioned
as P (µ, η) = P (µ|η)P (η).

Result 12.7. Suppose that x1, . . . , xn form a random sample from a normal dis-
tribution with an unknown mean µ and an unknown precision η. Suppose also that
the conditional distribution of µ given η = ηo is a normal distribution with mean
µo and precision τoηo and the marginal distribution of η is a gamma distribution
with positive parameters α and β. Then the conditional posterior distribution of µ

given η = ηo is a normal distribution with mean µ∗ and precision η∗,

µ∗ = τoµo + nx̄

τo + n
and η∗ = (τo + n)ηo,

where x̄ = ∑n
i=1 xi/n is the sample mean, and the marginal posterior distribution

of η is a gamma distribution with parameters α + (n/2) and β∗, where

β∗ = β + 1

2

n∑
i=1

(xi − x̄)2 + τon(x̄ − µo)
2

2(τo + n)
.

When the conditional variance of a random variable is of interest, an inverted
chi-squared distribution (or inverse chi-squared) is often used. A random variable Y

has an inverted chi-squared distribution with v degrees of freedom if 1/Y follows a
chi-squared distribution with the same degrees of freedom. The probability density
function of Y is

f (y|v) = 2−v/2

�(v/2)
y−(v/2+1)e−1/(2y), y > 0.

For this distribution, we have E(Y) = 1/(v − 2) if v > 2 and Var(Y ) = 2/[(v −
2)2(v − 4)] if v > 4.

Result 12.8. Suppose that a1, . . . , an form a random sample from a normal
distribution with mean zero and variance σ 2. Suppose also that the prior dis-
tribution of σ 2 is an inverted chi-squared distribution with v degrees of free-
dom [i.e., (vλ)/σ 2 ∼ χ2

v , where λ> 0]. Then the posterior distribution of σ 2 is
also an inverted chi-squared distribution with v + n degrees of freedom—that is,
(vλ + ∑n

i=1 a
2
i )/σ

2 ∼ χ2
v+n.
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12.4 ALTERNATIVE ALGORITHMS

In many applications, there are no closed-form solutions for the conditional poste-
rior distributions. But many clever alternative algorithms have been devised in the
statistical literature to overcome this difficulty. In this section, we discuss some of
these algorithms.

12.4.1 Metropolis Algorithm

This algorithm is applicable when the conditional posterior distribution is known
except for a normalization constant; see Metropolis and Ulam (1949) and Metropo-
lis et al. (1953). Suppose that we want to draw a random sample from the distribu-
tion f (θ |X), which contains a complicated normalization constant so that a direct
draw is either too time-consuming or infeasible. But there exists an approximate
distribution for which random draws are easily available. The Metropolis algorithm
generates a sequence of random draws from the approximate distribution whose
distributions converge to f (θ |X). The algorithm proceeds as follows:

1. Draw a random starting value θ0 such that f (θ0|X)> 0.

2. For t = 1, 2, . . .,

a. Draw a candidate sample θ∗ from a known distribution at iteration t given
the previous draw θ t−1. Denote the known distribution by Jt (θ t |θ t−1),
which is called a jumping distribution in Gelman et al. (2003). It is also
referred to as a proposal distribution . The jumping distribution must be
symmetric—that is, Jt (θ i |θ j ) = Jt (θ j |θ i ) for all θ i , θ j , and t .

b. Calculate the ratio

r = f (θ∗|X)

f (θ t−1|X)
.

c. Set

θ t =
{

θ∗ with probability min(r, 1),
θ t−1 otherwise.

Under some regularity conditions, the sequence {θ t } converges in distribution to
f (θ |X); see Gelman et al. (2003).

Implementation of the algorithm requires the ability to calculate the ratio r for
all θ∗ and θ t−1, to draw θ∗ from the jumping distribution, and to draw a random
realization from a uniform distribution to determine the acceptance or rejection of
θ∗. The normalization constant of f (θ |X) is not needed because only a ratio is
used.

The acceptance and rejection rule of the algorithm can be stated as follows:
(i) if the jump from θ t−1 to θ∗ increases the conditional posterior density, then
accept θ∗ as θ t ; (ii) if the jump decreases the posterior density, then set θ t = θ∗
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with probability equal to the density ratio r , and set θ t = θ t−1 otherwise. Such a
procedure seems reasonable.

Examples of symmetric jumping distributions include the normal and Student-
t distributions for the mean parameter. For a given covariance matrix, we have
f (θ i |θ j ) = f (θ j |θ i ), where f (θ |θo) denotes a multivariate normal density function
with mean vector θo.

12.4.2 Metropolis–Hasting Algorithm

Hasting (1970) generalizes the Metropolis algorithm in two ways. First, the jumping
distribution does not have to be symmetric. Second, the jumping rule is modified to

r = f (θ∗|X)/Jt (θ∗|θ t−1)

f (θ t−1|X)/Jt (θ t−1|θ∗)
= f (θ∗|X)Jt (θ t−1|θ∗)

f (θ t−1|X)Jt (θ∗|θ t−1)
.

This modified algorithm is referred to as the Metropolis–Hasting algorithm. Tierney
(1994) discusses methods to improve computational efficiency of the algorithm.

12.4.3 Griddy Gibbs

In financial applications, an entertained model may contain some nonlinear param-
eters (e.g., the moving-average parameters in an ARMA model or the GARCH
parameters in a volatility model). Since conditional posterior distributions of nonlin-
ear parameters do not have a closed-form expression, implementing a Gibbs sampler
in this situation may become complicated even with the Metropolis–Hasting algo-
rithm. Tanner (1996) describes a simple procedure to obtain random draws in
a Gibbs sampling when the conditional posterior distribution is univariate. The
method is called the Griddy Gibbs sampler and is widely applicable. However, the
method could be inefficient in a real application.

Let θi be a scalar parameter with conditional posterior distribution
f (θi |X, θ−i ), where θ−i is the parameter vector after removing θi . For instance,
if θ = (θ1, θ2, θ3)

′, then θ−1 = (θ2, θ3)
′. The Griddy Gibbs proceeds as follows:

1. Select a grid of points from a properly selected interval of θi , say, θi1 ≤
θi2 ≤ · · · ≤ θim. Evaluate the conditional posterior density function to obtain
wj = f (θij |X, θ−i ) for j = 1, . . . , m.

2. Use w1, . . . , wm to obtain an approximation to the inverse cumulative distri-
bution function (CDF) of f (θi |X, θ−i ).

3. Draw a uniform (0,1) random variate and transform the observation via the
approximate inverse CDF to obtain a random draw for θi .

Some remarks on the Griddy Gibbs are in order. First, the normalization con-
stant of the conditional posterior distribution f (θi |X, θ−i ) is not needed because
the inverse CDF can be obtained from {wj }mj=1 directly. Second, a simple approx-
imation to the inverse CDF is a discrete distribution for {θij }mj=1 with probabil-
ity p(θij ) = wj/

∑m
v=1 wv . Third, in a real application, selection of the interval
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[θi1, θim] for the parameter θi must be checked carefully. A simple checking proce-
dure is to consider the histogram of the Gibbs draws of θi . If the histogram indicates
substantial probability around θi1 or θim, then the interval must be expanded. How-
ever, if the histogram shows a concentration of probability inside the interval
[θi1, θim], then the interval is too wide and can be shortened. If the interval is
too wide, then the Griddy Gibbs becomes inefficient because most of wj would be
zero. Finally, the Griddy Gibbs or Metropolis–Hasting algorithm can be used in a
Gibbs sampling to obtain random draws of some parameters.

12.5 LINEAR REGRESSION WITH TIME SERIES ERRORS

We are ready to consider some specific applications of MCMC methods. Examples
discussed in the next few sections are for illustrative purposes only. The goal here
is to highlight the applicability and usefulness of the methods. Understanding these
examples can help readers gain insights into applications of MCMC methods in
finance.

The first example is to estimate a regression model with serially correlated
errors. This is a topic discussed in Chapter 2, where we use SCA to perform the
estimation. A simple version of the model is

yt = β0 + β1x1t + · · · + βkxkt + zt ,

zt = φzt−1 + at ,

where yt is the dependent variable, xit are explanatory variables that may contain
lagged values of yt , and zt follows a simple AR(1) model with {at } being a sequence
of independent and identically distributed normal random variables with mean zero
and variance σ 2. Denote the parameters of the model by θ = (β ′, φ, σ 2)′, where
β = (β0, β1, . . . , βk)

′, and let x t = (1, x1t , . . . , xkt )
′ be the vector of all regressors

at time t , including a constant of unity. The model becomes

yt = x′
tβ + zt , zt = φzt−1 + at , t = 1, . . . , n, (12.6)

where n is the sample size.
A natural way to implement Gibbs sampling in this case is to iterate between

regression estimation and time series estimation. If the time series model is known,
we can estimate the regression model easily by using the least-squares method.
However, if the regression model is known, we can obtain the time series zt by
using zt = yt − x ′

tβ and use the series to estimate the AR(1) model. Therefore, we
need the following conditional posterior distributions:

f (β|Y ,X, φ, σ 2), f (φ|Y ,X,β, σ 2), f (σ 2|Y ,X,β, φ),

where Y = (y1, . . . , yn)
′ and X denotes the collection of all observations of

explanatory variables.
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We use conjugate prior distributions to obtain closed-form expressions for the
conditional posterior distributions. The prior distributions are

β ∼ N(βo,�o), φ ∼ N(φo, σ
2
o ),

vλ

σ 2
∼ χ2

v , (12.7)

where again ∼ denotes distribution, and βo, �o, λ, v, φo, and σ 2
o are known quan-

tities. These quantities are referred to as hyperparameters in Bayesian inference.
Their exact values depend on the problem at hand. Typically, we assume that βo

= 0, φo = 0, and �o is a diagonal matrix with large diagonal elements. The prior
distributions in Eq. (12.7) are assumed to be independent of each other. Thus, we
use independent priors based on the partition of the parameter vector θ .

The conditional posterior distribution f (β|Y ,X, φ, σ 2) can be obtained by using
Result 12.1a of Section 12.3. Specifically, given φ, we define

yo,t = yt − φyt−1, xo,t = x t − φx t−1.

Using Eq. (12.6), we have

yo,t = β ′xo,t + at , t = 2, . . . , n. (12.8)

Under the assumption of {at }, Eq. (12.8) is a multiple linear regression. Therefore,
information of the data about the parameter vector β is contained in its least-squares
estimate

β̂ =
(

n∑
t=2

xo,tx
′
o,t

)−1 ( n∑
t=2

xo,t yo,t

)
,

which has a multivariate normal distribution

β̂ ∼ N

β, σ 2

(
n∑

t=2

xo,tx
′
o,t

)−1
 .

Using Result 12.1a, the posterior distribution of β, given the data, φ, and σ 2, is
multivariate normal. We write the result as

(β|Y ,X, φ, σ ) ∼ N(β∗,�∗), (12.9)

where the parameters are given by

�−1
∗ =

∑n
t=2 xo,tx

′
o,t

σ 2
+ �−1

o , β∗ = �∗

(∑n
t=2 xo,tx

′
o,t

σ 2
β̂ + �−1

o βo

)
.
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Next, consider the conditional posterior distribution of φ given β, σ 2, and the
data. Because β is given, we can calculate zt = yt − β ′x t for all t and consider
the AR(1) model

zt = φzt−1 + at , t = 2, . . . , n.

The information of the likelihood function about φ is contained in the least-squares
estimate

φ̂ =
(

n∑
t=2

z2
t−1

)−1 ( n∑
t=2

zt−1zt

)
,

which is normally distributed with mean φ and variance σ 2(
∑n

t=2 z
2
t−1)

−1. Based
on Result 12.1, the posterior distribution of φ is also normal with mean φ∗ and
variance σ 2∗ , where

σ−2
∗ =

∑n
t=2 z

2
t−1

σ 2
+ σ−2

o , φ∗ = σ 2
∗

(∑n
t=2 z

2
t−1

σ 2
φ̂ + σ−2

o φo

)
. (12.10)

Finally, turn to the posterior distribution of σ 2 given β, φ, and the data. Because
β and φ are known, we can calculate

at = zt − φzt−1, zt = yt − β ′x t , t = 2, . . . , n.

By Result 12.8, the posterior distribution of σ 2 is an inverted chi-squared
distribution—that is,

vλ + ∑n
t=2 a

2
t

σ 2
∼ χ2

v+(n−1), (12.11)

where χ2
k denotes a chi-squared distribution with k degrees of freedom.

Using the three conditional posterior distributions in Eqs. (12.9)–(12.11), we
can estimate Eq. (12.6) via Gibbs sampling as follows:

1. Specify the hyperparameter values of the priors in Eq. (12.7).

2. Specify arbitrary starting values for β, φ, and σ 2 (e.g., the ordinary least-
squares estimate of β without time series errors).

3. Use the multivariate normal distribution in Eq. (12.9) to draw a random
realization for β.

4. Use the univariate normal distribution in Eq. (12.10) to draw a random real-
ization for φ.

5. Use the chi-squared distribution in Eq. (12.11) to draw a random realization
for σ 2.
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Repeat steps 3–5 for many iterations to obtain a Gibbs sample. The sample means
are then used as point estimates of the parameters of model (12.6).

Example 12.1. As an illustration, we revisit the example of U.S. weekly inter-
est rates of Chapter 2. The data are the 1-year and 3-year Treasury constant maturity
rates from January 5, 1962, to April 10, 2009, and are obtained from the Federal
Reserve Bank of St. Louis. Because of unit-root nonstationarity, the dependent and
independent variables are

1. c3t = r3t − r3,t−1, which is the weekly change in 3-year maturity rate,
2. c1t = r1t − r1,t−1, which is the weekly change in 1-year maturity rate,

where the original interest rates rit are measured in percentages. In Chapter 2, we
employed a linear regression model with an MA(1) error for the data. Here we
consider an AR(2) model for the error process. Using the traditional approach in
R, we obtain the model

c3t = 0.782c1t + zt , zt = 0.183zt−1 − 0.036zt−2 + at , (12.12)

where σ̂a = 0.068. Standard errors of the coefficient estimates of Eq. (12.12)
are 0.0075, 0.0201, and 0.0201, respectively. Except for a marginally significant
residual ACF at lags 4 and 6, the prior model seems adequate.

Writing the model as

c3t = βc1t + zt , zt = φ1zt−1 + φ2zt−2 + at , (12.13)

where {at } is an independent sequence of N(0, σ 2) random variables, we estimate
the parameters by Gibbs sampling. The prior distributions used are

β ∼ N(0, 4), φ ∼ N [0, diag(0.25, 0.16)], (vλ)/σ 2 = (10 × 0.05)/σ 2 ∼ χ2
10.

The initial parameter estimates are obtained by the ordinary least-squares method
[i.e., by using a two-step procedure of fitting the linear regression model first, then
fitting an AR(2) model to the regression residuals]. Since the sample size 2466 is
large, the initial estimates are close to those given in Eq. (12.12). We iterated the
Gibbs sampling for 2100 iterations but discard results of the first 100 iterations.
Table 12.1 gives the posterior means and standard errors of the parameters. From
the table, the posterior mean of σ is approximately 0.069. Figure 12.1 shows the
time plots of the 2000 Gibbs draws of the parameters. The plots show that the draws
are stable. Figure 12.2 gives the histogram of the marginal posterior distribution of
each parameter.

We repeated the Gibbs sampling with different initial values but obtained similar
results. The Gibbs sampling appears to have converged. From Table 12.1, the
posterior means are close to the estimates of Eq. (12.12).This is expected as the
sample size is large and the model is relatively simple.
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TABLE 12.1 Posterior Means and Standard Errors of Model (12.13)
Estimated by Gibbs Sampling with 2100 Iterationsa

Parameter β φ1 φ2 σ 2

Mean 0.793 0.184 −0.036 0.00479
Standard error 0.008 0.019 0.021 0.00013

aThe results are based on the last 2000 iterations, and the prior distributions are given
in the text.
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Figure 12.1 Time plots of Gibbs draws for the model in Eq. (12.13) with 2100 iterations. Results are
based on last 2000 draws. Prior distributions and starting parameter values are given in text.

12.6 MISSING VALUES AND OUTLIERS

In this section, we discuss MCMC methods for handling missing values and detect-
ing additive outliers. Let {yt }nt=1 be an observed time series. A data point yh is an
additive outlier if

yt =
{

xh + ω if t = h,

xt otherwise,
(12.14)

where ω is the magnitude of the outlier and xt is an outlier-free time series.
Examples of additive outliers include recording errors (e.g., typos and measurement
errors). Outliers can seriously affect time series analysis because they may induce
substantial biases in parameter estimation and lead to model misspecification.
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Figure 12.2 Histograms of Gibbs draws for model in Eq. (12.13) with 2100 iterations. Results are
based on last 2000 draws. Prior distributions and starting parameter values are given in text.

Consider a time series xt and a fixed time index h. We can learn a lot about xh by
treating it as a missing value. If the model of xt were known, then we could derive
the conditional distribution of xh given the other values of the series. By comparing
the observed value yh with the derived distribution of xh, we can determine whether
yh can be classified as an additive outlier. Specifically, if yh is a value that is likely
to occur under the derived distribution, then yh is not an additive outlier. However,
if the chance to observe yh is very small under the derived distribution, then yh
can be classified as an additive outlier. Therefore, detection of additive outliers and
treatment of missing values in time series analysis are based on the same idea.

In the literature, missing values in a time series can be handled by using either
the Kalman filter or MCMC methods; see Jones (1980), Chapter 11, and McCulloch
and Tsay (1994a). Outlier detection has also been carefully investigated; see Chang,
Tiao, and Chen (1988), Tsay (1988), Tsay, Peña, and Pankratz (2000), and the
references therein. The outliers are classified into four categories depending on the
nature of their impacts on the time series. Here we focus on additive outliers.

12.6.1 Missing Values

For ease in presentation, consider an AR(p) time series

xt = φ1xt−1 + · · · + φpxt−p + at , (12.15)
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where {at } is a Gaussian white noise series with mean zero and variance σ 2.
Suppose that the sampling period is from t = 1 to t = n, but the observation xh is
missing, where 1 < h < n. Our goal is to estimate the model in the presence of a
missing value.

In this particular instance, the parameters are θ = (φ′, xh, σ 2)′, where φ =
(φ1, . . . , φp)

′. Thus, we treat the missing value xh as an unknown parameter. If we
assume that the prior distributions are

φ ∼ N(φo,�o), xh ∼ N(µo, σ
2
o ),

vλ

σ 2
∼ χ2

v ,

where the hyperparameters are known, then the conditional posterior distributions
f (φ|X, xh, σ

2) and f (σ 2|X, xh,φ) are exactly as those given in the previous
section, where X denotes the observed data. The conditional posterior distribution
f (xh|X,φ, σ 2) is univariate normal with mean µ∗ and variance σ 2

h . These two
parameters can be obtained by using a linear regression model. Specifically, given
the model and the data, xh is only related to {xh−p, . . . , xh−1, xh+1, . . . , xh+p}.
Keeping in mind that xh is an unknown parameter, we can write the relationship
as follows:

1. For t = h, the model says

xh = φ1xh−1 + · · · + φpxh−p + ah.

Letting yh = φ1xh−1 + · · · + φpxh−p and bh = −ah, the prior equation can
be written as

yh = xh + bh = φ0xh + bh,

where φ0 = 1.

2. For t = h + 1, we have

xh+1 = φ1xh + φ2xh−1 + · · · + φpxh+1−p + ah+1.

Letting yh+1 = xh+1 − φ2xh−1 − · · · − φpxh+1−p and bh+1 = ah+1, the prior
equation can be written as

yh+1 = φ1xh + bh+1.

3. In general, for t = h + j with j = 1, . . . , p, we have

xh+j = φ1xh+j−1 + · · · + φjxh + φj+1xh−1 + · · · + φpxh+j−p + ah+j .

Let yh+j = xh+j −φ1xh+j−1−· · ·−φj−1xh+1−φj+1xh−1−· · ·−φpxh+j−p

and bh+j = ah+j . The prior equation reduces to

yh+j = φjxh + bh+j .
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Consequently, for an AR(p) model, the missing value xh is related to the model,
and the data in p + 1 equations

yh+j = φjxh + bh+j , j = 0, . . . , p, (12.16)

where φ0 = 1. Since a normal distribution is symmetric with respect to its mean, ah
and −ah have the same distribution. Consequently, Eq. (12.16) is a special simple
linear regression model with p + 1 data points. The least-squares estimate of xh
and its variance are

x̂h =
∑p

j=0 φjyh+j∑p

j=0 φ
2
j

, Var(̂xh) = σ 2∑p

j=0 φ
2
j

.

For instance, when p = 1, we have x̂h = [φ1/(1 + φ2
1)](xh−1 + xh+1), which is

referred to as the filtered value of xh. Because a Gaussian AR(1) model is time
reversible, equal weights are applied to the two neighboring observations of xh to
obtain the filtered value.

Finally, using Result 12.1, we obtain that the posterior distribution of xh is
normal with mean µ∗ and variance σ 2∗ , where

µ∗ = σ 2µo + σ 2
o (
∑p

j=0 φ
2
j )̂xh

σ 2 + σ 2
o (
∑p

j=0 φ
2
j )

, σ 2
∗ = σ 2σ 2

o

σ 2 + σ 2
o

∑p

j=0 φ
2
j

. (12.17)

Missing values may occur in patches, resulting in the situation of multiple con-
secutive missing values. These missing values can be handled in two ways. First,
we can generalize the prior method directly to obtain a solution for multiple fil-
tered values. Consider, for instance, the case that xh and xh+1 are missing. These
missing values are related to {xh−p, . . . , xh−1; xh+2, . . . , xh+p+1}. We can define a
dependent variable yh+j in a similar manner as before to set up a multiple linear
regression with parameters xh and xh+1. The least-squares method is then used to
obtain estimates of xh and xh+1. Combining with the specified prior distributions,
we have a bivariate normal posterior distribution for (xh, xh+1)

′. In Gibbs sampling,
this approach draws the consecutive missing values jointly. Second, we can apply
the result of a single missing value in Eq. (12.17) multiple times within a Gibbs
iteration. Again consider the case of missing xh and xh+1. We can employ the
conditional posterior distributions f (xh|X, xh+1,φ, σ

2) and f (xh+1|X, xh,φ, σ
2)

separately. In Gibbs sampling, this means that we draw the missing value one at a
time.

Because xh and xh+1 are correlated in a time series, drawing them jointly is
preferred in a Gibbs sampling. This is particularly so if the number of consecutive
missing values is large. Drawing one missing value at a time works well if the
number of missing values is small.

Remark. In the previous discussion, we assumed h − p ≥ 1 and h + p ≤ n.
If h is close to the end points of the sample period, the number of data points
available in the linear regression model must be adjusted. �
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12.6.2 Outlier Detection

Detection of additive outliers in Eq. (12.14) becomes straightforward under the
MCMC framework. Except for the case of a patch of additive outliers with similar
magnitudes, the simple Gibbs sampler of McCulloch and Tsay (1994a) seems to
work well; see Justel, Peña, and Tsay (2001). Again we use an AR model to
illustrate the problem. The method applies equally well to other time series models
when the Metropolis–Hasting algorithm or the Griddy Gibbs is used to draw values
of nonlinear parameters.

Assume that the observed time series is yt , which may contain some additive
outliers whose locations and magnitudes are unknown. We write the model for
yt as

yt = δtβt + xt , t = 1, . . . , n, (12.18)

where {δt } is a sequence of independent Bernoulli random variables such that
P (δt = 1) = ε and P (δt = 0) = 1 − ε, ε is a constant between 0 and 1, {βt } is a
sequence of independent random variables from a given distribution, and xt is an
outlier-free AR(p) time series,

xt = φ0 + φ1xt−1 + · · · + φpxt−p + at ,

where {at } is a Gaussian white noise with mean zero and variance σ 2. This model
seems complicated, but it allows additive outliers to occur at every time point. The
chance of being an outlier for each observation is ε.

Under the model in Eq. (12.18), we have n data points, but there are 2n + p + 3
parameters—namely, φ = (φ0, . . . , φp)

′, δ = (δ1, . . . , δn)
′, β = (β1, . . . , βn)

′, σ 2,
and ε. The binary parameters δt are governed by ε and the βt are determined by the
specified distribution. The parameters δ and β are introduced by using the idea of
data augmentation with δt denoting the presence or absence of an additive outlier
at time t , and βt is the magnitude of the outlier at time t when it is present.

Assume that the prior distributions are

φ ∼ N(φo,�o),
vλ

σ 2
∼ χ2

v , ε ∼ Beta(γ1, γ2), βt ∼ N(0, ξ 2),

where the hyperparameters are known. These are conjugate prior distributions. To
implement Gibbs sampling for model estimation with outlier detection, we need to
consider the conditional posterior distributions of

f (φ|Y , δ,β, σ 2), f (δh|Y , δ−h,β,φ, σ 2), f (βh|Y , δ,β−h,φ, σ
2),

f (ε|Y , δ), f (σ 2|Y ,φ, δ,β),

where 1 ≤ h ≤ n, Y denotes the data, and θ−i denotes that the ith element of θ is
removed.
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Conditioned on δ and β, the outlier-free time series xt can be obtained by
xt = yt − δtβt . Information of the data about φ is then contained in the least-squares
estimate

φ̂ =
 n∑

t=p+1

x t−1x
′
t−1

−1  n∑
t=p+1

x t−1xt

 ,

where x t−1 = (1, xt−1, . . . , xt−p)
′, which is normally distributed with mean φ and

covariance matrix

�̂ = σ 2

 n∑
t=p+1

x t−1x
′
t−1

−1

.

The conditional posterior distribution of φ is therefore multivariate normal with
mean φ∗ and covariance matrix �∗, which are given in Eq. (12.9) with β being
replaced by φ and xo,t by xt−1. Similarly, the conditional posterior distribution of
σ 2 is an inverted chi-squared distribution—that is,

vλ + ∑n
t=p+1 a

2
t

σ 2
∼ χ2

v+(n−p),

where at = xt − φ′x t−1 and xt = yt − δtβt .
The conditional posterior distribution of δh can be obtained as follows. First, δh is

only related to {yj , βj }h+p

j=h−p, {δj }h+p

j=h−p with j �= h, φ, and σ 2. More specifically,
we have

xj = yj − δjβj , j �= h.

Second, xh can assume two possible values: xh = yh − βh if δh = 1 and xh = yh,
otherwise. Define

wj = x∗
j − φ0 − φ1x

∗
j−1 − · · · − φpx

∗
j−p, j = h, . . . , h + p,

where x∗
j = xj if j �= h and x∗

h = yh. The two possible values of xh give rise to
two situations:

• Case I: δh = 0. Here the hth observation is not an outlier and x∗
h = yh = xh.

Hence, wj = aj for j = h, . . . , h + p. In other words, we have

wj ∼ N(0, σ 2), j = h, . . . , h + p.
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• Case II: δh = 1. Now the hth observation is an outlier and x∗
h = yh = xh + βh.

The wj defined before is contaminated by βh. In fact, we have

wh ∼ N(βh, σ
2) and wj ∼ N(−φj−hβh, σ

2), j = h + 1, . . . , h + p.

If we define ψ0 = −1 and ψi = φi for i = 1, . . . , p, then we have wj ∼
N(−ψj−hβh, σ

2) for j = h, . . . , h + p.

Based on the prior discussion, we can summarize the situation as follows:

1. Case I: δh = 0 with probability 1 − ε. In this case, wj ∼ N(0, σ 2) for j =
h, . . . , h + p.

2. Case II: δh = 1 with probability ε. Here wj ∼ N(−ψj−hβh, σ
2) for j =

h, . . . , h + p.

Since there are n data points, j cannot be greater than n. Let m = min(n, h + p).
The posterior distribution of δh is therefore

P (δh = 1|Y , δ−h,β,φ, σ 2)

= ε exp[−∑m
j=h(wj + ψj−hβh)

2/(2σ 2)]

ε exp[−∑m
j=h(wj + ψj−hβh)2/(2σ 2)] + (1 − ε) exp[−∑m

j=h w
2
j /(2σ

2)]
.

(12.19)

This posterior distribution is simply to compare the weighted values of the likeli-
hood function under the two situations with weight being the probability of each
situation.

Finally, the posterior distribution of βh is as follows.

• If δh = 0, then yh is not an outlier and βh ∼ N(0, ξ 2).
• If δh = 1, then yh is contaminated by an outlier with magnitude βh. The

variable wj defined before contains information of βh for j = h, h + 1,
. . . ,min(h + p, n). Specifically, we have wj ∼ N(−ψj−hβh, σ

2) for
j = h, h + 1, . . . ,min(h + p, n). The information can be put in a linear
regression framework as

wj = −ψj−hβh + aj , j = h, h + 1, . . . ,min(h + p, n).

Consequently, the information is embedded in the least-squares estimate

β̂h =
∑m

j=h −ψj−hwj∑m
j=h ψ

2
j−h

, m = min(h + p, n),
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which is normally distributed with mean βh and variance σ 2/(
∑m

j=h ψ
2
j−h).

By Result 12.1, the posterior distribution of βh is normal with mean β∗
h and

variance σ 2
h∗, where

β∗
h = −(

∑m
j=h ψj−hwj )ξ

2

σ 2 + (
∑m

j=h ψ
2
j−h)ξ

2
, σ 2

h∗ = σ 2ξ 2

σ 2 + (
∑m

j=h ψ
2
j−h)ξ

2
.

Example 12.2. Consider the weekly change series of U.S. 3-year Treasury
constant maturity interest rate from March 18, 1988, to September 10, 1999, for 600
observations. The interest rate is in percentage and is a subseries of the dependent
variable c3t of Example 12.1. The time series is shown in Figure 12.3(a). If AR
models are entertained for the series, the partial autocorrelation function suggests
an AR(3) model and we obtain

c3t = 0.227c3,t−1 + 0.006c3,t−2 + 0.114c3,t−2 + at , σ̂ 2 = 0.0128,
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Figure 12.3 Time plots of weekly change series of U.S. 3-year Treasury constant maturity interest
rate from March 18, 1988, to September 10, 1999: (a) data, (b) posterior probability of being an outlier,
and (c) posterior mean of outlier size. Estimation is based on Gibbs sampling with 1050 iterations with
first 50 iterations as burn-ins.
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where standard errors of the coefficients are 0.041, 0.042, and 0.041, respectively.
The Ljung–Box statistics of the residuals show Q(12) = 11.4, which is insignificant
at the 5% level.

Next, we apply the Gibbs sampling to estimate the AR(3) model and to detect
simultaneously possible additive outliers. The prior distributions used are

φ ∼ N(0, 0.25I 3),
vλ

σ 2
= 5 × 0.00256

σ 2
∼ χ2

5 , γ1 = 5, γ2 = 95, ξ 2 = 0.1,

where 0.00256 ≈ σ̂ 2/5 and ξ 2 ≈ 9σ̂ 2. The expected number of additive outliers is
5%. Using initial values ε = 0.05, σ 2 = 0.012, φ1 = 0.2, φ2 = 0.02, and φ3 =
0.1, we run the Gibbs sampling for 1050 iterations but discard results of the first
50 iterations. Using posterior means of the coefficients as parameter estimates, we
obtain the fitted model

c3t = 0.252c3,t−1 + 0.003c3,t−2 + 0.110c3,t−2 + at , σ̂ 2 = 0.0118,

where posterior standard deviations of the parameters are 0.046, 0.045, 0.046, and
0.0008, respectively. Thus, the Gibbs sampling produces results similar to that
of the maximum-likelihood method. Figure 12.3(b) shows the time plot of poste-
rior probability of each observation being an additive outlier, and Figure 12.3(c)
plots the posterior mean of outlier magnitude. From the probability plot, some
observations have high probabilities of being an outlier. In particular, t = 323 has
a probability of 0.83 and the associated posterior mean of outlier magnitude is
−0.304. This point corresponds to May 20, 1994, when the c3t changed from 0.24
to −0.34 (i.e., about a 0.6% drop in the weekly interest rate within 2 weeks). The
point with second highest posterior probability of being an outlier is t = 201, which
is January 17, 1992. The outlying posterior probability is 0.58 and the estimated
outlier size is 0.176. At this particular time point, c3t changed from −0.02 to 0.33,
corresponding to a jump of about 0.35% in the weekly interest rate.

Remark. Outlier detection via Gibbs sampling requires intensive computation
but the approach performs a joint estimation of model parameters and outliers. Yet
the traditional approach to outlier detection separates estimation from detection. It
is much faster in computation, but may produce spurious detections when multiple
outliers are present. For the data in Example 12.2, the SCA program also identifies
t = 323 and t = 201 as the two most significant additive outliers. The estimated
outlier sizes are −0.39 and 0.36, respectively. �

12.7 STOCHASTIC VOLATILITY MODELS

An important financial application of MCMC methods is the estimation of stochas-
tic volatility models; see Jacquier, Polson, and Rossi (1994) and the references
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therein. We start with a univariate stochastic volatility model. The mean and volatil-
ity equations of an asset return rt are

rt = β0 + β1x1t + · · · + βpxpt + at , at =
√
htεt , (12.20)

ln ht = α0 + α1 ln ht−1 + vt , (12.21)

where {xit |i = 1, . . . , p} are explanatory variables available at time t − 1, the βj

are parameters, {εt } is a Gaussian white noise sequence with mean 0 and variance
1, {vt } is also a Gaussian white noise sequence with mean 0 and variance σ 2

v , and
{εt } and {vt } are independent. The log transformation is used to ensure that ht is
positive for all t . The explanatory variables xit may include lagged values of the
return (e.g., xit = rt−i). In Eq. (12.21), we assume that |α1| < 1 so that the log
volatility process ln ht is stationary. If necessary, a higher order AR(p) model can
be used for ln ht .

Denote the coefficient vector of the mean equation by β = (β0, β1, . . . , βp)
′

and the parameter vector of the volatility equation by ω = (α0, α1, σ
2
v )

′. Suppose
that R = (r1, . . . , rn)

′ is the collection of observed returns and X is the collection
of explanatory variables. Let H = (h1, . . . , hn)

′ be the vector of unobservable
volatilities. Here β and ω are the “traditional” parameters of the model and H

is an auxiliary variable. Estimation of the model would be complicated via the
maximum-likelihood method because the likelihood function is a mixture over the
n-dimensional H distribution as

f (R|X,β,ω) =
∫

f (R|X,β,H )f (H |ω) dH .

However, under the Bayesian framework, the volatility vector H consists of aug-
mented parameters. Conditioning on H , we can focus on the probability distribution
functions f (R|H ,β) and f (H |ω) and the prior distribution p(β,ω). We assume
that the prior distribution can be partitioned as p(β,ω) = p(β)p(ω); that is, prior
distributions for the mean and volatility equations are independent. A Gibbs sam-
pling approach to estimating the stochastic volatility in Eqs. (12.20) and (12.21)
then involves drawing random samples from the following conditional posterior
distributions:

f (β|R,X,H ,ω), f (H |R,X,β,ω), f (ω|R,X,β,H ).

In what follows, we give details of practical implementation of the Gibbs sampling
used.

12.7.1 Estimation of Univariate Models

Given H , the mean equation in (12.20) is a nonhomogeneous linear regression.
Dividing the equation by

√
ht , we can write the model as

ro,t = x ′
o,tβ + εt , t = 1, . . . , n, (12.22)
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where ro,t = rt/
√
ht and xo,t = xt /

√
ht , with x t = (1, x1t , . . . , xpt )

′ being the vec-
tor of explanatory variables. Suppose that the prior distribution of β is multivariate
normal with mean βo and covariance matrix Ao. Then the posterior distribution of
β is also multivariate normal with mean β∗ and covariance matrix A∗. These two
quantities can be obtained as before via Result 12.1a, and they are

A−1
∗ =

n∑
t=1

xo,tx
′
o,t + A−1

o , β∗ = A∗

(
n∑

t=1

xo,t ro,t + A−1
o βo

)
,

where it is understood that the summation starts with p + 1 if rt−p is the highest
lagged return used in the explanatory variables.

The volatility vector H is drawn element by element. The necessary conditional
posterior distribution is f (ht |R,X,H−t ,β,ω), which is produced by the normal
distribution of at and the lognormal distribution of the volatility,

f (ht |R,X,β,H−t ,ω)

∝ f (at |ht , rt , x t ,β)f (ht |ht−1,ω)f (ht+1|ht ,ω)

∝ h−0.5
t exp[−(rt − x ′

tβ)2/(2ht )]h
−1
t exp[−(ln ht − µt)

2/(2σ 2)]

∝ h−1.5
t exp[−(rt − x ′

tβ)2/(2ht ) − (ln ht − µt)
2/(2σ 2)], (12.23)

where µt = [α0(1 − α1) + α1(ln ht+1 + ln ht−1)]/(1 + α2
1) and σ 2 = σ 2

v /(1 +
α2

1). Here we have used the following properties: (a) at |ht ∼ N(0, ht ); (b) ln ht |
ln ht−1 ∼ N(α0 + α1 ln ht−1, σ

2
v ); (c) ln ht+1| ln ht ∼ N(α0 + α1 ln ht , σ

2
v ); (d)

d ln ht = h−1
t dht , where d denotes differentiation; and (e) the equality

(x − a)2A + (x − b)2C = (x − c)2(A + C) + (a − b)2AC/(A + C),

where c = (Aa + Cb)/(A + C) provided that A + C �= 0. This equality is a scalar
version of Lemma 1 of Box and Tiao (1973, p. 418). In our application, A = 1, a =
α0 + ln ht−1, C = α2

1, and b = (ln ht+1 − α0)/α1. The term (a − b)2AC/(A + C)

does not contain the random variable ht and, hence, is integrated out in the deriva-
tion of the conditional posterior distribution. Jacquier, Polson, and Rossi (1994) use
the Metropolis algorithm to draw ht . We use Griddy Gibbs in this section, and the
range of ht is chosen to be a multiple of the unconditional sample variance of rt .

To draw random samples of ω, we partition the parameters as α = (α0, α1)
′

and σ 2
v . The prior distribution of ω is also partitioned accordingly [i.e., p(ω) =

p(α)p(σ 2
v )]. The conditional posterior distributions needed are

• f (α|Y ,X,H ,β, σ 2
v ) = f (α|H , σ 2

v ): Given H , ln ht follows an AR(1)
model. Therefore, the result of AR models discussed in the previous two
sections applies. Specifically, if the prior distribution of α is multivariate
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normal with mean αo and covariance matrix Co, then f (α|H , σ 2
v ) is

multivariate normal with mean α∗ and covariance matrix C∗, where

C−1
∗ =

∑n
t=2 ztz

′
t

σ 2
v

+ C−1
o , α∗ = C∗

(∑n
t=2 zt ln ht

σ 2
v

+ C−1
o αo

)
,

where zt = (1, ln ht−1)
′.

• f (σ 2
v |Y ,X,H ,β,α) = f (σ 2

v |H ,α): Given H and α, we can calculate vt =
ln ht − α0 − α1 ln ht−1 for t = 2, . . . , n. Therefore, if the prior distribution
of σ 2

v is (mλ)/σ 2
v ∼ χ2

m, then the conditional posterior distribution of σ 2
v is

an inverted chi-squared distribution with m + n − 1 degrees of freedom; that
is,

mλ + ∑n
t=2 v

2
t

σ 2
v

∼ χ2
m+n−1.

Remark. Formula (12.23) is for 1 < t < n, where n is the sample size. For
the two end data points h1 and hn, some modifications are needed. A simple
approach is to assume that h1 is fixed so that the drawing of ht starts with t = 2.
For t = n, one uses the result ln hn ∼ (α0 + α1 ln hn−1, σ

2
v ). Alternatively, one

can employ a forecast of hn+1 and a backward prediction of h0 and continue to
apply the formula. Since hn is the variable of interest, we forecast hn+1 by using
a 2-step-ahead forecast at the forecast origin n − 1. For the model in Eq. (12.21),
the forecast of hn+1 is

ĥn−1(2) = α0 + α1(α0 + α1 ln hn−1).

The backward prediction of h0 is based on the time reversibility of the model

(ln ht − η) = α1(ln ht−1 − η) + vt ,

where η = α0/(1 − α1) and |α1| < 1. The model of the reversed series is

(ln ht − η) = α1(ln ht+1 − η) + v∗
t ,

where {v∗
t } is also a Gaussian white noise series with mean zero and variance σ 2

v .
Consequently, the 2-step-backward prediction of h0 at time t = 2 is

ĥ2(−2) = α2
1(ln h2 − η). �

Remark. Formula (12.23) can also be obtained by using results of a missing
value in an AR(1) model; see Section 12.6.1. Specifically, assume that ln ht is
missing. For the AR(1) model in Eq. (12.21), this missing value is related to
ln ht−1 and ln ht+1 for 1 < t < n. From the model, we have

ln ht = α0 + α1 ln ht−1 + at .
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Define yt = α0 + α1yt−1, xt = 1, and bt = −at . Then we obtain

yt = xt ln ht + bt . (12.24)

Next, from

ln ht+1 = α0 + α1 ln ht + at+1,

we define yt+1 = ln ht+1 − α0, xt+1 = α1, and bt+1 = at+1 and obtain

yt+1 = xt+1 ln ht+1 + bt+1. (12.25)

Now Eqs. (12.24) and (12.25) form a special simple linear regression with two
observations and an unknown parameter ln ht . Note that bt and bt+1 have the
same distribution because −at is also N(0, σ 2

v ). The least-squares estimate of ln ht

is then

̂ln ht = xtyt + xt+1yt+1

x2
t + x2

t+1

= α0(1 − α1) + α1(ln ht+1 + ln ht−1)

1 + α2
1

,

which is precisely the conditional mean of ln ht given in Eq. (12.23). In addition,
this estimate is normally distributed with mean ln ht and variance σ 2

v /(1 + α2
1). For-

mula (12.23) is simply the product of at ∼ N(0, ht ) and ̂ln ht ∼ N [ln ht , σ
2
v /(1 +

α2
1)] with the transformation d ln ht = h−1

t dht . This regression approach general-
izes easily to other AR(p) models for ln ht . We use this approach and assume that
{ht }pt=1 are fixed for a stochastic volatility AR(p) model. �

Remark. Starting value of ht can be obtained by fitting a volatility model of
Chapter 3 to the return series. �

Example 12.3. Consider the monthly log returns of the S&P 500 index from
January 1962 to December 2009 for 575 observations. The returns are computed
using the first adjusted closing index of each month, that is, the closing index
of the first trading day of each month. Figure 12.4(a) shows the time plot of the
log level of the index, whereas Figure 12.4(b) shows the log returns measured in
percentage. If GARCH models are entertained for the series, we obtain a Gaussian
GARCH(1,1) model

rt = 0.552 + at , at =
√
htεt ,

ht = 0.878 + 0.125a2
t−1 + 0.837ht−1, (12.26)

where t ratios of the coefficients are all greater than 2.56. The Ljung–Box statistics
of the standardized residuals and their squared series fail to indicate any model inad-
equacy. Specifically, we have Q(12) = 10.04(0.61) and 6.14(0.91), respectively,
for the standardized residuals and their squared series.
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Figure 12.4 Time plot of monthly S&P 500 index from 1962 to 2009: (a) log level and (b) log return
in percentage.

Next, consider the stochastic volatility model

rt = µ + at , at =
√
htεt ,

ln ht = α0 + α1 ln ht−1 + vt , (12.27)

where the vt are iid N(0, σ 2
v ). To implement the Gibbs sampling, we use the prior

distributions

µ ∼ N(0, 4), α ∼ N [αo, diag(0.25, 0.04)],
10 × 0.1

σ 2
v

∼ χ2
10,

where αo = (0, 0.6)′. For initial parameter values, we use the fitted values of the
GARCH(1,1) model in Eq. (12.26) for {ht }, that is, h0t = ht , and set α and σ 2

v

to the least-squares estimate of ln(h0t ). The initial value of µ is the sample mean
of the log returns. The volatility ht is drawn by the Griddy Gibbs with 400 grid
points. The possible range of ht for the j th Gibbs iteration is [η1t , η2t ], where
η1t = 0.6 × max(hj−1,t , h0t ) and η2t = 1.4 × min(hj−1,t , h0t ), where hj−1,t and
h0t denote, respectively, the estimate of ht for the (j − 1)th iteration and initial
value.

We ran the Gibbs sampling for 2500 iterations but discarded results of the first
500 iterations. Figure 12.5 shows the density functions of the prior and posterior
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Figure 12.5 Density functions of prior and posterior distributions of parameters in stochastic volatility
model for monthly log returns of S&P 500 index. Dashed line denotes prior density and solid line the
posterior density, which is based on results of Gibbs sampling with 2000 iterations. See text for more
details.

distributions of the four coefficient parameters. The prior distributions used are
relatively noninformative. The posterior distributions are concentrated especially
for µ and σ 2

v . Figure 12.6 shows the time plots of fitted volatilities. The upper
panel shows the posterior mean of ht over the 5000 iterations for each time point,
whereas the lower panel shows the fitted values of the GARCH(1,1) model in Eq.
(12.26). The two plots exhibit a similar pattern.

The posterior mean and standard error of the four coefficients are as follows:

Parameter µ α0 α1 σ 2
v

Mean 0.409 0.454 0.837 0.086

Standard error 0.157 0.068 0.025 0.007

The posterior mean of α1 is 0.837, confirming strong serial dependence in the
volatility series. This value is smaller than that obtained by Jacquier, Polson, and
Rossi (1994) who used daily returns of the S&P 500 index. Finally, we have used
different initial values, priors, and numbers of iterations for the Gibbs sampler. The
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Figure 12.6 Time plots of fitted volatilities for monthly log returns of S&P 500 index from 1962 to
2009. Lower panel shows posterior means of a Gibbs sampler with 2000 iterations. Upper panel shows
results of a Gaussian GARCH(1,1) model.

results are stable. Of course, as expected, the results and efficiency of the Griddy
Gibbs algorithm depend on the specification of the range for ht .

12.7.2 Multivariate Stochastic Volatility Models

In this section, we study multivariate stochastic volatility models using the Cholesky
decomposition of Chapter 10. We focus on the bivariate case, but the methods
discussed also apply to the higher dimensional case. Based on the Cholesky decom-
position, the innovation at of a return series r t is transformed into bt such that

b1t = a1t , b2t = a2t − q21,t b1t ,

where b2t and q21,t can be interpreted as the residual and least-squares estimate of
the linear regression

a2t = q21,t a1t + b2t .

The conditional covariance matrix of at is parameterized by {g11,t , g22,t } and {q21,t }
as [

σ11,t σ12,t

σ21,t σ22,t

]
=

[
1 0

q21,t 1

] [
g11,t 0

0 g22,t

] [
1 q21,t

0 1

]
, (12.28)
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where gii,t = Var(bit |Ft−1) and b1t ⊥ b2t . Thus, the quantities of interest are
g11,t , g22,t and q21,t .

A simple bivariate stochastic volatility model for the return r t = (r1t , r2t )
′ is as

follows:

r t = β0 + β1x t + at , (12.29)

ln gii,t = αi0 + αi1 ln gii,t−1 + vit , i = 1, 2, (12.30)

q21,t = γ0 + γ1q21,t−1 + ut , (12.31)

where {at } is a sequence of serially uncorrelated Gaussian random vectors with
mean zero and conditional covariance matrix �t given by Eq. (12.28), β0 is a
two-dimensional constant vector, x t denotes the explanatory variables, and {v1t },
{v2t }, and {ut } are three independent Gaussian white noise series such that Var(vit )
= σ 2

iv and Var(ut ) = σ 2
u . Again log transformation is used in Eq. (12.30) to ensure

the positiveness of gii,t .
Let Gi = (gii,1, . . . , gii,n)

′, G = [G1,G2], and Q = (q21,1, . . . , q21,n)
′. The

“traditional” parameters of the model in Eqs. (12.29)–(12.31) are β = (β0,β1),
αi = (αi0, αi1)

′, and σ 2
iv for i = 1, 2, and γ = (γ0, γ1)

′ and σ 2
u . The augmented

parameters are Q, G1, and G2. To estimate such a bivariate stochastic volatility
model via Gibbs sampling, we use results of the univariate model in the previous
section and two additional conditional posterior distributions. Specifically, we can
draw random samples of

1. β0 and β1 row by row using the result (12.22)

2. g11,t using Eq. (12.23) with at being replaced by a1t

3. α1 and σ 2
1v using exactly the same methods as those of the univariate case

with at replaced by a1t

To draw random samples of α2, σ 2
2v , and g22,t , we need to compute b2t . But

this is easy because b2t = a2t − q21,t a1t given the augmented parameter vector Q.
Furthermore, b2t is normally distributed with mean 0 and conditional variance g22,t .

It remains to consider the conditional posterior distributions

f (γ |Q, σ 2
u ), f (σ 2

u |Q, γ ), f (q21,t |A,G,Q−t , γ , σ 2
u ),

where A denotes the collection of at , which is known if R, X, β0, and β1 are given.
Given Q and σ 2

u , model (12.31) is a simple Gaussian AR(1) model. Therefore, if
the prior distribution of γ is bivariate normal with mean γ o and covariance matrix
Do, then the conditional posterior distribution of γ is also bivariate normal with
mean γ ∗ and covariance matrix D∗, where

D−1
∗ =

∑n
t=2 ztz

′
t

σ 2
u

+ D−1
o , γ ∗ = D∗

(∑n
t=2 zt q21,t

σ 2
u

+ D−1
o γ o

)
,
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where zt = (1, q21,t−1)
′. Similarly, if the prior distribution of σ 2

u is (mλ)/σ 2
u ∼ χ2

m,
then the conditional posterior distribution of σ 2

u is

mλ + ∑n
t=2 u

2
t

σ 2
u

∼ χ2
m+n−1,

where ut = q21,t − γ0 − γ1q21,t−1. Finally,

f (q21,t |A,G,Q−t , σ
2
u , γ )

∝ f (b2t |g22,t )f (q21,t |q21,t−1, γ , σ 2
u )f (q21,t+1|q21,t , γ , σ 2

u )

∝ g−0.5
22,t exp[−(a2t − q21,t a1t )

2/(2g22,t )] exp[−(q21,t − µt)
2(2σ 2)], (12.32)

where µt = [γ0(1 − γ1) + γ1(q21,t−1 + q21,t+1)]/(1 + γ 2
1 ) and σ 2 = σ 2

u /(1 + γ 2
1 ).

In general, µt and σ 2 can be obtained by using the results of a missing value in an
AR(p) process. It turns out that Eq. (12.32) has a closed-form distribution for q21,t .
Specifically, the first term of Eq. (12.32), which is the conditional distribution of
q21,t given g22,t and at , is normal with mean a2t /a1t and variance g22,t /(a1t )

2. The
second term of the equation is also normal with mean µt and variance σ 2. Con-
sequently, by Result 12.1, the conditional posterior distribution of q21,t is normal
with mean µ∗ and variance σ 2∗ , where

1

σ 2∗
= a2

1t

g22,t
+ 1 + γ 2

1

σ 2
u

, µ∗ = σ 2
∗

(
1 + γ 2

1

σ 2
u

× µt + a2
1t

g22,t
× a2t

a1t

)

where µt is defined in Eq. (12.32).

Example 12.4. In this example, we study bivariate volatility models for the
monthly log returns of IBM stock and the S&P 500 index from January 1962
to December 2009. This is an expanded version of Example 12.3 by adding the
IBM returns. Figure 12.7 shows the time plots of the two return series. Let r t =
(IBMt , SPt )

′. If time-varying correlation GARCH models with Cholesky decom-
position of Chapter 10 are entertained, we obtain the model

r t = β0 + at , (12.33)

g11,t = α10 + α11g11,t−1 + α12a
2
1,t−1, (12.34)

g22,t = α20 + α22b
2
2,t−1, (12.35)

q21,t = γ0, (12.36)

where b2t = a2t − q21,t a1t and the estimates and their standard errors are given in
Table 12.2(a). For comparison purpose, we also fit a BEKK(1,1) model and obtain
β̂0 = (0.70, 0.54)′ and the coefficient matrices

A =
[

0.80
0.83 0.01

]
, A1 =

[
0.07 0.33

−0.06 0.43

]
, B1 =

[
1.00 −0.12
0.01 0.90

]
,

where the matrices are defined in Eq. (10.6) of Chapter 10.
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Figure 12.7 Time plots of monthly log returns of (a) IBM stock and (b) S&P 500 index from 1962
to 2009.

For stochastic volatility model, we employ the same mean equation in Eq.
(12.33) and a stochastic volatility model similar to that in Eqs. (12.34)–(12.36).
The volatility equations are

ln g11,t = α10 + α11 ln g11,t−1 + v1t , Var(v1t ) = σ 2
1v, (12.37)

ln g22,t = α20 + α21 ln g22,t−1 + v2t , Var(v2t ) = σ 2
2v, (12.38)

q21,t = γ0 + ut , Var(ut ) = σ 2
u . (12.39)

The prior distributions used are

βi0 ∼ N(0, 4), αi ∼ N [(0, 0.7)′, diag(0.25, 0.04)],

γ0 ∼ N(0, 1),
10 × 0.1

σ 2
iv

∼ χ2
10,

5 × 0.2

σ 2
u

∼ χ2
5 ,

where i = 1 and 2. These prior distributions are relatively noninformative. We
obtained the initial values of {g11,t , g22,t , q21,t } from the results of the BEKK(1,1)
model. In addition, we set the values of quantities at t = 1 as given. We then
ran the Gibbs sampling for 2500 iterations but discarded results of the first 500
iterations. The random samples of gii,t were drawn by Griddy Gibbs with 500 grid
points in the intervals [ηi,1t , ηi,2t ] where the lower and upper bounds are set by
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TABLE 12.2 Estimation of Bivariate Volatility Models for Monthly Log Returns of
IBM Stock and S&P 500 Index from January 1962 to December 2009a

(a) Bivariate GARCH(1,1) Model With Time-Varying Correlations

Parameter β01 β02 α10 α11 α12 α20 α22 γ0

Estimate 0.69 0.49 3.98 0.80 0.12 10.67 0.12 0.37
Standard error 0.30 0.18 1.22 0.04 0.03 0.53 0.04 0.01

(b) Stochastic Volatility Model

Parameter β01 β02 α10 α11 σ 2
1v α20 α21 σ 2

2v γ0 σ 2
u

Posterior mean 0.53 0.51 0.75 0.80 0.07 0.43 0.81 0.07 0.38 0.07
Standard error 0.26 0.17 0.11 0.03 0.01 0.06 0.03 0.01 0.03 0.01

aThe stochastic volatility models are based on the last 2000 iterations of a Gibbs sampling with 2500
total iterations.

the same method as those of Example 12.3. Posterior means and standard errors of
the “traditional” parameters of the bivariate stochastic volatility model are given
in Table 12.2(b).

To check for convergence of the Gibbs sampling, we ran the procedure several
times with different starting values and numbers of iterations. The results are stable.
For illustration, Figure 12.8 shows the scatterplots of various quantities for two
different Gibbs samples. The first Gibbs sample is based on 500 + 2000 iterations,
and the second Gibbs sample is based on 500 + 1000 iterations, where M + N

denotes that the total number of Gibbs iterations is M + N , but results of the
first M iterations are discarded. The scatterplots shown are posterior means of
g11,t , g22,t , g21,t , σ22,t , σ21,t , and the correlation ρ21,t . The line y = x is added to
each plot to show the closeness of the posterior means. The stability of the Gibbs
sampling results is clearly seen.

It is informative to compare the BEKK model and the GARCH model with time-
varying correlations in Eqs. (12.33)–(12.36) with the stochastic volatility model.
First, as expected, the mean equations of the three models are essentially iden-
tical. Second, Figure 12.9 shows the time plots of the conditional variance for
IBM stock return. Figure 12.9(a) is for the GARCH model, Figure 12.9(b) is from
the BEKK model, and Figure 12.9(c) shows the posterior mean of the stochas-
tic volatility model. The three models show similar volatility characteristics; they
exhibit volatility clustering and indicate an increasing trend in volatility. How-
ever, the GARCH model produces higher peak volatility values and an additional
peak in 1993. Third, Figure 12.10 shows the time plots of conditional variance
for the S&P 500 index return. The GARCH model produces an extra volatility
peak around 1993. This additional peak does not appear in the univariate analy-
sis shown in Figure 12.6. It seems that for this particular instance the bivariate
GARCH model produces a spurious volatility peak. This spurious peak is induced
by its dependence on IBM returns and does not appear in the stochastic volatility
model or the BEKK model. Indeed, the fitted volatilities of the S&P 500 index
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Figure 12.8 Scatterplots of posterior means of various statistics of two different Gibbs samples for
bivariate stochastic volatility model for monthly log returns of IBM stock and S&P 500 index. The x

axis denotes results based on 500 + 2000 iterations and the y axis denotes results based on 500 + 1000
iterations. Notation is defined in text.

return by the bivariate stochastic volatility model are similar to that of the uni-
variate analysis. Fourth, Figure 12.11 shows the time plots of fitted conditional
correlations. Here the three models differ substantially. The correlations of the
GARCH model with Cholesky decomposition are relatively smooth and always
positive with mean value 0.59 and standard deviation 0.07. The range of the cor-
relations is (0.411,0.849). The correlations of the BEKK(1,1) model assume small
negative values around 1993 and are more variable with mean 0.59, standard devi-
ation 0.13 and range (−0.020, 0.877). However, the correlations produced by the
stochastic volatility model vary markedly from one month to another with mean
value 0.60, standard deviation 0.14, and range (−0.161, 0.839). Furthermore, the
negative correlations occur in several isolated periods. The difference is under-
standable because q21,t contains the random shock ut in the stochastic volatility
model.

Remark. The Gibbs sampling estimation applies to other bivariate stochas-
tic volatility models. The conditional posterior distributions needed require some
extensions of those discussed in this section, but they are based on the same ideas.
The BEKK model is estimated by using Matlab. �
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Figure 12.9 Time plots of fitted conditional variance for monthly log returns of IBM stock from 1962
to 2009: (a) GARCH model with time-varying correlations, (b) BEKK(1,1) model, and (c) bivariate
stochastic volatility model estimated by Gibbs sampling with 500 + 2000 iterations.

12.8 NEW APPROACH TO SV ESTIMATION

In this section, we discuss an alternative procedure to estimate stochastic volatility
(SV) models. This approach makes use of the technique of forward filtering and
backward sampling (FFBS) within the Kalman filter framework to improve the
efficiency of Gibbs sampling. It can dramatically reduce the computing time by
drawing the volatility process jointly with the help of a mixture of normal distri-
butions. In fact, the approach can be used to estimate many stochastic diffusion
models with leverage effects and jumps.

For ease in presentation, we reparameterize the univariate stochastic volatility
model in Eqs. (12.20) and (12.21) as

rt = x ′
tβ + σ0 exp

(zt
2

)
εt , (12.40)

zt+1 = αzt + ηt , (12.41)
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Figure 12.10 Time plots of conditional variance for monthly log returns of S&P 500 index from 1962
to 2009: (a) GARCH model with time-varying correlations, (b) BEKK(1,1) model, and (c) bivariate
stochastic volatility model estimated by Gibbs sampling with 500 + 2000 iterations.

where x t = (1, x1t , . . . , xpt )
′, β = (β0, β1, . . . , βp)

′, σ0 > 0, {zt } is a zero-mean
log volatility series, and {εt } and {ηt } are bivariate normal distributions with mean
zero and covariance matrix

� =
[

1 ρση

ρση σ 2
η

]
.

The parameter ρ is the correlation between εt and ηt and represents the leverage
effect of the asset return rt . Typically, ρ is negative signifying that a negative return
tends to increase the volatility of an asset price.

Compared with the model in Eqs. (12.22) and (12.20), we have zt =
ln(ht ) − ln(σ 2

0 ) and σ 2
0 = exp{E[ln(ht )]}. That is, zt is a mean-adjusted log volatil-

ity series. This new parameterization has some nice characteristics. For example,
the volatility series is σ0 exp(zt /2), which is always positive. More importantly, ηt
is the innovation of zt+1 and is independent of zt . This simple time shift enables
us to handle the leverage effect. If one postulates zt = αzt−1 + ηt for Eq. (12.41),
then ηt and εt cannot be correlated because a nonzero correlation implies that zt
and εt are correlated in Eq. (12.40), which would lead to some identifiability issues.
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Figure 12.11 Time plots of fitted correlation coefficients between monthly log returns of IBM stock
and S&P 500 index from 1962 to 2009: (a) GARCH model with time-varying correlations, (b)
BEKK(1,1) model, and (c) bivariate stochastic volatility model estimated by Gibbs sampling with
500 + 2000 iterations.

Remark. Alternatively, one can write the stochastic volatility model as

rt = x ′
tβ + σ0 exp

(zt−1

2

)
εt ,

zt = αzt−1 + ηt ,

where (εt , ηt )
′ is a bivariate normal distribution as before. Yet another equivalent

parameterization is

rt = x ′
tβ + exp

(
z∗
t−1

2

)
εt ,

z∗
t = α0 + αz∗

t−1 + ηt ,

where E(z∗
t ) = α0/(1 − α) is not zero. �

Parameters of the stochastic volatility model in Eqs. (12.40) and (12.41) are
β, σ0, α, ρ, ση, and z = (z1, . . . , zn)

′, where n is the sample size. For simplicity, we
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assume z1 is known. To estimate these parameters via MCMC methods, we need
their conditional posterior distributions. In what follows, we discuss the needed
conditional posterior distributions.

1. Given z and σ0 and a normal prior distribution, β has the same conditional
posterior distribution as that in Section 12.7.1 with

√
ht replaced by σ0 exp(zt /2);

see Eq. (12.22).

2. Given z and σ 2
η , α is a simple AR(1) coefficient. Thus, with an approximate

normal prior, the conditional posterior distribution of α is readily available; see
Section 12.7.1.

3. Given β and z, we define vt = (rt − x ′
tβ) exp(−zt/2) = σ0εt . Thus, {vt }

is a sequence of iid normal random variables with mean zero and variance σ 2
0 .

If the prior distribution of σ 2
0 is (mλ)/σ 2

0 ∼ χ2
m, then the conditional posterior

distribution of σ 2
0 is an inverted chi-squared distribution with m + n degrees of

freedom; that is,

mλ + ∑n
t=1 v

2
t

σ 2
0

∼ χ2
m+n.

4. Given β, σ0, z, and α, we can easily obtain the bivariate innovation bt =
(εt , ηt )

′ for t = 2, . . . , n. The likelihood function of (ρ, σ 2
η ) is readily available as

�(ρ, σ 2
η ) =

n∏
t=2

f (bt |�) ∝ |�|−(n−1)/2 exp

(
−1

2

n∑
t=2

b′
t�

−1bt

)

∝ |�|−(n−1)/2 exp

[
−1

2
tr

(
�−1

n∑
t=2

btb
′
t

)]
,

where tr(A) denotes trace of the matrix A. However, this joint distribution is
complicated because one cannot separate ρ and σ 2

η . We adopt the technique of
Jacquier, Polson, and Rossi (2004) and reparameterize the covariance matrix as

� =
[

1 ρση

ρση σ 2
η

]
=

[
1 ϕ

ϕ ω + ϕ2

]
,

where ω = σ 2
η (1 − ρ2). It is easy to see that |�| = ω and

�−1 = 1

ω

[
ϕ2 −ϕ

−ϕ 1

]
+

[
1 0
0 0

]
≡ 1

ω
S +

[
1 0
0 0

]
,

where S contains ϕ only. Let e = (ε2, . . . , εn)
′ and η = (η2, . . . , ηn)

′ be the inno-
vations of the model in Eqs. (12.40) and (12.41). The likelihood function then
becomes (keeping terms related to parameters only)

�(ϕ, ω) ∝ ω−(n−1)/2 exp

[
− 1

2ω
tr(SR)

]
,
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where R = ∑n
t=2 btb

′
t = (e, η)′(e, η), which is the 2 × 2 cross-product matrix of

the innovations. For simplicity, we use conjugate priors such that ω is inverse
gamma (IG) with hyperparameters (γ0/2, γ1/2); that is, ω ∼ IG(γ0/2, γ1/2), and
ϕ|ω ∼ N(0, ω/2). Then, after some algebraic manipulation, the joint posterior
distribution of (ϕ, ω) can be decomposed into a normal and an inverse gamma
distribution. Specifically,

ϕ ∼ N

(
ϕ̃,

ω

(2 + e′e)

)
,

where ϕ̃ = e′η/(2 + e′e), and

ω ∼ IG

[
1

2
(n + 1 + γ0) ,

1

2

(
γ1 + η′η − (e′η)2

2 + e′e

)]
.

In Gibbs sampling, once ϕ and ω are available, we can obtain ρ and σ 2
η easily

because σ 2
η = ω + ϕ2 and ρ = ϕ/ση. Note that the probability density function of

an IG(α, β) random variable ω is

f (ω|α, β) = βα

�(α)
ω−(α+1) exp

(
−β

ω

)
, for ω> 0,

where α > 2 and β > 0.

5. Finally, we consider the joint distribution of the log volatility z given the
data and other parameters. From Eq. (12.40), we have

(rt − x ′
tβ)2

σ 2
0

= exp(zt )ε
2
t .

Therefore, letting yt = ln[(rt − x ′
tβ)2/σ 2

0 ], we obtain

yt = zt + ε∗
t , (12.42)

where ε∗
t = ln(ε2

t ). Since ε2
t ∼ χ2

1 , ε∗
t is not normally distributed. Treating Eq.

(12.42) as an observation equation and Eq. (12.40) as the state equation, we have
the form of a state-space model except that ε∗

t is not Gaussian; see Eqs. (11.26) and
(11.27). To overcome the difficulty associated with nonnormality, Kim, Shephard,
and Chib (1998) use a mixture of seven normal distributions to approximate the
distribution of ε∗

t . Specifically, we have

f (ε∗
t ) ≈

7∑
i=1

piN(µi, ω
2
i ),

where pi , µi , and � 2
i are given in Table 12.3. See also Chib, Nardari, and Shephard

(2002).
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TABLE 12.3 Seven Components of Normal Distributions

Component i Probability pi Mean µi var. ω2
i

1 0.00730 −11.4004 5.7960
2 0.10556 −5.2432 2.6137
3 0.00002 −9.8373 5.1795
4 0.04395 1.5075 0.1674
5 0.34001 −0.6510 0.6401
6 0.24566 0.5248 0.3402
7 0.25750 −2.3586 1.2626
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Figure 12.12 Density functions of log(χ2
1 ), solid line, and that of a mixture of seven normal distribu-

tions, dashed line. Results are based on 100,000 observations.

To demonstrate the adequacy of the approximation, Figure 12.12 shows the
density function of ε∗

t (solid line) and that of the mixture of seven normals (dashed
line) in Table 12.3. These densities are obtained using simulations with 100,000
observations. From the plot, the approximation by the mixture of seven normals is
very good.

Why is it important to have a Gaussian state-space model? The answer is that
such a Gaussian model enables us to draw the log volatility series z jointly and
efficiently. To see this, consider the following special Gaussian state-space model,
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where ηt and et are uncorrelated (i.e., no leverage effects):

zt+1 = αzt + ηt , ηt ∼iid N(0, σ 2
η ), (12.43)

yt = ct + zt + et , et ∼ind. N(0, Ht), (12.44)

where, as will be seen later, (ct , Ht) assumes the value (µi,�
2
i ) of Table 12.3 for

some i. For this special state-space model, we have the Kalman filter algorithm

vt = yt − yt |t−1 = yt − ct − zt |t−1,

Vt = �t |t−1 + Ht,

zt |t = zt |t−1 + �t |t−1V
−1
t vt , (12.45)

�t |t = �t |t−1 − �t |t−1V
−1
t �t |t−1,

zt+1|t = αzt |t ,

�t+1|t = α2�t |t + σ 2
η ,

where Vt = Var(vt ) is the variance of the 1-step-ahead prediction error vt of yt
given Ft−1 = (y1, . . . , yt−1), and zj |i and �j |i are, respectively, the conditional
expectation and variance of the state variable zj given Fi . See the Kalman filter
discussion of Chapter 11.

Forward Filtering and Backward Sampling
Let p(z|Fn) be the joint conditional posterior distribution of z given the return
data and other parameters, where for simplicity the parameters are omitted from
the condition set. We can partition the distribution as

p(z|Fn) = P (z2, z3, . . . , zn|Fn)

= p(zn|Fn)p(zn−1|zn, Fn)p(zn−2|zn−1, zn, Fn) · · ·p(z2|z3, . . . , zn, Fn)

= p(zn|Fn)p(zn−1|zn, Fn)p(zn−2|zn−1, Fn) · · ·p(z2|z3, Fn), (12.46)

where the last equality holds because zt in Eq. (12.43) is a Markov process so that
conditioned on zt+1, zt is independent of zt+j for j > 1.

From the Kalman filter in Eq. (12.45), we obtain that p(zn|Fn) is normal with
mean zn|n and variance �n|n. Next, consider the second term p(zn−1|zn, Fn) of Eq.
(12.46). We have

p(zn−1|zn, Fn) = p(zn−1|zn, Fn−1, yn) = p(zn−1|zn, Fn−1, vn), (12.47)

where vn = yn − yn|n−1 is the 1-step-ahead prediction error of yn. From the state-
space model in Eqs. (12.43) and (12.44), zn−1 is independent of vn. Therefore,

p(zn−1|zn, Fn) = p(zn−1|zn, Fn−1). (12.48)
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This is an important property because it implies that we can derive the poste-
rior distribution p(zn−1|zn, Fn) from the joint distribution of (zn−1, zn) given Fn−1

via Theorem 11.1. First, the joint distribution is bivariate normal under the Gaus-
sian assumption. Second, the conditional mean and covariance matrix of (zn−1, zn)

given Fn−1 are readily available from the Kalman filter algorithm in Eq. (12.45).
Specifically, we have[

zn−1

zn

]
Fn−1

∼ N

([
zn−1|n−1

zn|n−1

]
,

[
�n−1|n−1 α�n−1|n−1

α�n−1|n−1 �n|n−1

])
, (12.49)

where the covariance is obtained by (i) multiplying zn−1 by Eq. (12.43) and (ii)
taking conditional expectation. Note that all quantities involved in Eq. (12.49) are
available from the Kalman filter. Consequently, by Theorem 11.1, we have

p(zn−1|zn, Fn) ∼ N(µ∗
n−1, �

∗
n−1), (12.50)

where

µ∗
n−1 = zn−1|n−1 + α�n−1|n−1�

−1
n|n−1(zn − zn|n−1),

�∗
n−1 = �n−1|n−1 − α2�2

n−1|n−1�
−1
n|n−1.

Next, for the conditional posterior distribution p(zn−2|zn−1, Fn), we have

p(zn−2|zn−1, Fn) = p(zn−2|zn−1, Fn−2, yn−1, yn)

= p(zn−2|zn−1, Fn−2, vn−1, vn)

= p(zn−2|zn−1, Fn−2).

Consequently, we can obtain p(zn−2|zn−1, Fn) from the bivariate normal distribu-
tion of p(zn−2, zn−1|Fn−2) as before. In general, we have

p(zt |zt+1, Fn) = p(zt |zt+1, Ft ), for 1 < t < n.

Furthermore, from the Kalman filter, p(zt , zt+1|Ft) is bivariate normal as[
zt

zt+1

]
Ft

∼ N

([
zt |t

zt+1|t

]
,

[
�t |t α�t |t
α�t |t �t+1|t

])
. (12.51)

Consequently,

p(zt |zt+1, Ft ) ∼ N(µ∗
t , �

∗
t ),

where

µ∗
t = zt |t + α�t |t�−1

t+1|t (zt+1 − zt+1|t ),

�∗
t = �t |t − α2�2

t |t�
−1
t+1|t .
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The prior derivation implies that we can draw the volatility series z jointly
by a recursive method using quantities readily available from the Kalman filter
algorithm. That is, given the initial values z1|0 and �1|0, one uses the Kalman
filter in Eq. (12.45) to process the return data forward, then applies the recursive
backward method to draw a realization of the volatility series z. This scheme is
referred to as forward filtering and backward sampling (FFBS); see Carter and
Kohn (1994) and Frühwirth-Schnatter (1994). Because the volatility {zt } is serially
correlated, drawing the series jointly is more efficient.

Remark. The FFBS procedure applies to general linear Gaussian state-space
models. The main idea is to make use of the Markov property of the model and
the structure of the state transition equation so that

p(S t |S t+1, Fn) = p(S t |S t+1, Ft , vt+1, . . . , vn) = p(S t |S t+1, Ft ),

where St denotes the state variable at time t and vj is the 1-step-ahead prediction
error. This identity enables us to apply Theorem 11.1 to derive a recursive method
to draw the state vectors jointly. �

Return to the estimation of the SV model. As in Eq. (12.42), let yt = ln[(rt −
x ′
tβ)2/σ 2

0 ]. To implement FFBS, one must determine ct and Ht of Eq. (12.44)
so that the mixture of normals provides a good approximation to the distribution
of ε∗

t . To this end, we augment the model with a series of independent indicator
variables {It }, where It assumes a value in {1, . . . , 7} such that P (It = i) = pit

with
∑7

i=1 pit = 1 for each t . In practice, conditioned on {zt }, we can determine
ct and Ht as follows. Let

qit = �[(yt − zt − µi)/�i], for i = 1, . . . , 7,

where µi and �i are the mean and standard error of the normal distributions given
in Table 12.3 and �(·) denotes the cumulative distribution function of the standard
normal random variable. These probabilities qit are the likelihood function of It
given yt and zt . The probabilities pi of Table 12.3 form a prior distribution of It .
Therefore, the posterior distribution of It is

pit = piqit∑7
j=1 pjqjt

, i = 1, . . . , 7.

We can draw a realization of It using this posterior distribution. If the random
draw is It = j , then we define ct = µj and Ht = � 2

j . In summary, conditioned
on the return data and other parameters of the model, we employ the approximate
linear Gaussian state-space model in Eqs. (12.43) and (12.44) to draw jointly the
log volatility series z. It turns out that the resulting Gibbs sampling is efficient in
estimating univariate stochastic volatility models.
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On the other hand, the square transformation involved in Eq. (12.42) fails to
retain the correlation between ηt and εt if it exists, making the approximate state-
space model in Eqs. (12.43) and (12.44) incapable of estimating the leverage effect.
To overcome this inadequacy, Artigas and Tsay (2004) propose using a time-varying
state-space model that maintains the leverage effect. Specifically, when ρ �= 0, we
have

ηt = ρσηεt + η∗
t ,

where η∗
t is a normal random variable independent of εt and Var(η∗

t ) = σ 2
η (1 − ρ2).

The state transition equation of Eq. (12.43) then becomes

zt+1 = αzt + ρσηεt + η∗
t .

Substituting εt = (1/σ0)(rt − x′
tβ) exp(−zt/2), we obtain

zt+1 = αzt + ρση(rt − x′
tβ)

σ0
exp

(−zt

2

)
+ η∗

t

= G(zt ) + η∗
t (12.52)

where G(zt ) = αzt + ρση(rt − x ′
tβ) exp(−zt/2)/σ0. This is a nonlinear transition

equation for the state variable zt . The Kalman filter in Eq. (12.45) is no longer
applicable. To overcome this difficulty, Artigas and Tsay (2004) use a time-varying
linear Kalman filter to approximate the system. Specifically, the last two equations
of Eq. (12.45) are modified as

zt+1|t = G(zt |t ),

�t+1|t = g(zt |t )2�t |t + σ 2
η (1 − ρ2), (12.53)

where g(zt |t ) = ∂G(x)/∂x|x=zt |t is the first-order derivative of G(zt ) evaluated at
the smoothed state zt |t .

Example 12.5. To demonstrate the FFBS procedure, we consider the monthly
log returns of the S&P 500 index from January 1962 to November 2004 for 515
observations. This is a subseries of the data used in Example 12.3. See Figure 12.4
for time plots of the index and its log return. We consider two stochastic volatility
models in the form:

rt = µ + σo exp(zt/2)εt , εt ∼iid N(0, 1), (12.54)

zt+1 = αzt + ηt , ηt ∼iid N(0, σ 2
η ).

In model 1, {εt } and {ηt } are two independent Gaussian white noise series. That
is, there is no leverage effect in the model. In model 2, we assume that corr(εt , et )
= ρ, which denotes the leverage effect.
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TABLE 12.4 Estimation of Stochastic Volatility Model in Eq. (12.54) for Monthly
Log Returns of S&P 500 Index from January 1962 to November 2004 Using Gibbs
Sampling with FFBS Algorithma

Parameter µ σo α ση ρ

With Leverage Effect

Estimate 0.0081 0.0764 −0.0616 2.5639 −0.3892
Standard error 0.0274 0.0255 0.1186 0.3924 0.0292

Without Leverage Effect

Estimate 0.0080 0.0775 −0.0613 2.5827
Standard error 0.0279 0.0266 0.1164 0.3783
aThe results are based on 2000+8000 iterations with the first 2000 iterations as burn-ins.

We estimate the models via the FFBS procedure using a program written in
Matlab. The Gibbs sampling was run for 2000+8000 iterations with the first 2000
iterations as burn-ins. Table 12.4 gives the posterior means and standard errors of
the parameter estimates. In particular, we have ρ̂ = −0.39, which is close to the
value commonly seen in the literature. Figure 12.13 shows the time plots of the
posterior means of the estimated volatility. As expected, the two volatility series
are very close. Compared with the results of Example 12.3, which uses a shorter
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Figure 12.13 Estimated volatility of monthly log returns of S&P 500 index from January 1962 to
November 2004 using stochastic volatility models: (a) with leverage effect and (b) without leverage
effect.
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series, the estimated volatility series exhibit similar patterns and are in the same
magnitude. Note that the volatility shown in Figure 12.6 is conditional variance
of percentage log returns whereas the volatility in Figure 12.13 is the conditional
standard error of log returns.

12.9 MARKOV SWITCHING MODELS

The Markov switching model is another econometric model for which MCMC
methods enjoy many advantages over the traditional likelihood method. McCulloch
and Tsay (1994b) discuss a Gibbs sampling procedure to estimate such a model
when the volatility in each state is constant over time. These authors applied the
procedure to estimate a Markov switching model with different dynamics and mean
levels for different states to the quarterly growth rate of U.S. real gross national
product, seasonally adjusted, and obtained some interesting results. For instance, the
dynamics of the growth rate are significantly different between periods of economic
“contraction” and “expansion.” Since this chapter is concerned with asset returns,
we focus on models with volatility switching.

Suppose that an asset return rt follows a simple two-state Markov switching
model with different risk premiums and different GARCH dynamics:

rt =
 β1

√
ht + √

htεt , ht = α10 + α11ht−1 + α12a
2
t−1 if st = 1,

β2
√
ht + √

htεt , ht = α20 + α21ht−1 + α22a
2
t−1 if st = 2,

(12.55)

where at = √
htεt , {εt } is a sequence of Gaussian white noises with mean zero

and variance 1, and the parameters αij satisfy some regularity conditions so that
the unconditional variance of at exists. The probability transition from one state to
another is governed by

P (st = 2|st−1 = 1) = e1, P (st = 1|st−1 = 2) = e2, (12.56)

where 0 < ei < 1. A small ei means that the return series has a tendency to stay
in the ith state with expected duration 1/ei . For the model in Eq. (12.55) to be
identifiable, we assume that β2 >β1 so that state 2 is associated with higher risk
premium. This is not a critical restriction because it is used to achieve uniqueness
in labeling the states. A special case of the model results if α1j = α2j for all j

so that the model assumes a GARCH model for all states. However, if βi

√
ht is

replaced by βi , then model (12.55) reduces to a simple Markov switching GARCH
model.

Model (12.55) is a Markov switching GARCH-M model. For simplicity, we
assume that the initial volatility h1 is given with value equal to the sample variance
of rt . A more sophisticated analysis is to treat h1 as a parameter and estimate it
jointly with other parameters. We expect the effect of fixing h1 will be negligible
in most applications, especially when the sample size is large. The “traditional”
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parameters of the Markov switching GARCH-M model are β = (β1, β2)
′, αi =

(αi0, αi1, αi2)
′ for i = 1 and 2, and the transition probabilities e = (e1, e2)

′. The
state vector S = (s1, s2, . . . , sn)

′ contains the augmented parameters. The volatility
vector H = (h2, . . . , hn)

′ can be computed recursively if h1, αi , and the state
vector S are given.

Dependence of the return on volatility in model (12.55) implies that the return
is also serially correlated. The model thus has some predictability in the return.
However, states of the future returns are unknown and a prediction produced by
the model is necessarily a mixture of those over possible state configurations. This
often results in high uncertainty in point prediction of future returns.

Turn to estimation. The likelihood function of model (12.55) is complicated as it
is a mixture over all possible state configurations. Yet the Gibbs sampling approach
only requires the following conditional posterior distributions:

f (β|R,S,H ,α1,α2), f (αi |R,S,H ,αj �=i ),

P (S|R, h1,α1,α2), f (ei |S), i = 1, 2,

where R is the collection of observed returns. For simplicity, we use conjugate
prior distributions discussed in Section 12.3—that is,

βi ∼ N(βio, σ
2
io), ei ∼ Beta(γi1, γi2).

The prior distribution of parameter αij is uniform over a properly specified interval.
Since αij is a nonlinear parameter of the likelihood function, we use the Griddy
Gibbs to draw its random realizations. A uniform prior distribution simplifies the
computation involved. Details of the prior conditional posterior distributions follow:

1. The posterior distribution of βi only depends on the data in state i. Define

rit =
{

rt/
√
ht if st = i,

0 otherwise.

Then we have

rit = βi + εt , for st = i.

Therefore, information of the data on βi is contained in the sample mean of rit . Let
r̄i = (

∑
st=i rit )/ni , where the summation is over all data points in state i and ni

is the number of data points in state i. Then the conditional posterior distribution
of βi is normal with mean β∗

i and variance σ 2
i∗, where

1

σ 2
i∗

= ni + 1

σ 2
io

, β∗
i = σ 2

i∗
(
ni r̄i + βio/σ

2
io

)
, i = 1, 2.



662 markov chain monte carlo methods with applications

2. Next, the parameters αij can be drawn one by one using the Griddy Gibbs
method. Given h1, S, αv �=i , and αiv with v �= j , the conditional posterior distribu-
tion function of αij does not correspond to a well-known distribution, but it can
be evaluated easily as

f (αij |.) ∝ −1

2

[
ln ht + (rt − βi

√
ht )

2

ht

]
, if st = i,

where ht contains αij . We evaluate this function at a grid of points for αij over a
properly specified interval. For example, 0 ≤ α11 < 1 − α12.

3. The conditional posterior distribution of ei only involves S. Let �1 be the
number of switches from state 1 to state 2 and �2 be the number of switches from
state 2 to state 1 in S. Also, let ni be the number of data points in state i. Then
by Result 12.3 of conjugate prior distributions, the posterior distribution of ei is
Beta(γi1 + �i , γi2 + ni − �i).

4. Finally, elements of S can be drawn one by one. Let S−j be the vector
obtained by removing sj from S. Given S−j and other information, sj can assume
two possibilities (i.e., sj = 1 or sj = 2), and its conditional posterior distribution is

P (sj |.) ∝
n∏

t=j

f (at |H )P (sj |S−j ).

The probability

P (sj = i|S−j ) = P (sj = i|sj−1, sj+1), i = 1, 2

can be computed by the Markov transition probabilities in Eq. (12.56). In addition,
assuming sj = i, one can compute ht for t ≥ j recursively. The relevant likelihood
function, denoted by L(sj ), is given by

L(sj = i) ≡
n∏

t=j

f (at |H ) ∝ exp(fji), fji =
n∑

t=j

−1

2

[
ln(ht ) + a2

t

ht

]
,

for i = 1 and 2, where at = rt − β1
√
ht if st = 1 and at = rt − β2

√
ht otherwise.

Consequently, the conditional posterior probability of sj = 1 is

P (sj = 1|·) = P (sj = 1|sj−1, sj+1)L(sj = 1)

P (sj = 1|sj−1, sj+1)L(sj = 1) + P (sj = 2|sj−1, sj+1)L(sj = 2)
.

The state sj can then be drawn easily using a uniform distribution on the unit
interval [0, 1].
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Remark. Since sj and sj+1 are highly correlated when e1 and e2 are small, it
is more efficient to draw several sj jointly. However, the computation involved in
enumerating the possible state configurations increases quickly with the number of
states drawn jointly. �

Example 12.6. In this example, we consider the monthly log stock returns of
General Electric Company from January 1926 to December 1999 for 888 observa-
tions. The returns are in percentages and shown in Figure 12.14(a). For comparison
purposes, we start with a GARCH-M model for the series and obtain

rt = 0.182
√
ht + at , at =

√
htεt ,

ht = 0.546 + 1.740ht−1 − 0.775ht−2 + 0.025a2
t−1, (12.57)

where rt is the monthly log return and {εt } is a sequence of independent Gaussian
white noises with mean zero and variance 1. All parameter estimates are highly
significant with p values less than 0.0006. The Ljung–Box statistics of the stan-
dardized residuals and their squared series fail to suggest any model inadequacy. It
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Figure 12.14 (a) Time plot of monthly log returns, in percentages, of GE stock from 1926 to 1999.
(b) Time plot of the posterior probability of being in state 2 based on results of last 2000 iterations
of Gibbs sampling with 5000 + 2000 total iterations. Model used is two-state Markov switching
GARCH-M model.
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is reassuring to see that the risk premium is positive and significant. The GARCH
model in Eq. (12.57) can be written as

(1 − 1.765B + 0.775B2)a2
t = 0.546 + (1 − 0.025B)ηt ,

where ηt = a2
t − ht and B is the back-shift operator such that Ba2

t = a2
t−1. As

discussed in Chapter 3, the prior equation can be regarded as an ARMA(2,1) model
with nonhomogeneous innovations for the squared series a2

t . The AR polynomial
can be factorized as (1 − 0.945B)(1 − 0.820B), indicating two real characteristic
roots with magnitudes less than 1. Consequently, the unconditional variance of rt
is finite and equal to 0.546/(1 − 1.765 + 0.775) ≈ 49.64.

Turn to Markov switching models. We use the following prior distributions:

β1 ∼ N(0.3, 0.09), β2 ∼ N(1.3, 0.09), εi ∼ Beta(5, 95).

The initial parameter values used are (a) ei = 0.1, (b) s1 is a Bernoulli trial with
equal probabilities and st is generated sequentially using the initial transition prob-
abilities, and (c) α1 = (1.0, 0.6, 0.2)′ and α2 = (2, 0.7, 0.1)′. Gibbs samples of αij

are drawn using the Griddy Gibbs with 400 grid points, equally spaced over the
following ranges: αi0 ∈ [0, 6.0], αi1 ∈ [0, 1], and αi2 ∈ [0, 0.5]. In addition, we
implement the constraints αi1 + αi2 < 1 for i = 1, 2. The Gibbs sampler is run
for 5000 + 2000 iterations, but only results of the last 2000 iterations are used to
make inference.

Table 12.5 shows the posterior means and standard deviations of parameters
of the Markov switching GARCH-M model in Eq. (12.55). In particular, it also
contains some statistics showing the difference between the two states such as
θ = β2 − β1. The difference between the risk premiums is statistically significant
at the 5% level. The differences in posterior means of the volatility parameters
between the two states appear to be insignificant. Yet the posterior distributions of
volatility parameters show some different characteristics. Figures 12.15 and 12.16
show the histograms of all parameters in the Markov switching GARCH-M model.
They exhibit some differences between the two states. Figure 12.17 shows the
time plot of the persistent parameter αi1 + αi2 for the two states. It shows that the
persistent parameter of state 1 reaches the boundary 1.0 frequently, but that of state
2 does not. The expected durations of the two states are about 11 and 9 months,
respectively. Figure 12.14(b) shows the posterior probability of being in state 2 for
each observation.

Finally, we compare the fitted volatility series of the simple GARCH-M model
in Eq. (12.57) and the Markov switching GARCH-M model in Eq. (12.55). The two
fitted volatility series (Figure 12.18) show similar patterns and are consistent with
the behavior of the squared log returns. The simple GARCH-M model produces a
smoother volatility series with lower estimated volatilities.
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TABLE 12.5 Fitted Markov Switching GARCH-M Model for Monthly Log Returns
of GE Stock from January 1926 to December 1999a

State 1

Parameter β1 e1 α10 α11 α12

Posterior mean 0.111 0.089 2.070 0.844 0.033
Posterior standard error 0.043 0.012 1.001 0.038 0.033

State 2

Parameter β2 e2 α20 α21 α22

Posterior mean 0.247 0.112 2.740 0.869 0.068
Posterior standard Error 0.050 0.014 1.073 0.031 0.024

Difference Between States

Parameter β2 − β1 e2 − e1 α20 − α10 α21 − α11 α22 − α12

Posterior mean 0.135 0.023 0.670 0.026 −0.064
Posterior standard error 0.063 0.019 1.608 0.050 0.043

aThe numbers shown are the posterior means and standard deviations based on a Gibbs sampling with
5000 + 2000 iterations. Results of the first 5000 iterations are discarded. The prior distributions and
initial parameter estimates are given in the text.
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Figure 12.15 Histograms of risk premium and transition probabilities of a two-state Markov switching
GARCH-M model for monthly log returns of GE stock from 1926 to 1999. Results based on last 2000
iterations of Gibbs sampling with 5000 + 2000 total iterations.
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Figure 12.16 Histograms of volatility parameters of two-state Markov switching GARCH-M model
for monthly log returns of GE stock from 1926 to 1999. Results based on last 2000 iterations of Gibbs
sampling with 5000 + 2000 total iterations.

12.10 FORECASTING

Forecasting under the MCMC framework can be done easily. The procedure is
simply to use the fitted model in each Gibbs iteration to generate samples for
the forecasting period. In a sense, forecasting here is done by using the fitted
model to simulate realizations for the forecasting period. We use the univariate
stochastic volatility model to illustrate the procedure; forecasts of other models
can be obtained by the same method.

Consider the stochastic volatility model in Eqs. (12.20) and (12.21). Suppose that
there are n returns available and we are interested in predicting the return rn+i and
volatility hn+i for i = 1, . . . , �, where �> 0. Assume that the explanatory variables
xjt in Eq. (12.20) are either available or can be predicted sequentially during the
forecasting period. Recall that estimation of the model under the MCMC framework
is done by Gibbs sampling, which draws parameter values from their conditional
posterior distributions iteratively. Denote the parameters by βj = (β0,j , . . . , βp,j )

′,
αj = (α0,j , α1,j )

′, and σ 2
v,j for the j th Gibbs iteration. In other words, at the j th
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Figure 12.17 Time plots of persistent parameter αi1 + αi2 of two-state Markov switching GARCH-M
model for monthly log returns of GE stock from 1926 to 1999. Results based on last 2000 iterations of
Gibbs sampling with 5000 + 2000 total iterations.

Gibbs iteration, the model is

rt = β0,j + β1,j x1t + · · · + βp,j xpt + at , (12.58)

ln ht = α0,j + α1,j ln ht−1 + vt , Var(vt ) = σ 2
v,j . (12.59)

We can use this model to generate a realization of rn+i and hn+i for i = 1, . . . , �.
Denote the simulated realizations by rn+i,j and hn+i,j , respectively. These realiza-
tions are generated as follows:

• Draw a random sample vn+1 from N(0, σ 2
v,j ) and use Eq. (12.59) to compute

hn+1,j .
• Draw a random sample εn+1 from N(0, 1) to obtain an+1,j = √

hn+1,j εn+1

and use Eq. (12.58) to compute rn+1,j .
• Repeat the prior two steps sequentially for n + i with i = 2, . . . , �.

If we run a Gibbs sampling for M + N iterations in model estimation, we only
need to compute the forecasts for the last N iterations. This results in a random
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Figure 12.18 Fitted volatility series for monthly log returns of GE stock from 1926 to 1999: (a) squared
log returns, (b) GARCH-M model in Eq. (12.59), and (c) two-state Markov switching GARCH-M model
in Eq. (12.57).

sample for rn+i and hn+i . More specifically, we obtain

{rn+1,j , . . . , rn+�,j }Nj=1, {hn+1,j , . . . , hn+�,j }Nj=1.

These two random samples can be used to make inference. For example, point
forecasts of the return rn+i and volatility hn+i are simply the sample means of the
two random samples. Similarly, the sample standard deviations can be used as the
variances of forecast errors. To improve the computational efficiency in volatility
forecast, importance sampling can be used; see Gelman, Carlin, Stern, and Rubin
(2003).

Example 12.7. (Example 12.3 continued) As a demonstration, we consider the
monthly log return series of the S&P 500 index from 1962 to 1999. Table 12.6
gives the point forecasts of the return and its volatility for five forecast horizons
starting with December 1999. Both the GARCH model in Eq. (12.26) and the
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TABLE 12.6 Volatility Forecasts for Monthly Log Return of S&P 500 Indexa

Horizon 1 2 3 4 5

Log Return

GARCH 0.66 0.66 0.66 0.66 0.66
SVM 0.53 0.78 0.92 0.88 0.84

Volatility

GARCH 17.98 18.12 18.24 18.34 18.42
SVM 19.31 19.36 19.35 19.65 20.13

aThe data span is from January 1962 to December 1999 and the forecast origin is December 1999.
Forecasts of the stochastic volatility model are obtained by a Gibbs sampling with 2000 + 2000
iterations.

stochastic volatility model in Eq. (12.27) are used in the forecasting. The volatility
forecasts of the GARCH(1,1) model increase gradually with the forecast horizon
to the unconditional variance 3.349/(1 − 0.086 − 0.735) = 18.78. The volatility
forecasts of the stochastic volatility model are higher than those of the GARCH
model. This is understandable because the stochastic volatility model takes into
consideration the parameter uncertainty in producing forecasts. In contrast, the
GARCH model assumes that the parameters are fixed and given in Eq. (12.26).
This is an important difference and is one of the reasons that GARCH models tend
to underestimate the volatility in comparison with the implied volatility obtained
from derivative pricing.

Remark. Besides the advantage of taking into consideration parameter uncer-
tainty in forecast, the MCMC method produces in effect a predictive distribution
of the volatility of interest. The predictive distribution is more informative than a
simple point forecast. It can be used, for instance, to obtain the quantiles needed
in value at risk calculation. �

12.11 OTHER APPLICATIONS

The MCMC method is applicable to many other financial problems. For example,
Zhang, Russell, and Tsay (2008) use it to analyze information determinants of
bid and ask quotes, McCulloch and Tsay (2001) use the method to estimate a
hierarchical model for IBM transaction data, and Eraker (2001) and Elerian, Chib,
and Shephard (2001) use it to estimate diffusion equations. The method is also
useful in value at risk calculation because it provides a natural way to evaluate
predictive distributions. The main question is not whether the methods can be used
in most financial applications, but how efficient the methods can become. Only
time and experience can provide an adequate answer to the question.



670 markov chain monte carlo methods with applications

EXERCISES

12.1. Suppose that x is normally distributed with mean µ and variance 4. Assume
that the prior distribution of µ is also normal with mean 0 and variance 25.
What is the posterior distribution of µ given the data point x?

12.2. Consider the linear regression model with time series errors in Section 12.5.
Assume that zt is an AR(p) process (i.e., zt = φ1zt−1 + · · · + φpzt−p + at ).
Let φ = (φ1, . . . , φp)

′ be the vector of AR parameters. Derive the condi-
tional posterior distributions of f (β|Y ,X,φ, σ 2), f (φ|Y ,X,β, σ 2), and
f (σ 2|Y ,X,β,φ) using the conjugate prior distributions, that is, the pri-
ors are

β ∼ N(βo,�o), φ ∼ N(φo,Ao), (vλ)/σ 2 ∼ χ2
v .

12.3. Consider the linear AR(p) model in Section 12.6.1. Suppose that xh and
xh+1 are two missing values with a joint prior distribution being multivariate
normal with mean µo and covariance matrix �o. Other prior distributions
are the same as that in the text. What is the conditional posterior distribution
of the two missing values?

12.4. Consider the monthly log returns of Ford Motors stock from January 1965
to December 2008: (a) Build a GARCH model for the series, (b) build
a stochastic volatility model for the series, and (c) compare and discuss
the two volatility models. The simple returns of the stock are in the file
m-fsp6508.txt.

12.5. Build a stochastic volatility model for the daily log return of Cisco Systems
stock from January 2001 to December 2008. You may download the simple
return of the stock from the CRSP database or the file d-csco0108.txt.
Transform the data into log returns in percentage. Use the model to obtain
a predictive distribution for 1-step-ahead volatility forecast at the forecast
origin December 31, 2008. Finally, use the predictive distribution to com-
pute the value at risk of a long position worth $1 million with probability
0.01 for the next trading day.

12.6. Build a bivariate stochastic volatility model for the monthly log returns of
Ford Motors stock and the S&P composite index for the sample period from
January 1965 to December 2008. Discuss the relationship between the two
volatility processes and compute the time-varying beta for the Ford stock.

12.7. Consider the monthly log returns of Procter & Gamble stock and the value-
weighted index from January 1965 to December 2008. The simple returns
are given in the file m-pgvw6508.txt. Transform the data into log returns
in percentages. (a) Build a bivariate stochastic volatility model for the two
return series. (b) Build a BEKK(1,1) model for the two series. (c) Compare
and discuss the two models.

12.8. Consider the monthly data of 30-year mortgage rate and the 3-month Trea-
sury Bill rate of the secondary market from April 1971 to September 2009.
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The data are in m-mort3mtb7109.txt. (a) Build a regression model with
time series error to study the effect of 3-month Treasury Bill rate on the
mortgage rate. (b) Reestimate the model using MCMC method. (c) Compare
and discuss the two fitted models.
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Black–Scholes
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Black–Scholes formula
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Conditional forecast, 55
Conditional heteroscedasticity, 97
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Conditional-likelihood method, 61
Conjugate prior, see Distribution, 618
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coefficient, 30
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time-varying, 525
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Covariance matrix, 390
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Cross-validation, 193
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Conditional value at risk, 328
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Cisco stock return, 296, 538, 546
Citi-Group stock return, 21
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value-weighted index, 21, 145
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Data augmentation, 615
Decomposition model, 248
Descriptive statistics, 21
Diagonal VEC model, 510
Dickey–Fuller test, 77
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seasonal, 84
Distribution

beta, 620
double exponential, 312
Frechet family, 344
gamma, 277, 619
generalized error, 122
generalized extreme value, 343
Generalized gamma, 278
generalized Pareto, 361, 373
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Laplacian, 312
multivariate t , 548
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Poisson, 620
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skew-Student-t , 122
Weibull, 278

Diurnal pattern, 238
Donsker’s theorem, 290
Duration
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Durbin-Watson statistic, 97
Dynamic conditional correlation model, 531

EGARCH model, 143
forecasting, 147

Eigenvalue, 457
Eigenvector, 457
EM algorithm, 614
Error correction model, 431
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extreme value parameter, 345
Exact-likelihood method, 61
Exceedance, 359
Exceeding times, 359
Excess return, 5
Expected shortfall, 333
Extended autocorrelation function, 66
Extremal index, 377, 380
Extreme value theory, 342

Factor analysis, 489
Factor mimicking portfolio, 482
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Factor model
common factor, 468
estimation, 491
factor loading, 468
specific factor, 468

Factor rotation
varimax, 492

Filtering, 561
Forecast

horizon, 54
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Forecast updating formula, 581
Forecasting

MCMC method, 666
Forward filtering and backward sampling, 655
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Cholesky decomposition, 528
multivariate, 521
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Generalized Pareto Distribution, 361
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Implied volatility, 110
Impulse response function, 71, 413
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multivariate, 310

Joint distribution function, 7
Jump diffusion, 311
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Gaussian, 191

Kernel regression, 190
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Lag operator, 41
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Likelihood function, 19
Linear time series, 36
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multivariate, 397
Local linear regression, 195
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stochastic volatility, 154
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Marginal distribution, 7
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Markov process, 613
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