

Introduction to Computational Optimization Models
for Production Planning in a Supply Chain

Stefan Voß
David L.Woodruff

Introduction
to Computational
Optimization Models
for Production Planning
in a Supply Chain

Second Edition
with 36 Figures
and 24 Tables

123

Professor Dr. Stefan Voß
Universität Hamburg
Institut für Wirtschaftsinformatik
Von-Melle-Park 5
20146 Hamburg
Germany
E-mail: stefan.voss@uni-hamburg.de

Professor David L.Woodruff, Ph. D.

Graduate School of Management
UC Davis
Davis CA 95616
USA
E-mail: dlwoodruff@ucdavis.edu

Cataloging-in-Publication Data

Library of Congress Control Number: 2005937007

ISBN-10 3-540-29878-9 2nd ed. Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29878-6 2nd ed. Springer Berlin Heidelberg New York
ISBN 3-540-00023-2 1st ed. Springer Berlin Heidelberg New York

This work is subject to copyright.All rights are reserved,whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer-Verlag.Violations are liable for prosecution under the German Copy-
right Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2003, 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner
Production: Helmut Petri
Printing: Strauss Offsetdruck

SPIN 11578666 Printed on acid-free paper – 42/3153 – 5 4 3 2 1 0

Preface of the Second Edition

After using our book for courses in a variety of locations, we have been
gratified by the positive responses to the first edition. Moreover, the book
had been used by quite a few practitioners in the way as we had hoped for
when we wrote the first edition. So our preparations for the second edition
were guided by a desire to add new material and to take advantage of our
experience with the first edition, but at the same time to preserve the things
that had been proven to be most useful.

The result is this second edition. The first seven chapters are very similar
to the first edition, except for corrections and the addition of clarification in
places that our experience with the first edition demonstrated a need. For
the later chapters, on the other hand, we took the liberty of extending our
research presentation a bit and, most importantly, updating the references
section.

Stefan Voß
David L. Woodruff

October 2005

The Preface of the First Edition

“For almost any program, there exists a champion who can make it
work – at least for a while.” Hopp and Spearman (2000)

Managers and information technology professionals need to have an un-
derstanding of computational optimization models for production planning
in a supply chain. This book provides an accessible introduction to the sub-
ject. We develop the terminology and concepts needed to understand the
important issues.

We are not trying to be all things to all people. In particular, we are not
trying to describe algorithms used by commercial software firms, but rather

vi Preface

provide models that could be used by do-it-yourselfers and also can be used
to provide understanding of the background issues so that one can do a better
job of working with the (proprietary) algorithms of the software vendors.

In this book we strive to provide models that capture many of the de-
tails faced by firms operating in a modern supply chain, but we stop short of
proposing models for economic analysis of the entire multi-player chain. In
other words, we produce models that are useful for planning within a supply
chain rather than models for planning the supply chain. The usefulness of the
models is enhanced greatly by the fact that they have been implemented us-
ing computer modeling languages. Implementations are shown in Chapter 7,
which allows solutions to be found using a computer.

A reasonable question is: why write the book now? It is a combination of
opportunities that have recently become available. The availability of model-
ing languages and computers that provides the opportunity to make practical
use of the models that we develop. Meanwhile, software companies are pro-
viding software for optimized production planning in a supply chain. The
opportunity to make use of such software gives rise to a need to understand
some of the issues in computational models for optimized planning. This is
best done by considering simple models and examples.

This book pursues a number of goals. Some of them are addressed directly
such as the goal of developing useful models for production and distribution
planning. Others accrue more as side-effects such as an understanding of the
leverage that can be gained from abstract optimization models. We describe
usable models that can be fed to fairly low cost, readily available software.
However, many readers will be interested in these models not for direct im-
plementation but as a means of understanding some of the issues in supply
chain optimization for the purpose of using or assessing sophisticated, special
purpose supply chain management software. We can also view the book either
as a vehicle for understanding production planning within a supply chain via
optimization modeling or for understanding optimization modeling by using
production planning as an example. Both views are important.

These are things that need to be understood by managers and planners.
This level of planning constitutes the interface between strategy and tactics.
It is critical. However, it is often left to operational personnel or software
vendors. This book aims to change that.

The book is also appropriate for a business school or industrial engineering
course. Earlier drafts were used for a course in the Working Professional
MBA program at the University of California at Davis, a business information
systems course at the University of Technology in Braunschweig and the Karl
Franzens University in Graz. Overall, the student population varied greatly
from undergraduate business and engineering majors through professional
managers from a wide range of backgrounds. The feedback from the students
was a great help in preparing the final version of the book and we are grateful
for it.

Preface vii

We would like to acknowledge the assistance of student Janin Oer who
helped implementing the AMPL models shown in Chapter 7, Michael R.
Bussieck of the GAMS development corporation who implemented the GAMS
version of the models, Bjarni Kristjansson of Maximal Software who imple-
mented the MPL versions, Greg Glockner and Veronique Blanchard of ILOG
who implemented the OPL versions, and Susanne Heipcke of Dash Opti-
mization who implemented the Xpress-Mosel models and students at the UC
Davis Graduate School of Management as well as the staff at the University
of Technology Braunschweig for proofreading.

Stefan Voß
David L. Woodruff

August 2002

Table of Contents

1. Introduction . 1
1.1 Supply Chains and Production Planning 1
1.2 Optimization . 2
1.3 Components of Supply Chain Management 4
1.4 Scope of this Book . 5

2. Optimization Modeling . 7
2.1 Abstraction . 7
2.2 Symbols . 9

2.2.1 Variables, Data, Subscripts, and Math 9
2.2.2 Sets . 11
2.2.3 Objective Functions and Constraints 11

2.3 Finding Solutions . 14
2.3.1 Data . 15
2.3.2 A Few Words About Uncertainty 15
2.3.3 Solvers and Model Structure . 16

2.4 Implementing the Models in this Book . 17

3. Starting with an mrp Model . 19
3.1 An Example . 19
3.2 mrp Mechanics . 20
3.3 mrp Data . 22
3.4 mrp Optimization Formulation . 24
3.5 Discussion of mrp . 26

3.5.1 Troubles . 27
3.5.2 Virtues . 29

4. Extending to an MRP II Model . 31
4.1 MRP II Mechanics . 31
4.2 MRP II Data and Constraints . 34
4.3 Discussion of MRP II . 36
4.4 Changeover Modeling Considerations . 38

4.4.1 A Straightforward Modification . 38
4.4.2 Production that Spans Time Buckets 39

x Table of Contents

4.4.3 Parallel Machines . 40
4.4.4 Sequence Dependent Changeovers 41
4.4.5 A Few Remarks About Changeovers 42

5. A Better Model . 45
5.1 A Cost Based Objective Function . 45

5.1.1 Costs . 45
5.1.2 Objective Function . 47

5.2 Overtime and Extra Capacity . 49
5.2.1 A Simple Model . 49
5.2.2 Complications . 50

5.3 Allowing Tardiness . 51
5.3.1 A Simple Model . 52
5.3.2 Complications . 53

5.4 Objective Function Issues . 54
5.5 The Model . 55

6. Extensions to the Model . 59
6.1 Substitutes, Multiple Routings and Subcontractors 59
6.2 Penalizing Changes to the Plan . 62
6.3 End-of-horizon Effects and Minimum Inventories 64
6.4 Modeling Product Movement and Transport 66

6.4.1 Simple Product Movement and Shipping 67
6.4.2 Expedited Shipping . 67
6.4.3 Fixed Costs and Consolidations . 67
6.4.4 Transportation Discounts . 69
6.4.5 Discussion of Transportation Modeling 70

6.5 Summarizing the Model . 70
6.6 Aggregation and Consolidation . 71

6.6.1 Consolidating Resources . 73
6.6.2 Aggregating Parts . 74
6.6.3 Discussion of Disaggregation . 79

7. Implementation Examples . 81
7.1 AMPL . 84

7.1.1 mrp Model . 86
7.1.2 mrp Data . 87
7.1.3 Results of Running mrp . 88
7.1.4 MRPII Model . 89
7.1.5 Data for MRPII . 90
7.1.6 SCPc Model . 91
7.1.7 Data for SCPc . 94

7.2 GAMS . 96
7.2.1 mrp and MRPII Models . 98
7.2.2 SCPc Model . 101

Table of Contents xi

7.3 Maximal MPL . 106
7.3.1 mrp Model . 107
7.3.2 MRPII . 109
7.3.3 SCPc . 110

7.4 OPL . 114
7.4.1 mrp . 115
7.4.2 MRPII . 118
7.4.3 SCPc . 118

7.5 Xpress-Mosel . 123
7.5.1 mrp Model . 125
7.5.2 mrp Data . 128
7.5.3 mrp Results . 129
7.5.4 MRPII Model . 129
7.5.5 SCPc Model . 130

8. Solutions . 135
8.1 MIPs and Relaxations . 135
8.2 Branch and Bound . 138
8.3 Special Variable Types . 141

8.3.1 Semi-continuous Variables . 141
8.3.2 General Integer Variables . 142
8.3.3 Special Ordered Sets . 143

8.4 Heuristic Search Methods . 145
8.4.1 A Brief Primer on Heuristics . 146
8.4.2 Abstract Formulation and Solution Representation . . . 147
8.4.3 Example of an Embedded Problem 149
8.4.4 Neighborhoods and Evaluation Functions 150
8.4.5 Simulated Annealing . 154
8.4.6 Tabu Search . 156
8.4.7 Genetic and Evolutionary Algorithms 157

8.5 Constraint Programming . 160

9. Some Stochastic Extensions . 163
9.1 Lead Times and Congestion . 164

9.1.1 The Issues . 165
9.1.2 Load Dependent Lead Times . 167
9.1.3 Solver Issues . 170
9.1.4 Example . 172
9.1.5 Complications and Discussion . 173

9.2 Scenarios . 174
9.2.1 The Issues . 175
9.2.2 A Multi-stage Probabilistic Model With Recourse 178
9.2.3 Progressive Hedging . 180
9.2.4 A PH based Heuristic for SCPc 184

xii Table of Contents

10. Research Directions and References . 187
10.1 Supply Chain Management . 187

10.1.1 The Evolution of Logistics . 188
10.1.2 Closed Loop Supply Chains and Reverse Logistics 191
10.1.3 The Importance of Information Technology 191
10.1.4 Supply Contracts . 198

10.2 mrp, MRP II and Beyond . 200
10.2.1 The Early Steps . 200
10.2.2 Supply Chain Planning . 201

10.3 Production Planning and Scheduling . 202
10.3.1 Lot Sizing Models . 202
10.3.2 Planning and Inventory Control . 208
10.3.3 Machine Scheduling . 211
10.3.4 Aggregation and Part Families . 212
10.3.5 Load Dependent Lead Times . 214

10.4 Transportation . 219
10.5 Optimization . 223

10.5.1 Exact Methods . 225
10.5.2 Heuristic Search Methods . 225
10.5.3 Progressive Hedging . 229
10.5.4 Simulation . 230

10.6 Modeling . 231

Bibliography . 233

Index . 253

1. Introduction

Supply chain management rose to prominence as a major management issue
in recent years. While the focus of managing a supply chain has undergone
a drastic change as a result of improved information technology, production
planning remains a critical issue. The ability to instantaneously exchange
information along with increased computational power has enabled the use
of sophisticated optimization software.

1.1 Supply Chains and Production Planning

Speculation about how long supply chains have existed degenerates quickly
into an exercise in hyperbole. For our purposes, it suffices to say “longer
than words.” What is relatively recent is the discovery that optimization and
a supply chain model of production and distribution is critical for competitive
success. What is the supply chain model?

The idea is that the production of all but trivial goods and services can
be thought of as a supply chain. The metaphor is very direct: a chain re-
lies on interconnected links as does the production of goods and services.
This abstract model is extremely useful. Notice that we did not mention or-
ganizational, factory or office boundaries, and did not distinguish between
goods and services. At some level of abstraction goods and services are the
same, and moves between machines in a factory share important characteris-
tics with movement of goods between factories. Perhaps the most important
thing from the perspective of improving management practices is recognition
that the entire supply chain must be considered whether it is entirely within
one factory or spans many organizations.

This is nearly the opposite of the incentives philosophy that gives rise
to transfer pricing, management by accounting objectives and quantitative
incentives for every division and plant manager as well as for every machine
operator. In that philosophy there is an attempt to make every part of the
supply chain seem like a separate organization to the extent possible. The
idea is that if each participant in the supply chain has the proper incentives
then they can myopically optimize their own performance and this may result
in optimal system performance.

2 1. Introduction

The trouble with the incentives philosophy is that it has proven to be
nearly impossible to set up the proper incentives. The result has been man-
agers and workers behaving in a way that is best described as gaming the
system. They behave in ways that maximize the performance measures, but
not necessarily in ways that help the organization as a whole or the customers
of the supply chain.

This is not to say that incentives are not important. Often, the supply
chain is composed of multiple arms-length players so contracts and other
incentives must be structured in the best possible way. The creation of good
contracts is also an optimization problem, but not one that concerns us here.

The value of optimized production planning within the supply chain is
clear to many managers, particularly when large portions reside within one
organization or the planning can be done in a coordinated way. The benefits
from optimized planning for the entire supply chain that come as a result of
coordinated planning have given rise to the concept of partnering. Organiza-
tions share information and planning functionality so that the benefits of a
well run supply chain can be obtained. This shared information often comes
from, and goes to, optimization models.

Our goal is to study optimization models that are general enough to be
used for planning in a factory or across factory boundaries. However, we pro-
vide specific examples and computer implementations of the models. Before
developing the models and their implementation details, we provide a brief
introduction to concepts related to the modeling of optimization problems.

1.2 Optimization

Optimization is an activity that has existed even longer than supply chains
have. What is relatively new is the explosion in supply chain optimization
software. In order to truly understand this software and its proper role, we
need to step back and understand optimization and how it can be applied
to supply chains. The word optimum means “best.” To be more precise, by
optimization we mean the attempt to find the best possible solution to a
problem.

In order to obtain understanding (or useful software, for that matter) we
need to work at the appropriate level of abstraction. We build models but
leave most of the data to be plugged in later. The models describe the struc-
ture of the problem. There is considerable leverage in this scheme because the
same model can be used over and over again as the details change over time
or it can be applied to a different organization by supplying the appropriate
details. Furthermore, the models can be discussed in an abstract way that
leads to better understanding of the underlying supply chain management
issues.

In abstract optimization models, we use symbols to represent quantities.
We begin with an overly simple example. Suppose that we have two products

1.2 Optimization 3

and we have to decide how much to produce next year. We might want to

maximize profit

subject to:

production of each product not less than strategic lower limits,
and total production not greater than capacity.

To produce a model suitable for abstract discussion, and also for exact
solution, we can use the symbol x to represent the production quantity for
the first product and y for the second. An assignment of specific values to x
and y is referred to as a “solution,” even if it is not the best possible solution.
So if we say that x is 6 and y is 2, we have a solution that may or may not be
a good solution or might not be possible to actually implement in the factory
but we shall call it a solution.

Suppose that the profit from each product is known; we can use the sym-
bols Q and R for these two numbers, respectively. Suppose further that we
have values for the strategic lower limits on production of each of the two
products and some capacity limitations on the total production quantity. We
can model these in an abstract way as x ≥ A, y ≥ B, and x + y ≤ J . We are
using the symbols A, B, and J to give the respective limitations. How much
should be produced? “It depends” is the correct answer, of course.

If actual numbers are supplied for A, B, J , Q, and R then we can quickly
find the best possible values for x and y. Such models can be written to be
read by people as well as computer software in the following fashion:

maximize: Q × x + R × y

subject to:

x ≥ A

y ≥ B

x + y ≤ J.

Models written in this way offer a number of advantages:

1. It is useful to communicate the important structure of the problem with-
out too many details getting in the way.

2. A related benefit is that it is easy to add or remove details. For example,
we could add a separate capacity constraint for product one by adding a
requirement that x ≤ K. In this example, K would be used to represent
the capacity limit.

3. These models can be fed directly to computer programs that can be set up
to gather or maintain the data as well as compute the optimal solutions
or good solutions when optimal solutions are too difficult to obtain.

4 1. Introduction

In this book we will develop usable models that can be fed to general
purpose (i.e., cost effective) optimization software. As an aside we note that
these programs seldom require quite as much abstraction as we used in our
simple model: there is no requirement that the variables have single character
names, e.g., we could have used “TotalCapacity” instead of J . We use shorter
names in the interest of saving space and highlighting similarities between
models at a higher level.

1.3 Components of Supply Chain Management

In order to understand the scope of this book, we need to take a look at a
list of the components of supply chain planning. Loosely speaking, we have
organized the list so as to be decreasing in time horizon. That is to say that
the first item, which is strategy, looks at the longest time horizons, while the
last item considers the shortest. Each of these components can easily be the
subject of an entire book of their own, so we include this list only with the
modest goal of definition. The names that we have given to these components
may have slightly different meanings depending on who is using them. That
is one of the reasons we want to articulate them for our use here.

• Strategy
We will not use the word “strategy” unless we are referring in some way
to issues related to selecting and maintaining a sustainable competitive
advantage and/or areas of core competency. Strategy planning involves de-
termining how the organization will serve its potential markets and what
its relationship will be with its competitors. In some ways, we can say that
strategic planning seeks to answer the question “what” do we want to be-
come (and “why”) while tactical planning looks more at “how” we plan to
do it.

• Major Resources Capacity Planning
In this component we place decisions in the time frame of one to five years.
To the extent that multiple organizations are involved in the supply chain,
vendors and customers must select each other. In all cases, the parameters
of compensation and evaluation must be established.
Long term “make versus buy” decisions belong in this category. In the case
of “make” we include decisions about production facilities along with de-
cisions about entire personnel groups. This is intended to be distinct from
capacity decisions made on a routine basis.

• Tactical Production Planning
For our purposes, it will be useful to make a distinction between scheduling
and planning. It is often said that schedules are for people who do the work
and plans are for people who talk about work. In the planning activity we
include aggregate planning and assignment of gross production quantities

1.4 Scope of this Book 5

to plants and/or lines. We also include routine capacity decisions such as
assignment of work to a qualified subcontractor or activation of production
lines. But we do not include sequencing decisions. Typical time frames for
this type of activity are weekly time buckets extending to six or eighteen
months. However, some organizations use monthly or daily planning time
buckets.

• Scheduling
This activity includes sequencing decisions and specification of production
quantities at the level of individual part numbers. The time buckets used
are sometimes the same as used for planning or sometimes down to the
minute. This is the level at which procurement ship dates and due dates
are established.

• Execution and Feedback
This component includes the actual production, movement, shipping and
delivery functions. We also include the mechanisms by which the results
of these activities are communicated to the higher level activities. In many
organizations these feedback mechanisms are woefully inadequate because
they are designed primarily to satisfy accounting needs. One benefit of
building optimization models is that it highlights the type of data that is
needed to support effective long- and short-range planning.

This description of supply chain management is necessarily far too brief
to capture important issues. However, it provides a context for the discussion
that follows. Subsequent chapters deepen and clarify issues. Furthermore,
we are able to provide a perspective on the relationships between models
for optimized production planning in a supply chain and classical models of
production planning.

1.4 Scope of this Book

This book addresses primarily the middle activity in the list: tactical produc-
tion planning. There are some useful models and lessons for the neighboring
activities in the list as well. We must be mindful of the need to integrate all
of the activities in managing a supply chain as we develop models that assist
in integrated and optimized planning and scheduling.

We will begin with models that are simple, yet produce valuable results.
The understanding we get will help us to extend the models to include more
detail. Eventually, we will find ourselves at the envelope of modern modeling
and solution technology much of which is concerned with models that ad-
dress issues of uncertainty and congestion. These advanced topics enable an
understanding of the limits of commercially available supply chain manage-
ment software. Also, they are very interesting and facilitate learning about
the “physical laws” of production.

6 1. Introduction

To lay the groundwork, we provide an introduction to modeling that is
then used and expanded throughout the book. Although our primary interest
is the models, we cannot ignore the methods for finding good or optimal
solutions. Solution techniques are discussed in Chapter 8.

2. Optimization Modeling

A model captures the essential features of something without actually being
the thing itself. Some models capture the shape and proportion of a physical
object, but at a different scale and without the functionality. An example
is a plastic model of a jet airliner. Some of these models are used as toys,
but others are used to study air flows using a wind tunnel. When creating
the model, some details have to be carefully reconstructed and others can be
ignored entirely.

When building any model there is an art to including the important details
and leaving out the rest. This is known as abstraction. There are two concepts
that are needed; using symbols to represent general objects and selecting a
sufficient level of detail to include in the abstraction. In this chapter we will
acquire the skills needed to build the models and begin to develop a sense of
the art of modeling.

2.1 Abstraction

We are all familiar with abstraction. We represent items and concepts using
general symbols rather than something specific. A very simple, but illustrative
example is the way that we discuss sales tax. We might tell someone that the
sales tax is going to be “seven percent of whatever you spend.” The words
“whatever you spend” represent a number that is left unspecified. To be more
general we might explain the concept of sales tax as “a percentage of whatever
you spend.” In this example, both numbers in the sales tax equation are left
open. Almost everyone is comfortable with this type of abstraction.

There is a common set of shorthand that often is used with this type of
abstraction. Let us exercise the shorthand. We might say that the sales tax, y,
is a fraction, C, of whatever you spend on purchases, x. These symbols allow
us to write the sales tax equation: y = C × x. Since here we are using single
characters for all of the variables and data, we (and most other authors) will
use an even more condensed shorthand that assumes multiplication. We write
y = Cx to mean that the sales tax equals the tax rate times spending.

We can go a little further with this example. We can change the model
slightly. Suppose we said to a friend from Nevada (where there is no sales
tax) the following: “To compute the sales tax, you add up the cost of the

8 2. Optimization Modeling

items that you purchased then multiply the total times the tax rate.” Notice
that this statement is in some ways even more abstract in that it implies
multiple items but does not specify how many.

Assign the symbol N to the number of items. One way we can use short-
hand to write down this new equation is y = C × (x1 + x2 + . . . + xN). We
have used the symbol . . . to mean “repeat the pattern” up to and including
the ending value given. We have used subscripting to indicate that we want
to represent the members of a list. We are saying that xi represents the cost
of the ith item that we purchased. A more compressed shorthand is available
that uses the symbol

∑
to indicate summation over an indexed list. Using

this notation the sales tax equation is

y = C
N∑

i=1

xi

(or y = C
∑N

i=1 xi).
Before proceeding with a careful development of the symbols that we

need, let us pause to consider the philosophy of abstract models. Models that
have the right level of abstraction can be very powerful. If there is not enough
abstraction, we get bogged down in the details. With too much abstraction,
we lack the details relevant to our analysis. The right amount of abstraction
depends, of course, on our purpose.

If the goal of the model is to describe tax calculation for a purchase
transaction the use of xi for the purchase cost of item i seems appropriate.
If we are interested in projecting tax revenues for the government from a
variety of sources, we might want to model total sales tax revenues for year i
as yi. A model with considerably more detail would have xj,k,l,m the cost of
item j purchased by person k on day l in year m for the purpose of projecting
sales tax revenues by the government; but this is probably too much detail.
Conversely, a model that represents total sales tax revenue for year i as yi is
so abstract that it has no value whatsoever for describing the tax calculation
for an individual’s purchase transaction.

In §1.3 we drew a distinction between planning and scheduling and stated
that our main interest was in tactical planning. We can now recast this dis-
cussion using the terminology of abstraction that we have developed so far.
We can say that for our purposes, planning models are more abstract than
scheduling models. Scheduling models use finer granularity. The idea is that
in planning we want to look a bit more at the forest than at the trees. We do
not want to ignore the trees, but we do not want to be so focused on them
that we miss the forest. This tired metaphor can be restated as: We want to
use a model that is abstract enough to be manageable, yet contains enough
detail to be realistic.

2.2 Symbols 9

2.2 Symbols

Symbols enable condensed statements of abstract concepts. Once a reader is
familiar with the symbols, they can often be easier to understand than words
because natural languages are not particularly well suited for abstraction.
Our purposes in this section are to introduce notation that will be useful
throughout the book. Although some of the notation has already been intro-
duced, more meaningful examples will be given in the following chapters. The
reader should not be concerned if all of the notation does not seem intuitive
at this point. A full description is given here so that this section can be used
as a reference.

Shorthand is needed to write models for entire supply chains in a space
small enough to be comprehended by someone. In exchange for the nuisance
of learning these modeling conventions, we get very powerful and abstract
models. The models can be used to get solutions to our planning problems.
They can also be used as a basis for discussion and thoughtful consideration
of planning, production, and distribution systems.

2.2.1 Variables, Data, Subscripts, and Math

When we want to specify a quantity that is to be determined in the model, we
will usually use a lower case letter such as x. We refer to x as a variable. If we
want to refer to a value that is to be supplied (or obtained from a database)
as data, we will typically use an upper case letter such as C. Occasionally, we
will use more than one letter for a single piece of data such as LS to indicate
a lot size. Usually we will assume that appropriate units of measure are in
use, but sometimes we will have to discuss this in the text.

Readers of different models have to be a little bit flexible since there is a
limited number of letters. In one model C might be the sales tax rate, but in
a different model it might be used to represent production capacity. Note also
that in a model concerned with short term production planning the capacity
would be data, but in a longer term model, the capacity might be a variable.

If the data or variables of interest can be organized into a list, we use
subscripts. For example, we might use xi to indicate production quantities
for product i. When creating abstract models, it is often useful to assume that
the products have been put in a list so it is reasonable to talk about the ith

product. In similar fashion, we might assume that resources for production
or shipping have been put in a list so we can represent the capacity of the
jth resource as C(j). Notice that we use parenthesis rather than subscripts
for data that are in a list. This is done to help emphasize the difference
between variables and data and to allow for data to depend on complicated
expressions when necessary.

Often, we want to indicate that some variables are special. For example,
we may want a variable to indicate that machine j has been set up for product
i. Since either it has been or it has not been, this variable can take on only

10 2. Optimization Modeling

two values. For such variables, we will typically use Greek letters such as δ
to help the reader of models identify special variables.

Sometimes the variables or data are naturally represented as lists of lists.
The idea can be extended to lists of lists of lists and so on. In this book, we use
multiple indexes that are separated by commas. For example we might use
C(j, t) to represent the production capacity for resource j in period number
t and xi,j,t to represent production of product i using resource j in time
period t. A list of numbers is sometimes called a vector. When we want to
be less abstract, we sometimes just give the concrete values in a list using
parenthesis to separate data from text. For example, if we have said that
C(j) is the capacity of resources j, we might give the actual values for the
first three resources as (12, 44, 56).

Arithmetic such as addition, subtraction, and division are shown in the
usual ways. Multiplication is assumed when two symbols are side-by-side. For
example, D(j)xj means that the jth element of the D list is to be multiplied
by the jth element of the x variable list. When summation is to occur over
a list or over two lists multiplied together, we will usually make use of a
summation symbol,

∑
. For example, if D and x are each lists of length

greater than or equal to m we would indicate the sum of the product of the
first m elements in the two lists as

m∑
j=1

D(j)xj .

Just to make this example concrete, suppose that D = (4, 1, 2), x = (2, 5, 1),
and m = 2 then the sum will be 4 × 2 + 1 × 5 = 13. If m happens to have
a value that is the same as the length of the two lists, then this expression
could be called the product of the two vectors. We use the notation x2 to
mean x times x.

We adopt the convention that multiplication and division are done before
summation, which is done before explicit addition and subtraction. So the
expression

2∑
i=1

xi + x1x2

is 17 if x1 = 2 and x2 = 5. If the modeler needs a different order of operation,
parenthesis can be used. Operations in parenthesis are done first, with the
processing proceeding from the inner expressions to the outer as one would
expect. There are better ways to write this, but we continue with our example
where x1 = 2 and x2 = 5 and note that(

2∑
i=1

[xi + x1]

)
x2

is [(2 + 2) + (5 + 2)] × 5 = 55.

2.2 Symbols 11

In the interest of completeness, we need to mention the possibility of an
empty summation. That is, the notation allows for a summation like

∑t
i=3 xi

with t being data that need to be filled in. When t happens to be greater
than or equal to 3 we know what to do. And in the event that t is smaller,
then the summation becomes empty and we assume a result of 0.

2.2.2 Sets

The process of planning for production in a supply chain relies on the creation
of many groupings. Products are grouped by family, shippers by mode, etc.
These groupings can be given as sets and manipulated with the standard set
operators. We will use calligraphic letters such as L to indicate sets. When we
want to give a concrete example of the members of a set we will set brackets
and a comma delimited list such as {23, 44, 6}.

Typically, we will want to collect sets of indexes and we also want to
have indexed lists of sets. For example, we might indicate the set of product
indexes that must use resource j by U(j). To be less abstract, suppose that
parts 12, 13, and 21 are the indexes of the only parts that must use resource
17, then we would write U(17) = {12, 13, 21}.

To indicate that an index variable i is to vary over all values in some
set A, we use the notation i ∈ A. So the notation can be used to indicate
summation over the members of the set A. Continuing with the example
using U , suppose that xi gives the amount of product i to be produced. We
can give the total production by resource j as y(j) and we can define it as

y(j) =
∑

i∈U(j)

xi.

To be more concrete, we know that in this example

y(17) = x12 + x13 + x21.

At the lowest level of abstraction, we might actually know of a decision that
has been made concerning production quantities and we could compute the
value of y(17).

2.2.3 Objective Functions and Constraints

We have now assembled enough notation to begin to make some useful plan-
ning models. The most important step is to decide upon an objective. In
many organizations, this is a very difficult step for the decision makers. Of-
ten, it is not possible to agree on a single objective, so the modeler must
either merge multiple objectives into one or create multiple models.

It turns out that the very first decision that must be made is often one
that has far reaching strategic and organizational implications. Should the

12 2. Optimization Modeling

supply chain minimize costs or maximize profits? As we shall see, they are
not the same thing. We will return repeatedly to the implications of different
objectives. However, for the moment, we will see how our notation can be
used to write down an objective function. We call it a function because its
value will depend on the values assigned to variables. The modeler does not
assign values to variables; we rely on optimization software to do this.

As a practical matter, objective functions can be quite long. Let us begin
with two simple ones. We will require that the user of our models lists the
products so that they can be numbered, then we require that the cost for
the ith item be given as C(i). For the profit maximizing model, we will also
need the revenue for each item R(i). Assuming that there are N products,
our objectives might be to

minimize:
N∑

i=1

C(i)xi

or to

maximize:
N∑

i=1

(R(i) − C(i))xi.

The expression (R(i) − C(i)) warrants comment. First, we note that paren-
thesis have been used to indicate that the subtraction is to be done before
the multiplication. Second, clarity is almost always more important than
efficiency, so we count on the software to handle the subtraction of data el-
ements in (R(i) − C(i)). An alternative would be to have a data element
called “profit” for each item which is equal to the revenue minus the cost of
the item. Maybe we would use the symbol P (i) for the data in this list. The
advantage might seem to be that the subtraction can be done in advance,
but this is really not much of an advantage since optimization packages are
very good at this type of processing. The disadvantage is that the difference
between the maximization and minimization objective functions would not
be as obvious. We should almost always strive for clarity over efficiency since
the time spent by the people who develop and interpret the models is usually
more valuable than the computer time spent processing them.

Even these simple objective functions demonstrate the need for con-
straints in order to have the model make sense. One can see, for example,
that costs are lower when nothing is produced than when something is pro-
duced. Actually, the cost objective function is minimized by producing nega-
tive quantities. An optimization program should make all of the xi values the
most negative number that can be represented by the computer. In similar
fashion, profit is maximized by unlimited values for each xi if revenues for
the products are greater than costs. This may be mathematically the correct
maximizer, but it is not useful.

This issue is so prevalent that many optimization software packages as-
sume that variables must be constrained to be not less than zero unless

2.2 Symbols 13

otherwise noted. For production planning this avoids the absurdity of huge
negative production values. But this highlights the major difficulty in con-
structing cost minimization models, which is that costs are minimized by
producing nothing. This creates difficulties for production management that
we will return to later. It also creates a need for ways to express constraints
that we will address now.

In order to provide a fully specified model, we must add constraints on
the decision variables. Constraints are given as inequalities (or sometimes
equalities) that involve decision variables, data, and an indication of the
indexes for which the constraints are to apply. For example, to constrain the
cost minimization problem, we might at least want to add the requirement
that xi ≥ 0 for i = 1, . . . , N . Actually, a better thing to do would be to
establish a data list of demand for each item. If we let D(i) be the demand
for product i, then a good constraint for the cost minimization objective
function would be to require that production be greater than or equal to
demand. The resulting problem would be to

minimize:
N∑

i=1

C(i)xi (MINC)

subject to:

xi ≥ D(i) i = 1, . . . , N.

There are a few things to notice. We have given the problem the name
“MINC,” which is shown to the right of the objective function. Although we
will always give the name with the objective function, we will always intend
for it to refer to the entire problem with constraints. The next thing to notice
is that we do not need a computer to solve this simple problem. Assuming
that all of the C(i) and D(i) values are greater than zero the minimum cost
production plan will be to produce exactly the quantity demanded of each
item. The final thing to notice is our decision as modelers to require that
production be greater than or equal to demand rather than equal to it. This
is part of the art of modeling, and we will have more to say about it later.

Generally, equality constraints should be avoided unless they are clearly
required for logical or physical reasons. No such reasons are present here;
many organizations produce more than their demand. The reasons to use
models with inequality constraints is that it more clearly indicates the in-
tention of the modeler, it makes it so that the optimization software is more
likely to be able to find a solution that satisfies all the constraints when ad-
ditional constraints and objective function terms are added to the model to
make it more realistic.

Another thing that some readers might notice is that we have not added
any constraints of the form xi ≥ 0, that some modelers always add. Our
feeling is that these constraints are not always a good idea, but they do offer
some advantages. Consider the following problem:

14 2. Optimization Modeling

minimize:
N∑

i=1

C(i)xi (MINC0)

subject to:
xi ≥ D(i) i = 1, . . . , N
xi ≥ 0 i = 1, . . . , N.

If our intention is that all of the D(i) should be greater than zero, then
constraining the variables to be greater than or equal to zero adds nothing but
confusion because it is redundant. However, if we optimize the model when
we fail to provide a value for the demand of some product, the production
quantity will simply be set to zero. Whether or not this is good depends on
whether or not it is an error if some products have no demand specified.

There is some terminology associated with constraints. We refer to the
part before the relationship operator as the left hand side or the LHS. In
MINC0 the LHS is xi for all constraints. In similar fashion we refer to D(i)
and 0 as the right hand side or RHS of their respective constraints. When we
discuss a model, we often refer to a single clause such as

xi ≥ 0 i = 1, . . . , N

using the plural “constraints.” This is because the notation i = 1, . . . , N
implies that there is a constraint on multiple members in a list (all members
of the list, in this particular case).

Many people involved in production planning speak about “constraints”
in daily work-related conversation. Sometimes they use the word very loosely
and in other cases they use it in conjunction with various popular theories
about constraints. One of our goals in this book is to introduce notation
that links the concepts of constraints to emerging supply chain optimiza-
tion software and to commercially available software for broader classes of
optimization problems.

2.3 Finding Solutions

There is some value in just writing down an optimization model for supply
chain planning. Many organizations send mixed messages about the goals of
various planning groups and the exercise of creating a rigorous statement of
the problem can highlight these issues and lead to important breakthroughs.
However, often we want a computer to come up with a production plan that
has the best possible value of the objective function. Companies that use
special purpose supply chain optimization software make use of models that
are “built-in” and other companies make use of optimization models that
they create and maintain themselves. In either case, data must be supplied
so that the software can search for a solution.

2.3 Finding Solutions 15

The process of finding a best possible solution is usually referred to as
optimization and the software for this purpose is referred to as a solver. In
everyday language we often use the word “optimization” for the process of
improving solutions.

2.3.1 Data

The word “data” is used in many different ways. Often, any input to a com-
puter is called data. Data about the model rather than data for the optimiza-
tion are a big portion of the data that must be provided to major packages
for supply chain optimization that are add-ons to larger accounting and en-
terprise management packages. This is why consultants are often required in
order to install and tune the software. For companies that create their own
models directly, data about the model are implicit in the models themselves.

In either case, some of the data for the models come from enterprise-wide
databases and other data must be supplied specifically for the model. For
example, data about the revenue from each product are often available from
databases with little effort and data concerning costs are available with some
effort. Optimization packages can read data from a variety of data sources.
One of the tasks in setting up an actual optimization system is to specify
data sources.

We are primarily concerned with creating models, but we cannot ignore
the availability of reliable data. We must pause frequently to ask if one can
reasonably obtain the data and what the effect will be if the data are un-
certain. Even in the simple cost minimization model MINC, we face a data
problem. Where will we obtain the demand data?

2.3.2 A Few Words About Uncertainty

Uncertainty makes the life of production planners much more difficult. The
same can be said of supply chain optimization modelers. Much of the data
that are needed for models cannot be known with certainty. For example, in
the model MINC we rely on knowing the demands. It is often not possible
to know the demands with certainty. One solution to this problem is to use
the best guess available and plan accordingly, but it is often possible to do a
better job than this. We will have more to say about uncertainty later, but
for now we note that we can group methods of dealing with uncertainty in
our models into two broad categories: 1) we can decompose the problem and
deal with uncertainty separately or 2) we can explicitly include uncertainty
in our models.

The first choice is currently more popular. When viewed from the perspec-
tive of the models that we develop, one can make use of a variety of formulas
and algorithms to determine appropriate data for constraints that take into
account the uncertainty. One can refer to this as decomposition of the uncer-
tain and certain part. To use different language for the same thing, we might

16 2. Optimization Modeling

say that we decompose our problems into the random and the deterministic
part. Some people use the word stochastic in place of “random.”

An example of decomposition would involve using a model that suggests
an optimal value of demand to use as a target. The result of this calculation
would then be used as D(i) in our calculations. These demand models can be
simply forecasting models of varying sophistication such as those provided in
commercial supply chain optimization software. They could also be models
that are part of the academic research that attempt to consider cost structures
as well. In the latter case, neither the models nor their inclusion in our models
are trivial.

The second possibility is to incorporate the uncertainty in the modeling
process. The most straightforward way to do this is by specifying scenarios.
A complete set of data is specified for each scenario. In the MINC example,
we would specify a full set of values for C and D for each scenario. After
solving the problem for each of the scenarios, the decision maker can decide
how to best hedge against uncertainty. A more sophisticated model, which is
much more difficult to solve, involves associating a probability or a likelihood
with each scenario. Some solvers can take this information into account when
producing solutions. Complete details of all methods of dealing with uncer-
tainty would fill an encyclopedia. However we address a few of the methods
in later chapters.

2.3.3 Solvers and Model Structure

It was mentioned earlier that we typically want to create models that express
our needs and are easy to read rather than worrying about what the computer
will do with the model. We hedged a bit by using words like “usually” and
“probably.” This is because some things make the models much harder to
solve optimally so we would want to put them in the model only if they are
very important. These issues will be discussed as they arise, but we mention
a few important ones here as illustrations.

Before worrying about whether or not a model can be solved optimally,
we have to decide whether we care about optimality. In many situations, a
solution that satisfies the constraints is good enough. By definition, we would
always prefer a better value of the objective function, but having the best
may not always be important. In other cases, the objective is of considerable
importance and we would prefer to have an optimal value if possible. In
either case, we would not want to do anything to make the solution harder
to obtain without a good reason. For the moment we mention two things
that can make obtaining an optimal solution much more difficult: integers
and non-linearities.

It is often sensible to require some variables to take on integer values. For
example, if the product that we produce is surgeries, it does not make sense
to talk about producing a partial organ transplant. Nor does it make sense
to allow for part of a flight attendant to travel between two cities.

2.4 Implementing the Models in this Book 17

Usually, the greater the number of variables that must be integers, the
harder the problem is to solve. Consequently, although it also does not make
sense to schedule the completion of a fraction of a 10mm bolt, we would
typically not want to constrain the quantity of bolts scheduled to be an
integer. This is because it will often come out to be an integer anyway and
because even if it does not it will typically make no difference if it is rounded
to an integer after the computer has reported a solution.

If there are a large number of integers inherent to the nature of the prob-
lem it is often preferable to make use of special solvers that are addressed
later. For the time being, we will require integers only when it is critical to
the model. Usually, we will want a variable to be constrained to be either a
zero or a one, which we will denote with a constraint of the form x ∈ {0, 1}.
If we need integers in some other range, say between J and K, we will use
a constraint like x ∈ {J, . . . , K}. A constraint enforcing a variable to be an
integer is also called integrality constraint.

Nothing that has anything to do with planning is truly linear, but ac-
counting is easier and so is optimization if we pretend that there is linearity.
We will restrict ourselves to expressions where variables are not multiplied
by other variables and where neither powers and roots of variables nor any
other fancy functions are used. Such models are linear. In other words, ex-
pressions like x2, x/y and

√
x can not be part of linear objective functions and

constraints provided that x and y are variables. Some kinds of non-linearities
cause a lot less trouble than other kinds, but we will introduce non-linearities
with great caution. For one thing, most production planning models are only
an approximation anyway, so linear approximations are often good enough.

Non-linearities in the variables can make solutions harder to obtain, but
non-linear expressions in the data do not cause any trouble. Sometimes it is
useful to use expressions where roots of data are used particularly to help with
conversions of units of measurement. In other cases, products and fractions
involving data elements are used in modeling to make the model easier to
understand. The non-linear expressions in the data can be evaluated when
the values are provided and before the computer passes the problem to the
solver software.

2.4 Implementing the Models in this Book

The models developed in this book can be fed almost directly to commer-
cially available software. Nevertheless, it is important to keep some basic folk
wisdom in mind when doing so:

• Model simple – think complicated
• Start small and extend
• Divide and conquer – try to avoid mega-models

18 2. Optimization Modeling

• Try to use similarities, analogies, and metaphors
• Drive the data through the model and not vice versa

The models for supply chain management typically need extension and cus-
tomization, but it is a good idea to begin with the models as given here.
Models should be extended incrementally so that they can be debugged.
Ultimately, it may become necessary to reduce the computational effort as-
sociated with solving the models. This may be accomplished, e.g., by using
aggregation techniques such as those described in §6.6. A more immediately
apparent issue when implementing the models is the need to add information
about how to handle the last periods in the planning horizon. This is dis-
cussed in §6.3. Chapter 7 contains implementations using popular modeling
languages.

One final word about problems and objective functions. As a convention
we may assume, at least for a while, that all models and all objective functions
in this book will be of the type “minimize” if not stated otherwise, to make
the exposition clearer. If concepts are understood for minimization it is easy
to generalize to maximization.

3. Starting with an mrp Model

Rather than creating a model from scratch, we begin with a venerable model
called materials requirements planning. The model is often referred to as
mrp with lower case letters (or sometimes “little-mrp”) to make clear the
distinction between mrp and MRP II. We will look at MRP II later.

The mrp model comes from a production planning perspective rather than
an optimization perspective, but after we understand how it works, we can
create an optimization model that corresponds to it. This model is a useful
starting point for further modeling. So we will first understand the mrp model
as it was originally given. It is a very practical model, so we will introduce
an example early on. One does not need an optimization model for mrp, but
we will use our model to further understand the limitations of mrp and we
will use it as a basis for more sophisticated models.

The mrp model uses a lot of data about items and components. The term
Stock Keeping Unit (SKU) is used to refer to items that are sold as well as
components and components of components, etc. For each SKU we need to
know

• the lead time, which is an estimate of the time between the release of an
order to the shop floor or to a supplier and the receipt of the items;

• if there is a minimum production quantity (referred to as a minimum lot
size for items that are manufactured in-house) or if there is a minimum
order quantity for purchased items;

• the current inventory levels (for simplicity we include items scheduled for
receipt during runs of mrp in earlier periods);

• components needed, which is often referred to as a bill of materials (BOM).

This list of data seems short, but can be very hard to obtain and maintain.
The fact that mrp requires production personnel to provide and maintain
these data is one of the reasons that mrp is often very popular with accoun-
tants.

3.1 An Example

We use a very small example to illustrate the notation. Suppose that there is a
single end item with SKU AJ8172 that has a bill of materials as shown in Fig-

20 3. Starting with an mrp Model

� � � � � � � � � � � �

� 	

 � � � � � � �

 �
 � � �

��

� �

Fig. 3.1. BOM for a Simple Example

ure 3.1 and the properties given in Figure 3.2. In this figure, the components
that are ordered from outside suppliers (e.g., RN0098) do not have a list of
their components given since the mrp model typically stops at organizational
boundaries.

While Figure 3.1 has a single end item, Figure 3.3 shows a slightly larger
example that emphasizes that the product structure for mrp can be fairly
general. In this example, there are two end items: AJ8172 and TR1777. They
both use the component RN0098. The assembly of AJ8172 requires 1 of them
and TR1777 requires three items of RN0098. We will generally make use of
the simpler example, but the reader should bear in mind that mrp is intended
for large numbers of SKUs with potentially many shared components or sub-
assemblies.

3.2 mrp Mechanics

Materials Requirements Planning was defined operationally. Although it was
invented before the term Just-in-Time (JIT) was popularized, in some sense
mrp is a just-in-time system, even if it is not generally considered to be a
“JIT” system. Production is planned to be done as late as possible but no
later.

We make use of the so-called “low level” coding provided by mrp pack-
ages. This is an ordering of the parts such that the list begins with end-items
and no item appears in the list before an item that contains it as a compo-
nent. We assume that the parts are sorted in low level code order. We then
proceed through the parts and for each one, we anticipate the need for lots
to be ordered as inventories are depleted. Once we know when lots will be
needed, we can subtract the lead time to determine when the order must be

3.2 mrp Mechanics 21

1. AJ8172:
Production Lead Time: 2 days
Minimum Lot Size: 100
Components: 2 LQ8811, 1 RN0098
Initial Inventory: 90

2. LQ8811:
Production Lead Time: 3 days
Minimum Lot Size: 400
Components: 1 NN1100, 1 WN7342
Initial Inventory: 300

3. RN0098:
Order Lead Time: 4 days
Minimum Order Quantity: 100
Components: N/A
Initial Inventory: 100

4. NN1100:
Order Lead Time: 1 day
Minimum Order Quantity: 1
Components: N/A
Initial Inventory: 0

5. WN7342:
Order Lead Time: 12 days
Minimum Order Quantity: 1000
Components: N/A
Initial Inventory: 900

Fig. 3.2. Data for a Simple Example

released to the floor or the vendor. These release dates cause additions to the
demand for component parts. When we eventually process the component
SKUs, plans will be made to meet the accumulated demands for them, thus
creating demands for their components and so on. Time must be broken into
buckets such as days or weeks in an mrp model.

We can think of mrp logic as a plan for sequential toppling of a line of
dominoes. If you know when you want the last domino to fall and you know
the time for each of the dominoes to knock down the next one, you can
calculate when the first domino should fall in order to achieve the desired
result. The same logic underpins mrp.

Continuing with the example in Figure 3.2, suppose that the demand for
AJ8172 in the next eight periods is 20, 30, 10, 20, 30, 20, 30, and 40. This
results in the mrp production/inventory plan for AJ8172 given in Figure 3.4.
We plan for receipts in the period when the inventory would be depleted
without them. We then subtract the lead time in order to determine the last
possible release date. Since we begin with an inventory of 90, the inventory
would be depleted in period 5, so we plan to receive enough in period 5 to

22 3. Starting with an mrp Model

NN1100 WN7342

LQ8811 RN0098

1 1

AJ8172

2 1

TR1777

3 1

RN0099

...

Fig. 3.3. BOM for a Slightly Bigger Example

avoid a shortage. In order to receive items in period 5, the order must be
placed in period 3 because the lead time is 2. Since the minimum lot size is
100, the order is placed for that quantity.

Day

AJ8172 1 2 3 4 5 6 7 8

Demand 20 30 10 20 30 20 30 40

Inventory Plan (90) 70 40 30 10 80 60 30 90

Planned Receipts 100 100

Planned Releases 100 100

Fig. 3.4. mrp Plan for AJ8172 Using Data from Figure 3.2

The planned releases of orders for AJ8172 creates demand for its com-
ponents. There will be a need for 200 LQ8811s and 100 RN0098s in day 3
and day 6. This is shown in Figure 3.5. The initial inventory of WN7342 is
adequate for the eight day planning horizon.

3.3 mrp Data

Central to mrp is the BOM, which gives the components that are combined to
make other components and, ultimately, each end item. There are many ways
to describe and display a BOM. Since we are interested in abstract models,
we use the data R(i, j) to give the number of SKU i’s directly needed to make

3.3 mrp Data 23

Day

LQ8811 1 2 3 4 5 6 7 8

Demand 200 200

Inventory Plan (300) 300 300 100 100 100 300 300 300

Planned Receipts 400

Planned Releases 400

Day

RN0098 1 2 3 4 5 6 7 8

Demand 100 100

Inventory Plan (100) 100 100 0 0 0 0 0 0

Planned Receipts 100

Planned Releases 100

Fig. 3.5. mrp Plans for LQ8811 and RN0098 as a Result of Figure 3.4 Plan

one SKU j. This notation presupposes that the SKUs are in a numbered list
such as Figure 3.2 so that the words “SKU i” have meaning. Any numbering
of the parts can be used in the optimization models, but we use a low-level-
coding to be somewhat consistent with mrp software. We let P represent
the number of SKUs in the list. We use the numbering in Figure 3.2, which
assigns a 1 to AJ8172, a 2 to LQ8811, and so on. Hence, the value of R(2, 1)
is 2. The values of R(3, 1), R(4, 2), and R(5, 2) are 1. All others (e.g., R(4, 1),
etc.) are zero.

Remember that time must be broken into “buckets” in an mrp model.
The buckets are typically weeks or days. In our simple example we use days
and we use T to represent the number of days in our planning model. In a
typical mrp application T might be on the order of a few months or even a
few years. Since T gives the last time bucket that we consider in the planning
process, it is sometimes referred to as the planning horizon.

We use the notation LT (i) to indicate the number of time buckets that
one can expect between issuing an order for production or shipment of SKU
i and receiving it. At this point, we are intentionally a little bit vague about
the exact meaning. For the example data, LT (1)=2, LT (2)=3, etc.

Lot sizes are a standard part of mrp. Later, we will advocate elimination
of most lot sizes as externally supplied data. But for now we want to remain
consistent with common mrp practice, so we let LS(i) be the minimum lot
size for SKU i. In the example data, LS(2) = 400. For SKUs such as NN1100
that can be ordered in any quantity, LS should be given as 1. Other lot sizing
conventions are possible, such as requiring that production be in multiples
of a lot size. However, our models use a minimum production lot, which is
satisfactory for avoiding unduly small production quantities for an SKU.

24 3. Starting with an mrp Model

Our final pieces of data are the external demands for item i in period t,
which is given as D(i, t). Demands are clearly needed for end items. Of course,
in many situations there are external demands for components as well because
they are distributed to the maintenance organization, sold as replacement
parts, or perhaps sold to competitors. This set of external demands is often
called the master production schedule.

The data needed for an optimized mrp model are summarized in Table 3.1.
A large number, referred to as M , is needed to force the computer to make
some-or-none decisions that are needed to enforce the minimum lot sizes.
This can be any number, provided it is larger than any possible production
quantity. To avoid excessive roundoff error, one should try to use a number
for M that is not more than, say, a hundred or a thousands times larger.

P Number of SKUs
T Number of time buckets (i.e., the planning horizon)
LT (i) Lead time for SKU i
R(i, j) Number of i’s needed to make one j
D(i, t) External demand for i in period t
I(i, 0) Beginning inventory of SKU i
LS(i) Minimum lot size for SKU i
M A large number

Table 3.1. Data for the mrp Formulation

3.4 mrp Optimization Formulation

An optimization model is not needed to use mrp, but we can create one and
then extend it. In other words, our goal is to create an optimization problem
that matches mrp not for its own sake but to get started with models that
match classic planning systems. Using this model as a starting point, it is
easy to go on to more sophisticated models.

We really have only one decision variable, xi,t, which is the quantity of
SKU i to start or order in period t. In order to enforce lot sizing rules, we
need something that indicates production of an SKU in period t. What is
needed is an indicator variable. This is a somewhat advanced topic, but we
need to tackle it now in order to model classic mrp.

Note there are only two things in optimization models: data and variables.
Something that indicates that there will be production in period t is clearly
not data. We create a variable, δi,t, that will be one if any of SKU i will be
started in period t. We have to put in constraints to force the computer to
make this variable behave this way. At first glance, this variable is redundant
with xi,t, but not equivalent. We will see that it serves a different role.

3.4 mrp Optimization Formulation 25

The following constraints must hold for all i = 1, . . . , P and t = 1, . . . , T .

• Demand and materials requirement:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

(
D(i, τ) +

P∑
j=1

R(i, j)xj,τ

)
≥ 0

• Lot size requirement:
xi,t ≥ δi,tLS(i)

• Modeling constraint for production indicator:

δi,t ≥ xi,t

M

• Integer constraint for production indicator:

δi,t ∈ {0, 1}
• Non-negative production:

xi,t ≥ 0

Fig. 3.6. Constraints for mrp

Figure 3.6 gives the constraints needed for a model of mrp. These con-
straints are fairly complicated, but they provide a nearly complete description
of mrp. The first constraint requires that the sum of initial inventory and pro-
duction up to each period has to be at least equal to the total of external
demand and demand for assemblies that uses the SKU. The summation is
to t − LT (i) for each period (there will be one constraint for each value of
t) because of work that must be started LT periods before it can be used to
satisfy demand. The product R(i, j)xj,τ anticipates the demand for SKU i
that results when it is a component of SKU j. This product will turn out to
be zero for a lot of i, j combinations, but that does not present any special
difficulty for a computer.

The demand and materials constraint in Figure 3.6 could have been writ-
ten

t−LT (i)∑
τ=1

xi,τ + I(i, 0) ≥
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ .

The use of algebra to rearrange the terms of a constraint is entirely a matter
of taste. There is no effect on the solution or the computational effort. We
chose to put a zero on the RHS to emphasize that mrp requirements are all
firm. The main point is that the term

t−LT (i)∑
τ=1

xi,τ

26 3. Starting with an mrp Model

captures the production that will be completed up to time t, while the term

t∑
τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠

is the total demand that will have occured up to the same time period.
The lot size constraint specifies that if there is any production of a SKU

during a period it must be at least as much as the minimum lot size. The
modeling constraint for the production indicator forces it to take a value
greater than zero if there is production for the SKU in the period, which the
integer constraint forces it to be either zero or one. Many modeling languages
eliminate the need for these two constraints by allowing for semi-continuous
variables, which must be either zero or above a threshold; see §8.3.1 for more
information. The final constraint forces the computer to pick only production
values that are not negative.

All we need in order to use an optimization package to accomplish mrp
is an objective function. The objective in mrp is to make things as late as
possible but no later. So one possible objective is to minimize

P∑
i=1

T∑
t=1

(T − t)xi,t

that will result in things being made “as late as possible” and we count on
the constraints to enforce the “but no later” part of the mrp model. There are
better objectives than this, some of them will be described later. However,
for now our goal is to mimic mrp. Stated in classic optimization form, the
mrp problem is given in Figure 3.7.

In order to illustrate that these models can be implemented almost di-
rectly using a modeling language and make the notion of a modeling language
concrete, Chapter 7 is provided. In that chapter, we demonstrate how some
popular modeling languages can be used to implement this simple model
mrp. We also show how the example data can be entered and an optimal
solution obtained.

3.5 Discussion of mrp

Notice that we do not require integer valued production quantities. This
particular model results in integer valued production quantities, provided
that the demands and minimum lot sizes are integers. After we extend the
model, we could worry that it might be possible for the computer to report
that the optimal plan involves producing 123.3 of some product in a period
and this might not make sense for that particular product. However, this
model is intended to be a plan and not a schedule. Furthermore, unless the

3.5 Discussion of mrp 27

Minimize: ∑P

i=1

∑T

t=1
(T − t)xi,t (mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

(
D(i, τ) +

P∑
j=1

R(i, j)xj,τ

)
≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t − xi,t

M
≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

Fig. 3.7. mrp Model

production quantities are very small, the production quantity can typically
be rounded to the nearest integer producing errors that are much smaller
than the estimation errors involved in the data for the problem.

Classic versions of mrp, as well as our optimization formulation, are in-
tended only for certain types of bills of material. Bills of material where
multiple SKUs are combined to make a new SKU work well. This is the case
with many things such as computers and cars. Products where one item is
used to produce multiple items are referred to as divergent BOMs. For di-
vergent portions of the BOM, the entries in R(i, j) will be fractional. For
example, suppose SKU TB4-16 is a sixteen foot board and TB4-8 is an eight
foot board. In this example R(TB4-16, TB4-8) will be one half. More com-
plicated situations such as cycles in the BOM, require modification to the
basic scheme. Such modifications are beyond our scope.

We close our discussion of mrp by considering some of its troubles along
with some of its virtues. Computerized planning systems based on mrp have
been in use for decades and mrp logic remains at the heart of the produc-
tion planning module of many modern Enterprise Resources Planning (ERP)
systems. Any system in broad use is sure to have some troubles and virtues.

3.5.1 Troubles

Of course, no production planning model can be perfect, but there are a num-
ber of well-known and very severe problems with mrp as we have described
it. Perhaps the three most serious problems are

• the actual time to complete an order is usually a function of congestion
rather than of the SKU,

28 3. Starting with an mrp Model

• lot sizing can cause nervousness,
• there are no capacity constraints.

It turns out that these problems are related. The lack of capacity constraints
results in a need for lot sizing and exacerbates the variable lead time problem
considerably.

The underlying model for mrp is based on common thinking among data
processing professionals in the early days of the application of computers to
business problems. Data are collected into a database and then processed.
The trouble with lead times is that they are given as static data. However,
the time from issuance of an order to completion depends mainly on what
work has to be done before the order “gets to the front of the line” of orders
that await processing. Lead times are often weeks when the actual production
time is hours.

One reason that lead times have to be much longer than production times
is to account for machine failures. But even if the capacity is not overutilized
and if the production resources are reliable, lead times can be variable due
to waiting lines that form in front of bottleneck resources. This issue can be
important but it is difficult to deal with, so it must be deferred to a later
research oriented chapter. Apart from the (considerable) mitigation due to
using capacity constraints, discussion the problem of variable lead times is
deferred to Chapter 9.1.

A major part of the reason that lead times must be so long is to guard
against periods when the resources are overbooked. This can be mitigated
considerably by the use of capacity constraints, which are not included in mrp.
As we shall see, MRP II was developed as a partial solution to this problem.
We will develop optimization models that address capacity constraints much
more effectively.

Nervousness is a phenomenon where small changes in demand result in
large changes in production plans due to lot sizing rules. Consider the example
given in §3.2. If the company received an order for ten more AJ8172’s in
period four, it would cause production to be shifted earlier and production
for the entire lot of 400 LQ8811’s would be shifted one period earlier as well.
The dynamics of nervousness makes it demoralizing for production workers
and as a result they often ignore the production plans produced by mrp
systems. Who can blame them? First the production plan given in §3.2 is
released to the floor, then a modest size order causes large changes in the
schedule; meanwhile order cancellations can have a similar effect.

One response to this problem is to produce a “frozen zone” for end items
that forbids changes in the schedule for some number of near-term time buck-
ets. This seldom works. The reason is that customers do not care about mrp
induced nervousness. They demand flexibility. As a result, orders get changed
whether the master production schedule reflects it or not. In the worst case
(a common case, unfortunately) expeditors manipulate inventories and pro-
duction schedules to respond to customer needs. Once this practice begins,

3.5 Discussion of mrp 29

it is hard to stop. The mrp system assumptions are no longer valid at all,
since components originally produced for one end item are used in another.
Eventually, day-to-day scheduling is essentially done by expeditors and the
mrp system is reduced to a raw materials procurement aid.

A major reason to use large lot sizes, or lot sizing rules at all, is to ensure
that not too much productive capacity is used to changeover from one SKU
to another. Lot sizes are at best a blunt instrument for accomplishing this. In
reality, one cannot know how big the lot sizes need to be until the production
schedule is complete. For resources that do not happen to be capacity con-
strained in a time period, the addition of more changeovers will not adversely
affect throughput, so smaller, more flexible lots can be used. Conversely, for
resources that are capacity constrained, a delicate tradeoff is needed between
the use of small lots to provide flexibility in meeting customer needs and the
use of large lots to maximize throughput. Setting lot sizing rules a priori is
hardly delicate.

The solution is to simultaneously create production schedules and deter-
mine lot sizes that respect capacity limitations. This solution shows the final
problem with mrp: there is nothing in mrp to guarantee production schedules
that can actually be executed. That is to say, there is an excellent chance
the production plans for many SKUs far exceed the capacity of the resources
used to create them.

3.5.2 Virtues

Having said all that, we can say that an mrp model can still be very useful.
For one thing, it is usually much better than no planning model at all. This is
particularly true in industries with changing demand patterns where standard
orders cannot be used. An mrp model can provide a good starting point for
planning and for the ordering of raw materials.

The materials requirements estimates provided by an mrp system can be
useful to the purchasing department because they provide an “earliest-case”
estimate of requirements. To the extent that the plan exceeds available ca-
pacity, the actual production will take place later than the mrp plan. The
idea of buying materials based on an “earliest-case” estimate is not consis-
tent with modern notions of “just-in-time,” but it is better than being late.
Furthermore, for commonly used low cost raw materials, the mrp plan can
provide essential information for purchasing.

Another reason to consider the use of an mrp model is the same reason
that causes us to begin with it in this book. It is a simple model that can be
the starting point for more sophisticated models. If you plan to use an mrp
model in production and there are minimum lot size requirement, you should
see §8.3.1 for a method of streamlining the model.

4. Extending to an MRP II Model

MRP II was inspired by shortcomings in mrp, and as a result the data pro-
cessing orientation is preserved in MRP II. As was the case with mrp, we
first explain the concepts behind MRP II, then we develop an optimization
model to mimic and improve its behavior. After we have this model in hand,
we extend it to produce a model that can give us production plans that trade
off alternative capacity uses, holding inventory and tardiness in an optimized
way. The letters MRP in MRP II stand for Manufacturing Resources Plan-
ning to make it clear that resources are considered in addition to materials as
in mrp. The word “resource” is used to emphasize that any type of produc-
tive capability can be considered, not just machines. The Roman number II
is intended to make it clear that it is an extension to materials requirements
planning (mrp).

4.1 MRP II Mechanics

There are a number of well-known deficiencies in the model that underlies
mrp. Potentially the most severe is the fact that it ignores capacity. To discuss
this issue it is useful to remember that we are making a distinction between
planning and scheduling as we described in §1.3. Although we have introduced
it as a planning tool, mrp is also often used as a scheduling tool as well.
A severe problem is that there is no guarantee that there will be enough
capacity to actually carry out the plan produced by mrp. In fact, for capacity
constrained production systems, it is seldom possible to implement an mrp
plan as a schedule. This is debilitating when mrp is used as a scheduling tool,
but is also bad for mrp as a planning tool because the absence of capacity
considerations can make the plans so unrealistic that they are not useful.

The data processing professionals who were developing and selling mrp
software in its early years recognized this deficiency and MRP II was devel-
oped in response to it. The database for mrp is extended to include rout-
ing and capacity information. Each production resource is entered into the
database along with its maximum production during a time bucket. We will
refer to the maximum production by a resource during a time bucket as its
capacity. The list of resources used to produce a particular SKU is known as
the routing for the SKU.

32 4. Extending to an MRP II Model

With this information the data processing specified by MRP II can be car-
ried out. The processing begins by executing mrp to determine a production
plan. Then, for each time bucket each SKU is “followed along its routing”
and the utilization of each resource is updated. In the end, those resources
whose capacity would be exceeded by the mrp plan are identified. The user
can be given long and potentially confusing reports that dice and slice the
following data for infeasibilities:

• resources,
• time buckets, and
• SKUs.

Reports are also generated for end-items that would use these “offending”
SKUs and the time buckets in which the end-items would be produced.

The information concerning capacity infeasibilities can be used by the
planner or some software to attempt to change the input data so that a
feasible plan results. The most common method is to “repair” the master
production schedule (i.e., change the timing of the external demand input
data.) Such repairs are difficult, so one of our goals will be to use optimization
models to produce feasible plans in the first place and eventually improve
them later on. But before we do that, we provide the details of MRP II for
the example given earlier. The example is too small to provide a realistic
view of the issues associated with creating feasible plans in a real production
setting, but it will be good enough for us to illustrate the mechanics of MRP
II.

Before we can get started with a practical example, we need to deal with
the issue of units of measurement. In a specific production facility capacity
may be measured in hours, or tons, or pieces, or something else. Since we want
to create abstract models, we will designate the capacity of every resource
during every time bucket to be one. This will allow us to state resource
utilizations as fractions in our models. We will represent the fraction of the
capacity of resource k in one time bucket used by production of one SKU i
as U(i, k).

Suppose that we have only two resources for in-house production: HR-101
and MT-402. Further suppose that HR-101 has 80 hours of capacity per day
and that MT-402 can produce 300 items per day. A capacity of 80 hours
in one day would typically be achieved by a crew of 10 people (or “human
resources”). There are only two items in Figure 3.2 that are produced in-
house. Suppose that AJ8172 requires 10 minutes of HR-101 and that LQ8811
requires 5 minutes of HR-101 and also makes use of MT-402. Using common
slang, we would say that LQ8811 is routed through both HR-101 and MT-
402, while AJ8172 is routed only through HR-101. Note that even though
the word “through” is used, it might be the case that HR-101 is a person
or group of people who move from job to job. This routing is shown in an
abstract way in Figure 4.1.

4.1 MRP II Mechanics 33

NN1100 WN7342

LQ8811

RN0098

R
a
w

M
a
te

ri
a
l

A
J8

17
2a

AJ8172b

AJ8172

HR-101

MT-402

Shipping

Fig. 4.1. Simple Routing Diagram

To use our notation, label HR-101 as resource 1 and MT-402 as resource
2. We then calculate that the utilization fraction of AJ8172 on HR-101 is

(10/60) hours
80 hours

=
1

480
.

Later, we will refer to this as U(1, 1). In similar fashion, we can compute
the utilization fraction for one unit of LQ8811 of HR-101 and MT-402 as
(5/60)

80 = 1
960 and 1

300 , respectively. We have summarized these utilization
fractions in Table 4.1.

Fraction Used By

Resource AJ8172 LQ8811

HR-101 1/480 1/960

MT-402 1/300

Table 4.1. Fraction of Capacity Utilized to Make Each SKU at Each Resource

34 4. Extending to an MRP II Model

Period Resource Utilization

3 HR-101 100
480

+ 400
960

= 5
8

MT-402 400
300

= 4
3

6 HR-101 100
480

= 5
24

Table 4.2. Anticipated Capacity Utilization for MRP II Example

This information allows us to compute the utilizations that would result
from the mrp plan we developed in §3.2, which is given in Figures 3.4 and
3.5. Production of AJ8172 will utilize

100 × 1
480

of the capacity for HR-101 in periods three and six. In period three, pro-
duction of LQ8811 will utilize 400

960 of the capacity for HR-101 and 400
300 of the

capacity for MT-402. We have summarized the anticipated capacity utiliza-
tion for the mrp production plan in Table 4.2.

We can see that the plan would not be possible because there is not enough
capacity for MT-402 in period three. One solution is to move some of the
production of LQ8811 to period two. Other possibilities include authorizing
overtime for MT-402 or subcontracting some of the production of LQ8811.

It is not too hard to fix things with a small example, but when there are
hundreds or thousands of SKUs interacting on many resources, it can be very
difficult. In the next sections we describe ways to use optimization models
and software to find good, and perhaps optimal, solutions based on the MRP
II model.

4.2 MRP II Data and Constraints

As was the case with mrp, MRP II did not begin as an optimization model.
However, we can create an optimization model that will mimic its behavior
and do more. To be specific, we can mimic its intended behavior. That is, we
can schedule things as late as possible without violating capacity constraints.
The objective function for mrp is retained, but additional data are needed
for constraints. The data needed to mimic MRP II are given in Table 4.3.

The data requirements are nearly the same as for mrp except that we have
dropped the lot sizing information (for now) and added information about
utilization. We use the same variables as for mrp, namely xi,t, which is the
quantity of SKU i to start or order in period t. We will not need δi,t unless
we need to add information about changeovers. The major change from the

4.2 MRP II Data and Constraints 35

P Number of SKUs
T Number of time buckets
K Number of resources
I(i, 0) Beginning inventory of SKU i
LT (i) Lead time for SKU i
R(i, j) Amount of SKU i needed to make one j
D(i, t) External demand for SKU i in period t
U(i, k) Fraction of resource k needed to make one unit of SKU i

Table 4.3. Data for a Simple MRP II Formulation

mrp model is the addition of a capacity constraint. The MRP II constraints
are as follows:

• Demand and materials requirement for all times t and all SKUs i:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎡
⎣D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎤
⎦ ≥ 0

• Constrain capacity for some (or all) resources k and times t:

P∑
i=1

U(i, k)xi,t ≤ 1

• Non-negative production for all SKUs i and times t:

xi,t ≥ 0

Stated in classic optimization form, the MRP II problem is given in Fig-
ure 4.2.

For the purpose of discussion it is useful to isolate the two most important
constraints and refer to them by name. We will refer to

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎡
⎣D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎤
⎦ ≥ 0

as the materials requirements constraint, and we will call

P∑
i=1

U(i, k)xi,t ≤ 1

the capacity constraint.
If there are minimum lot sizes for some SKUs, then we must add the

following constraints for those SKUs, i:

36 4. Extending to an MRP II Model

Minimize: ∑P

i=1

∑T

t=1
(T − t)xi,t (MRPII)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

(
D(i, τ) +

P∑
j=1

R(i, j)xj,τ

)
≥ 0

i = 1, . . . , P, t = 1, . . . , T
P∑

i=1

U(i, k)xi,t ≤ 1 t = 1, . . . , T, k = 1, . . . , K

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

Fig. 4.2. MRPII Model

xi,t − δi,tLS(i) ≥ 0 t = 1, . . . , T

δi,t − xi,t

M ≥ 0 t = 1, . . . , T

δi,t ∈ {0, 1} t = 1, . . . , T

where LS(i) is the minimum lot size for SKU i and M is a large number as
in the mrp model.

If capacities are expected to change for a resource, k, then the capacity
constraints for these resources must be written as

P∑
i=1

U(i, k, t)xi,t ≤ 1.

4.3 Discussion of MRP II

Using classic MRP II software, problem MRPII would not be solved directly.
Instead, problem mrp would be solved and then the capacity constraint
for the MRPII model would be checked. To be more specific, suppose the
solution to the problem mrp was given as X(i, t) for the production of SKU
i to plan to start in time t. In other words, the result of solving problem mrp
provides values for the decision variables. Once these values are known, they
become data for subsequent processing so we use an upper case X to indicate
the values that are given.

Given the mrp solution, those SKUs for which

P∑
i=1

U(i, k)X(i, t) > 1

4.3 Discussion of MRP II 37

can be identified as those that would violate the capacity constraints. They
would be the subject of reports and the production planner would change
the data in an attempt to find a solution to mrp that was also feasible for
MRPII. By “change the data” we mean that due dates, lot sizes, and ca-
pacity utilizations would be changed. Due dates for end items are typically
adjusted to be at a later date. These data would then be given to the software
that uses the new data to compute a new solution to mrp and then checks
the constraints for MRPII.

This process is very hard work for the planners. Even though MRP II
software provides numerous reports, it is often still not possible for the plan-
ners to produce a capacity feasible schedule given that they often have only
a few hours to produce it. With a few dozen time buckets and a few thou-
sand SKUs, the problem is just too big to be solved easily by people, even if
assisted by software that can check the constraints and solve problem mrp.

An important thing to note is that the classic iterative MRP II solution
process that we have described results in an implicit, rather than an explicit
objective function. The actual objective function that is implied by the MRP
II solution process is not easily determined because the solution is obtained
by changing the data rather than finding the best solution given the best
estimate of the data. As the planners change the data during the struggle to
find a good, feasible solution the objective function implicit in the solution
meanders without clearly articulated direction. The fact that some modern
ERP software makes it easy to change the data (for example to increase lead
times) emphasizes the importance of this point.

In spite of the severe difficulties, at the time of this writing MRP II
logic is central to modern ERP systems. Many academics are of the opinion
that MRP II should be done away with. If they mean that we should dump
the solution methods, then we agree, but if they mean dump it completely,
then they are hopelessly misguided. Regardless of how one articulates the
methods, one should include the requirements constraint and the capacity
constraint. They represent physical reality. The processing for MRP II is not
normally explained by giving the constraints as we have shown them, but the
constraints are there. They have to be. They have to be there in any other
system as well. If the software does not include them explicitly or implicitly,
then the planners will have to enforce them or else produce a plan that is
very unrealistic and therefore not very valuable. Ultimately, the constraints
are present in the production process.

Direct solution of the optimization model is a much better idea and this
is the basis of much of the newest planning software that is sold as modules
or add-ins for ERP systems. In practice, the problem is bigger and harder
to solve than the simple MRPII model that we have presented. However,
MRPII provides us with a good jumping off point for more sophisticated
models because it mimics a widely used planning tool.

38 4. Extending to an MRP II Model

We can and will embed these constraints in a model that captures costs
and constraints that are important to the manufacturing organization or the
supply chain. By solving the optimization problem directly, we can include in
the objective function guidance for solutions. We want to find solutions that
correspond to the goals of the organization over and above merely satisfying
the two constraints.

4.4 Changeover Modeling Considerations

The simple MRPII model will be the basis for many additional features.
However, we might also want to remove features. For example, not all re-
sources need to be modeled. Often, it is easy to see that some resources do
not pose a problem. Such resources should simply be omitted from the model.

One feature that has been dropped from the mrp model in creating the
MRPII model is lot sizes. Usually, the valid reason for minimum lot sizes
is that a significant effort or cost is required to changeover for production,
hence small lots might not be cost effective. Setting a fixed lot size is a crude
response to this problem, so we will try to build models that take changeovers
explicitly into account.

However, there are cases where minimum lot sizes are needed. For exam-
ple, some chemical processes must be done in batches with a minimum size.
If needed, the δ variables can be put in for the SKUs that require lot sizes
along with the lot sizing constraints for those SKUs.

In many production environments, the proper modeling of capacity re-
quires modeling of changeovers. By the word “changeover” we mean the ef-
fort required to switch a resource from the production of one SKU to the
production of another. In fact, it is changeover avoidance that results in the
need for lots that are larger than what would be needed to satisfy immediate
customer demands. Changeover modeling can be quite involved.

The first thing that we will need is δi,t, which will be equal to one if any
of SKU i will be started in period t. This, in turn, requires that we include
the constraints introduced for mrp to enforce the meaning of the δ variables.

• Modeling constraint for production indicator for all SKUs i and times t:

δi,t ≥ xi,t

M

• Integer constraint for production indicator for all SKUs i and times t:

δi,t ∈ {0, 1}

4.4.1 A Straightforward Modification

In a simple model of changeovers, we use the data given in Table 4.4. As
usual we do not insist that these data be given for every resource or every

4.4 Changeover Modeling Considerations 39

SKU. In particular, we would expect that W values will essentially be zero
for most or all SKUs. If they are all zero, then of course there is no need to
add them to the model. The idea is that when one changes from one SKU
to another, some material can be destroyed (i.e., wasted.) A very common
example is that when production for SKU j is begun, a few items of that
SKU have to be destroyed for quality control testing or a few defective items
are produced while the machine is adjusted. For example, suppose for SKU
32, 100 items are created during a changeover that have to be discarded. In
this case W (32, 32) would be 100. In more complex situations, only some of
the components of SKU j are wasted during the changeover so we allow for
a more general data element, W (i, j), to facilitate this.

S(i, k) Fraction of resource k used to changeover to SKU i
W (i, j) Waste of SKU i to changeover to SKU j

Table 4.4. Data for Changeover Constraints

The following replacements for the requirements and capacity constraints
are needed:

• Demand and materials requirement for all times t and all SKUs i:

t−LT (i)∑
τ=1

xi,τ + I(i, 0)

−
t∑

τ=1

⎡
⎣D(i, τ) +

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ)

⎤
⎦ ≥ 0

• Constrain capacity for all resources k and times t:

P∑
i=1

(U(i, k)xi,t + S(i, k)δi,t) ≤ 1

4.4.2 Production that Spans Time Buckets

In other environments, the fact that an SKU is produced in a time period
does not necessarily mean that there will be a changeover in the time pe-
riod because the production run might span multiple time periods. If this
is the case, the expression W (i, j)δj,τ will overstate the requirements and
the expression S(i, k)δi,t will overstate the capacity utilization. The proper
correction depends somewhat on the situation. One solution is to introduce
variables γi,k,t that are usually zero, but take the value one if SKU i will be

40 4. Extending to an MRP II Model

the last product produced on resource k in time bucket t − 1 and the first
produced in time bucket t. We can change the capacity constraint for some
(or all) resources k and times t to be

P∑
i=1

[U(i, k)xi,t + S(i, k)(δi,t − γi,k,t)] ≤ 1.

In order to force the γ variables to have the appropriate meaning we must
require that they be either zero or one and we must add the following con-
straints for all t and for those k and i of interest:

δi,t−1 + δi,t ≥ 2γi,k,t (4.1)
γi,k,t/M ≤ U(i, k) (4.2)
P∑

i=1

γi,k,t ≤ 1. (4.3)

The constraints labeled (4.1) allow γ to be one for SKU i on resource k only
if there is production of SKU i in both periods. Constraints (4.2) ensure that
we only set γ to one for SKUs i that are to be routed to resource k, which is
done mainly to avoid spurious values of γ that can be confusing when reading
the solution. Constraints (4.3) ensure that at most one product can span the
time boundary on a specific resource k. In order to have constraints (4.1)
make sense, we must define δi,0 as data, which is a departure from our usual
naming conventions that use parenthesis for data indexes. In other words,
δi,0 is set to one for the SKUs that are scheduled for production in the last
period before the first period for which the model applies. In many cases, the
planning model begins with the “next” period so the δi,0 values would reflect
the schedule for the “current” time bucket.

The drawback to this scheme is that increases in the number of integer
variables can dramatically increase the time needed for solving the problem.
This can be mitigated somewhat by modifying the constraints and provid-
ing the variables only for resources k that are bottlenecks with significant
changeover requirements. In other words, we do not create variables γi,k,t for
those k that do not have significant changeovers or that do have plenty of
capacity in every period.

4.4.3 Parallel Machines

When there are a number of identical machines that are grouped together, it
is possible for an SKU to be run on more than one machine at a time. This
means that the amount of capacity consumed by changeovers depends on the
number of machines used.

This presents yet another modeling dilemma. To model parallel machines
properly, a large number of integer variables must be introduced. If there

4.4 Changeover Modeling Considerations 41

are many such resource groupings, and if they are potential bottlenecks and
many of the parts use the bottlenecks, then special purpose sequencing and
assignment algorithms must be used. This sort of situation is beyond the
scope of this book. However, if there are only one or two resource groups
with parallel machines that are important then it can be reasonable to add
their descriptions to a linear model.

One way to model them exactly is to treat each machine as a separate
resource and then every SKU that can use the set of parallel machines will
have alternative routings. Modeling of alternative routings is discussed in
§6.1. Unless the number of machines is fairly small, this may add too much
complexity.

A computationally simpler solution is to use an approximation. We can
model the changeover time with an approximation based on typical uses of
the machines. For example, we might let the changeover time be a multiple
of the single machine changeover time for some SKUs to anticipate that more
than one machine will be changed over for those SKUs. A somewhat better
approximation can be obtained by modeling the effect of quantity on the
utilization rather than modeling the changeovers explicitly.

One can use historical or engineering data to fit a function that predicts
the utilization (including changeovers) based on the quantity produced. Con-
sider a situation where a group of machines is typically used to process one
family of SKUs and there is only a minor changeover required between mem-
bers of this family. However, the machine group might also process a few
other SKUs requiring a significant changeover. Consider one such SKU, i, for
a group of parallel machines that is resource k. If just one part is produced
the utilization will be quite high because a changeover will be required in ad-
dition to the processing time. If the same machine can be used to produce up
to 100 including a changeover, then the per part utilization (given as U(i, k))
will be a decreasing function of x up to 100 parts, then increasing sharply,
then decreasing again. Modeling this sort of non-linear constraint is deferred
to §8.3.

4.4.4 Sequence Dependent Changeovers

In some production environments, the changeover effort depends not only
on the SKU that is to be produced, but on the previous part as well. The
data for this can be modeled by changing the S data element to have an
additional subscript. We can use S(i, j, k) to indicate the capacity used to
switch production on resource k from SKU i to SKU j. It is then necessary
to model the production sequence.

In order to make use of linear models, we need to have indicator variables
for the sequence. For example, we could add a subscript to the δ variables so
that the production sequence is indicated. Under this scheme, the variable
δi,j,t is equal to one if product i is produced immediately before product j in
period t. This results in a set of rather messy constraints. There are a number

42 4. Extending to an MRP II Model

of choices for writing the constraints that force creation of a sequence. We
give one method here that relies on creation of a fictional SKU number 0 that
serves as the first and last SKU in the sequence for each period. Presumably
S(0, j, k) and S(i, 0, k) can have an average changeover utilization value for
the affected resources. Clearly, if there are only a few SKUs produced in each
time bucket, then this model will not be very accurate and an even more
complicated model may be needed.

This adds many new constraints and there will be a dramatic increase in
the number of variables. If there are P products and T time periods, then
there would be more than TP 2 integer variables. For even a small company
with 12 periods in the planning horizon and 100 SKUs affected by sequence
dependent changeovers, this is a large number of integers. If there are 50
periods and 1000 SKUs that must be modeled as having sequence dependent
changeovers, then this model will be way too large for standard optimization
software to handle in a straightforward way. The dramatic increase in model
size might not be worth the increase in accuracy. But in some situations, bot-
tleneck resources have significant changeover time requirements and different
sequences result in dramatically different capacity utilizations. The models
are even more complex if it is necessary to also capture the ability to continue
production of an SKU across a time bucket boundary. In such situations, it
may be necessary to use heuristic search methods to address the sequencing
problems (see §8.4).

4.4.5 A Few Remarks About Changeovers

Attempts at proper modeling of changeovers illustrate that modeling is
largely an art form. At some point, we must make simplifying assumptions.
There are more complications than the ones described here. The ones we
have described should help readers to formulate constraints that capture the
essence of their particular situations.

The process of developing the models can provide spinoff benefits. For
example, we can gain a small but useful insight by considering the difficulties
imposed by changeovers. It has always been obvious that an increase in the
amount of time available for production of parts would result from engineer-
ing changes to production processes that reduce the time required for each
changeover. Furthermore, the nuisance of changeovers is felt by production
management as well as shop floor workers. Over the past few decades there
has been a significant engineering effort worldwide associated with reducing
the time required to perform changeovers. Many of the techniques are un-
der the rubric SMED, which is an acronym for single minute exchange of
die. As the name implies, many of the ideas in SMED involve redesign of
jigs, fixtures, dies, software and other components of production equipment
associated with changeovers.

There has been a significant decrease in the time required for changeovers
on many machines due to SMED related efforts. This has resulted in the

4.4 Changeover Modeling Considerations 43

liberation of time previously spent on changeovers that can now be spent
producing parts. This is important and valuable, but our models suggest
that there are additional benefits. By eliminating or reducing changeover
times using such techniques we not only gain greater capacity, we also create
a production facility that is easier to manage.

This is good news not just for lazy managers. It is good news for ambitious
managers as well. The elimination of changeover time as a significant factor
in production planning makes the problem much easier for optimization soft-
ware. In this context, “easier” means that optimization can be performed
much, much faster. This, in turn, means that the optimization can be per-
formed more often as new information becomes available and this results
in plans that are more up-to-date and more responsive to current customer
needs and shop-floor realities.

Our models clearly demonstrate the improved management characteris-
tics that result from setup reductions. As the models become simpler, they
are easier to solve. But these simplicity benefits are present whether formal
mathematical models and computers are used to find good production plans
or if the plans are hashed out on a chalkboard. Good production plans are
simply easier to obtain when changeover times are reduced.

The changeover modeling process can be a bit complicated, but yields
important benefits. We can summarize as follows:

• Changeover time reduction is good not only because of increased capacity
but also improved manageability;

• meanwhile modeling enables leveraging computing power to obtain solu-
tions as well as the ability to gain insights via the models and the modeling
process.

We return to issues related to creating and using production planning
models in a supply chain. In order to make the right changeover decisions
we need some cost information and perhaps alternative routing information.
This is discussed in the next chapters.

5. A Better Model

The data processing approach to MRP II is to use a straightforward algorithm
to create an mrp solution and then to see if the plan is feasible with respect
to capacity. In keeping with a data processing or information technology
mentality, the users can also be given a lot of information to help them change
the input data. The optimization approach that we are developing here asks
for information about objectives and tries to obtain a good or optimal plan
automatically.

5.1 A Cost Based Objective Function

In order to create a good or optimal decision, we need an objective. The
first issue that must be resolved is a very important one: are we trying to
minimize costs or maximize profits? For now, we are trying to develop an
improved MRP II model, so it seems best to try to minimize costs. This is
consistent with the mrp philosophy that demands are given to production
planners and their job is to meet them. In general, in this book, we pursue
models that minimize costs.

5.1.1 Costs

When constructing the objective function, we make use of marginal costs.
That is, we look only at costs that will change as a result of the decisions
under our control. Perhaps this is clarified by giving some examples of costs
that we do not include. The cost of raw materials are not included because
the expenditures must be made regardless of the plan chosen (one could
quibble that the timing of the cash flows would be effected, but the inclusion
of holding costs captures most of this and besides, it is small compared with
the other issues.) In most situations, there is no reason to include regular-
time labor for the same reasons. The personnel planning process is typically
separate from the relatively short-term production planning processes that
are the subject of our models.

A minimal set of cost data is described in Table 5.1. The cost of holding
an inventory item for one period is a discount rate times the cost of the item.

46 5. A Better Model

H(i) Per period holding cost for SKU i
C(i) Total (out of pocket) changeover cost for SKU i

Table 5.1. Basic Cost Data for an Improved MRP II Objective Function

Since inventory is a somewhat risky asset the discount rate should be at least
as high as the firms weighted average cost of capital and perhaps higher. For
example, a value of 25% per year is not unreasonable for discounting many
types of inventory. So if the time buckets are weeks and the annual discount
rate is 26% and the item costs $100, then H(i) is

0.26/year
52 buckets/year

100$/item,

which is 0.5 dollars per item per time bucket.
The out-of-pocket cost for a changeover is also fairly straightforward as

soon as we get past the difference between a setup and a changeover. If a
machine or workgroup must spend the same amount of preparation time
per item of SKU i, then we call this a setup and we can add the capacity
utilization into our calculations of U . Any material that is wasted for each
batch should be rolled into R.

As a final means of clarification, we remind the reader of the notion of
sunk costs. This refers to costs that will be incurred regardless of the decisions
under consideration. For example, if a setup is required before production of
an item that has no substitutes, then costs associated with that setup are
sunk as soon as we accept the demand. (We are ignoring the timing of such
cash flows.) Costs that are incurred when we switch over to production of
the item, but will not be incurred again during the production run without
regard to quantity are not sunk, since we can create a plan that combines
orders for an item so as to save changeover costs.

We must also develop marginal cost data for changeovers. The idea of
avoiding the inclusion of sunk costs applies here as well. For changeovers,
however, the calculations are a bit more subtle.

When we compute C(i), we add in the marginal direct labor costs on all
resources that are changed over for SKU i and the cost of all material wasted
and energy used as a result of the changeover. The productive capacity needed
for wasted material is taken care of by the waste data element, W , but the
cost of this material should be added to C. Should we add in the cost of the
machine? Generally, no. This will raise the eyebrows of accountants, but with
some patience they can be convinced.

What is the real difference in cost between solutions that differ by one
changeover? This is an important question. Suppose that a very expensive
machine that takes up a lot of floor space is hardly ever used; i.e., suppose it is
used about one hour per week. What will be the difference in cash position if
the machine is down for changeover for an extra two hours? Almost none. An

5.1 A Cost Based Objective Function 47

extra three hours? Almost none. The cost of the machine and the corporate
overhead rates are not important in making the marginal decision to perform
a changeover. The variable cost of labor and perhaps energy or scrapped
material are the only relevant costs.

Now suppose some machine is heavily used. What if we plan for it to be
down during some bucket for an extra hour of changeovers? How much does
this cost us? It depends. If we happen to be lucky and the resulting schedule
has no extra inventory or extra tardiness, then again it costs us nothing
beyond the out-of-pocket labor, energy, and material costs associated with a
changeover. If it results in a plan with extra holding, then the cost should
be picked up by the H term in the objective function. If it results in extra
tardiness (a more likely case), then we should pick up the cost in the A term.
One is tempted to charge an opportunity cost of using a scarce resource for
changeovers. However, what is the lost opportunity? If there is one, it was
the opportunity to make something in time to meet a customer demand in a
timely fashion.

In an environment with increasing demands, it is reasonable to assess an
extra penalty to tardiness in the last period to capture the notion of lost
sales. The modeling for this is formalized in §6.3. The idea is that if there
are significant changeover times required, but not enough capacity to meet
demand, the capacity can be used either for changeovers or for production.
Presumably if it is optimal to make more changeovers then it is optimal to
avoid tardiness during the planning horizon. If the cost of lost sales is too
high, then it is optimal to plan for fewer changeovers with an associated
increase in productive capacity.

Of course, other arguments can be made and other cost structures can be
used. In the end, it is up to the modeler to provide costs that result in good
decisions. The idea behind using marginal costs is that they anticipate the
difference between potential decisions.

5.1.2 Objective Function

Armed with these cost estimates, we can formulate a cost minimizing objec-
tive function. Before we do, we will find it useful to introduce the idea of
macros or notational variables. These will not really be variables, they will
be simple functions of variables that we will create to make it easier to read
the models. We have used notation like I(i, 0) for data and notation like xi,t

for variables. So data have the list indexes in parenthesis and variables have
them as subscripts. For macros, we will show the list indexes as subscripts
and the variables on which the macro depends will be shown in parenthesis.

We need to emphasize that these macros behave like typical computer
macros, which is to say that they rely on the computer to replace the macro
literally with the corresponding string. They are not new variables or data.
We show the macro definition using ≡. The first macro we will use denotes
the inventory of SKU i in period t:

48 5. A Better Model

Ii,t(x, δ) ≡
t−LT (i)∑

τ=1

xi,τ + I(i, 0)

−
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ)

⎞
⎠

We then write the demand and materials requirements constraint for all times
t and all SKUs i as

Ii,t(x, δ) ≥ 0

with the understanding that this will be interpreted as

t−LT (i)∑
τ=1

xi,τ + I(i, 0)

−
t∑

τ=1

⎡
⎣D(i, τ) +

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ)

⎤
⎦ ≥ 0.

In other words, we use the macro Ii,t(x, δ) to be able to write exactly the
same constraints that appear in model MRPII in a much more condensed
form. Combining the macro expression with Ii,t(x, δ) ≥ 0 results in the same
constraint.

Note that I always represents inventory, but I(i, 0) is given as data, while
Ii,t(x, δ) is a macro. We use the macro to give us a shorthand to write it, but
we should bear in mind that Ii,t(x, δ) represents a complicated expression for
the planned inventory of SKU i at time t.

We can use the macro to write our objective to be the minimization of

T∑
t=1

P∑
i=1

[H(i)Ii,t(x, δ) + C(i)δi,t]

subject to the MRP II constraints. Inspection of this objective function indi-
cates that the changeover cost, C, should include the cost of wasted material.
The data element W allows us to take into account the wasted material that
will have to be produced but does not “charge” us for the extra money spent;
however, by adding the term W (i, j)δj,τ to the inventory expression, we are
“charged” for the capacity used.

The term H(i)Ii,t(x, δ) could have been written as

H(i) (Ii,t(x, δ) + LT (i)xi,t)

to add the cost of holding work in process inventory (WIP) to the objective
function. The term H(i)Ii,t includes only the cost of those SKUs that have
been finished but not yet used or shipped to a customer. Since H(i) gives the

5.2 Overtime and Extra Capacity 49

cost of holding one item in inventory for one time bucket, it can be multiplied
by the term LT (i)xi,t to get the cost of holding the SKU during the lead
time (i.e., while the SKU is being made). Before we quibble over whether
there should be one cost for holding an SKU when it is finished and another
for holding it while it is WIP, we should note that for this model the WIP
holding costs are sunk. Once we have committed to the demand data, we have
committed to all of the implied production. We have modeled the lead time
as constant data, so this cost will not vary with the decision. Consequently,
we do not include it at this point. In more sophisticated models, such as
the one given in §6.1 where substitute components and multiple routings are
considered, this term must be added to the model.

Now is a good time to reflect on the differences between the cost based
objective functions that we have developed and the as-late-as-possible objec-
tive function implied by mrp and MRP II. The developers of mrp did not
use an objective function or the terminology of optimization, but mrp and
MRP II result in plans that correspond to the as-late-as-possible objective
function. The philosophy behind this is motivated partly by a desire to keep
holding costs at a minimum. The usual operational descriptions of mrp and
MRP II obscure the simple objective function that is implied.

Our philosophy of explicitly writing down an objective function results in
numerous advantages. Distinctions between the holding costs associated with
each SKU can be noted. We are also able to consider other costs as well and
could use a profit maximizing objective function when that is appropriate.
These benefits accrue in addition to the important benefit of simultaneously
considering the objective function while finding a capacity feasible plan.

5.2 Overtime and Extra Capacity

It is often overly simplistic to impose a single, hard capacity constraint for
each resource in each period. This is because it is often the case that capacity
can be added, particularly with some advance notice as would be the case if
the production plan called for it. Classic examples are the use of overtime or
an extra shift. In other cases, it may be possible to bring in extra resources
on relatively short notice. To keep our language simple, we will refer to all
such short term capacity additions as overtime. We now extend the MRP II
constraints to capture this notion in a number of different ways.

5.2.1 A Simple Model

In order to produce a model that can be used easily in a variety of settings, we
continue with the convention of working with capacity fractions rather than
absolute measures of capacity. The data needed are described in Table 5.2.
To understand these data, let us consider again the example developed in

50 5. A Better Model

§4.1. If indeed HR-101 is a resource of ten people who each work eight hours
in each time bucket and if they can be asked to work up to four hours of
overtime at a cost of $10 per person extra per hour during the overtime, then
we can calculate the needed data for HR-101. Remembering that HR-101
is resource number one and has eighty hours of capacity per time bucket,
we write that F (1, t) = 40/80 = 1/2 and that O(1, t) = $10 × 80 for all
time buckets t. The value of O is the extra cost doubling the capacity of the
resource at overtime rates. This is the correct number to use even if doubling
is not possible because it gives the right cost per fraction of capacity added.

F (k, t) Maximum fraction of resource k that can be added in t
O(k, t) Marginal cost per fraction of resource k added in t

Table 5.2. Data Short Term Capacity Expansion

We must introduce a new variable, yk,t, to represent the overtime fraction
for resource k in period t. This allows us to add the term

K∑
k=1

O(k, t)yk,t

to the objective function to capture the cost of overtime. We must add con-
straints to establish the overtime fraction for all resources k and times t and
then constrain overtime and capacity:

P∑
i=1

U(i, k)xi,t ≤ 1 + yk,t

yk,t ≥ 0
yk,t ≤ F (k, t)

The capacity constraint is shown here without changeovers. They can be
added if needed.

5.2.2 Complications

Yet again we have a need for some modeling art. It is never really the case that
some arbitrary amount of overtime can be requested, but that is what this
model implies. To avoid such issues, integer variables could be used to force
the overtime plans to be for only certain numbers of hours. However, this is
often not worth it. The additional integer variables slow down the solver for
almost no managerial benefit. Remember that what will be used for planning
is the production quantities and an “anticipated” need for overtime.

5.3 Allowing Tardiness 51

On the other hand, there may be cases when extra capacity can only
be added in large amounts or with a very large fixed cost. When this is the
situation, an integer variable must be added to indicate that overtime is used.
This new variable will have exactly the same relationship to the y variables
that production indicators, δ, have to the production quantity variables, x.
It can then appear in the objective function to reflect the fixed cost or in a
constraint to force the y variables to be above some value.

Further complications include the possibility that overtime has to be
added for multiple resources at once. This might be the case when one crew
operates a number of machines or when an audit team either works together
or not at all. This is most directly handled by changing the subscripts on the
y variables. Each resource group that must share overtime is grouped into a
set. We will now introduce notation for these sets. Suppose there are E such
resource group sets organized into a list of sets called E . The variable list y
will not be indexed by k going from one to K, but by e going from one to E.
Instead of writing the capacity constraints as

P∑
i=1

U(i, k)xi,t ≤ 1 + yk,t k = 1, . . . , K, t = 1, . . . , T

we generalize them to be

P∑
i=1

U(i, k)xi,t ≤ 1 + ye,t e = 1, . . . , E, k ∈ Ee, t = 1, . . . , T

Since this notation is unfamiliar, let us give a concrete example. Suppose
that there are only two resources and they share overtime. Then E is one
and E1 = {1, 2} so the constraints will be of the form:

P∑
i=1

U(i, 1)xi,t ≤ 1 + y1,t t = 1, . . . , T

P∑
i=1

U(i, 2)xi,t ≤ 1 + y1,t t = 1, . . . , T

To see why we say that this “generalizes” the original constraints, note
that if E = K and every Ee consists only of the index e, then the constraints
will be the same.

5.3 Allowing Tardiness

For the purposes of mathematical modeling, it is useful to make a clear dis-
tinction between deadlines and due dates. A deadline is modeled using con-
straints, while a due date appears only in the objective function. The clear

52 5. A Better Model

implication is that deadlines must be respected while due dates are more of
a target.

The word “deadline” sounds a bit extreme, since it is extremely unusual
for a customer to actually kill someone if their order is late (although not at
all unusual for them to threaten it). For end items, deadlines are typically
the correct model only for items that are of the highest priority. Other items
can be allowed to be tardy and a penalty function can be used to model
the fact that tardiness is more of a problem for some SKUs and/or for some
customers.

Deadlines are the appropriate way to model intermediate SKUs. Since we
are creating a plan, it makes no sense to plan for the production of an end
item to begin before the completion of its components. Consequently, the
completion times for items that will be used in assemblies must be enforced
in the constraints in order for the model to make sense. This statement may
not always be exactly what is needed (e.g., if there are end items that require
some components initially and others a few time buckets later.) This is an
advanced topic, but can typically be addressed by splitting the item into
two SKUs one of which is made entirely using the other. Our concern now
is to make a simple model that allows end items to be tardy but requires
components to be on time.

5.3.1 A Simple Model

We introduce as data A(i), which is the per period tardiness cost for external
demand for SKU i. To make use of it, we need to make another significant
change to the materials requirements and demand constraint. To allow tar-
diness, instead of using

Ii,t(x, δ) ≥ 0

we use

Ii,t(x, δ) ≥ −
t∑

τ=1

D(i, τ).

In other words, we allow a negative inventory position. Items with negative
inventory positions are often referred to as backordered. The idea is that we
still need to require production of items that are needed as components or else
the entire plan is invalid. However, we want to allow the inventory position to
be negative for an SKU to the extent that we have external demand for that
SKU. This can be seen by expanding the macro Ii,t(x, δ) and then simplifying
it to eliminate the summation over D. The result after expanding the macro
and rearranging terms is:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ) ≥ 0

5.3 Allowing Tardiness 53

In order to construct an objective function that takes into account back-
order quantities, we have to distinguish between negative and positive inven-
tory positions. We let I− be −I if I < 0 and zero otherwise and let I+ be I if
I > 0 and zero otherwise. To get I+ and I−, add the following constraints for
all i and t: I+

i,t − I−i,t = Ii,t(x, δ), both I+
i,t ≥ 0, and I−i,t ≥ 0. These constraints

would allow I+ and I− to become arbitrarily large, but they will not do so
because there will be positive costs associated with them in the objective
function.

We can add terms like the following to the objective function:

T∑
t=1

P∑
i=1

(
A(i)I−i,t + H(i)I+

i,t

)

5.3.2 Complications

Many of our cost structures developed thus far depend on the SKU. For many
SKUs and many customer orders, these costs are good enough to drive the
planning process. However, there are always a few special orders, or special
time periods. For example, it might be extremely important to make sure
that an order from a new customer for item AJ8172 is delivered on time.
Although the tardiness cost assigned to AJ8172 might generally be about
right, it might be way too low for capturing the importance of this particular
order. A large amount of future business might be lost if the order is late and
this needs to be captured in the cost structures. It is important to distinguish
not just among products, but among orders in this type of situation.

If it is necessary to differentiate among orders, “behind the scenes” SKUs
are a direct way to accomplish this; for example the SKU AJ8172z could be
used for a special customer or even a special customer order. For the case of
special orders, A can be extended to include a period number so that A(i, t)
gives the tardiness cost in period t. This means that the objective function can
be severely penalized for any solution where these orders are excessively late.
Furthermore, special customer orders that will not cause problems if they are
only one or two periods late can be given special SKUs and special low A(i, t)
values for t values not much beyond the due date. Adding SKUs can slow
down the solution process, but if used in moderation, the solution quality
can reflect important considerations and tradeoffs. If we carry the process to
its extreme by considering every order to be deserving of its own SKU, then
we have created a scheduling problem with tagged orders. A proper planning
model should have enough scheduling detail so as to be realistic, but not so
much that it cannot be run for a large enough portion of the supply chain to
get the big picture. To say this in another way: the model will get to be too
big unless we use this notion of an extra SKU for special customers only when
it is very important to the planning – as opposed to the scheduling – process.
A simple example of a scheduling subproblem embedded in a planning model
is given in §8.4.3.

54 5. A Better Model

The trouble with using A values is that it is not clear how to assign the
values. How much does it cost to be tardy? This difficulty and other objective
function issues are discussed in the next section. A more drastic measure is
to make A a non-linear function, but this is not consistent with our desire to
use linear models. Non-linear models are discussed briefly in later chapters.

5.4 Objective Function Issues

If we ignore the discussions that we have labeled as complications, we have
settled so far on an objective of minimizing marginal costs using a function
of the form

T∑
t=1

[
P∑

i=1

(
A(i)I−i,t + H(i)I+

i,t + C(i)δi,t

)
+

K∑
k=1

O(k, t)yk,t

]
.

We discussed the holding cost, H, and the changeover cost, C, in §5.1.1. Of
the two new cost elements, A is the toughest data element to estimate. The
value for O is not quite so difficult, so that is where we begin our discussion.

The data element O gives the marginal cost of adding a unit of extra ca-
pacity. Its calculation is complicated only by the use of fractions as a measure
of capacity. The easiest way to compute a value for O(k, t) is to pretend that
it is possible to double the capacity of resource k and use the marginal cost
of doing so (for all time buckets t).

For example, if a resource is usually available for eight hours per day at
a cost of $25/hour and overtime is available at a cost of $37.50/hour, then
O(k, t) would be (8)(12.50) = 100. This means that if y(k, t) is 0.25 for some
time t (which would imply 2 hours of extra capacity) then the marginal cost
would be $25.00. We are back to the issues associated with sunk and marginal
costs that we first broached in §5.1.1.

Notice that we do not compute a cost of using resources unless they are
used in “overtime.” As the model is presently constructed, this makes sense
because the use of the resources is a sunk cost; that is to say, the production
must occur so the costs will be incurred no matter what decision we make
(the time value of money for resource allocations is essentially captured in
the holding costs.) When we consider the possibility of alternate routings
in §6.1, we will have to take into account the potential for costs that differ
according to the routing.

This brings up an important point. If the costs vary dramatically from
one period to the next, then it would be necessary to include production costs
in the objective function. In general we try to avoid putting sunk costs in the
model, but this means that we should take care to include all marginal costs
that vary with the decision variable values.

Setting a value for A(i) is not straightforward. The value for A probably
should be at least the gross margin for SKU i based on an opportunity cost

5.5 The Model 55

argument. When an item of SKU i is late, an opportunity is missed to supply
a customer who wanted the item in a time bucket. The capacity that would
have been used for that product is presumably used for changeovers or some
other product. It is a bit overly simplistic to argue that we have created a
vacuum in the market for SKU i that will be filled by a competitor (perhaps
in some unseen way), but only a bit. Tardiness, and a customer’s response
to it, is the invisible hand’s way of correcting overutilization of capacity.
For strategic reasons, an even higher value may be needed to reflect loss of
goodwill or loss of market share. If very short time buckets are used, it may
be unrealistic to assess a high penalty for being only one period late. In this
case it might be necessary to use some form of non-linear penalty as described
in §8.3.

There will be more discussion of the objective function later, but before
leaving this topic we note that using a profit maximizing objective function
will require some changes to the constraints as well as the objective function.
The changes to the model are not major. The cost terms can remain, but
must be subtracted from a term that gives the profit associated with each
SKU. In a profit maximizing environment, presumably not all demands are
firm. That is, some of the demand constraints should be given as ≤ rather
than ≥. The advantage of a profit maximizing model is that the product mix
can be selected automatically. We can invert this argument. If the product
mix is not a production decision, then a profit maximizing objective function
probably is not sensible.

5.5 The Model

We now give the base model as developed in this chapter. In actual practice,
many of the data elements will be zero and some of the constraints and
variables can be omitted altogether. The complete picture is given here to
summarize the chapter in one concise statement. We refer to the model as
SCPc to emphasize that it is a cost minimization model for supply chain
production planning. The data are given in Table 5.3 and the model is shown
as Figure 5.1 making use of the macro shown in Figure 5.2. The variables
that are to be set by the model are shown in Table 5.4. In some cases, the
constraints have been rearranged to put a zero on the RHS. The modifications
listed as complications are not shown here.

The use of the symbol I requires a little explaining. We use the symbol
consistently to represent inventory position, but that requires it to appear
with the data, variables and the macros. The initial inventory, I(i, 0), is given
as data. The inventory expression depends on existing variables and data so
it is given as a macro. Backorder and positive inventory quantities have to
be constrained, so they must be given as variables.

56 5. A Better Model

P Number of SKUs
T Number of time buckets
K Number of resources
LT (i) Lead time for SKU i
I(i, 0) Beginning inventory of SKU i
D(i, t) External demand for SKU i in period t
R(i, j) Number of i’s needed to make one j
U(i, k) Fraction of resource k needed by one unit of SKU i
F (k, t) Maximum fraction of resource k that can be added in t
S(i, k) Fraction of resource k used to changeover to SKU i
W (i, j) Waste of SKU i to changeover to SKU j
H(i) Per period holding cost for SKU i
C(i) Total (out of pocket) changeover cost for SKU i
O(k, t) Marginal cost per capacity fraction added to resource k
A(i) Per period tardiness cost for external demand for SKU i
M A large number

Table 5.3. Data for the SCPc Model

xi,t Order release quantity for SKU i in time t
yk,t “Overtime” fraction of resource k in time t
δi,t Binary indicator of production of SKU i in time t
I+

i,t Inventory of SKU i to carry in time t

I−
i,t Quantity of SKU i backordered in time t

Table 5.4. Variables Set by the SCPc Model

5.5 The Model 57

Minimize:

T∑
t=1

[
P∑

i=1

(
A(i)I−

i,t + H(i)I+
i,t + C(i)δi,t

)
+

K∑
k=1

O(k, t)yk,t

]
(SCPc)

subject to:

Ii,t(x, δ) +

t∑
τ=1

D(i, τ) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

P∑
i=1

[U(i, k)xi,t + S(i, k)δi,t] ≤ 1 + yk,t t = 1, . . . , T, k = 1, . . . , K

yk,t ≤ F (k, t) t = 1, . . . , T, k = 1, . . . , K

δi,t ≥ xi,t

M
i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

yk,t ≥ 0 t = 1, . . . , T, k = 1, . . . , K

I+
i,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

I−
i,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

I+
i,t − I−

i,t = Ii,t(x, δ) i = 1, . . . , P, t = 1, . . . , T

Fig. 5.1. SCPc Model

Ii,t(x, δ) ≡
t−LT (i)∑

τ=1

xi,τ + I(i, 0) −
t∑

τ=1

(
D(i, τ) +

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ)

)

Fig. 5.2. SCPc Inventory Macro

6. Extensions to the Model

In the previous chapter we extended well beyond the data processing concepts
embodied by MRP II to make use of the capabilities of an optimization model.
In this chapter, we continue this course by describing a number of important
extensions to the model. Depending on the planning environment, some or
all of these extensions may be needed to produce a useful model.

We consider first an extension that captures the idea that SKUs can be
routed through a variety of production facilities or subcontractors. We follow
this with extensions to the model that penalize changes to the plan so that
the planned production from one “optimal” plan to the next does not vary
wildly. A related topic is the handling of end-of-horizon effects. That is, we
may need to modify the model so that it does not result in a plan with strange
production quantities and inventory positions in the last period. Finally, we
provide some extensions to support modeling of transportation and product
movement.

6.1 Substitutes, Multiple Routings and Subcontractors

Tactical production planning in a supply chain involves more than just de-
termining production quantities or authorizing overtime. Often, choices must
be made between alternative modes of production when there are multiple
routings, multiple vendors, or subcontractors for parts that are also produced
in-house. Each of these may have a different cost and lead time.

There are choices to be made between suppliers, or between different
factories or between different production lines in the same factory. In this
situation, we would say that multiple routings are available. We would like
to create a model that picks between the alternatives in an optimal way
while simultaneously considering the effect on all other decisions regarding
production and capacity utilization.

Furthermore, a single supplier might have multiple offerings that can be
used to create the needed SKU. These multiple offerings might differ in minor
physical ways or they might be exactly the same part but with different
lead times and different costs. For example, sometimes a larger size can be
substituted for a smaller one with no loss in functionality or two SKUs can
serve the same purpose, but one can make use of material of a higher quality

60 6. Extensions to the Model

than necessary. In other cases, suppliers offering expedited delivery can result
in a shorter lead time at higher price. If we think of the lead time as one of
the important attributes of the SKU, then it is natural to consider an SKU
shipped sooner to be a substitute for the SKU with the standard lead time.
In general, a different routing or the use of a substitute part will involve a
different lead time and this can be important to model.

Another possibility is that the SKU can be made either “in-house” or
by an outside subcontractor. Generally, both the cost and the lead time will
be different for subcontractors. With just a bit of abstraction, we can see
that the choice between subcontractors or the decision regarding whether to
use a subcontractor is the same as choosing between alternative routings or
selecting one SKU from among a list of substitutes.

With some effort, all three of these possibilities can be added to our models
using the same basic mechanisms. Matters are complicated somewhat by the
need to allow for differing lead times while at the same time allowing parts
with substitutes or alternative routings to appear anywhere in the bill of
materials. In order to do this, we propose changes to the model as well as
additional data structures.

One possibility to model such situations is to have a separate SKU for
each substitute, alternate routing and/or for each subcontractor. So if AJ8172
could go along two routings, there would be SKUs AJ8172a and AJ8172b.
This results in the need for a new data structure, the list of substitutes sets,
L. This list has P elements in it. Each element of L, L(i), is a set of substitute
SKU indexes for the SKU i. For those SKUs that do not have substitutes the
substitutes list is empty, which we write as L(i) = ∅.

We assume that regardless of the substitute used, the substitute parts are
essentially indistinguishable upon completion for the purpose of computing
holding and tardiness costs. This means that they can be accounted for after
completion using a single SKU that we will refer to as master SKU. To use
mathematical notation, master SKUs are those SKUs i for which L(i) �= ∅.
To make it convenient to distinguish SKUs that are in an alternates list for
at least one master SKU, we use the unusual notation j ∈ L to signify that
SKU j is in the list L(i) for some master SKU i.

We now continue with the example where SKU AJ8172 has substitutes
AJ8172a and AJ8172b. Suppose as before that AJ8172 is SKU 1. Further
suppose that the substitutes are SKUs 6 and 7, respectively. Under these
conditions L(1) = {6, 7} and both j = 6 and j = 7 would be j values with
the property j ∈ L.

Note that the value of P includes the substitute SKUs. Our expressions
are cleaner if we simply treat the master SKUs and substitutes the same as
all other SKUs. We rely on data such as the substitutes list to provide the
distinctions.

Master SKUs are constrained to have zero production (i.e., for master
SKU i, xi,t = 0 for all t). But we insist that all requirements be for the

6.1 Substitutes, Multiple Routings and Subcontractors 61

master SKU. In other words, all external demands will be for the master
SKU and any product that can use one of the substitutes as component will
have an R(i, j) value for the master only. This means that the inventory
macro for master SKUs must be changed to

Ii,t(x, δ) ≡
∑

�∈L(i)

t−LT (�)∑
τ=1

x�,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ .

So the production is done for one or more of the substitutes to meet the
demand and requirements for the master.

We must pause to mention one complication that arises when implement-
ing this on a computer. Simply changing the macro for master SKUs has
notational advantages in the book, but does imply some effort when imple-
menting. As a practical matter with most modeling languages, every con-
straint with the Ii,t macro must be written twice: once for the master SKUs
and once for the others. Furthermore, the meaning of “for the others” is not
completely simple. The mrp constraint does not really make much sense for
those SKUs that are substitutes because they cannot have external demand
and cannot have non-zero requirements for use in other SKUs (all require-
ments for demands are for the master SKU). Consequently, as a practical
matter one does not want to have a mrp constraint for substitutes. It is not
conceptually difficult to implement this model, but having a different Ii,t

macro for different types of SKUs does require some attention.
Although many organizations do not have material waste associated with

changeovers and consequently would not use W values at all, in the interest of
being thorough we must concern ourselves with how these data are treated in
a model that uses substitutes and master SKUs. Since there is no production
of master SKUs, the term W (i, j)δj,τ is not needed in the macro for a master
SKU. Furthermore, W (j, j) is always zero for master SKUs j because master
SKUs are not produced. However, W (i, j) could be greater than zero for
some master SKU i and some j if the SKU happens to be wasted during a
changeover to SKU j. Also note that for an SKU i that is a substitute, if
W (i, i) is non-zero then one needs to subtract W (i, i)δ(i, t) from the x value
in the production summation term for the corresponding master SKU macro
because otherwise the waste of the substitute would not be accounted for.

The original inventory macro can be used for the SKUs for the substitutes
themselves as well as for SKUs that do not have substitutes. However, the
inventory position variables for the substitutes, I+ and I−, must be fixed at
zero. This will enforce the idea that inventory is held only as the master SKU.
In the unusual situation where substitutes have significantly different holding
costs, then additional binary variables must be used to indicate which of the
substitutes is in inventory. This will not be developed here.

If costs differ for the substitutes, then terms must be added to the objec-
tive function. Once again, we are reminded that we are basing our models

62 6. Extensions to the Model

on marginal costs so the lowest cost substitute will have a cost of zero and
the others will have cost that is the difference between their cost and the
lowest cost substitute. The idea is that as soon as we accept the order a cost
at least as high as the lowest cost substitute is sunk. The marginal costs of
substitutes should include any significant difference that arise as a result of
holding cost differences that result from widely varying lead times.

The additional data required are shown in Table 6.1. The full formulation
for alternative routings as an extension to problem SCPc is given as SCPa in
Figure 6.1 where the shorthand notation ∀ and ∈ is abused in the interest of
brevity to mean that we want indexes for all appropriate values of the indexes
listed. For example, t, � �∈ ⋃P

i=1 L(i) means the constraints are repeated for
t = 1, . . . , T and for values of � in the set formed by removing from 1, . . . , P
the indexes that appear somewhere in the entire list of substitute sets L.

L(i) Alternates (or substitutes) list for SKU i
V (i) Marginal cost of using alternate SKU i

Table 6.1. Additional Data Required for Alternate Routings

The term

H(i)
(
I+
i,t(x, δ) + LT (i)xi,t

)
adds the cost of holding finished inventory as well as work in process inventory
to the objective function. If the cost of WIP for an SKU is significantly
different than the cost of completed items, then a different cost element must
be added, H ′(i) and the term is split into:

H(i)I+
i,t(x, δ) + H ′(i)LT (i)xi,t

As was discussed on page 48, for the production system models we have
considered so far, the cost of holding WIP will not vary with the decisions.
However, we include it here because it will be needed in more sophisticated
models that build on this model.

6.2 Penalizing Changes to the Plan

In many production environments, a stable plan is almost as important as a
good plan. It is bad if a new plan is generated weekly and the planned pro-
duction for a given week changes radically each time a new plan is generated.
This causes production workers to wonder if there is something wrong with
the planning process.

6.2 Penalizing Changes to the Plan 63

Minimize:

T∑
t=1

[
P∑

i=1

(
A(i)I−

i,t + H(i)
(
I+

i,t + LT (i)xi,t

)
+ C(i)δi,t + V (i)xi,t

)

+

K∑
k=1

O(k, t)yk,t

]
(SCPa)

subject to:

Ii,t(x, δ) +

t∑
τ=1

D(i, τ) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

P∑
i=1

[U(i, k)xi,t + S(i, k)δi,t] ≤ 1 + yk,t t = 1, . . . , T, k = 1, . . . , K

yk,t ≤ F (k, t) t = 1, . . . , T, k = 1, . . . , K

δi,t ≥ xi,t

M
i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

yk,t ≥ 0 t = 1, . . . , T, k = 1, . . . , K

x�,t ≥ 0 ∀ t, � ∈ ⋃P

i=1
L(i)

x�,t = 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I−
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I+
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I−
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
i,t − I−

i,t = Ii,t(x, δ) ∀ t, � �∈ ⋃P

i=1
L(i)

Fig. 6.1. SCPa Model

Such concerns may be well-founded. If the optimal plan produced one
week differs greatly from the plan produced the preceding week, production
workers will learn to ignore the plan and make use only of the short term
schedule. When this happens, the value of planning will be significantly re-
duced. We can think of a reduction in the value of planning as a cost and
capture the cost directly in our model by penalizing changes to the plan.

The model is extended by taking the values of the variables from the last
plan generated as data. Terms are added to the objective function that pe-
nalize the absolute value of the difference between the value that the variable
will take in the current plan. We use X(i, t) as data to indicate the values that
were assigned to the production variables during the last planning phase and
E(i, t) to give the penalty for deviating from the last plan during the next
planning cycle. In order to penalize both negative and positive deviations,
we create the variables X− and X+ that play a role similar to I− and I+.

64 6. Extensions to the Model

We let X− be X − x if x < X and zero otherwise and let X+ be x−X if
x > X and zero otherwise. To get X+ and X−, add the following constraints
for all i and t:

X+
i,t − X−

i,t = xi,t − X(i, t),

X+
i,t ≥ 0, and

X−
i,t ≥ 0

These constraints would allow X+ and X− to become arbitrarily large,
but they will not do so because there will be positive costs associated with
them in the objective function. The objective function is modified to have
the following additional terms:

T∑
t=1

P∑
i=1

E(i, t)
(
X+

i,t + X−
i,t

)

Changes to the plan can be penalized in a fashion that is simpler and
somewhat more realistic by using quadratic penalty terms, but this requires
different software to solve the problem because the objective function will
no longer be linear. Instead of making use of the variables X− and X+, the
objective function would simply have the following quadratic terms added:

T∑
t=1

P∑
i=1

E(i, t) (xi,t − X(i, t))2

Both problems are easier to solve if one penalizes changes only in real
valued variables.

6.3 End-of-horizon Effects and Minimum Inventories

In general, and particularly when tardiness is allowed, some care must be
taken to make sure that end-of-horizon effects are considered. With some cost
structures, a computer that finds the optimal solution to the model might
make some seemingly strange choices. For example, it might be optimal, for
the given model, to simply not produce some items and to incur the tardiness
costs every period. This is not a sensible plan, but it might be optimal for a
model that must, of necessity, contain some simplifications.

A related difficulty is that the optimal solution is sure to have very low
or zero inventories in the last period. The models we have developed so far
provide no reason to produce goods that will still be in inventory after the
last period. The only exception is that some inventory might remain when
minimum lot sizes are being used. If it is not reasonable to produce plans
with zero inventories, then the models must be altered to disallow them.

6.3 End-of-horizon Effects and Minimum Inventories 65

One technique is to add constraints that enforce end-of-horizon conditions.
For example, the constraint

T−LT (i)∑
τ=1

xi,τ + I(i, 0) −
T∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P

ensures that all demand must be satisfied by the end of the planning horizon.
This line appears in the original mrp formulation, except there it is for all
times, t = 1, . . . , T , and here it is only for the final time period. In the mrp
formulation, all demand had to be met at all times so such an end-of-horizon
constraint would be redundant.

It can make more sense to have a big tardiness penalty for the last period,
A(i, T), instead of requiring all production to be finished by the end of the
planning horizon. As mentioned in §5.1.1, this can be used to roughly approx-
imate the cost of lost sales. This is particularly reasonable in an environment
where demand is increasing. The demand that has not been satisfied by the
end of the planning horizon can be thought of as demand that will not be
satisfied because even more demand will be coming thereafter. The use of a
high tardiness penalty for the last period is designed to force choices between
using capacity for changeovers or for production.

Ending inventory should be reasonable, but for long time horizons it is
often not worth it to require that a planner provides desired ending inventory
positions for every item as input data. One way to avoid requiring excessive
data requirements is to ask for a single fraction (e.g., 0.25) that will be used
to restrict the range for the final inventory position. The constraints

(1 − IT)I(i, 0) ≤ Ii,T (x, δ) ≤ (1 + IT)I(i, 0) i = 1, . . . , P

restrict the final inventory to be within IT of the initial position for each
SKU, where IT (for Inventory Tolerance) is a fraction that is provided as
data.

From a modeling perspective, a simpler solution is for planners or man-
agers to provide data, I(i, T + 1), specifying minimum ending inventory po-
sitions for each SKU i. One can add constraints such as

Ii,T (x, δ) ≥ I(i, T + 1) i = 1, . . . , P

to ensure that ending inventory positions are planned to be reasonable. End-
of-horizon effects naturally become less important if the planning horizon T
is longer than if it is shorter. As the planning horizon becomes longer, the
importance of extremely good values for I(i, T + 1) is diminished because
the effect on near term decisions is not as great. When minimum inventory
levels have been established, these values are reasonable targets for the ending
inventory.

66 6. Extensions to the Model

Minimum inventory levels are often specified as a method of providing
safety stock. Fluctuations in demand or in yields can result in shortages. To
guard against these shortages, many manufacturers plan to maintain mini-
mum inventory levels. Typically, these levels are set as a matter of policy and
remain fixed over the planning horizon. When this is the case, we can use
the data element I(i, T +1) again to represent the minimum (if not, we must
introduce a new data element). We then modify the constraint

Ii,t(x, δ) +
t∑

τ=1

D(i, τ) ≥ 0 i = 1, . . . , P ; t = 1, . . . , T

to be

Ii,t(x, δ) +
t∑

τ=1

D(i, τ) ≥ I(i, T + 1) i = 1, . . . , P ; t = 1, . . . , T

It is reasonable to allow for backorders and at the same time plan for safety
stock because the safety stock is an operational goal or target rather than
a planning constraint. For end items, minimum inventory positions can be
calculated using standard minimum service level formulas given in standard
textbooks on production planning.

For the computer used to optimize the model, it is just a “game” to see
how to find values for the variables that make the objective function as low as
possible without violating any constraints. With some cost data (for example
if work in process inventory costs are not present), production during the
last periods can lower the objective function even though it might be the
case that the lead time for the SKU would prevent this work from being
completed before the end of the planning horizon. To avoid such a plan, we
can add the constraints

T∑
τ=T−LT (i)+1

xi,τ = 0

for all SKUs i.

6.4 Modeling Product Movement and Transport

One important way to model transportation choices is using the model-
ing methods that were discussed in §6.1 on alternative routings. When an
SKU can be made in a variety of locations, the marginal costs including the
marginal cost of transportation, should appear in the objective function as
multipliers for the production quantities. We now turn our attention to issues
related to shipping along a fixed routing.

6.4 Modeling Product Movement and Transport 67

Like all modeling, transportation modeling can be simple or very com-
plicated. Multiple locations can add a lot of computational complexity. The
goal of the modeler is to capture the important features. In this section we
explore a few extensions to our model to capture many essential features of
product movement.

6.4.1 Simple Product Movement and Shipping

In the simplest case, there is a per unit charge for shipping or product move-
ment that depends only on the SKU number and perhaps the time period.
However, for our models this case is not interesting unless there are sub-
stitutes (see §6.1). Every SKU follows a fixed routing and any transporta-
tion costs will have to be incurred in order to satisfy demand so they are a
sunk cost. If there are substitutes, then the differential cost of transportation
should be combined with other differential costs and applied to the substi-
tutes.

6.4.2 Expedited Shipping

An easy case, which happens to be common, is when the only important effect
of production plans on transportation is the use of expedited shipping for
end-items that would otherwise be late. This can be modeled in a reasonable
way by simply making A(i) the cost of expedited shipping. In other words,
if shipping normally costs one dollar per piece that would not be included
because it is a sunk cost as soon as we accept the order. However, if the
expedited shipping costs ten dollars we could set A(i) to be 9 for this item
so the cost of being late would be captured. The model can be made more
realistic (and much more complicated) by adding an indicator variable so
that a much higher value for A(i) would be used if the items would be so late
that expedited shipping would not help.

The presence of multiple transportation options makes the modeling more
difficult. For each transportation option, a resource is created. For each SKU
that can use each transportation option an alternative routing is created as
described in §6.1 using an alternate SKU. Each alternate SKU can then have
the appropriate lead time for the mode of transportation. In order to put
the marginal costs in the objective function, we assign a cost of zero to the
cheapest option (and thereby omit it from the objective function). Other
options are then included in the objective function using the difference in
costs with respect to the cheapest alternative.

6.4.3 Fixed Costs and Consolidations

The main complications arise from fixed costs and consolidations. We use the
words “fixed costs” here to refer to the situation where there is a fixed cost

68 6. Extensions to the Model

of transport between resources that must be paid for any amount shipped
up to some maximum. This is the case when the product must be moved by
a truck or must be placed in a container to be shipped or moved. Further
complications result when multiple SKUs can be shipped together. This is
often referred to as consolidation. There are many ways to model this, and
some of them are beyond the scope of linear models. However, we sketch one
approach here as an example.

We treat the means of transportation as a special resource and introduce
the integer variables θ to capture the idea that we can use these resources
in multiple, discrete units. For example, we can fill one, two, three, or more
containers or we can use some number of trucks. For each SKU and each
transportation resource the data U(i, k) play the same role as always. They
indicate what fraction of resource k is consumed by one unit of SKU i. We
modify the capacity constraint for all transportation resources, k, to be

P∑
i=1

U(i, k)xi,t ≤
Mk∑

m=1

θk,m,t t = 1, . . . , T

where Mk is the maximum number of trucks or containers. It could be con-
fused with the M used as a large number, but hopefully this is mitigated by
use of the subscript k. The variables θk,m,t are intended to be assigned a value
1 in order so that the highest value of m for which θk,m,t is one indicates how
many of the transport units of resource k are to be used in time bucket t. To
enforce this, we add a series of constraints of the form

θk,m,t ≥ θk,m+1,t

for all times t, all containers m from 1 to Mk − 1, and all transportation
resources k. Finally, we add the constraints

θk,m,t ∈ {0, 1}

for all transportation resources k, all times t, and m = 1, . . . , Mk. There
are other ways to handle this situation, but this method allows for graceful
treatment of volume discounts. In anticipation of discounts, we also index
the cost for each container of type k by m. We use B(k, m) to be the cost
of container m of type k. We then add the following terms to the objective
function:

T∑
t=1

Mk∑
m=1

B(k,m)θk,m,t

for all transportation resources k.
When there are no discounts, we could write B(k, 1) = B(k, 2) = · · · =

B(k, m), but it is simpler to use an integer variable θk,t to indicate the number

6.4 Modeling Product Movement and Transport 69

of containers used. So if there are no discounts, then θ does not need to
be a list of binary variables indexed by m, but can simply be the number
of containers. In this case, if the maximum number of containers used is
large, then the model might be accurate enough if θk,t is allowed to take on
fractional values (i.e., not required to be an integer so that θk,t = 77.2 would
be interpreted to mean “we plan for about 77 containers”). Whether or not
θk,t is constrained to be an integer will have a big effect on the computational
effort required to find an optimal solution, but either way the transportation
term in the objective function is simplified to

K∑
k=1

T∑
t=1

B(k)θk,t

and the transportation capacity constraint becomes
P∑

i=1

U(i, k)xi,t ≤ θk,t

for all times, t.
However, volume discounts for transportation are so common that gen-

erally if transportation is important enough to be modeled during planning,
the full version with θk,m,t ∈ {0, 1} is often needed.

6.4.4 Transportation Discounts

There are many types of transportation discounts, so we cannot hope to
provide a model for all of them. We describe perhaps the two most common:
marginal and all container discounts. If the discount structure is important
and complicated, then perhaps linear models are no longer appropriate and
heuristic search methods should be used (see §8.4).

In some situations, the cost for the second container or truck is lower than
for the first and the third is lower yet. We refer to this as marginal container
discounts. It can be captured simply by the correct values for B(k,m) for
each successive value of m.

All container discounts occur when the cost of shipping all containers
depends on how many containers are shipped. In this case, we have to do
a little arithmetic to calculate the marginal cost of each container. If we
are going to ship some number of containers, m, then we are quoted a per
container cost of shipping containers that we will call B′(k, m). The total
cost will be mB′(k,m), but our objective function assigns a separate cost to
each container, so we need to compute the marginal cost of each container.
The correct value to use is computed as follows:

B(k,m) = mB′(k,m) − (m − 1)B′(k, m − 1)

This can be proven, but it may suffice for the reader to verify that the
expression is correct for the first few values of k.

70 6. Extensions to the Model

6.4.5 Discussion of Transportation Modeling

Optimized transportation planning and scheduling is a big topic. Under the
rubric logistics a tremendous number of models and solution procedures have
been created for all aspects of this problem domain. We could not hope to
cover even a meaningful fraction of this topic, which warrants its own book.
What we have done is to connect our earlier models with models that take
transportation costs into consideration.

Some of the modeling of transportation is implicitly included in the work
on alternative routings and substitutes (see §6.1). At the level of production
planning in a supply chain, alternative routings is one of the most important
decisions. When combined with an ability to model container discounts, the
model can have enough detail for planning.

Since our intention is to develop a planning rather than a scheduling
model, details like the time required to accumulate a container load (which
might span time buckets) is probably too low level to include. There are, of
course, potentially a host of details associated with transportation planning.
Once again, we remind the reader that modeling is an art and the appro-
priate level of detail must be sought using a combination of insight into the
operation of the business as well as experience gained while building up a
model. This experience is best gained by beginning with a simple model and
adding complications as deemed necessary.

We have also not modeled strategic issues such as facility location. The
models that we have developed could be thought of as sub-problems for facil-
ities location models. A model for strategic facilities location planning needs
to be able to make use of a more detailed model to compute the cost asso-
ciated with operating under a variety of location plans. The models that we
have developed could serve to compute such costs. In other words, strategic
planning models require tactical models to provide data that estimate the
cost of operating under a particular strategy and set of locations. A tentative
solution to the strategic planning model implies data for one of our models
and the cost of a solution to the model provides data to the strategic planning
model.

6.5 Summarizing the Model

We now provide a fairly complete model that contains most of the model
features that we have discussed so far. In most situations, this entire model
is not needed. It is listed here as a means of summarizing the models that we
have developed so far. As such it is intended to serve as a reference.

To make the model pieces fit together, we will assume that the trans-
portation resources have indexes above K and collect them in the set K as
indicated in the consolidated list of data for this consolidated model given in

6.6 Aggregation and Consolidation 71

Table 6.2. The variables are listed in Table 6.3 and the inventory macros are
in Figure 6.4 and Figure 6.3. The problem SCPf itself is shown in Figure 6.2.

P Number of SKUs
T Number of time buckets
K Number of resources not for transportation
LT (i) Lead time for SKU i
I(i, 0) Beginning inventory of SKU i
I(i, T + 1) Target ending inventory of SKU i
D(i, t) External demand for SKU i in period t
R(i, j) Number of i’s needed to make one j
U(i, k) Fraction of resource k needed by one unit of SKU i
F (k, t) Maximum fraction of resource k that can be added in t
S(i, k) Fraction of resource k used to changeover to SKU i
W (i, j) Waste of SKU i to changeover to SKU j
H(i) Per period holding cost for SKU i
C(i) Total (out of pocket) changeover cost for SKU i
O(k, t) Marginal cost per fraction added
A(i) Per period tardiness cost for external demand for SKU i
L(i) Alternates (or substitutes) SKU list for SKU i
V (i) Marginal cost of using alternate SKU i
X(i, t) Production quantity of SKU i for period t for the last plan
E(i, t) The penalty for deviating from the last plan
B(k, m) The cost of container m of type k
K Set of transportation resource indexes
Mk The maximum number of containers of type k
M A large number

Table 6.2. Data for the SCPf Model

xi,t Order release quantity for SKU i in time t
yk,t “Overtime” fraction of resource k in time t
δi,t Binary indicator of production of SKU i in time t
I+

i,t Inventory of SKU i to carry in time t

I−
i,t Quantity of SKU i backordered in time t

X−
i,t Negative deviation from the last plan

X+
i,t Positive deviation from the last plan

θk,m,t Ones in order for containers m of type k in time bucket t

Table 6.3. Variables Set by the SCPf Model

6.6 Aggregation and Consolidation

The models described to this point will often be far too large to be solved in
a reasonable amount of time. The level of detail must be reduced in order to
find a solution. The resolution can then be increased.

72 6. Extensions to the Model

Minimize:

T∑
t=1

[
P∑

i=1

(
A(i)I−

i,t + H(i)
(
I+

i,t + LT (i)xi,t

)
+ C(i)δi,t + V (i)xi,t + E(i, t)

(
X+

i,t + X−
i,t

))
+

K∑
k=1

O(k, t)yk,t +
∑
k∈K

Mk∑
m=1

B(k, m)θk,m,t

]
(SCPf)

subject to:

Ii,t(x, δ) +

t∑
τ=1

D(i, τ) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

P∑
i=1

[U(i, k)xi,t + S(i, k)δi,t] ≤ 1 + yk,t t = 1, . . . , T, k = 1, . . . , K

yk,t ≤ F (k, t) t = 1, . . . , T, k = 1, . . . , K

δi,t ≥ xi,t

M
i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

yk,t ≥ 0 t = 1, . . . , T, k = 1, . . . , K

x�,t ≥ 0 ∀ t, � ∈ ⋃P

i=1
L(i)

x�,t = 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I−
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I+
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I−
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
�,t − I−

�,t = I�,t(x, δ) ∀ t, � �∈ ⋃P

i=1
L(i)

Ii,T (x, δ) ≥ I(i, T + 1) i = 1, . . . , P

X+
i,t − X−

i,t = xi,t − X(i, t) i = 1, . . . , P, t = 1, . . . , T

X+
i,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

X−
i,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

P∑
i=1

U(i, k)xi,t ≤
Mk∑

m=1

θk,m,t k ∈ K, t = 1, . . . , T

θk,m,t ≥ θk,m+1,t ∀ t, k ∈ K, m = 1, . . . , Mk − 1

θk,m,t ∈ {0, 1} ∀ t, k ∈ K, m = 1, . . . , Mk

Fig. 6.2. SCPf Model

We will work with the concept of aggregation and disaggregation. Products
and resources are grouped together and considered as single entities. Once a
plan is found in terms of aggregated entities, a good plan with more detail

6.6 Aggregation and Consolidation 73

Ii,t(x, δ) ≡
∑

�∈L(i)

t−LT (�)∑
τ=1

x�,τ + I(i, 0) −
t∑

τ=1

D(i, τ) −
P∑

j=1

(R(i, j)xj,τ)

Fig. 6.3. SCPf Inventory Macro for Master SKUs

Ii,t(x, δ) ≡
t−LT (i)∑

τ=1

xi,τ + I(i, 0) −
t∑

τ=1

(
D(i, τ) +

P∑
j=1

(R(i, j)xj,τ + W (i, j)δj,τ)

)

Fig. 6.4. SCPf Inventory Macro for SKUs that are not Master SKUs

can be created that corresponds to it. As with all modeling, decisions about
how to group parts and resources is part art and part science.

6.6.1 Consolidating Resources

An important concept for consolidating resources is the notion of a bottleneck.
The word is so overused that its meaning has become somewhat blurred, but
typically serves to signify a limiting factor. Consider an extreme example.
Suppose that a supply chain consists entirely of three resources and every
SKU is routed through them in order. If for all SKUs, the first and third
servers are always much faster and more reliable than the second, then the
second server would clearly be the bottleneck. For many planning purposes,
there would be no need to include resources one and three in the model.

What effect do non-bottleneck resources have on the model? For non-
bottleneck resources k, constraints such as

P∑
i=1

U(i, k)xi,t ≤ 1 + yk,t

yk,t ≥ 0
yk,t ≤ F (k, t)

will not effect the solutions obtained. The value of
∑P

i=1 U(i, k)xi,t will al-
ways be less than one. The non-bottleneck resources make it harder to solve
because there are variables and constraints associated with each resource.
But the y variables are always zero and the constraints are never binding.

A constraint is said to bind when the left hand side is equal to the right
hand side. One can see that a constraint cannot be effecting the solution
unless it binds. Consider simple capacity constraints without overtime:

74 6. Extensions to the Model

P∑
i=1

U(i, k)xi,t ≤ 1

If
∑P

i=1 U(i, k)xi,t is strictly less than one for some particular resource, k, for
all SKUs i and all times t, then some other constraint(s) and/or the objective
function are determining the values of xi,t for all i and t. To put it another
way: the solution will be the same with and without the constraints

P∑
i=1

U(i, k)xi,t ≤ 1

for this particular k.
We will refer to the difference between the left hand side and the right

hand side as the slack. We can define a bottleneck as a resource with no slack
in some or all of its capacity constraints. A non-bottleneck is a resource with
slack in all of its capacity constraints. Resources that cannot conceivably
become bottlenecks can safely be removed from the models that we have
developed and the solutions will not be effected. However, the time required
to find a solution will be reduced. The only trick is to know which resources
would have no slack if they were in the model.

One possibility is to use intuition, engineering estimates and historical
data to drop non-bottlenecks from the model. Typically, the resources for
which capacity constraints are binding (or overtime is needed) do change over
time as the demand mix evolves. Obviously, the installation of new capacity
or removal of resources can also change the location of the bottleneck. One
must update the model to reflect changing conditions.

Another method of looking for capacity slack is to execute the model.
This can also be used to supplement estimates and intuition. Of course, if
the reason to reduce the number of resources in the model is that the model is
too big, this can be problematic. Modern modeling languages provide features
that can be helpful for trying the model with some resources included and
then again with them excluded. In this way one can test suspicions of capacity
limitations without the need to solve a model that is excessively large. More
resources can be checked at the same time if the model size can be reduced
via other means. The model size can also be reduced by aggregating SKUs
which we now consider.

6.6.2 Aggregating Parts

Part aggregation is based on the idea of part families that share similar
production characteristics. We will use the symbol F(�) to refer to part family
number �. The set F(�) contains the list of part indexes that are in the family.
We define the production quantity for an entire family, � in period t to be
x̂�,t. We could use any of the models that we have developed so far, but the x
variables would be replaced by x̂ with appropriate adjustments to the data.

6.6 Aggregation and Consolidation 75

Variables. If the variables x are used for the disaggregated plan, it is easy
to see that:

x̂�,t =
∑

i∈F(�)

xi,t

But normally, we will have solved the aggregated model to get values for x̂
variables for the aggregate parts and we will want to estimate the correspond-
ing x values for the individual SKUs. For this purpose we will use the data
Pr(i, �), which give the fraction (or average fraction, or estimated fraction)
of family � production that is SKU i production. We can think of the letters
Pr as representing either “proportion” or “probability” depending on the
context. Once we have these data, and we have obtained values for x̂, then
we can compute the corresponding values for x using

xi,t = Pr(i, �)x̂�,t.

By using data about past production quantities, we can estimate good
values for Pr. We use the symbol Avg(xi) to refer to the average per period
production of SKU i and Avg(x̂�) for the average production quantities for
the entire family of which SKU i is a member. A good estimate for Pr is then
given by

Pr(i, �) =
Avg(xi)
Avg(x̂�)

if i ∈ F(�), and zero if i �∈ F(�). These values can be adjusted if there are
reasons to believe that the mixture within a family will change. If there is no
historical production data for an SKU, the values of Pr must be based on an
educated guess or marketing estimates.

Data. We can use the values of Pr to switch back and forth between aggre-
gated and disaggregated data and construct the requirements data between
families. Consider families � and �′. We can write:

Û(�, k) =
∑

i∈F(�)

Pr(i, �)U(i, k)

R̂(�, �′) =
∑

i∈F(�)

∑
j∈F(�′)

Pr(j, �′)R(i, j)

and so forth for the other data values, except changeover data. This is inter-
twined with issues related to part family formation, so it is discussed in the
next subsection.

Forming Part Families. Obviously, the quality of the solution found using
aggregate SKUs will depend in large measure on the quality of the families.
In an organization with thousands of SKUs assignment of parts to families
can be a big undertaking. It is non-trivial even with hundreds of SKUs. Many
organizations have grouped their parts into families for purposes other than
using optimization models for production planning, but these families may

76 6. Extensions to the Model

work quite well for our purposes. Industrial and manufacturing engineers
often create part families to facilitate process planning and computer aided
(re)design of parts.

We can provide some guidance on family creation, if they have not already
been formed for other purposes. All other things being equal it is better
when all members of a family share a routing (perhaps using consolidated
resources), all members should have similar changeover characteristics for
bottleneck resources, and it is desirable for all members to have components
from as few different families as possible and/or to be components in as few
different families as possible. We now discuss these rules in a little bit more
detail.

If there are alternative routings, then all members of a family should share
a routing because the aggregated capacity check might not be very accurate
otherwise. In other words, if some family members can use an alternate rout-
ing, but others cannot, then the meaning of a solution is not as clear as it
would be if all members can use the same routings. This condition can be
tested as follows: If i and j are both members of F(�) and U(i, k) �= 0, but
U(j, k) = 0, then parts i and j are in the same family, but do not have the
same routing.

A similar, but more important situation arises with respect to bottleneck
changeover characteristics. Two cases must be distinguished:

1. The changeover that is required between members of the same family
is very small compared to the changeover between families. This is the
prefered situation. It is reasonable under these conditions to assume that
items from the same family will be sequenced one after the other. The
changeover time to a member of the family can be used as the value for
S. In fact, using aggregated parts will probably produce a more accurate
portrayal of the changeover effort than keeping the SKUs separate.

2. The changeover effort within the family is significant. This is trouble.
The correct course of action depends on the purpose of the model and the
severity of the problem. For rough cut work, one can drop the delta vari-
ables and the changeover data and instead just add average changeover
times to the capacity utilization data, U . An alternative is to look at
historical data and see roughly how much capacity is usually used for
this family and use that for S if it is reasonably stable.

A more subtle issue is the desirability of shared components and shared
uses. Although the model will still be valid, it is easier to solve if the matrix
of R values is mostly zeros, which will almost always be the case before
aggregation. If the families are formed completely at random with respect to
the bill of materials, then the resulting R̂ matrix will be very dense, which is
to say that it will not have very many zeros. This will degrade the solution
time. Also, it simply makes sense to form families that occupy a somewhat
contiguous region of the bill of materials.

6.6 Aggregation and Consolidation 77

Aggregation Example. To illustrate aggregation, consider the example
given in Figure 3.3 (page 22) and §4.1. To make the example easier to read,
we use the SKU name as the product index instead of a serial number.

Suppose our goal is to reduce the number of variables to speed up com-
putation. One way to do that would be to group the end items together in
one family, a second family would be components that are manufactured in-
house, and a third would be the purchased components. That results in the
following families:

F(1) = {AJ8172, TR1777}
F(2) = {LQ8811, NN1100}
F(3) = {RN0098, RN0099, WN7342}

Suppose that historically AJ8172 has had three times as much demand
and production as TR1777 and that this is expected to continue. This pre-
diction would imply that Pr(AJ8172, 1) = 0.75 and Pr(TR1777, 1) = 0.25.

One way to acquire the data for the other families is to base it on these es-
timates. Consider a demand (or production) of 100 end items. So that means
the quantity for the first family is 100, and we can disaggregate as follows:
0.75× 100 = 75 of them will be AJ8172 and 0.25× 100 = 25 will be TR1777.
A simple bill of materials explosion results in the following component quan-
tities for the second family:

LQ8811: 2 × 75 = 150
NN1100: 1 × 150 = 150.

Hence, Pr(LQ8811, 2) = 0.5 and Pr(NN1100, 2) = 0.5 since they are equal
parts of the total for the family. For the purchased components, we would
have

RN0098: 1 × 75 + 3 × 25 = 150
RN0099: 1 × 25 = 25
WN7342: 1 × 150 = 150,

which results in a total family demand of 325. This implies a fraction
Pr(RN0098, 3) = 150/325 = 0.46, which is the same as Pr(WN7342, 3). The
fraction of the third family devoted to RN0099 is fairly small: Pr(RN0099, 3)
= 0.08.

To continue our exercise of the notation, we compute the aggregate, direct
requirements for purchased components to create an end item:

R̂(3, 1) =
∑

i∈F(3)

∑
j∈F(1)

Pr(j, 1)R(i, j),

which, after factoring the Pr terms, is

Pr(AJ8172, 1)×
(R(RN0098, AJ8172) + R(RN0099, AJ8172) + R(WN7342, AJ8172))
+Pr(TR1777, 1)×
(R(RN0098, TR1777) + R(RN0099, TR1777) + R(WN7342, TR1777)).

78 6. Extensions to the Model

Remember that R(i, j) refers to the direct requirements for SKU i to make
one j, consequently, many of the values are zero:

R̂(3, 1) = 0.75 × (1 + 0 + 0) + 0.25 × (3 + 1 + 0) = 1.75.

Similar calculations provide values for R̂(2, 1) and R̂(3, 2).
In the example given in §4.1 there were two resources: HR-101 and MT-

402. For the sake of illustration, suppose that HR-101 is not considered to
be a bottleneck and therefore will not be included in the aggregate planning
process. That leaves us with only one resource to consider. Since LQ8811,
which is in family 2, is the only SKU that uses MT-402, the only non-zero
value of Û will be ˆU(2, 1) = 0.5 × 1

300 .
Aggregate demand data is often obtained from marketing estimates given

in terms of anticipated revenues for a market segment. Segment demand es-
timates are converted to family demand estimates using simple ratios. For
example, suppose that AJ8172 and TR1777 constitute 40% of the sales vol-
ume for a particular market segment. If we know that they have an average
sales price of $130 each and that the estimated demand for this segment in
period 27 is $50000, then we can compute D̂(1, 27) = 0.4×50000/130 = 154.

Values for D̂, Û , and R̂ can be used to construct an aggregate version of
the model MRPII as shown in Figure 6.5. The values for L̂T can either be a
weighted average, as is done for the other data elements, or they can be the
largest value within their family, which is more conservative.

minimize:

P∑
i=1

T∑
t=1

(T − t)x̂i,t

subject to:

t−L̂T (i)∑
τ=1

x̂i,τ + Î(i, 0) −
t∑

τ=1

(
D̂(i, τ) +

3∑
j=1

R̂(i, j)x̂j,τ

)
≥ 0

i = 1, . . . , 3, t = 1, . . . , T
3∑

i=1

Û(i, 1)x̂i,t ≤ 1 t = 1, . . . , T

x̂i,t ≥ 0 i = 1, . . . , 3, t = 1, . . . , T

Fig. 6.5. Aggregate Version of the MRPII Model For the Three Family, One
Resource Example

The x̂ values from an aggregate MRPII model can be disaggregated to
give rough estimates of production quantities. Another use of an aggregated

6.6 Aggregation and Consolidation 79

data is to implement an aggregate version of SCPc and then examine the
“overtime” variables ykt for the purpose of anticipating resource needs.

6.6.3 Discussion of Disaggregation

Once we have solved a model based on aggregated parts, the disaggregation
relationship

xi,t = Pr(i, �)x̂�,t

allows us to estimate production quantities from optimized family produc-
tion quantities. These can then be used in the same fashion as classic MRP
II to check capacity constraints. In other words, the capacity utilization is
accumulated at resources along the routing for each SKU. These estimated
utilizations can then be compared with available capacity. This can be called
a rough cut capacity check. The calculations require no optimization, just the
formula

∑P
i=1 U(i, k)xi,t although it is often preferable to convert the frac-

tional utilizations back into “natural” units for the resources such as tons,
square feet, pieces, etc.

As the name implies, for the purpose of rough cut capacity planning, this
can be very valuable. Rough cut capacity planning is done in situations where
there is some ability to add (or remove) capacity in the near and intermediate
term. By using rough cut capacity planning, one can plan ahead. One can
make preparations to add capacity where it is likely to be needed based on
the estimated utilizations.

For the purpose of production planning in the supply chain rough cut
capacity checks are also valuable. The model and the capacity estimates can
be refined for those resources whose capacity constraints are likely to effect
the solution, namely those resources for which overtime is planned and those
for which there is little or no slack in the capacity constraint.

A final potential use of the disaggregated plan is that it can be used
as a starting point for the search to the problem of finding a plan based
on an aggregation that is not as course. By “not as course” we mean an
aggregation that makes use of more families and, therefore, has fewer SKUs
assigned to each family. One can proceed through successive reduction in
the degree of aggregation, perhaps terminating when each family has only
one SKU (which corresponds to the original non-aggregated problem). For
each successive reduction in aggregation, the disaggregated solution from the
previous problem can be aggregated and used as a starting point for solution.

This idea of systematically increasing the resolution of the planning model
can be continued. The solution to the planning problem can be used as a
starting point for an aggregated scheduling problem. The solution to such a
problem, in turn, can be used for increasingly refined models until a detailed
schedule is produced. However, our interest is in planning so we mention
this primarily to illustrate the notion of disaggregation and systematically
increasing resolution carried to the extreme.

7. Implementation Examples

The models developed in this book can be translated more or less directly
into computer languages that have been developed for optimization modeling.
We provide implementations of the first three models, mrp, MRPII, and
SCPc, using some popular modeling languages: AMPL, GAMS, MPL, OPL,
and Mosel. Implementations of additional models and information about ad-
ditional modeling languages are available on the authors’ web site, which is
http://faculty.gsm.ucdavis.edu/~dlw/scm.html.

This chapter is not intended to be a tutorial on any of the modeling lan-
guages. Each of the languages is supported by extensive documentation and
training. However, these sample model implementations may prove useful to
people interested in using modeling languages for production planning and
supply chain management. Used in conjunction with training or documen-
tation, they can provide a jumping off point for creating more sophisticated
models in the corresponding languages. Each section in this chapter describes
the implementations for a particular language. There is considerable redun-
dancy between the sections because the languages share many features and
our goal is to make each description stand alone so that a reader interested
in a particular language would not need to refer to the sections describing
the others.

The models can also be a useful communication vehicle for experienced
optimization modelers working on problems in production planning. They are
explained in the main chapters using a writing style that is directed toward
production planners. The implementations of the models that are given here
can be used to give production planners an introduction to an optimization
modeling language.

The implementations are also not intended to serve as a basis for com-
paring the modeling languages. For one thing, our knowledge and the level
of help we received in creating the implementations and the skill level of
the people who helped us varied. Furthermore, different concepts are empha-
sized in each of the implementations. Taken as a group, they provide a nice
overview of modeling language capabilities.

All of the modeling languages allow for the use of long, meaningful vari-
able names, which is consistent with accepted good practice among computer
programming professionals. In the text we use names such as x and U for

82 7. Implementation Examples

variables and data elements so that the formulations can be given in a very
compact form, which makes it easier to see the entire model on one page. Some
of our implementations retain the use of single character variable names to
emphasize the connections with the models in the text. Other implementa-
tions make use of long variable and data names.

The languages allow for separation of the model specification from the
data and the solver code. For convenience, the data can be in the same file
as the model or in a separate file. We have illustrated both forms in our
examples. The key thing, though, is that the model need not be changed for
new data.

To make the implementations concrete, we provide example data. The
production, routing and utilization data come from §3.1 and §4.1. Additional
cost data are needed for the SCPc model and the more advanced models.
We use the following:

Data for the SCPc Examples

1. AJ8172:
Nominal Production Lead Time: 2 days
Components: 2 LQ8811, 1 RN0098
Wasted in Changeover: 10 LQ8811
External Demand for eight periods: 20, 30, 10, 20, 30, 20, 30, 40

2. LQ8811:
Nominal Production Lead Time: 3 days
Components: 1 NN1100, 1 WN7342
Wasted in Changeover: 10 LQ8811
No External Demand

3. RN0098:
Order Lead Time: 4 days
Components: N/A
No External Demand

4. NN1100:
Nominal Production Lead Time: 1 day
Components: N/A
No External Demand

5. WN7342:
Order Lead Time: 12 days
Components: N/A
No External Demand

We use the words “Nominal Lead Time” and “Order Lead Time” in this
table to refer to the production lead times that will be used for planning as
opposed to “actual” lead times, which can vary. We make use of an inventory
tolerance constraint as described on page 65 that requires ending inventory to
be within a certain range, say up to 25% change (IT = 0.25), of the beginning

7. Implementation Examples 83

U(i, k) S(i, k)

SKU AJ8172 LQ8811 NN1100 AJ8172 LQ8811 NN1100

HR-101 1/480 1/960 0.000001 0.2 0.2 0

MT-402 1/300 0.5

Table 7.1. Resource Oriented Data for the Implementation of the Models

inventory. The example in §4.1 provides capacity utilization data for SKUs
AJ8172 and LQ8811, which we use in the implementations described here;
see Table 7.1. The utilization of resource HR-101 by SKU NN1100 is taken to
be 0.000001 in the example data files. The maximum fraction of resource k
that can be added in t (i.e., F (k, t)) is set to one half for all pairs (k, t). The
marginal costs O(k, t) in dollar per capacity fraction added to resource k is
assumed to be equal to one for all pairs (k, t). Finally, Table 7.2 summarizes
data for the SKUs involved in the models.

SKU AJ8172 LQ8811 RN0098 NN1100 WN7342

LT (i) 2 3 4 1 12

I(i, 0) 90 300 100 0 900

LS(i) 100 400 100 1 1000

C(i) 800 4200 1 1 1

H(i) 2 1 0.5 0.1 0.1

A(i) 400 100 4 4 4

Table 7.2. SKU Oriented Data for the Implementation of the Models

84 7. Implementation Examples

7.1 AMPL

A computer program is available that implements the modeling language
AMPL. The acronym stands for “Algebraic Modeling Language for Math-
ematical Programming.” This language (or, more accurately, its implemen-
tation as software) is useful as an interface to various solvers for mathe-
matical programming (e.g., CPLEX or Xpress-MP). The AMPL homepage,
http://www.ampl.com/, contains additional information and facilities for
trying small instances.

The specification of a model is done using a model file that contains an
algebraic description of the model in a form very similar to that used in this
book. To create a problem instance, a model file is combined with a data
file. Data files provide the input data for a particular instance. The following
subsections contain model files for the basic models that we have presented
along with sample data files.

Before proceeding with the models that we have implemented using the
modeling language, a few words of introduction concerning the structure of
an AMPL model are in order. AMPL models are given by statements, each
terminated by a semicolon. All text after a sharp sign, #, is considered to be
a comment and is ignored by the language processor. AMPL models have the
following components:

• Sets — In addition to the straightforward use of this component to define
sets, it is also used in a more subtle way to provide names instead of
numbers for indexes. One can create a set of product names and then have
summations across all members of the set. The line

set PP ordered; # Set of SKU Numbers

declares the existence of a set that will hold the names of the products. It
is declared to be an ordered set so that it can be used as an index. The
names of the products are read from a data file when the AMPL software
runs. The advantage of using a set for indexes is that reports are more
meaningful when production is given for an SKU such as LQ8811 rather
than product number 2. A similar line

set TT ordered; # Set of Time Buckets

is used to declare the set of time buckets.

• Parameters — Most of the data elements for the model (those that are not
sets) are given as parameters. Parameters can be given values in the model
file, but the values are usually read from a separate data file. The line

param LT {PP} integer; # Lead Time

establishes the parameter LT which is the list of lead times. The argument
PP is declared to be the set of product indexes earlier in the model file.

7.1 AMPL 85

• Variables — This component gives the names of the variables that will be
given values by the solver. For example, the statements

var d {PP, TT} binary; # Production indicator
var x {PP, TT} >=0; # Number of each SKU to order

declare all of the variables needed for the model mrp. Both d and x are
indexed over the products and the time buckets. The variable named d is
used for the variable that we have called δ and is declared to be binary
because δ ∈ {0, 1}. Simple bounds, such as ≥ 0 can be given when variables
are declared rather than in the constraints. This makes the model a little
easier to read and perhaps provides some solver efficiency so x is declared
to be >=0.

• Objective Function — The objective function indicates the goal, e.g., min-
imization as well as the function written in terms of the parameters, sets,
and variables that have been defined. For example, the statement

minimize objective: sum {i in PP, t in TT}
(T-ord(t)) * x[i,t];

gives the objective function for the model mrp. In this expression, the
AMPL syntax is illustrated by the replacement of

P∑
i=1

T∑
t=1

with sum {i in PP, t in TT} and xi,t with x[i,t]. Notice that we use
(T - ord(t)) rather than T − t. We use ord(t) instead of t because in
the AMPL implementation we choose to have the times be an ordered set.
In this expression, we want the ordinal number of the time (“ord” is short
for “ordinal”) rather than the name of a corresponding time bucket that
is contained in the set of times.

• Constraints — Constraints are expressed as functions of the parameters,
sets and variables that have been defined. Constraints are constructed using
operators such as

<, >, <=, >=.

For example, the line

subject to LotSize {i in PP, t in TT}:
x[i,t] - d[i,t]*LS[i] >= 0;

gives the lotsizing constraint for the mrp model. Having more than one
constraint may result in all constraints in one block after the subject to
statement or each constraint given separately after a subject to state-
ment.

These components are combined to create a model. This very brief intro-
duction should be enough to understand the models that follow.

86 7. Implementation Examples

7.1.1 mrp Model

An AMPL implementation of mrp (see Figure 3.7) is as follows:

set PP ordered; # Set of SKU Numbers
set TT ordered; # Set of Time Buckets

param P integer := card(PP); # Number of SKUs
param T integer := card(TT); # Number of Time Buckets
param M >= 0; # Large Number
param LT {PP} integer; # Lead Time
param R {PP, PP} integer; # Number of i to make one j
param D {PP, TT} integer; # External Demand for an item ...

... in a period
param I {PP} integer; # Beginning Inventory
param LS {PP} integer; # Lot Size

var d {PP, TT} binary; # Production indicator
var x {PP, TT} >= 0; # Number of each SKU to order

minimize objective:
sum {i in PP, t in TT} (T-ord(t)+1) * x[i,t];

subject to MaterialRequirement {i in PP, t in TT}:
(sum {s in TT: ord(s) <= ord(t)-LT[i]} x[i,s]) + I[i]
- sum {s in TT: ord(s) <= ord(t)}

(D[i,s] + sum {j in PP} R[i,j] * x[j,s])
>= 0;

subject to LotSize {i in PP, t in TT}:
x[i,t] - d[i,t]*LS[i] >= 0;

subject to ProductionIndicator {i in PP, t in TT}:
d[i,t] - x[i,t]/M >= 0;

In the first part the sets, parameters and variables are declared. Com-
ments at the end of the line indicate the function of each letter. The notation
P integer := card(PP) indicates that P is to be an integer that takes on
the value that is the number of elements in the set PP (“card” is an abbre-
viation for “cardinality”).

The objective function is the content of the second segment, the con-
straints are defined in the last section. The objective function is a little bit
different from the function in the abstract model:

minimize objective:
sum {i in PP, t in TT} (T-ord(t)+1) * x[i,t];

First, we use T-ord(t) instead of T − t because we choose to represent
the times as a set of names. This makes the reports easier to read, but means

7.1 AMPL 87

that in order to have the bucket number that corresponds to time t, we need
to use ord(t). If we simply let t be an integer, we would not have had to use
the ord function, but reports would have had numbers for each period instead
of meaningful names for the time periods. This is particularly problematic
in practice where the reports must be generated each week and two reports
where period 1 means two different things can be very confusing. Hence, it
is better to use meaningful period names as we have done.

The other difference is due to solver issues. To avoid production quantities
in the last time bucket that will not actually be completed before the end of
the time horizon covered by the model we insert “+1,” which insures that
production is always penalized a little bit. Without this penalty, production
in period T has no cost in the objective function but as part of the search
for an optimal solution, the solver might assign some production to this
period. Production ordered for the last period will generally not help or hurt
anything in the model because it will not be completed before the end of the
horizon. However, spurious production quantities look bad on reports, so this
little trick is useful. In this case, we could add any number we wanted and
the optimal values for the variables would not be affected (the value of the
objective function itself would be different; however, the objective function
value for mrp has no quantitative economic meaning).

7.1.2 mrp Data

Now the model can be used for our example data. We take the data from the
bill of materials, master production schedule and the inventory status files
we presented in §3.1. First the list of SKUs, their lead times, and the set of
time buckets have to be defined. The beginning inventory and the minimum
lot size that depend on the SKU can be also entered as a list of values.
The number of SKU i needed to produce one j and the external demand of
every SKU at a time period t must be provided. In our case all components
indicate no external demand, only the end item AJ8172 has values for every
time bucket. We chose 10000 as the value for the “big number,” M, in our
example.

param M := 10000; # Large number

param: PP : LT := # Items with Lead Times
AJ8172 2
LQ8811 3
RN0098 4
NN1100 1
WN7342 12;

set TT := 1jan04 # Time Buckets
2jan04
3jan04
4jan04

88 7. Implementation Examples

5jan04
6jan04
7jan04
8jan04;

param R : # Number of i to produce one j
AJ8172 LQ8811 RN0098 NN1100 WN7342 :=

AJ8172 0 0 0 0 0
LQ8811 2 0 0 0 0
RN0098 1 0 0 0 0
NN1100 0 1 0 0 0
WN7342 0 1 0 0 0;

param D : # external demand for i in t
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04 :=

AJ8172 20 30 10 20 30 20 30 40
LQ8811 0 0 0 0 0 0 0 0
RN0098 0 0 0 0 0 0 0 0
NN1100 0 0 0 0 0 0 0 0
WN7342 0 0 0 0 0 0 0 0;

param I := AJ8172 90 # Beginning Inventory of SKU i
LQ8811 300
RN0098 100
NN1100 0
WN7342 900;

param LS := AJ8172 100 # Lot Size
LQ8811 400
RN0098 100
NN1100 1
WN7342 1000;

7.1.3 Results of Running mrp

To get the results of our optimization model we can use a batch file. The
batch file mrp.run loads the model mrp.mod and the data from mrp.dat,
runs the problem, and displays an optimal solution of the variables x and d,
and some additional text lines.

The batch file includes AMPL commands to carry out and direct the solu-
tion process. The following batch file executes the model using the associated
data file:

model mrp.mod;
data mrp.dat;
solve;

print "";
print "little mrp with 5 SKUs and 8 time buckets";
display x;
display d;

7.1 AMPL 89

Execution results in an objective function value of 6800 and a material
requirements plan for the production quantity at every day which is shown
by the variable x[i,t].

little mrp with 5 SKUs and 8 time buckets
x [*,*]
: AJ8172 LQ8811 RN0098 NN1100 WN7342 :=
1jan04 0 0 0 0 0
2jan04 0 0 100 400 0
3jan04 100 400 0 0 0
4jan04 0 0 0 0 0
5jan04 0 0 0 0 0
6jan04 100 0 0 0 0
7jan04 0 0 0 0 0
8jan04 0 0 0 0 0
;

d [*,*]
: AJ8172 LQ8811 RN0098 NN1100 WN7342 :=
1jan04 0 0 0 0 0
2jan04 0 0 1 1 0
3jan04 1 1 0 0 0
4jan04 0 0 0 0 0
5jan04 0 0 0 0 0
6jan04 1 0 0 0 0
7jan04 0 0 0 0 0
8jan04 0 0 0 0 0
;

The values of d are printed here in the interest of completeness. They are
redundant in that they simply reflect the non-zero entries in the production
orders implied by the x values.

7.1.4 MRPII Model

To implement the model MRPII as shown in Figure 4.2 one must add the
new parameters, sets, and constraints to the model for mrp and drop the lot
sizing constraint. A set of resources has to be added and the values for the
fraction of each resource needed by one SKU i have to be provided as data.
An MRPII model looks like the following:

set PP ordered; # Set of SKU Numbers
set TT ordered; # Set of Time Buckets
set KK ordered; # Set of Resources

param P integer := card(PP); # Number of SKUs
param T integer := card(TT); # Number of Time Buckets
param K integer := card(KK); # Number of Resources

param I {PP} integer; # Beginning Inventory
param LT {PP} integer; # Lead Time

90 7. Implementation Examples

param R {PP, PP} integer; # Number of SKUs i to make one SKU j
param D {PP, TT} integer; # Ext. Demand for an item in a period
param U {PP, KK}; # Frac. of Res. k needed by one SKU i

var x {PP, TT} >=0; # Number of SKUs to produce

minimize objective:
sum {i in PP, t in TT} (T-ord(t)+1) * x[i,t];

subject to MaterialRequirement {i in PP, t in TT}:
(sum {s in TT: ord(s) <= ord(t)-LT[i]} x[i,s]) + I[i]
- sum {s in TT: ord(s) <= ord(t)}

(D[i,s] + sum {j in PP} R[i,j] * x[j,s])
>= 0;

subject to Capacity {t in TT, k in KK}:
sum {i in PP} U[i,k] * x[i,t] <= 1;

As we did in “little-mrp” we have to insert “+1” into the objective func-
tion again to avoid meaningless production quantities in the last time bucket.

7.1.5 Data for MRPII

In addition to the data provided for mrp, the parameters U(i, k) and the list
of resources, K, must be specified. The minimum lot sizes that we used for
mrp are not part of this model.

param: PP : LT := # Items with Lead Times
AJ8172 2
LQ8811 3
RN0098 4
NN1100 1
WN7342 12;

set TT := 1jan04 # Time Buckets
2jan04
3jan04
4jan04
5jan04
6jan04
7jan04
8jan04;

set KK := HR-101 # Resources
MT-402;

7.1 AMPL 91

param R : # Number of i to produce one j
AJ8172 LQ8811 RN0098 NN1100 WN7342 :=

AJ8172 0 0 0 0 0
LQ8811 2 0 0 0 0
RN0098 1 0 0 0 0
NN1100 0 1 0 0 0
WN7342 0 1 0 0 0;

param D : # external demand for i in t
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04 :=

AJ8172 20 30 10 20 30 20 30 40
LQ8811 0 0 0 0 0 0 0 0
RN0098 0 0 0 0 0 0 0 0
NN1100 0 0 0 0 0 0 0 0
WN7342 0 0 0 0 0 0 0 0;

param I := AJ8172 90 # Beginning Inventory of SKU i
LQ8811 300
RN0098 100
NN1100 0
WN7342 900;

param U : # fraction of resource k needed by one i
HR-101 MT-402 :=

AJ8172 0.00208333 0
LQ8811 0.00104166 0.00333333
RN0098 0 0
NN1100 0.000001 0
WN7342 0 0;

7.1.6 SCPc Model

To build up the SCPc model as shown in Figure 5.1 several things are needed
that are similar to the artificial “+1” that was inserted into the objective func-
tion for mrp. To avoid small production quantities at the last time buckets
we add a new “Sunset” constraint. This constraint ensures there will be no
production quantities for periods that would result in completion after the
time horizon consisting of T time buckets. Such production quantities do not
incur any cost penalty in the objective function, so although they also do no
good, the solver might set some quantities during the search for an optimal
solution. To avoid this nuisance, we add a constraint that would be

T∑
τ=T−LT (i)+1

xi,τ = 0 i = 1, . . . , P

in the SCPc model.

subject to Sunset {i in PP}:
sum {s in TT: ord(s) >= T-LT[i]+1} x[i,s] = 0;

92 7. Implementation Examples

Because the inventory after the last time bucket does not result in any
costs we add another constraint to bring the inventory to normal levels at the
end of the planning horizon as discussed on page 65. The constraint makes
use of the data element IT, which stands for inventory tolerance:

subject to InventoryTolerance {i in PP}:
(1-IT)*I[i] <= iplus[i,last(TT)] <= (1+IT)*I[i];

The function call last(TT) returns the last index in the ordered set of
time buckets.

Due to the nature of the constraints, it is useful to have a non-zero (al-
though perhaps very small) value for all C(i). The reason is that the material
requirements constraints and the inventory constraints are “one-sided” in the
sense that production of components is required for assembly and production
is required in order to create inventory, but there is nothing to prevent spu-
rious non-zero production quantities that are not subsequently in inventory
or used as components. This can be repaired by adding constraints, but we
think a better thing to do is to continue in the spirit of inserting “+1” into
the objective function in mrp. We simply make sure that there is a small
penalty for all production, so that any production that appears in the plan
is there for a reason and is not simply an artifact of the computer’s solution
process.

The model SCPc implemented in AMPL looks like the following:

SCPc.mod
model SCPc

set PP ordered; # Set of SKU Numbers
set TT ordered; # Set of Time Buckets
set KK ordered; # Set of Resources

param P integer := card(PP); # Number of SKUs
param T integer := card(TT); # Number of Time Buckets
param K integer := card(KK); # Number of Resources
param M >= 0; # Large Number
param IT <=1, >=0; # Inventory Tolerance at the end

param LT {PP} integer; # Lead Time
param R {PP, PP} integer; # Number of SKUs i to make one SKU j
param D {PP, TT} integer; # Ext. Demand for an item in a period
param I {PP} integer; # Beginning Inventory
param U {PP, KK}; # Fraction of res. k needed by one SKU
param F {KK, TT}; # Max frac. of k that can be added in t
param S {PP, KK}; # Frac. of k used to changeover to SKU i
param W {PP, PP}; # Waste of i to setup changeover to j
param H {PP}; # Per period holding cost for SKU i
param C {PP}; # Total changeover cost for SKU i
param O {KK, TT}; # Marginal cost per fraction added
param A {PP}; # Per Period tardiness cost for ext. d.

var d {PP, TT} binary; # Production indicator

7.1 AMPL 93

var x {PP, TT} >=0; # Number of SKUs to produce
var y {KK, TT} >=0; # "Overtime" fraction of res. k in t
var iplus {PP, TT} >=0; # Inventory of SKU i to carry in t
var iminus {PP, TT} >=0; # Quantity of SKU i backordered in t

minimize objective:
sum {t in TT}

(sum {i in PP}
(A[i]*iminus[i,t] + H[i]*iplus[i,t]
+ C[i]*d[i,t])

+ sum {k in KK} O[k,t]*y[k,t]);

subject to mrp {i in PP, t in TT}:
sum {s in TT: ord(s) <= ord(t)-LT[i]} x[i,s] + I[i]
- sum {s in TT: ord(s)<=ord(t)}

(D[i,s] + sum{j in PP} (R[i,j]*x[j,s] + W[i,j]*d[j,s]))
+ sum {s in TT: ord(s)<=ord(t)} D[i,s]

>= 0;

subject to Capacity {t in TT, k in KK}:
sum {i in PP} (U[i,k]*x[i,t] + S[i,k]*d[i,t]) - y[k,t] <= 1;

subject to maxFraction {k in KK, t in TT}:
y[k,t] - F[k,t] <= 0;

subject to ProductionIndicator {i in PP, t in TT}:
d[i,t] - x[i,t]/M >=0;

subject to Inventory {i in PP, t in TT}:
iplus[i,t] - iminus[i,t]
- (sum {s in TT: ord(s) <= ord(t)-LT[i]} x[i,s] + I[i]

- sum {s in TT: ord(s)<=ord(t)}
(D[i,s] + sum{j in PP} (R[i,j]*x[j,s] + W[i,j]*d[j,s]))

)
= 0;

subject to Sunset {i in PP}:
sum {s in TT: ord(s) >= T-LT[i]+1} x[i,s] = 0;

subject to InventoryTolerance {i in PP}:
(1-IT)*I[i] <= iplus[i,last(TT)] <= (1+IT)*I[i];

Notice that rather than using the inventory macro, we have expanded it.
For example, the mrp constraint uses the expression for the macro as given
on page 48.

94 7. Implementation Examples

7.1.7 Data for SCPc

Beyond the data provided for MRPII, a lot of new data must be added to
create the data file for SCPc:

data SCPc.dat

param: PP : LT := # Items with Lead Times
AJ8172 2
LQ8811 3
RN0098 4
NN1100 1
WN7342 12;

set TT := 1jan04 # Time Buckets
2jan04
3jan04
4jan04
5jan04
6jan04
7jan04
8jan04;

set KK := HR-101 # Resources
MT-402;

param M := 10000; # Large number

param IT := 0.25; # Inventory Tolerance at the end

param R :
AJ8172 LQ8811 RN0098 NN1100 WN7342 :=

AJ8172 0 0 0 0 0
LQ8811 2 0 0 0 0
RN0098 1 0 0 0 0
NN1100 0 1 0 0 0
WN7342 0 1 0 0 0;

param D : # external demand for i in t
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04 :=

AJ8172 20 30 10 20 30 20 30 40
LQ8811 0 0 0 0 0 0 0 0
RN0098 0 0 0 0 0 0 0 0
NN1100 0 0 0 0 0 0 0 0
WN7342 0 0 0 0 0 0 0 0;

param I := AJ8172 90 # Beginning Inventory of SKU i
LQ8811 300
RN0098 100
NN1100 0
WN7342 900;

7.1 AMPL 95

param U : # fraction of resource k needed by one i
HR-101 MT-402 :=

AJ8172 0.00208333 0
LQ8811 0.00104166 0.00333333
RN0098 0 0
NN1100 0.000001 0
WN7342 0 0;

param F : # max fraction of k that can be added i
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04 :=

MT-402 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
HR-101 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5;

param S : # Frac. of k used to changeover to i
HR-101 MT-402 :=

AJ8172 0.2 0
LQ8811 0.2 0.5
RN0098 0 0
NN1100 0 0
WN7342 0 0;

param W : # Waste of i to changeover to j
AJ8172 LQ8811 RN0098 NN1100 WN7342 :=

AJ8172 0 0 0 0 0
LQ8811 10 10 0 0 0
RN0098 0 0 0 0 0
NN1100 0 0 0 0 0
WN7342 0 0 0 0 0;

param H := AJ8172 2 # per period holding cost for SKU i
LQ8811 1
RN0098 0.5
NN1100 0.1
WN7342 0.1;

param C := AJ8172 800 # total changeover cost for SKU i
LQ8811 4200
RN0098 1
NN1100 1
WN7342 1;

param O : # marginal cost per fraction added
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04 :=

MT-402 1 1 1 1 1 1 1 1
HR-101 1 1 1 1 1 1 1 1;

param A := AJ8172 400 # per period tardiness cost for e.d.
LQ8811 100
RN0098 4
NN1100 4
WN7342 4;

96 7. Implementation Examples

7.2 GAMS

The GAMS modeling language is widely recognized as pioneering the de-
velopment of software for translation of algebraic optimization models into a
form that is accessible to solver software. More information about GAMS can
be obtained at http://www.gams.com along with pointers to more examples.

Within the GAMS language, components of the model are defined and
then combined to make a model. Generally, GAMS statements (which may
have multiple parts) end with a semicolon and text placed between syntactic
entities is considered to be explanatory text. Lines that begin with an asterisk
are comments. The required components are:

• Sets — In addition to the straightforward use of this component to define
sets, it is also used in a more subtle way to provide names instead of
numbers for indexes. One can create a set of product names and then have
summations across all members of the set. The lines

set PP SKU Numbers / AJ8172, LQ8811, RN0098, NN1100, WN7342 /
TT Time Buckets / 1jan04*8jan04 /
KK Resources / HR-101, MT-402 /;

declare and assign values to all of the sets needed to name the indexes for
mrp and MRPII. In the case of data assignments, an asterisk means “and
all values through,” provided that the difference in the left and right set
element consists of numbers and the left number is smaller than the right.
Hence, 1jan04*8jan04 means 1jan04, 2jan04, . . ., 7jan04, 8jan04.

• Parameters, Tables, Scalars — Most of the data elements for the model
(those that are not sets) are given as parameters, tables, or scalars. They
are declared and given their values in the same statement, such as the
following:

table U(PP,KK) fraction of resource k needed by one i
HR-101 MT-402

AJ8172 0.00208333 0
LQ8811 0.00104166 0.00333333
RN0098 0 0
NN1100 0.000001 0
WN7342 0 0
;

that declares the utilization and assigns it values. The text “fraction of re-
source k needed by one i” is treated as explanatory text. The index values
for PP and KK such as AJ8172 and HR-101 must be previously assigned to
the sets PP and KK.

• Variables — This component gives the names of the variables that will be
given values by the solver. For example, the statements

binary variable d(PP,TT) production indicator
positive variable x(PP,TT) number of SKUs to produce;

7.2 GAMS 97

declare all of the variables needed for the model mrp. Both d and x are
indexed over the products and the time buckets. The variable name d is
used for the variable that we have called δ and is declared to be binary
because δ ∈ {0, 1}. Simple bounds, such as ≥ 0 can be given when variables
are declared rather than in the constraints for better clarity and perhaps
some solver efficiency so x is declared to be positive, which means x ≥ 0.
Extra text, such as “number of SKUs to produce” is not semantic with
respect to the model definition, but can be used in reports as explanatory
text. A statement such as

variable obj;

must be included to declare an unrestricted variable to accept the objective
function value.

• Equations — Equations (which includes inequalities) are used for the ob-
jective function and the constraints. Equations must first be declared and
then defined. For example, the statement

defcap(TT,KK) capacity;

declares the existence of an equation named defcap and indicates that
there will be a defcap equation for all members of the sets TT and KK, which
is the GAMS implementation of t = 1, . . . T, k = 1, . . . , K. The word
“capacity” is treated as explanatory text, which is more than a comment.
Inside the GAMS program, the user has access to these strings. This comes
in handy for writing reports, etc. The statement

defcap(TT,KK).. sum(PP, U(PP,KK)*x(PP,TT)) =L= 1;

defines the constraint

P∑
i=1

U(i, k)xi,t ≤ 1 t = 1, . . . , T, k = 1, . . . , K

The name “defcap” can then be used in model definitions. Any model with
“defcap” will include the capacity constraint. An equation declaration is
indicated by an equation name followed by two periods. The sense of the
equation or inequality is given by a letter between equal signs. So =L=
means ≤, while =E= means =. Notice that the syntax for summation is
the word sum followed by the summation indexes and the summands in
parenthesis. An objective function is defined by equating an unrestricted
variable with a function of the data and variables, such as

defobj.. obj =E= sum((PP,TT), (card(TT)-ord(TT))*x(PP,TT));

which implements the mrp objective function.

• Model — The model statement is the word “model” followed by a list of
equation names delimited by slashes. For example, the statement

98 7. Implementation Examples

model mrp /defobj, defreq, deflot, defprod/;

defines the model for mrp (assuming that the equations listed have been
defined).

• Solve — The solve command instructs the solver to use a model as a basis
for minimizing or maximizing a variable. For example,

solve mrp minimizing obj using mip;

instructs the solver to minimize the value of the variable named obj using
the model named mrp. The text “using mip” warns the solver software that
some variables are binary (see §8.1).

7.2.1 mrp and MRPII Models

Both the mrp and MRPII models are in one file because the two mod-
els share input data and equations. This also shows the power of modeling
languages where one can quickly build various instances of the same base
model. Having defined the constraints defreq, deflot, defprod, defred,
and defcap as well as the two objective functions, specification of the two
models that use various combinations of these building blocks is simply:

model mrp /defobj, defreq, deflot, defprod/;
model mrp2 /defobj, defreq, defcap/;

Here are a few comments about the implementation:

1. In this implementation, the “0” has been removed from the tables. Some-
times this is referred to as a sparse representation.

2. The word “alias” is used as a way to get additional indexes over the
same set. For example, alias (TT,TTp) established TTp to be used in
expressions where the model dictates that the constraint is to be for every
time t and within the constraint formula there is a summation over time
using the index τ .

3. In GAMS, one uses the dollar sign ($) to mean “such that.” For example

sum(TTp$(ord(TTp)<=ord(TT)-LT(PP))

implements
t−LT (i)∑

τ=1

with ord(TTp) giving the value of τ and ord(TT) giving the value of t.
When a dollar sign appears at the beginning of a line it introduces a
directive that is not really part of the model, such as a title to be used
in reports.

4. The statement “option optcr=0.0;” instructs the solver to seek an op-
timal, rather than near optimal, solution.

7.2 GAMS 99

5. Generally, modeling languages are programmable. For example, calcula-
tions based on the data can be performed. In this implementation, the
total demand from external and implicit demand is derived by going
through the BOM treating it as a tree. The code starts with the root
node of the tree (level 0) and goes through the nodes in a breadth-first
manner, which accumulates a bound on the total demand for subproducts
using the following code:

parameter lev(PP) level in the BOM
TD(PP) bound on total demand extern plus implicit;

scalar runlev level iteration / 0 /;

* Root node gets level 0, all others get -1
lev(PP)$(sum(PPp,R(PP,PPp))) = -1;
TD(PP)$(lev(PP) = 0) = sum(TT,demand(PP,TT)) + LS(PP);
loop(PP$(lev(PP) = runlev),

runlev = runlev + 1;
lev(PPp)$R(PPp,PP) = runlev;
TD(PPp)$R(PPp,PP) = sum(TT,demand(PPp,TT))

+ R(PPp,PP)*TD(PP) + LS(PP);
);

Having an upper bound on the total demand allows calculation of big M
for defprod, which is much better than having just “a big number:”

parameter M(PP) big M for equation defprod;
M(PP) = TD(PP);

6. GAMS is case insensitive, so the variable “D” was changed to “demand.”
7. To avoid small production quantities in the last time buckets we insert

“+1” into the objective function, which insures that production is always
penalized a little bit. For additional discussion, see page 87.

The GAMS implementation of mrp and MRPII is as follows:

$Title Materials Requirements Planning (mrp/MRPII) Formulations

set PP SKU Numbers / AJ8172, LQ8811, RN0098, NN1100, WN7342 /
TT Time Buckets / 1jan04*8jan04 /
KK Resources / HR-101, MT-402 /;

alias (TT,TTp)
(PP,PPp);

table R(PP,PP) number of i to make one j
AJ8172 LQ8811 RN0098 NN1100 WN7342

AJ8172
LQ8811 2
RN0098 1
NN1100 1
WN7342 1
;

100 7. Implementation Examples

table demand(PP,TT) External Demand for an item in a period
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04

AJ8172 20 30 10 20 30 20 30 40
LQ8811
RN0098
NN1100
WN7342
;

parameter lev(PP) Level in the production tree
TD(PP) Bound on total demand extern plus implicit;

scalar runlev level iteration / 0 /;

* Root node get level 0, all other get -1
lev(PP)$(sum(PPp,R(PP,PPp))) = -1;
TD(PP)$(lev(PP) = 0) = sum(TT,demand(PP,TT)) + LS(PP);
loop(PP$(lev(PP) = runlev),

runlev = runlev + 1;
lev(PPp)$R(PPp,PP) = runlev;
TD(PPp)$R(PPp,PP) = sum(TT,demand(PPp,TT))

+ R(PPp,PP)*TD(PP) + LS(PP);
);

parameter LT(PP) Lead Time
I(PP) Beginning Inventory
LS(PP) Lot Size;

table SKUdata
LT LS I

AJ8172 2 100 90
LQ8811 3 400 300
RN0098 4 100 100
NN1100 1 1 0
WN7342 12 1000 900
;

LT(PP) = SKUdata(PP,’LT’);
LS(PP) = SKUdata(PP,’LS’);
I(PP) = SKUdata(PP,’I’);

table U(PP,KK) fraction of resource k needed by one i
HR-101 MT-402

AJ8172 0.00208333 0
LQ8811 0.00104166 0.00333333
RN0098 0 0
NN1100 0.000001 0
WN7342 0 0
;

parameter M(PP) big M for equation defprod;
M(PP) = TD(PP);

7.2 GAMS 101

binary variable d(PP,TT) production indicator
positive variable x(PP,TT) number of SKUs to produce
variable obj;

equation defobj objective function
defreq(PP,TT) material requirement
deflot(PP,TT) lot size
defprod(PP,TT) production indicator
defcap(TT,KK) capacity;

defobj.. obj =E= sum((PP,TT), (card(TT)-ord(TT)+1)*x(PP,TT));

defreq(PP,TT).. sum(TTp$(ord(TTp)<=ord(TT)-LT(PP)), x(PP,TTp))
+ I(PP)

=G= sum(TTp$(ord(TTp)<=ord(TT)), demand(PP,TTp)
+ sum(PPp, R(PP,PPp)*x(PPp,TTp)));

deflot(PP,TT).. x(PP,TT) =G= d(PP,TT)*LS(PP);

defprod(PP,TT).. x(PP,TT) =L= d(PP,TT)*M(PP);

defcap(TT,KK).. sum(PP, U(PP,KK)*x(PP,TT)) =L= 1;

model mrp /defobj, defreq, deflot, defprod/;
model mrp2 /defobj, defreq, defcap/;

option optcr=0.0;
solve mrp minimizing obj using mip;
solve mrp2 minimizing obj using lp;

7.2.2 SCPc Model

To build up the SCPc model as shown in Figure 5.1 several things are needed
that are similar to the artificial “+1” that was inserted into the objective
function for mrp. In order to explain the syntax and annotate the model, we
discuss a few of them.

To avoid small production quantities at the last time buckets we add a
new “Sunset” constraint. This constraint ensures there will be no production
quantities for periods that would result in completion after the time horizon
consisting of T time buckets. Such production quantities do not incur any
cost penalty in the objective function, so although they also do no good, the
solver might set some quantities during the search for an optimal solution.
To avoid this nuisance, we add a constraint that would be

T∑
τ=T−LT (i)+1

xi,τ = 0 i = 1, . . . , P

in the SCPc model.

102 7. Implementation Examples

x.fx(PP,TTp)$(ord(TTp) > card(TT)-LT(PP)) = 0;
d.fx(PP,TTp)$(ord(TTp) > card(TT)-LT(PP)) = 0;

The fx suffix indicates that the variable should be fixed and the dollar sign
means “such that,” so the first constraint translates to “x(PP,TTp) should
be fixed at 0 for all PP and TTp such that production that starts in period
TTp would result in completion after the time horizon (which is given by
card(TT)).”

Because the inventory after the last time bucket does not result in any
costs we add another constraint to bring the inventory to normal levels at the
end of the planning horizon as discussed on page 65. The constraint makes
use of the data element IT, which stands for inventory tolerance:

* inventory tolerance
iplus.up(PP,TTp)$(ord(TTp) = card(TT)) = (1+IT)*I(PP);
iplus.lo(PP,TTp)$(ord(TTp) = card(TT)) = (1-IT)*I(PP);

The suffix up indicates an upper bound while lo refers to a lower bound.
The data element IT is declared and given a value by the statement

scalar IT inventory tolerance at the end / 0.25 /;

Due to the nature of the constraints, it is useful to have a non-zero (al-
though perhaps very small) value for all C(i). The reason is that the material
requirements constraints and the inventory constraints are “one-sided” in the
sense that production of components is required for assembly and production
is required in order to create inventory, but there is nothing to prevent spu-
rious non-zero production quantities that are not subsequently in inventory
or used as components. This can be repaired by adding constraints, but we
think a better thing to do is to continue in the spirit of inserting “+1” into
the objective function in mrp. We simply make sure that there is a small
penalty for all production, so that any production that appears in the plan
is there for a reason and is not simply an artifact of the computer’s solution
process.

The GAMS implementation of SCPc is as follows; notice that instead of
the inventory macro, an additional variable, inv is used in this implementa-
tion:

$Title (SCPc) Formulation

set PP SKU Numbers / AJ8172, LQ8811, RN0098, NN1100, WN7342 /
TT Time Buckets / 1jan04*8jan04 /
KK Resources / HR-101, MT-402 /;

alias (TT,TTp)
(PP,PPp);

7.2 GAMS 103

table R(PP,PP) number of i to make one j
AJ8172 LQ8811 RN0098 NN1100 WN7342

AJ8172
LQ8811 2
RN0098 1
NN1100 1
WN7342 1
;

table demand(PP,TT) External Demand for an item in a period
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04

AJ8172 20 30 10 20 30 20 30 40
LQ8811
RN0098
NN1100
WN7342
;

parameter lev(PP) Level in the production tree
TD(PP) Bound on total demand extern plus implicit;

scalar runlev level iteration / 0 /;

* Root node get level 0, all other get -1
lev(PP)$(sum(PPp,R(PP,PPp))) = -1;
TD(PP)$(lev(PP) = 0) = sum(TT,demand(PP,TT)) + LS(PP);
loop(PP$(lev(PP) = runlev),

runlev = runlev + 1;
lev(PPp)$R(PPp,PP) = runlev;
TD(PPp)$R(PPp,PP) = sum(TT,demand(PPp,TT))

+ R(PPp,PP)*TD(PP) + LS(PP);
);

parameter LT(PP) Lead Time
I(PP) Beginning Inventory
H(PP) per period holding cost
C(PP) total changeover cost
A(PP) per period tardiness cost;

table SKUdata
LT I H C A

AJ8172 2 90 2.0 800 400
LQ8811 3 300 1.0 4200 100
RN0098 4 100 0.5 1 4
NN1100 1 0.1 1 4
WN7342 12 900 0.1 1 4
;

LT(PP) = SKUdata(PP,’LT’);
I(PP) = SKUdata(PP,’I’);
H(PP) = SKUdata(PP,’H’);
C(PP) = SKUdata(PP,’C’);
A(PP) = SKUdata(PP,’A’);

scalar IT inventory tolerance at the end / 0.25 /;

104 7. Implementation Examples

table U(PP,KK) fraction of resource k needed by one i
HR-101 MT-402

AJ8172 0.00208333 0
LQ8811 0.00104166 0.00333333
RN0098 0 0
NN1100 0.000001 0
WN7342 0 0
;

table F(KK,TT) max fraction of k that can be added in t
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04

MT-402 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
HR-101 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
;

table S(PP,KK) fraction of k used to changeover to i
HR-101 MT-402

AJ8172 0.2 0
LQ8811 0.2 0.5
RN0098 0 0
NN1100 0 0
WN7342 0 0
;

table W(PP,PP) waste of i to changeover to j
AJ8172 LQ8811 RN0098 NN1100 WN7342

AJ8172
LQ8811 10 10
RN0098
NN1100
WN7342
;

table O(KK,TT) marginal cost per fraction
1jan04 2jan04 3jan04 4jan04 5jan04 6jan04 7jan04 8jan04

MT-402 1 1 1 1 1 1 1 1
HR-101 1 1 1 1 1 1 1 1
;

parameter M(PP) big M for equation defprod;
M(PP) = TD(PP);

binary variable d(PP,TT) production indicator
positive variable x(PP,TT) number of SKUs to produce

y(KK,TT) overtime frac. of resource k in t
iplus(PP,TT) inventory of SKU i to carry in t
iminus(PP,TT) quantity of SKU i backordered in t

variable inv(PP,TT) intermediate inventory variable
obj objective variable;

equation defobj objective function

7.2 GAMS 105

defreq(PP,TT) material requirement
defprod(PP,TT) production indicator
defcap(TT,KK) capacity
definv(PP,TT) inventory macro
definvsplit(PP,TT) inventory split in carry and backorder;

defobj.. obj =E= sum((PP,TT), A(PP)*iminus(PP,TT)
+ H(PP)*iplus(PP,TT) + C(PP)*d(PP,TT))
+ sum((KK,TT), O(KK,TT)*y(KK,TT));

defreq(PP,TT).. inv(PP,TT) + sum(TTp$(ord(TTp)<=ord(TT)),
demand(PP,TTp)) =G= 0;

defcap(TT,KK).. sum(PP, U(PP,KK)*x(PP,TT) + S(PP,KK)*d(PP,TT)) =L=
1 + y(KK,TT);

defprod(PP,TT).. x(PP,TT) =L= d(PP,TT)*M(PP);

definv(PP,TT).. inv(PP,TT) =E= sum(TTp$(ord(TTp)<=ord(TT)-LT(PP)),
x(PP,TTp)) + I(PP) - sum(TTp$(ord(TTp)<=ord(TT)),
demand(PP,TTp) + sum(PPp, R(PP,PPp)*x(PPp,TTp)
+ W(PP,PPp)*d(PPp,TTp)));

definvsplit(PP,TT).. iplus(PP,TT) - iminus(PP,TT) =E= inv(PP,TT);

model SCPc /defobj, definv, defreq, defcap, defprod, definvsplit/;

* Max fraction
y.up(KK,TT) = F(KK,TT);

* Sunset
x.fx(PP,TTp)$(ord(TTp) > card(TT)-LT(PP)) = 0;
d.fx(PP,TTp)$(ord(TTp) > card(TT)-LT(PP)) = 0;

* inventory tolerance
iplus.up(PP,TTp)$(ord(TTp) = card(TT)) = (1+IT)*I(PP);
iplus.lo(PP,TTp)$(ord(TTp) = card(TT)) = (1-IT)*I(PP);

option optcr=0.0;
solve SCPc minimizing obj using mip;

106 7. Implementation Examples

7.3 Maximal MPL

The MPL modeling language is part of the modeling environment supported
by Maximal software. For more information about Maximal and MPL, see
http://www.maximal-usa.com.

MPL statements end with a semicolon. Any text after an explanation
point is treated as a comment. Comments may appear anywhere in the model
file. The language makes use of section titles, which generally introduce a
group of related statements. The definitions used by our models are grouped
using the following sections:

• Title — This very short section contains just one statement that gives a
title to the model. The title is used to refer to the model in displays such
as solution listings. For example, the line

TITLE
mrp;

establishes that mrp should be used on reports and other references to the
model.

• Index — This section establishes names for the list indexes. For example,

sku := (AJ8172, LQ8811, RN0098, NN1100, WN7342);

establishes the list of part indexes. Although we use i = 1, . . . , P in the
text, it makes more sense to use a list of actual part names in an imple-
mentation. In practice, such names would come from a database; modeling
languages support extraction of such names from external sources. Our ex-
amples are small, so in the interest of simplicity we include them directly
in the model file. As an aside, we note that the index section can also
establish list indexes that are strictly numeric rather than a list of names.

• Data — The section gives commands related to obtaining the data needed
for the problem. As with the indexes, one usually loads data from external
files in large applications. For our small examples, the data are provided
in the model declaration file itself. For example,

InitialInventory[sku] := (90, 300, 100, 0, 900);

declares a data vector named InitialInventory that is indexed by sku.
A vector of values is also assigned by the same statement.

• Decision Variables — This section declares the names and indexes for
the variables whose values are to be set to optimal values by the solver.
For example,

DECISION VARIABLES
PrdIndicator[sku,time];
Prod[sku,time];

declares PrdIndicator, which plays the role of δ, and Prod, which plays
the role of x.

7.3 Maximal MPL 107

The model part of the file begins with the keyword MODEL and is termi-
nated by the keyword END. Our examples make use of the following model
sections:

• MIN — This keyword flags an objective function to be minimized (as one
would expect, MAX indicates a maximization objective). For example,

MIN Obj = SUM(sku,time: TimeReverse * Prod);

implements an objective function similar to the mrp objective function
The function TimeReverse implements T − t+1 as shown below. The text
SUM(sku,time: establishes that summation will be over the indexes sku
and time so those indexes need not be indicated again for TimeReverse
and Prod.

• Subject To — This section makes use of the variables and data vectors to
establish the constraints. For example,

LotSize[sku,time]:
Prod >= PrdIndicator * Lotsize;

implements

xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

and establishes LotSize as the name of the constraint to be used in reports.
The text LotSize[sku,time] declares that constraint will be repeated
over all values of the index sets sku and time so those indexes need not be
indicated again for Prod, PrdIndicator, or Lotsize.

• Binary — This section declares that some variables must be given a value
of zero or one.

7.3.1 mrp Model

A few comments about the implementation of mrp may help the reader to
understand the implementation:

1. The index set sku2 is a copy of sku and is declared to allow for SKU by
SKU tables such as the bill of materials, which is called ProdRequire in
this implementation.

2. The data element Numbertime plays the role of T and is computed as the
number of elements in the time index set using the MPL function count.

3. To avoid small production quantities in the last time buckets we insert
“+1” into the TimeReverse macro, which insures that production is al-
ways penalized a little bit. For additional discussion, see page 87.

4. In this implementation the value of M is coded at 10000 using the data
element LM.

108 7. Implementation Examples

TITLE
mrp;

INDEX
sku := (AJ8172, LQ8811, RN0098, NN1100, WN7342);
sku2 := sku;
time := (jan1,jan2,jan3,jan4,jan5,jan6,jan7,jan8);

DATA
Numbertime := count(time);
InitialInventory[sku] := (90, 300, 100, 0, 900);
Leadtime[sku] := (2, 3, 4, 1, 12);
ProdRequire[sku, sku2] := (0, 0, 0, 0, 0, ! R(sku, sku2)

2, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 1, 0, 0, 0);

ExtDemand[sku,time] := (20, 30, 10, 20, 30, 20, 30, 40,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);

LM := 10000;
Lotsize[sku] := (100, 400, 100, 1, 1000);
TimeReverse[time] := FORMULA(Numbertime - time + 1);

DECISION VARIABLES
PrdIndicator[sku,time];
Prod[sku,time];

MODEL
MIN Obj = SUM(sku,time: TimeReverse * Prod);

SUBJECT TO
MaterialRequirement[sku,time]:

SUM(time=1..time-Leadtime: Prod)
+ InitialInventory

>=
SUM(time=1..time: ExtDemand

+ SUM(sku2: ProdRequire * Prod[sku:=sku2]));

LotSize[sku,time]:
Prod >= PrdIndicator * Lotsize;

ProductionIndicator[sku,time]:
PrdIndicator >= Prod / LM;

BINARY
PrdIndicator;

END

7.3 Maximal MPL 109

The FORMULA function in MPL is essentially a macro facility, so

TimeReverse[time] := FORMULA(Numbertime - time + 1);

would have been written in our notation as TRt ≡ (T − t + 1), assuming we
wanted to use TR as the macro name. It implies that Numbertime - time + 1
should be substituted for TimeReverse[time] in the implementation of mrp.

7.3.2 MRPII

To implement the model MRPII as shown in Figure 4.2 one must add the
new parameters, sets, and constraints to the model for mrp and drop the lot
sizing constraint. A set of resources has to be added and the values for the
fraction of each resource needed by one SKU i have to be provided as data.
An MPL implementation of the MRPII model is:

TITLE
MRP2;

INDEX
sku := (AJ8172, LQ8811, RN0098, NN1100, WN7342);
sku2 := sku;
time := (jan1,jan2,jan3,jan4,jan5,jan6,jan7,jan8);
resource := (HR_101,MT_402);

DATA
Numbertime := count(time);

InitialInventory[sku] := (90, 300, 100, 0, 900);

Leadtime[sku] := (2, 3, 4, 1, 12);

ProdRequire[sku, sku2] := (0, 0, 0, 0, 0, ! R(sku2, sku)
2, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 1, 0, 0, 0);

ExtDemand[sku,time] := (20, 30, 10, 20, 30, 20, 30, 40,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);

ResourceReq[sku,resource] := (0.00208333, 0,
0.00104166, 0.00333333,
0, 0,
0.000001, 0,
0, 0);

TimeReverse[time] := FORMULA(Numbertime - time + 1);

110 7. Implementation Examples

DECISION VARIABLES
Prod[sku,time];

MODEL

MIN Obj = SUM(sku,time: TimeReverse * Prod);

SUBJECT TO
MaterialRequirement[sku,time]:

SUM(time=1..time-Leadtime: Prod)
+ InitialInventory

>=
SUM(time=1..time: ExtDemand

+ SUM(sku2: ProdRequire * Prod[sku:=sku2]));

Capacity[time,resource]: SUM(sku: ResourceReq * Prod) <= 1;

END

7.3.3 SCPc

To build up the SCPc model as shown in Figure 5.1 several things are needed
that are similar to the artificial “+1” that was inserted into the objective func-
tion for mrp. To avoid small production quantities at the last time buckets
we add a new “Sunset” constraint. This constraint ensures there will be no
production quantities for periods that would result in completion after the
time horizon consisting of T time buckets. Such production quantities do not
incur any cost penalty in the objective function, so although they also do no
good, the solver might set some quantities during the search for an optimal
solution. To avoid this nuisance, we add a constraint that would be

T∑
τ=T−LT (i)+1

xi,τ = 0 i = 1, . . . , P

in the SCPc model.

Sunset[sku]: SUM(time: Prod
WHERE (time >= Numbertime-Leadtime+1)) = 0;

Because the inventory after the last time bucket does not result in any
costs we add another constraint to bring the inventory to normal levels at the
end of the planning horizon as discussed on page 65. The constraint makes
use of the data element IT, which stands for inventory tolerance:

InitialInventory * (1 - Invtolerance)
<=

Invplus[sku,time:=last(time)]
<=

InitialInventory * (1 + Invtolerance);

7.3 Maximal MPL 111

Due to the nature of the constraints, it is useful to have a non-zero (al-
though perhaps very small) value for all C(i). The reason is that the material
requirements constraints and the inventory constraints are “one-sided” in the
sense that production of components is required for assembly and production
is required in order to create inventory, but there is nothing to prevent spu-
rious non-zero production quantities that are not subsequently in inventory
or used as components. This can be repaired by adding constraints, but we
think a better thing to do is to continue in the spirit of inserting “+1” into
the objective function in mrp. We simply make sure that there is a small
penalty for all production, so that any production that appears in the plan
is there for a reason and is not simply an artifact of the computer’s solution
process.

Notice that rather than using the inventory macro, we have expanded it.
For example, the mrp constraint uses the expression for the macro as given
on page 48.

The MPL implementation of SCPc is as follows:

TITLE
SCPc;

INDEX
sku := (AJ8172, LQ8811, RN0098, NN1100, WN7342);
sku2 := sku;
time := (jan1,jan2,jan3,jan4,jan5,jan6,jan7,jan8);
resource := (HR_101,MT_402);

DATA
Numbertime := count(time);

InitialInventory[sku] := (90, 300, 100, 0, 900);

Leadtime[sku] := (2, 3, 4, 1, 12);

ProdRequire[sku, sku2] := (0, 0, 0, 0, 0, ! R(sku, sku2)
2, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 1, 0, 0, 0);

ExtDemand[sku,time] := (20, 30, 10, 20, 30, 20, 30, 40,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);

ResourceReq[sku,resource] := (0.00208333, 0,
0.00104166, 0.00333333,
0, 0,
0.000001, 0,
0, 0);

112 7. Implementation Examples

ordinal[time] := (1,2,3,4,5,6,7,8);
LM := 10000;
Invtolerance := 0.25;
MaxExtraResource := 0.5; !no need for vector as is scalar value
ChangeoverWaste[sku,sku2] := (0, 0, 0, 0, 0,

10,10,0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0);

ResChangeUsage[sku,resource] := (0.2, 0,
0.2, 0.5,
0, 0,
0, 0,
0, 0);

HoldingCost[sku] := (2, 1, 0.5, 0.1, 0.1);
ChangeoverCost[sku] := (800, 4200, 1, 1, 1);
AddFractionCost := 1;
TardinessCost[sku] := (400, 100, 4, 4, 4);

DECISION VARIABLES
Prod[sku,time];
PrdIndicator[sku,time];
Invminus[sku,time];
Invplus[sku,time];
Overtime[resource,time];

MODEL
MIN Cost = SUM(time: SUM(sku: (TardinessCost * Invminus +

HoldingCost * Invplus +
ChangeoverCost * PrdIndicator) +

SUM(resource: AddFractionCost * Overtime)));

SUBJECT TO
MaterialRequirement[sku,time]:

SUM(time=1..time-Leadtime: Prod)
+ InitialInventory
+ SUM(time=1..time: ExtDemand)

>=
SUM(time=1..time: ExtDemand

+ SUM(sku2: ProdRequire * Prod[sku:=sku2]
+ ChangeoverWaste * PrdIndicator[sku:=sku2]));

Sunset[sku]: SUM(time: Prod
WHERE (time >= Numbertime-Leadtime+1)) = 0;

Capacity[time,resource]:
SUM(sku: ResourceReq * Prod + ResChangeUsage * PrdIndicator)

- Overtime <= 1;

MaxFraction[resource,time]:

7.3 Maximal MPL 113

Overtime - MaxExtraResource <= 0;

ProductionIndicator[sku,time]:
PrdIndicator - (Prod / LM) >= 0;

InventoryCalc[sku,time]:
Invplus - Invminus -

(SUM(time=1..time-Leadtime: Prod)
+ InitialInventory
- SUM(time=1..time: ExtDemand

+ SUM(sku2: ProdRequire * Prod[sku:=sku2]
+ ChangeoverWaste * PrdIndicator[sku:=sku2]))) = 0;

InventoryTolerance[sku]:
InitialInventory * (1 - Invtolerance)

<=
Invplus[sku,time:=last(time)]

<=
InitialInventory * (1 + Invtolerance);

BINARY
PrdIndicator;

END

114 7. Implementation Examples

7.4 OPL

The OPL modeling language is part of the modeling and solver environment
supported by ILOG. To obtain more information concerning OPL and ILOG
see http://oplstudio.ilog.com.

OPL statements generally end with a semicolon. Comments are delimited
as in C++; that is, any text between /* and */ is a comment as is any text
on a line after //. Comments may appear anywhere in a file. The definitions
used by our models are grouped using the following sections:

• Data declaration — Data are declared to have a type and, for vectors,
indexes of an appropriate type. These statements begin with a keyword for
a simple type or else a set bracket enclosed structured type. For example,
the statement

{string} PP = ...; // Set of SKUs

declares a list of SKUs. The use of an ellipsis on the right hand side indicates
that the values will be supplied later from some other source such as a file
or database. The statement

int D[PP,TT] = ...; // External demand for SKU i in period t

declares the existence of a vector of integers indexed by TT and PP whose
values will be supplied later. These straightforward declarations are easy
to understand. However, when the tables are largely filled with zeros, such
as one would expect for R and often D, then a sparse representation makes
more sense than the dense representation shown here. The authors’ web
site (see page 81) has examples of both. In the sections that follow we also
provide examples of each.

• Decision variables — Decision variables are declared in statements that
begin with the keyword “var” followed by a type and then the variable
name and a declaration of its indexes. So

var float+ x[PP,TT]; // Order quantity for SKU i, time t
var int d[PP,TT] in 0..1; // Prod. indicator for SKU i, time t

declare x to be indexed by parts and periods and to take on values that
are positive floating point numbers (i.e., not necessarily integers, but not
negative) and d to be binary with the same index sets.

• Model declaration — A keyword such as minimize signals the start of the
statement of the objective function. So, for example,

minimize
sum (i in PP, t in TT) (T-t)*x[i,t]

declares the mrp objective function. The keywords subject to mark the
constraints. OPL supports statement blocks delimited by set brackets, so
the line

7.4 OPL 115

subject to {

begins the constraints and

forall (i in PP, t in TT) {

begins the declaration of those constraints that apply to all products and
periods (which, for mrp, happens to be all of the constraints). Each block
that is opened with a left set bracket is closed with a right one. The con-
straints themselves are declared in a straightforward way; for example

forall (i in PP, t in TT) {
x[i,t] - d[i,t]*LS[i] >= 0;

}

declares
xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T.

7.4.1 mrp

Our OPL implementation makes use of three files. The first contains the
model, the second contains the data and the third contains project informa-
tion, the most important of which is the location of the first two files.

Model file. A few comments about the implementation of the mrp model
may be helpful:

1. To avoid small production quantities in the last time buckets we insert
“+1” into the objective function, which insures that production is always
penalized a little bit. For additional discussion, see page 87.

2. The lack of a semicolon after the objective function and the presence of
one after the last set bracket might seem strange at first glance; however,
the syntax is sensible from a technical perspective. It turns out that
minimize subject to is a single statement that can contain blocks of
statements within.

116 7. Implementation Examples

/*** OPL Implementation of mrp ***/

/*** DATA DECLARATION ***/
{string} PP = ...; // Set of SKUs
int M = ...; // Large constant used inside constraints
int T = ...; // Number of time buckets
range TT 1..T; // Range of time periods

int I[PP] = ...; // Initial inventory for SKU i
int LT[PP] = ...; // Lead time for SKU i
int R[PP,PP] = ...; // Amount of SKU i needed to make one j
int D[PP,TT] = ...; // External demand for SKU i in period t
int LS[PP] = ...; // Lot size for SKU i

/*** DECISION VARIABLES ***/
var float+ x[PP,TT]; // Order quantity for SKU i, time t
var int d[PP,TT] in 0..1; // Production indicator for SKU i, time t

/*** OPTIMIZATION MODEL ***/

minimize
sum (i in PP, t in TT) (T-t+1)*x[i,t]

subject to {

forall (i in PP, t in TT) {
// Demand and materials requirement
sum (r in 1..t-LT[i])

x[i,r]+ I[i]
- sum (r in 1..t) (D[i,r] + sum (j in PP) R[i,j]*x[j,r])
>= 0;

// Lot size requirement
x[i,t] - d[i,t]*LS[i] >= 0;

// Modeling constraint for production indicator
M*d[i,t] - x[i,t] >= 0;

}
};

7.4 OPL 117

Data file. The data file shown here provides values for the data elements
defined in the mrp model file. The syntax for R and D makes sense when one
thinks of two dimensional data structures as vectors of vectors.

/* OPL data for mrp model */

PP = {"AJ8172", "LQ8811", "RN0098", "NN1100", "WN7342"}; // SKUs
T = 8; // Time buckets
M = 10000; // Large constant

I = [90,300,100,0,900]; // Initial inventory
LT = [2,3,4,1,12]; // Lead time for SKU i
LS = [100,400,100,1,1000]; // Lot size for SKU i

// Amount of SKU i needed to make one j
R = [

[0,0,0,0,0],
[2,0,0,0,0],
[1,0,0,0,0],
[0,1,0,0,0],
[0,1,0,0,0]

];

// External Demand for SKUs in each period
D = [

[20,30,10,20,30,20,30,40],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0]

];

Project file. In the interest of completeness, we provide the OPL project
file for this example. Normally, project files are created by the graphical user
interface and are not edited directly. The details of the project file syntax are
not important for our purposes.

defaultDirectory = "D:\My Documents\My Work\OPL Studio\"
display_activities = 0
display_result = 0
display_sorted_activities = 0
dta_font = "StockedSystemFixed"
edt_font = "StockedSystemFixed"
mru0 = "D:\My Documents\My Work\OPL Studio\mrp.dat"
mru1 = "D:\My Documents\My Work\OPL Studio\mrp.mod"
output_font = "StockedSystemFixed"
shw_font = "StockedDefaultGui"
MODEL = "mrp.mod"
DATA = "mrp.dat"

118 7. Implementation Examples

7.4.2 MRPII

The OPL implementation of MRPII is a straightforward extension of mrp,
so we omit the data and project files, both of which are available through the
authors’ web site (see page 81).

/*** DATA DECLARATION ***/
{string} PP = ...; // Set of SKUs
{string} KK = ...; // Set of resources
int T = ...; // Number of time buckets
range TT 1..T; // Range of time periods

int I[PP] = ...; // Initial inventory for SKU i
int LT[PP] = ...; // Lead time for SKU i
int R[PP,PP] = ...; // Amount of SKU i needed to make one j
int D[PP,TT] = ...; // External demand for SKU i in period t

float U[PP,KK] = ...; // Fraction of res. k for one unit of SKU i

/*** DECISION VARIABLES ***/
var float+ x[PP,TT]; // Order release for SKU i in time t

/*** OPTIMIZATION MODEL ***/

minimize
sum (i in PP, t in TT) (T-t+1)*x[i,t]

subject to {

// Requirement constraint
forall (t in TT, i in PP)

sum (r in 1..t-LT[i]) x[i,r]+ I[i]
- sum (r in 1..t) (D[i,r] + sum (j in PP) R[i,j]*x[j,r])

>= 0;

// Capacity constraint
forall (k in KK, t in TT)

sum (i in PP) (U[i,k] * x[i,t]) <= 1;
};

7.4.3 SCPc

The SCPc model as shown in Figure 5.1 is rich enough to afford many
options for implementation. The authors’ web site (see page 81) contains a
total of four OPL implementations of SCPc: There are sparse and direct
translations and for each of these there is a version that uses two inventory
variables as in the model shown here and one that uses OPL’s piecewise linear
objective function so that there is no need to divide the inventory variable
into a positive and negative component.

7.4 OPL 119

Model for SCPc. Here we show the sparse version with the piecewise linear
objective function. A number of points are helpful in understanding this
implementation:

1. The sparse version relies on structures rather than simple vectors. The
structures enable the association of names with data in a list that contains
only entries for data that are present. For example, the statements

struct rStr { string skuFrom; string skuTo; int qty; };
{rStr} RR = ...; // Amount of SKU i needed to make one j

create a table called RR to provide a sparse representation of R.
2. The ability to specify a piecewise-linear objective function obviates the

need for the two inventory variables, so this formulation is slightly dif-
ferent than the one given earlier for SCPc. The piecewise term is given
by

piecewise{ -A[i] -> 0; H[i] } inv[i,t]

which means: use -A[i] times inv[i,t] when inv is negative (the sym-
bol “->” means “up to”) and H[i] times inv[i,t] when inv is positive.

/*** DATA DECLARATION ***/
{string} PP = ...; // Set of SKUs
{string} KK = ...; // Set of resources
int M = ...; // Large constant used inside constraints
int T = ...; // Number of time buckets
range TT 1..T; // Range of time periods
float IT = ...; // Tolerance on final inventory

int I[PP] = ...; // Initial inventory for SKU i
int LT[PP] = ...; // Lead time for SKU i

float F[KK,TT] = ...; // Max. frac. of res. k that can be added

int O[KK,TT] = ...; // Marginal cost per cap. frac. added to k
float H[PP] = ...; // Per period holding cost for SKU i
int C[PP] = ...; // Total (out of pocket) changeover cost
int A[PP] = ...; // Per period tardiness cost for SKU i

struct rStr { string skuFrom; string skuTo; int qty; };
struct dStr { string sku; int period; int qty; };
struct uStr { string sku; string res; float qty; };
struct sStr { string sku; string res; float qty; };
struct wStr { string skuFrom; string skuTo; int qty; };
{rStr} RR = ...; // Amount of SKU i needed to make one j
{dStr} DD = ...; // External demand for SKU i in period t
{uStr} UU = ...; // Frac. of res. k needed to make one i
{sStr} SS = ...; // Frac. of res. k to change to SKU i
{wStr} WW = ...; // Waste of SKU i to change to SKU j

120 7. Implementation Examples

/*** DECISION VARIABLES ***/
var float+ x[PP,TT]; // Release quantity for SKU i in time t
var float+ y[KK,TT]; // "Overtime" fraction of res. k in t
var int d[PP,TT] in 0..1; // Indicator of prod. of SKU i in t
var float inv[PP,TT]; // Inv. of i at t; backlog is negative

/*** OPTIMIZATION MODEL ***/

// Use piecewise linear term for inventory cost:
// H[i] when inv[i,t] >= 0 and -A[i] when inv[i,t] < 0

minimize
sum (t in TT, i in PP) (piecewise{ -A[i] -> 0; H[i] } inv[i,t]

+ C[i]*d[i,t]) +
sum (t in TT, k in KK) O[k,t]*y[k,t]

subject to {

forall (t in TT, i in PP) {

// MRP constraint
inv[i,t] + sum (<i,r,dd> in DD : r <= t) dd >= 0;

// Production indicator
M*d[i,t] - x[i,t] >= 0;

// Inventory constraints
inv[i,t] =

sum (r in 1..t-LT[i]) x[i,r]
+ I[i]
- sum (<i,r,dd> in DD : r <= t) dd
- sum (r in 1..t, <i,j,rr> in RR) rr*x[j,r]
- sum (r in 1..t, <i,j,ww> in WW) ww*d[j,r];

};

// Capacity limits
forall (t in TT, k in KK) {

sum (<i,k,uu> in UU) uu*x[i,t]
+ sum (<i,k,ss> in SS) ss*d[i,t] <= 1 + y[k,t];

// Overtime limit
y[k,t] <= F[k,t];

};

forall (i in PP) {
// avoid "Random" production for ending conditions
sum (s in [T-LT[i]+1..T]) x[i,s] = 0;

// Meet final inventory targets
(1-IT)*I[i] <= inv[i,T] <= (1+IT)*I[i];

};
};

7.4 OPL 121

Data for SCPc. The SCPc data file provides values for the structures
defined in the model file. For example,

RR = {
<"LQ8811", "AJ8172", 2>,
<"RN0098", "AJ8172", 1>,
<"NN1100", "LQ8811", 1>,
<"WN7342", "LQ8811", 1>

};

establishes the value for the requirements, R.

/* OPL data for SCPc model */

PP = {"AJ8172", "LQ8811", "RN0098", "NN1100", "WN7342"}; // SKUs
KK = {"HR-101", "MT-402"}; // Resources
T = 8; // Time buckets
M = 10000; // Large constant
IT = 0.25; // Tolerance on final inventory

I = [90,300,100,0,900]; // Initial inventory
LT = [2,3,4,1,12]; // Lead time for SKU i

// Amount of SKU i needed to make one j
RR = {

<"LQ8811", "AJ8172", 2>,
<"RN0098", "AJ8172", 1>,
<"NN1100", "LQ8811", 1>,
<"WN7342", "LQ8811", 1>

};

// External Demand for SKUs in each period
DD = {

<"AJ8172",1,20>,
<"AJ8172",2,30>,
<"AJ8172",3,10>,
<"AJ8172",4,20>,
<"AJ8172",5,30>,
<"AJ8172",6,20>,
<"AJ8172",7,30>,
<"AJ8172",8,40>

};

// Fraction of resources needed to make each SKU
UU = {

<"AJ8172", "HR-101", 0.00208333>,
<"LQ8811", "HR-101", 0.00104166>,
<"LQ8811", "MT-402", 0.00333333>,
<"NN1100", "HR-101", 0.000001>

};

122 7. Implementation Examples

// Maximum fraction of a resource that can be added in each period
F = [

[.5, .5, .5, .5, .5, .5, .5, .5],
[.5, .5, .5, .5, .5, .5, .5, .5]

];

// Fraction of resource required to changeover to SKU
SS = {

<"LQ8811", "MT-402", 0.5>,
<"AJ8172", "HR-101", 0.2>,
<"LQ8811", "HR-101", 0.2>

};

// Waste when changing between SKUs
WW = {

<"LQ8811", "AJ8172", 10>,
<"LQ8811", "LQ8811", 10>

};

// Marginal cost per capacity fraction added to resource k
O = [

[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1]

];

H = [2, 1, 0.5, 0.1, 0.1]; // Per period holding costs
C = [800, 4200, 1, 1, 1]; // Changeover costs
A = [400, 100, 4, 4, 4]; // Tardiness costs

7.5 Xpress-Mosel 123

7.5 Xpress-Mosel

Dash Optimization’s Xpress-Mosel language provides algebraic modeling and
the features of a programming language. Mosel is based on an open, mod-
ular architecture that makes it possible to add access to solvers of vari-
ous types, databases, or any other specific functionality (e.g., system func-
tions, new data types) to the language in the form of modules. A graphi-
cal interface, Xpress-IVE, is available for working with Mosel models. See
http://www.dashoptimization.com for more information about Mosel, the
available modules, and the Xpress-MP product family.

A Mosel model starts with the keyword model followed by the name of the
model, and terminates with end-model. The definition of a model consists of a
sequence of model statements such as constraint definition, solver commands,
and blocks (e.g., declarations, initializations, and subroutines). Any
text following on the same line after the character ! is a comment that is
ignored by the Mosel compiler. Multi-line comments are surrounded by (!
and !).

Conceptually, a Mosel model file can be divided into the following sections:

• Data — In the example problems the data sets are small so the data arrays
could be assigned directly in the model. However, to obtain easily reusable
models that can be run with different data sets it is preferable to read in
all data from a separate file. The data arrays and the corresponding index
sets need to be declared in a declarations block. If the contents of the
index sets is not known at the creation of an array, the latter is dynamic.
This is typically the case when the array and its index sets are initialized
from file as in the following code extract

declarations
PP: set of string
I: array(PP) of real

end-declarations

initializations from ’mrp.dat’
I

end-initializations

An advantage of this definition is that only the array entries listed in the
data file will be created. This is referred to as sparse format. General sets
are unordered (i.e., it is not possible to determine something like a “last”
element). The set type range defines an ordered set of integers:

TT: range

In the model examples in this section, range sets are used for the time
periods (indices 1, ..., T as in the mathematical models), while the sets
of SKUs and resources do not require any ordering relation and contain,
therefore, simply the names of the products.

124 7. Implementation Examples

• Variables — Mosel variables are declared in a fashion similar to data array
declarations, using the type mpvar. To define the variables di,t with i in
PP and t in TT we write:

declarations
d: array(PP,TT) of mpvar
end-declarations

The index sets should preferably be known at the declaration of the vari-
ables; we therefore declare the variables after reading the data from file.
To define variables di,t as binaries, we add the following line after their
declaration:

forall(i in PP,t in TT) d(i,t) is_binary

• Constraints — A typical linear constraint like

P∑
i=1

K∑
k=1

Uik · xit ≤ 1 t = 1, ..., T

is written in Mosel as

forall(t in 1..T) sum(i in 1..P,k in 1..K) U(i,k)*x(i,t) <= 1

In the formulation of linear constraints the operator signs <=, >=, and =
may be used. Variables may appear on either side of the operator sign. Op-
tionally, constraints may be named. This is especially useful if one wishes
to refer to them later on in the model, for instance, to modify their defi-
nition. Unnamed constraints on a single variable are interpreted by Mosel
as bounds which are commonly treated by LP/MIP solvers in a different,
more efficient way than linear constraints. The objective function usually
is defined as a constraint without operator and right hand side.

• Solver Commands — In the examples, we use Xpress-Optimizer for solving
the problems. The corresponding Mosel module needs to be loaded at the
beginning of every model:

uses "mmxprs"

The solver module mmxprs provides, among others, the procedures such
as minimize to solve LP or MIP problems.

• Solution Output Commands — The procedures write and writeln may
be used for displaying results. The solution value of a variable is obtained
with getsol. The following prints the solution value of the variable xi,t:

writeln(getsol(x(i,t)))

In the examples, the function strfmt is used to format the printed output
by indicating the variable name and the number of columns to be used.

7.5 Xpress-Mosel 125

• Subroutines — To structure larger models, especially if they involve some
calculations for the data or (parts of) solution algorithms implemented in
the Mosel language, Mosel lets the user define two types of subroutines:
procedures (no return value) and functions. Subroutines may take param-
eters, their structure is similar to the Mosel model itself.

• Loops and selections — Besides the simple forall loop that is fre-
quently used for stating constraints, Mosel also defines a multi-line version
forall-do of this loop, and repeat-until and do-while loops. The cal-
culation of the big M values in the mrp model in the following subsection
gives an example of using these loops. In the same model, also the use of
the selection statement if-then-else is demonstrated.
A common feature of algebraic modeling languages is the possibility to
restrict a set of indices with logical conditions. In Mosel, the vertical bar
| is used to indicate such conditions:

sum(s,t in 1..T | s<=t)

represents the double sum
T∑

t=1

t∑
s=1

Logical conditions may be combined with and and or.

7.5.1 mrp Model

The following Mosel implementation of mrp defines the mathematical model,
then solves it and outputs the result. As in the GAMS implementation, we
calculate a specific big M value M(i) for every SKU i instead of using the
same, very large value in all cases. The calculation of these values is separated
from the model by placing it into a procedure.
A few notes on the implementation:

1. After reading in the data, the index sets are finalized. This means, the
contents of these sets cannot change. The variables that are subsequently
defined with these index sets are then handled in a more efficient way by
Mosel.

2. The procedure calculate bigM is used before it is defined. Therefore,
we need to declare it at the beginning using the keyword forward.

3. The calculation of the SKU-specific big M values M(i) follows the same
idea as the algorithm used in the GAMS implementation. We first deter-
mine a bound on the total demand of an SKU:

– For a root node i in the production tree (a product not used in
the production of any other) an upper bound on the total demand
TD(i) is given by the sum of the external demand D(i,t) over all
time periods plus the lot size. These nodes are collected in the set
CurLevel. All other nodes are put into the set TreeNodes. Note that

126 7. Implementation Examples

a production tree refers to a BOM with a special structure (e.g., a
convergent structure).

– For all nodes i in CurLevel: go through the remaining nodes in
TreeNodes to find those nodes j that are used for the production of
a node i in CurLevel. The demand for such a node j is given by its
external demand plus the implicit demand through the production
of i. The nodes j are collected into the set NextLevel.
Make NextLevel the new set CurLevel and remove these nodes from
TreeNodes.
Repeat the loop until all nodes have been enumerated (i.e., the set
CurLevel becomes empty).

For every i, the value of M(i) results from the upper bound on total
demand, TD(i).

4. The objective function is defined using

Obj:= sum(i in PP,t in TT) (getsize(TT) - t + 1) * x(i,t)

To avoid small production quantities in the last time buckets we insert
“+1” into the objective function, which insures that production is always
penalized a little bit. For additional discussion, see page 87. The function
getsize(TT) returns the number of elements in the range set TT and
hence the number of time buckets.

model "mrp"
uses "mmxprs" ! Use Xpress-Optimizer for solving

forward procedure calculate_bigM

declarations
TT: range ! Time Buckets
PP: set of string ! SKUs

M: array(PP) of real ! Big M
R: array(PP,PP) of real ! Number of SKUs i to produce a j
D: array(PP,TT) of real ! External demand
I: array(PP) of real ! Beginning inventory of SKU i
LS: array(PP) of real ! Lot size of item i
LT: array(PP) of real ! Lead time of item i

end-declarations

initializations from ’mrp.dat’
R D I LS LT

end-initializations

finalize(TT); finalize(PP) ! Finalize index sets

calculate_bigM ! Calculate values for M

declarations
d: array(PP,TT) of mpvar ! Production indicator

7.5 Xpress-Mosel 127

x: array(PP,TT) of mpvar ! Number of SKUs to produce
end-declarations

Obj:= sum(i in PP,t in TT) (getsize(TT) - t + 1) * x(i,t)

forall(i in PP,t in TT)
MaterialRequirement(i,t):=
sum(s in TT | s <= t - LT(i)) x(i,s) + I(i) >=
sum(s in TT | s <= t) (D(i,s) + sum(j in PP) R(i,j)*x(j,s))

forall(i in PP,t in TT)
LotSize(i,t):= x(i,t) >= d(i,t)*LS(i)

forall(i in PP,t in TT)
ProductionIndicator(i,t):= d(i,t) >= x(i,t)/M(i)

! Integrality constraint for production indicator
forall(i in PP,t in TT) d(i,t) is_binary

! Solve the problem
minimize(Obj)

! Solution printing
writeln("Objective value: ", getobjval)
writeln("Production plan:")
write("Period")
forall(t in TT) write(strfmt(t,5))
writeln
forall(i in PP) do
write(i)
forall(t in TT) write(strfmt(getsol(x(i,t)),5))
writeln

end-do

!---

! Calculate values for M
procedure calculate_bigM
declarations
CurLevel: set of string ! Nodes in current tree level
NextLevel: set of string ! Nodes in next deeper tree level
TreeNodes: set of string ! Remaining tree nodes
TD: array(PP) of real ! Upper bound on total demand
end-declarations

forall(i in PP)
if sum(j in PP) R(i,j)>0 then
TreeNodes+={i}

else
TD(i):=sum(t in TT) D(i,t) + LS(i)

! Total demand for root node(s)
CurLevel+={i}

end-if

128 7. Implementation Examples

repeat
forall(i in CurLevel) do
NextLevel:={}
forall(j in TreeNodes | exists(R(j,i))) do
NextLevel+={j}
TD(j):= sum(t in TT) D(j,t) + R(j,i)*TD(i) + LS(i)

! Sum for nodes
end-do

end-do
CurLevel:=NextLevel
TreeNodes-=NextLevel
until (CurLevel={})

forall(i in PP) M(i) := TD(i) ! Set M

end-procedure

end-model

7.5.2 mrp Data

The following data file mrp.dat is used by the Mosel implementation of the
mrp model and also by the MRPII model in the following section. Every
data array is labeled by its name. Since all index sets are initialized dynam-
ically from the data file we need to indicate the index-tuple for every entry.
Only the non-zero entries need to be given in the data file (sparse format).
As in the Mosel model files, the exclamation sign ! marks comments.

! External demand
D: [(AJ8172 1) 20 (AJ8172 2) 30 (AJ8172 3) 10 (AJ8172 4) 20

(AJ8172 5) 30 (AJ8172 6) 20 (AJ8172 7) 30 (AJ8172 8) 40]

! Lead time of items
LT: [(AJ8172) 2 (LQ8811) 3 (RN0098) 4 (NN1100) 1 (WN7342) 12]

! Lot sizes
LS: [(AJ8172) 100 (LQ8811) 400 (RN0098) 100

(NN1100) 1 (WN7342) 1000]

! Beginning inventory of SKUs
I: [(AJ8172) 90 (LQ8811) 300 (RN0098) 100 (WN7342) 900]

! Number of i to produce one j
R: [(LQ8811 AJ8172) 2

(RN0098 AJ8172) 1
(NN1100 LQ8811) 1
(WN7342 LQ8811) 1]

! Fraction of resources needed by SKUs (MRPII model)
U: [(AJ8172 "HR-101") 0.00208333

(LQ8811 "HR-101") 0.00104166

7.5 Xpress-Mosel 129

(LQ8811 "MT-402") 0.00333333
(NN1100 "HR-101") 0.00000100]

7.5.3 mrp Results

The model and data file together produce the following output:

Objective value: 6800
Production plan:
Period 1 2 3 4 5 6 7 8
AJ8172 0 0 100 0 0 100 0 0
LQ8811 0 0 400 0 0 0 0 0
RN0098 0 100 0 0 0 0 0 0
NN1100 0 400 0 0 0 0 0 0
WN7342 0 0 0 0 0 0 0 0

7.5.4 MRPII Model

The following Mosel program implements the model MRPII. It is possible to
formulate and solve the two models mrp and MRPII in a single Mosel pro-
gram, similar to the GAMS implementation. However, to keep things simple,
the MRPII model is given as a separate program, although in this imple-
mentation they use the same data file.

model "MRP2"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
TT: range ! Time Buckets
PP: set of string ! SKUs
KK: set of string ! Resources

R: array(PP,PP) of real ! Number of SKUs i for one SKU j
D: array(PP,TT) of real ! External demand
I: array(PP) of real ! Beginning inventory of SKU i
U: array(PP,KK) of real ! Frac. of res. k for one SKU i
LT: array(PP) of real ! Lead Time of item i

end-declarations

initializations from ’mrp.dat’
R D I U LT

end-initializations

finalize(TT); finalize(PP) ! Finalize index sets

declarations
x: array(PP,TT) of mpvar ! Number of SKUs to produce

end-declarations

Obj:= sum(i in PP,t in TT) (getsize(TT) - t + 1) * x(i,t)

130 7. Implementation Examples

forall(i in PP,t in TT)
MaterialRequirement(i,t):=
sum(s in TT | s <= t - LT(i)) x(i,s) + I(i) >=
sum(s in TT | s <= t) (D(i,s) + sum(j in PP) R(i,j)*x(j,s))

forall(t in TT,k in KK)
Capacity(t,k):= sum(i in PP) U(i,k)*x(i,t) <= 1

! Solve the problem
minimize(Obj)

! Solution printing
writeln("Objective value: ", getobjval)
writeln("Production plan:")
write("Period")
forall(t in TT) write(strfmt(t,5))
writeln
forall(i in PP) do
write(i)
forall(t in TT) write(strfmt(getsol(x(i,t)),5))
writeln

end-do

end-model

7.5.5 SCPc Model

To build up the SCPc model as shown in Figure 5.1 several things are needed
that are similar to the artificial “+1” that was inserted into the objective func-
tion for mrp. To avoid small production quantities at the last time buckets
we add a new “Sunset” constraint. This constraint ensures there will be no
production quantities for periods that would result in completion after the
time horizon consisting of T time buckets. Such production quantities do not
incur any cost penalty in the objective function, so although they also do no
good, the solver might set some quantities during the search for an optimal
solution. To avoid this nuisance, we add a constraint that would be

T∑
τ=T−LT (i)+1

xi,τ = 0 i = 1, . . . , P

in the SCPc model.

forall(i in PP)
Sunset(i):=
sum(s in TT | s > getsize(TT) - LT(i) + 1) x(i,s) = 0

Because the inventory after the last time bucket does not result in any
costs we add another constraint to bring the inventory to normal levels at the
end of the planning horizon as discussed on page 65. The constraint makes
use of the data element IT, which stands for inventory tolerance:

7.5 Xpress-Mosel 131

forall(i in PP) do
InventoryTol1(i):= (1-IT)*I(i) <= iplus(i,getlast(TT))
InventoryTol2(i):= iplus(i,getlast(TT)) <= (1+IT)*I(i)

end-do

Due to the nature of the constraints, it is useful to have a non-zero (al-
though perhaps very small) value for all C(i). The reason is that the material
requirements constraints and the inventory constraints are “one-sided” in the
sense that production of components is required for assembly and production
is required in order to create inventory, but there is nothing to prevent spu-
rious non-zero production quantities that are not subsequently in inventory
or used as components. This can be repaired by adding constraints, but we
think a better thing to do is to continue in the spirit of inserting “+1” into
the objective function in mrp. We simply make sure that there is a small
penalty for all production, so that any production that appears in the plan
is there for a reason and is not simply an artifact of the computer’s solution
process.

The following Mosel program implements the SCPc model. Contrary to
our implementation of the mrp model, we use a single big M value, the
value of which is read from the data file. Instead of the inventory macro, an
additional variable is used in this implementation.

model "SCPc"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
TT: range ! Time Buckets
PP: set of string ! SKUs
KK: set of string ! Resources

M: integer ! Large number
IT: real ! Inventory tolerance at the end
R: array(PP,PP) of real ! SKUs i to produce one j
D: array(PP,TT) of real ! Demand for an item in a period
I: array(PP) of real ! Beginning inventory of SKU i
U: array(PP,KK) of real ! Frac. of res. k for one SKU i
LT: array(PP) of real ! Lead time of item i
F: array (KK,TT) of real ! Max. frac. of k addable in t
S: array (PP,KK) of real ! Frac. of k to change to SKU i
W: array (PP,PP) of real ! Waste of i to change to j
H: array (PP) of real ! Period holding cost for SKU i
C: array (PP) of real ! Total changeover cost for SKU i
O: array (KK,TT) of real ! Marginal cost per fraction added
A: array (PP) of real ! Period tardiness cost

end-declarations

initializations from ’scp.dat’
M IT R D I U LT F S W H C O A

end-initializations

finalize(TT); finalize(PP); finalize(KK) ! Finalize index sets

132 7. Implementation Examples

declarations
d: array(PP,TT) of mpvar ! Production indicator
x: array(PP,TT) of mpvar ! Number of SKUs to produce
y: array(KK,TT) of mpvar ! "Overtime" frac. of ress k in t
iplus: array(PP,TT) of mpvar ! Inventory of SKU i to carry in t
iminus: array(PP,TT) of mpvar ! Quantity of i backordered in t
inv: array(PP,TT) of mpvar ! Inventory variables

end-declarations

! Objective function
Cost:= sum(t in TT) (sum(i in PP) (A(i)*iminus(i,t) +

H(i)*iplus(i,t) +
C(i)*d(i,t)) +

sum(k in KK) O(k,t)*y(k,t))

forall(i in PP,t in TT)
DefInventory(i,t):=
inv(i,t) = sum(s in TT | s <= t - LT(i)) x(i,s) + I(i) -
sum(s in TT | s <= t) (D(i,s) + sum(j in PP) (R(i,j) * x(j,s) +

W(i,j) * d(j,s)))

forall(i in PP,t in TT)
MaterialRequirement(i,t):=
inv(i,t) >= - sum(s in TT | s <= t) D(i,s)

forall(t in TT,k in KK)
Capacity(t,k):=
sum(i in PP) (U(i,k)* x(i,t) + S(i,k)*d(i,t)) <= 1 + y(k,t)

forall(k in KK,t in TT)
MaxFraction(k,t):= y(k,t) <= F(k,t)

forall(i in PP,t in TT)
ProductionIndicator(i,t):= d(i,t) >= x(i,t)/M

forall(i in PP,t in TT)
Inventory(i,t):= iplus(i,t) - iminus(i,t) = inv(i,t)

forall(i in PP)
Sunset(i):=
sum(s in TT | s > getsize(TT) - LT(i) + 1) x(i,s) = 0

forall(i in PP) do
InventoryTol1(i):= (1-IT)*I(i) <= iplus(i,getlast(TT))
InventoryTol2(i):= iplus(i,getlast(TT)) <= (1+IT)*I(i)

end-do

! Inventory may take negative values
forall(i in PP,t in TT) inv(i,t) is_free

! Integrality constraint for production indicator
forall(i in PP,t in TT) d(i,t) is_binary

! Solve the problem
minimize(Cost)

7.5 Xpress-Mosel 133

! Solution printing
writeln("Total cost: ", getobjval)
writeln("Production plan:")
write("Period")
forall(t in 0..getlast(TT)) write(strfmt(t,6))
writeln(" Dev.")
forall(i in PP) do
write(i, " -")
forall(t in TT) write(strfmt(getsol(x(i,t)),6,1))
write("\n Inv.", strfmt(I(i),6,1))
forall(t in TT) write(strfmt(getsol(inv(i,t)),6,1))
writeln(strfmt(getsol(iminus(i,getlast(TT))),6,1))

end-do

end-model

8. Solutions

We have now developed models with reasonable detail to be used for supply
chain planning. Once we have a model, we need to get the data for it, find
solutions to it, and perhaps provide information about the solutions to the
software or people responsible for detailed planning and scheduling. The data
must either come from ERP systems that store performance data or the data
must be estimated by production and engineering staff. If a solution is to be
implemented, then it must be provided to the ERP system or to production
schedulers.

A modeling language can be used to put the model into a form suitable
for solution by a computer. As mentioned earlier and as demonstrated in
Chapter 7, these languages allow input of the model using notation that is
very similar to the notation that we have used. Once the models are entered
and the paths to the data are provided to the modeling languages, optimiza-
tion software is called by the modeling language software to find solution
values. For many problems, the commercial optimization software must be
augmented or replaced by heuristic solution methods for reasons that will be
clarified shortly.

Our main concern in this chapter is to outline methods for finding solu-
tions. In order to create good models one does not need to know all of the
details about solution techniques just as one does not need to understand
all of the details of compiler technology in order to write computer software.
However, in both cases it can be very helpful to know a little bit about what
will happen to the model or program after it is written.

8.1 MIPs and Relaxations

All of the models that we have developed so far are linear models. We have
used only models where variables are not multiplied by other variables and
where powers and roots of variables are not used. Any useful model that
has changeovers, minimum lot sizes, alternative routings or integer variables
for any other reason is referred to as a mixed integer program (MIP). It is
“mixed” because some of the variables must be integers, while others can
take real values that are either fractions or integers.

136 8. Solutions

To use in our discussions, we repeat the simple model mrp that was
developed in §3.4.

minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t (mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t − xi,t

M ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

This model is a MIP because it contains the variables δ each of which must
take a value that is either zero or one. Such variables are often called binary
variables. A MIP with only binary integer variables is called a binary MIP.

If we did not want to model lot sizes, the formulation would be as follows:

minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t (lp mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

This model has no integer variables and it is linear. Such models are often
called linear programs or LPs. Note that LP is also used to refer to linear
programming. The use of the word “program” is very unfortunate since it
causes confusion between linear programs and computer programs. The word
is used because the early models were developed to find schedules and plans
and these are (or were) often referred to as programs.

Linear programming models are much easier to solve than MIPs. If one
happens to be able to develop a supply chain production planning or schedul-
ing model without integer variables, then powerful software is available that
can solve very large instances of the model.

8.1 MIPs and Relaxations 137

However, it is hard to imagine a supply chain production planning prob-
lem with no integers, so we focus our attention on MIPs. It happens that one
typically solves linear programs as part of the process of solving MIPs. From
a modeler’s perspective, issues associated with the integer variables play a
far greater role in determining the time required to solve the problem (or the
quality of the solution found) than issues related to solving the LP. Hence,
we focus our attention on understanding the process of solving a MIP. An
understanding of this process can be very helpful in creating models that can
be solved in a reasonable amount of time on a computer.

An important concept for solving MIPs is the notion of an LP relaxation
of the MIP. One relaxes the requirement that the integer variables be integers
and simply replaces it with a requirement that they be between their bounds
(e.g., between zero and one). The LP relaxation for mrp is given as relaxed
mrp.

minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t (relaxed mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t − xi,t

M ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ≤ 1 i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

We have replaced δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T by δi,t ≥ 0 i =
1, . . . , P, t = 1, . . . , T and δi,t ≤ 1 i = 1, . . . , P, t = 1, . . . , T . This LP
is not, in and of itself, a valid model. That is, the lot sizing constraints do
not make sense unless the δ variables are either zero or one. However, if one
were lucky the optimal solution to the problem called “relaxed mrp” would
happen to have the property that all of the δ variables were either zero or
one. For other models, not so much luck is required so it can happen that the
solution to the LP relaxation is also the solution to the MIP.

Consider MIPs with minimization objectives. For every such problem,
the objective function value for the optimal solution to the LP relaxation
has to be as low or lower than the best possible solution to the MIP. This is
because the best possible solution to the MIP is also a possible solution for
the relaxation. Obviously, the reverse is not necessarily true because the best
solution to the LP relaxation might give fractional values to some variables

138 8. Solutions

that must be integer valued in the MIP. We refer to the objective function
value for the relaxation as a lower bound on the objective function value for
the corresponding MIP. In the next section we describe how lower bounds
are used in an algorithm for solving MIPs.

8.2 Branch and Bound

Branch and bound algorithms for binary MIPs work by fixing the values of
some (or all) of the binary variables based on an educated guess concerning
good values and then solving the corresponding relaxation. The algorithm
begins by solving the LP relaxation for the original MIP. If there is no feasible
solution, then there is no feasible solution for the MIP so the algorithm
terminates. If the solution to the LP relaxation happens to have the property
that all of the binary variables have values of either zero or one, then this is
the optimal solution to the MIP, so the algorithm terminates.

Record keeping concerning the value of binary variables that have been
tried is done using a tree data structure. The root of the tree is the LP
relaxation, where none of the binary variables have been fixed at a value. We
call the LP relaxation the root node of the tree. After the relaxation has been
solved a variable is selected for branching along with a branching direction,
which is said to be “up” if the variable is fixed at one and “down” if it is set
to zero. This will constitute the first branch in the branch and bound tree.
The branch will lead to a new node in the tree.

The root node is an LP relaxation of the original MIP. The first node in
the tree is also a relaxation of a MIP, which is the original MIP except that
one of the binary variables has been fixed at either zero or one. Suppose that
we were solving the problem mrp and the first branch happened to be to set
the value of δ2,3 to be one. The resulting relaxation would be

minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t − δi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

8.2 Branch and Bound 139

δi,t − xi,t

M ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ≤ 1 i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δ2,3 = 1

This problem asks the question “what is the best that can happen if we
require production of SKU 2 in period 3?” If the LP solver reports that there
is no feasible solution, then there can be no feasible solution with δ2,3 = 1 for
the MIP, so the node is deleted from the tree. If there is a feasible solution,
the node is kept in the tree. For each node the tree stores information about
which variables are fixed at which values, the objective function value for the
corresponding LP relaxation, and perhaps some other information to improve
efficiency.

Any of the binary variables whose values have not been fixed by the
branching process at a node are said to be free at that node. In our example,
all of the δ variables except for δ2,3 are free at the first node. Each branch from
a node is labeled with the name of the branching variable and the direction.
So for our example, the first branch would be labeled (δ2,3, up). When a
node is deleted from the tree (for example, if its relaxation is infeasible), the
branch information is kept. At each node, the variables for which there is
only one branch will be referred to as partially explored because both of their
possible values have not been tried yet. For our example, the variable δ2,3

would be partially explored after the first iteration.
At each iteration of the branch and bound process a node is selected. Then

a variable is selected from among the free and partially explored variables at
the node. If it is a free variable a branching direction is selected. If it is a
partially explored variable the branching direction is clearly the direction
that has not yet been tried. The information stored for the selected node,
along with the selected variable and branching direction give rise to a new
MIP and a new node in the branch and bound tree with one more variable
fixed than for the selected node. The resulting relaxation is solved or deemed
to have no feasible solution (LP software can do both at the same time). If
it has no feasible solution it is deleted.

If the MIP has any feasible solutions, eventually this algorithm will find
one. The methods of selecting nodes and variables is beyond the scope of
this book, but the reader can agree that any method will eventually lead to
trying all combinations of binary variables that cannot be ruled out by the
fact that they are part of an infeasible relaxation. In the worst case, every
combination of binary variables will be tried.

For most feasible problem instances, the branch and bound algorithm will
encounter a solution that is feasible for the MIP. It could be that a node in
the tree is reached where all of the integer variables are fixed and the resulting
relaxation is feasible, or it could be a node where some of the integers are fixed

140 8. Solutions

and the others take on integer values in the optimal solution to the relaxation.
Either way, the first integer feasible solution that is encountered provides an
upper bound on the best feasible objective value. It is an upper bound because
obviously the optimal solution can be no worse than this solution. If another
solution is found that is feasible for the MIP it will become the new upper
bound if its objective function value is better than the current upper bound.

Once an upper bound is known, all those nodes in the tree with a relax-
ation objective function value that is worse than the upper bound can be
deleted. There is no way that they can result in a node or a relaxation that
will be better than the current upper bound, hence they cannot result in
discovery of an optimal solution. All of the nodes that are created from such
a node will have the same fixed variables as the node and more, but fixing
more variables cannot improve the objective function value since they will
not be fixed at values outside the values that they are allowed to take in the
relaxation.

The ability to delete nodes can have a dramatic impact on the solution
time. Consider a problem with 1000 binary variables. If absolutely none of
the nodes can be deleted during execution of the algorithm, then about 21000

relaxations must be solved. Even if relaxations can be solved quickly, they
do require non-trivial effort. Node deletion can reduce the number of nodes
dramatically. When a node is deleted, all of the nodes that would have em-
anated from it will not even be created as a result. If the node is near the root
node and deleted early in the process the number of nodes that are ultimately
created is reduced significantly.

If the branch and bound algorithm has no nodes left with free variables,
it cannot be expanded further and the solution corresponding to the upper
bound is clearly an optimal solution. If there is no such solution, then the
problem clearly has no feasible solution. In both cases, we say that the prob-
lem has been completely solved or sometimes we say that it has been solved
to provable optimality (or that infeasibility of the problem instance has been
proven). Some practical problems with nearly 1000 integer variables can be
completely solved with only about 100,000 nodes or fewer. But for some oth-
ers, the tree keeps growing beyond a million nodes with no feasible solution
found. In such unfortunate situations, we cannot rule out the existence of
a feasible solution, but we cannot find one in a reasonable amount of time
either.

A large number of MIPs are of an intermediate variety. For these problems,
some feasible solutions can be found for the MIP, but not enough of them
and not early enough to prevent the tree from growing and growing until it
has exceeded reasonable computer memory. In addition to exceeding memory
limits, such problems can execute for days on a large computer and the tree
can still be growing. However, if the branch and bound algorithm has found
some feasible solutions, these can be used even though we cannot be sure
that there is not a better solution possible.

8.3 Special Variable Types 141

Having a solution that is proven to be optimal because a branch and
bound tree has exhausted all possibilities either through branching or node
deletion is good, but usually not essential. These models are, after all, just
approximations to the goal of producing good production plans. The solution
that corresponds to the minimum objective function value might not really
be that much better than some other feasible solutions that have objective
function values that are almost as low.

There are many ways to make the branch and bound algorithm more
efficient, but all other things being equal, having more integer variables means
that more nodes will be required to solve the problem and more nodes will be
required to find a feasible solution. Commercial solvers are continually being
improved, but some care must be taken to avoid models that are too big to
solve. In §6.6 we describe methods of reducing the number of resources in
the model and methods of combining SKUs so as to reduce the number of
decision variables. In §8.4 methods that look for good, feasible solutions but
that cannot prove optimality are described. These methods can often find
feasible solutions more quickly than branch and bound, particularly when
there are some non-linear elements in the model. Before proceeding with
these methods that change the model or the solution method, we describe
some special variables that can reduce the size of the relaxations and/or the
branch and bound tree.

8.3 Special Variable Types

There is a number of special variable types, but we will consider just those
that can have the greatest impact on the models that we are developing for
supply chain planning. Not all types of special variables are supported by
all commercial solver software. None of these variables are truly necessary
in the sense that the same thing can be accomplished with combinations of
variables that are either real valued or binary. However, they can make the
models easier to solve and in some cases simpler and thus easier to read.

8.3.1 Semi-continuous Variables

The first type of variables that we will consider are referred to as semi-
continuous variables. A semi-continuous variable must be either zero or any
value above a specified limit other than zero. Such variables are ideal for
modeling production quantities that are subject to a minimum lot size con-
straint. In the original problem mrp, the δ variables could be eliminated
from the model if the x variables for products with a minimum lot size were
semi-continuous.

Branch and bound algorithms can branch on semi-continuous variables in
a fashion that is very similar to the branching process for binary variables.

142 8. Solutions

When the branching direction is “down,” the variable is forced to be zero.
When the direction is “up,” the variable is constrained to be above the spec-
ified limit. The branch and bound tree will generally not be any smaller, but
the relaxations will be a little bit easier to solve because constraints that
define the relationship between the binary variable and a real valued variable
will not be needed. This relationship is subsumed by the semi-continuous
variable definition.

We adopt the convention that a variable is declared to be semi-continuous
by using a double colon followed by the non-zero limit. So, for example, the
constraint x1,2 :: LS(1) indicates that the variable x1,2 must be either zero or
any value not less than LS(1). We adopt the convention that if the non-zero
limit is zero, then the variable can take on any value zero or greater and
there is no need to branch on it. The problem mrp can be rewritten using
semi-continuous variables as follows:

minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t (semi-cont mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t :: LS(i) i = 1, . . . , P, t = 1, . . . , T

This model is much easier to understand than the original mrp model. It is
also somewhat easier to solve because branching is only necessary once for
each variable in the set.

8.3.2 General Integer Variables

We have argued that in most planning environments, production quantities
can reasonably be allowed to take on real values even if that is not reasonable
for scheduling. The idea is that the fractional portions in the production
plan constitute a small error that is usually dwarfed by estimation errors
associated with the data. Capacity data are particularly difficult to estimate
with extreme precision in most production environments.

However, there are circumstances where integrality is too important to
ignore. Many of the simpler formulations might result in integers with no
special effort, but for some formulations there will be production quantities
that take on fractional values that are not reasonable. One can declare such
variables to be general integer variables. These variables are required to take
an integer value between a lower and an upper limit. The branch and bound

8.3 Special Variable Types 143

algorithm for general integers is similar to the binary version and the branch-
ing directions generalize easily. Some additional record keeping is required and
the number of possible branches goes up rapidly with the difference between
the lower and upper limit.

General integers could also be used to obtain fixed lot sizes, rather than
minimum lot sizes. With a general integer variable, γi,t constrained to be an
integer greater than or equal to zero, we can then constrain production for
an SKU i using

xi,t = γi,tLS(i)

for some or all time buckets t. Of course, if the constraint is for all time
buckets, then there is no need for general integers. The production quantities
can simply be rescaled to be in multiples of the lot size.

8.3.3 Special Ordered Sets

Special ordered sets were developed to allow modelers to communicate im-
portant information to the branch and bound algorithm. The effects provided
by these special types of variables can be obtained using simple binary vari-
ables, but the resulting models are harder to read and require more computer
time to solve. There are two types of special ordered sets, creatively named
type one and type two. They are referred to as SOS1 and SOS2, respectively.
Special ordered sets are a list of variables. In the case of SOS1, exactly one
of the values can be non-zero. In the case of SOS2, at most two values in the
list can be non-zero and if there are two, they must be adjacent members of
the list.

SOS1. Variables declared to be SOS1 are used for multiple choice selection.
An example of a multiple choice situation is when there is a group of products
that have the property that if one of them is produced in a time bucket the
others cannot be produced. The δ variables for these SKUs could be collected
in a special ordered set of type 1. A separate set would be needed for each
time bucket.

SOS2. Variables declared to be SOS2 are used to create piecewise linear ap-
proximations to non-linear functions. In actuality, of course, almost nothing
is truly linear but linear approximations are often reasonable. When linear
approximations are not good enough but piecewise linear approximations
are, then SOS2 variables can be used. In §4.4.3, we mentioned the possibil-
ity of using non-linear approximation to the utilization by parts that require
a significant changeover on a resource composed of parallel machines. For
the resources and SKUs to be modeled in this way, we fit a curve and then
produce a piecewise linear approximation as shown in Figure 8.1. Rather
than using a linear function such as U(i, k)xi,t for the fraction of resource k
utilized by SKU i in time bucket t, we can use the piecewise linear approxi-
mation given by the figure. For any production quantity measured along the

144 8. Solutions

horizontal coordinate axis, we read the corresponding utilization fraction on
the vertical coordinate axis. The utilization per piece goes down as the pro-
duction quantity goes up due to amortization of setup and changeover times
across a larger production volume. Such a shape could also be due, in part,
to learning curve effects. Since the graph in Figure 8.1 gives the utilization
as a function of production quantity, the slope of the line segments gives the
utilization per piece. As the quantity increases, each new line segment has a
lower slope.

0

0,2

0,4

0,6

0,8

1

1,2

0 2000 4000 6000 8000 10000 12000 14000

Production Release Quantity

C
a
p

a
c
it

y
 U

ti
li

z
a
ti

o
n

Fig. 8.1. Piecewise Linear Approximation to the Utilization Fraction as a Function
of the Production Quantity

For this example, we are assuming that there is only one such SKU and
one such resource, so the breakpoints have only one index. If there were mul-
tiple SKUs and/or multiple effected resources, then there would need to be
breakpoints for each and the respective indexes would have to be added to the
breakpoint data. For the discussion of breakpoints, we temporarily introduce
the notation X for the list of production quantity breakpoints and Y for the
corresponding utilization breakpoints. We refer to the number of breakpoints
as B. The actual values for X(1), X(2), . . . , X(B) and Y (1), Y (2), . . . , Y (B)
would have to be determined by measuring a curve giving the utilization of
the resource as a function of the production quantity which would have to
be obtained using historical data or engineering estimates.

If we let the variable ui,t take the place of U(i, k)xi,t for SKU i on resource
k (suppose i is 1, then the capacity constraint for resource k would be

u1,t +
P∑

i=2

U(i, k)xi,t ≤ 1

8.4 Heuristic Search Methods 145

or something similar) we can compute its value using variables of type SOS2.
Let the variable set λ�, � = 1, . . . , B be SOS2, then we add the constraints

xi,t =
B∑

�=1

X(�)λ� t = 1, . . . , T

ui,t =
B∑

�=1

Y (�)λ� t = 1, . . . , T

λ� ≥ 0 � = 1, . . . , B

λ� ≤ 1 � = 1, . . . , B∑B
�=1 λ� = 1

λ are SOS2

to give x and u the appropriate values. The fact that at most two λ variables
may be non-zero and if there are two, they must be adjacent will cause the
u and x values to correspond according to a line segment in the piecewise
linear function defined by the X and Y values. For example, if Figure 8.1
were used to provide breakpoints, they would be where the slope changes.
Modeling languages such as Mosel have a more compressed syntax for SOS2
constructs, but the concepts are the same.

Exact methods of solving mixed-integer programs can be effective for
many kinds of programs. If there are a large number of non-linearities that are
important to the model, or too many integers, then heuristic search methods
must be considered. This is the subject of the next section.

8.4 Heuristic Search Methods

We must pause briefly for a technical issue. It is useful to make a distinction
between exact optimization methods that are guaranteed to find an optimal
solution if one exists and heuristic methods that tend to look for good so-
lutions, but generally offer no practical guarantees concerning performance.
Branch and bound is an exact method. Obviously, all other things being
equal, one would prefer an exact method. However, for many large problems
the requirements for time and/or computer memory force the use of a heuris-
tic or termination of exact methods before they have found a solution that
is optimal.

Many problems associated with production planning and scheduling in
a supply chain are too large, have too many integers and/or have portions
that are highly non-linear so that commercially available MIP solvers cannot
be used to solve them. Under these circumstances, branch and bound algo-
rithms must be augmented by or replaced by heuristic methods. One impor-
tant class of heuristic methods is based on meta-heuristic search strategies.

146 8. Solutions

Meta-heuristics provide a framework for optimization that relies on some
components that are specific for the problem being solved.

These methods offer the advantage that they can address a broad range
of problem types, including those with non-linearities and a large number
of integer variables. This flexibility comes at a cost. The first cost is that
there are not readily available interfaces to modeling languages. Commercial,
well-supported MIP solvers have interfaces to commercially available well-
supported modeling languages. These modeling languages allow entry of the
models that we have developed in a form that is very similar to what you see
in this book. The range of problems addressed by heuristic search methods
is simply too large to facilitate use of an algebraic language. Typically, the
“interface” to heuristic search methods is a programming language. That is,
the problem definition must be done by writing subroutines to read the data
and evaluate the objective function, etc. This is changing. At the time of
this writing, some special purpose interfaces exist as well as some graphical
interfaces. Another drawback is that at the time of this writing, there are very
few commercial codes to support heuristic search. The major ERP vendors
and supply chain management software vendors produce their own heuristic
search code and others do the same or else make use of portions of academic
codes. The final drawback is that the modeler typically must provide some
assistance in the solution methods that is provided in the form of subroutines
to evaluate neighborhoods. This will be clarified shortly.

An important use of heuristic search methods in planning is to verify the
existence of a feasible schedule that corresponds to a potential plan. As we
have noted, scheduling problems are often fairly complicated and involve too
many integer variables and non-linearities to be solved using a MIP solver.
This is particularly the case when there are significant changeover times that
are a complicated function of the production sequence. A reasonable proce-
dure is to make simplifying assumptions and perhaps perform aggregation to
obtain a solvable planning model. Once a plan has been created (and perhaps
disaggregated) it implies scheduling problems for critical resources.

That is to say, the question arises as to whether a feasible schedule can be
found that will result in producing the quantities given by the plan. Heuristic
search methods can be employed to seek a solution. If none can be found, then
the utilization data or the changeover time data (or both) can be changed
(i.e., increased) and a new plan can be found with lower production quantities
for which a feasible schedule might be obtained. Heuristic search methods are
extremely general and, therefore, can be applied to almost any conceivable
scheduling problem.

8.4.1 A Brief Primer on Heuristics

Heuristic methods provide simple means of indicating which among several
alternatives seems to be the best; and basically they are based on intuition. Be
sure to reread the words “seems to be” and remember that we distinguished

8.4 Heuristic Search Methods 147

between heuristic methods and exact optimization. That is, heuristic methods
may be seen as criteria, methods, or principles for deciding which among
several alternative courses of action promises to be the most effective in order
to achieve some goal. In a sense they may be regarded as rules of thumb
representing compromises between the requirements to make such criteria
simple and the desire to see them discriminate correctly between good and
bad choices.

One of the buzz words often related to heuristic methods is that of greed-
iness. Greedy heuristics usually work in an iterative fashion with some kind
of myopic behavior. Assume that we want to “construct” some solution (for
instance, for mrp). In each iteration there is a number of alternative choices
that can be made. From these alternatives which consist in fixing one or
more variables, a greedy choice is made, i.e., the best alternative according
to a given evaluation measure or simply according to some rule of thumb is
chosen until we have obtained a feasible solution. That is, usually, a greedy
construction heuristic starts with an incomplete solution and completes it
iteratively.

8.4.2 Abstract Formulation and Solution Representation

In order to further understand heuristic search methods as general purpose
methods, we need to consider an extremely abstract problem formulation. We
need a formulation that is so abstract that it is general enough to capture the
range of problems that can be addressed using heuristic search. A brutally
abstract formulation, and the one that we will use, is simply to

minimize f(ν)

were ν is called the decision vector. We use the symbol ν to summarize all of
the variables over which we might need to search. The function f captures
the objective function and the constraints. It returns the objective function
value if ν is a feasible solution and a very large value if ν is infeasible. We
construct the function f so that it takes on extremely large values if ν does
not satisfy problem constraints.

As an example, consider the problem mrp. The vector ν could be a list
of the x and δ values. To compute f , one checks to see if the constraints are
met by these values and if so, the function is the same as the objective value.
If not, the function takes a large value (we have called such a value, M) or
it might be M plus the number of constraints that are not satisfied. This
scheme makes it so that we can distinguish between infeasible solutions, but
no infeasible solution could be considered better than any feasible solution
since M is chosen so as to be “very large.” In this case that means we must
pick a value for M that is larger than any possible feasible objective function
value.

Another alternative for problems such as mrp is to use just the δ values
for the vector ν. This makes the ν vector much shorter at the expense of

148 8. Solutions

making the f function more complex. Under this scheme, to compute the f
function for a particular ν vector, one would need to fix the δ values and
then use an LP solver for the resulting problem. If the problem was feasible,
f would be the objective function value for the optimal solution to the LP.
If the LP solver reported that no feasible solution exists, then f would take
the value M . This scheme can be summarized as

f(ν) = minimize:
P∑

i=1

T∑
t=1

(T − t)xi,t (mrp)

subject to:

t−LT (i)∑
τ=1

xi,τ + I(i, 0) −
t∑

τ=1

⎛
⎝D(i, τ) +

P∑
j=1

R(i, j)xj,τ

⎞
⎠ ≥ 0

i = 1, . . . , P, t = 1, . . . , T

xi,t − νi,tLS(i) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

νi,t − xi,t

M ≥ 0 i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

νi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

which would only be useful if ν had binary values. The constraint νi,t−xi,t

M ≥ 0
would force production of SKU i to be zero in period t if νi,t were zero and
would allow production if it were one (but production would not be required,
just allowed). This solution representation scheme offers advantages for the
methods that we will describe. As a point of philosophy, we note that it is
also the representation used by branch and bound.

For sequencing problems, such as those that often arise in detailed schedul-
ing, it is usually better to use a direct representation of the sequence rather
than a large, sparse matrix of binary variables. To discuss sequencing it is
convenient to speak in terms of jobs. Jobs are a collection of one or more
of the same SKU to be produced. In the simplest case, each job consists of
one piece. However, it often makes sense to collect into a job the pieces that
correspond to a customer order or that will be transported together.

A sequence can be represented directly in a variety of ways. One way is to
use a vector – call it σ – for which each index corresponds to a position in the
sequence and the value of the vector element indicates the job that occupies
that position in sequence (sometimes also called permutation). Using this
representation, if σj = i then the jth part to be produced is SKU i. If the
vector is printed, the sequence of jobs can be read directly. We will refer to
this as the direct sequence representation. An alternative representation uses
a vector – call it α – so that the indexes correspond to job numbers and the
values correspond to positions in the sequence. So αi = j means the same
thing as σj = i. We refer to this as the positional sequence representation.

8.4 Heuristic Search Methods 149

As an example let us assume the production of four jobs. Then producing
the jobs in the sequence job 1 first, then job 4, then job 2, and finally job 3
results in σ = (1, 4, 2, 3) and α = (1, 3, 4, 2), respectively.

8.4.3 Example of an Embedded Problem

To create a concrete example, consider a situation where there are no out-
of-pocket costs for a changeover and no wasted material so C and W are
zero. However, suppose further that a significant amount of time is needed to
change over some bottleneck resource, k′, and this time depends on both the
current job and the next job. We will reuse the symbol S for these changeover
data. For simplicity, assume that each job is one piece. In such a situation,
we might make use of a direct sequence representation as a basis for heuristic
search.

In order to write the model in a concise way, we will make use of the fact
that we can go back and forth between the familiar quantity representation,
xit, and a sequence representation where σj gives the job number of the jth

job. We could modify the model SCPc as follows: For resource k′ for each
time t replace the constraints

P∑
i=1

[U(i, k)xi,t + S(i, k)δi,t] ≤ 1 + yk,t

yk,t ≤ F (k, t)

yk,t ≥ 0

with the embedded problem

minimize: yk′,t

subject to:
n∑

j=1

U(σj , k
′) + S(σj−1, σj , k

′) ≤ 1 + yk′,t

yk′,t ≤ F (k′, t)

yk′,t ≥ 0

The data S(σj−1, σj , k
′) could be an array giving the changeover times or a

complicated function. For this to make sense, the value of σ0 must be given
as data or an assumed value must be used.

The main thing to notice is that constraints have been replaced with
an optimization problem. In doing so, we have embedded a higher level of
scheduling detail in the planning model. This modification will result in a
model that will check for the existence of a feasible sequence that corresponds
to the plan while at the same time seeking a good sequence. For a general

150 8. Solutions

changeover matrix or function, the sequencing problems are too hard to solve
to proven optimality.

For such embedded problems, heuristic search methods are appropriate.
These methods offer a great deal of flexibility, e.g., the changeover time can
be a function rather than data at the expense of not finding a solution that is
provably optimal. The flexibility also makes it possible to solve models that
have non-zero C and W cost data, but the statement of the model is a little
more complicated. In order to proceed with our discussion of heuristic search
methods, we describe their main components.

8.4.4 Neighborhoods and Evaluation Functions

The methods that we shall describe rely on a neighborhood structure and
an evaluation function. Both can be, or must be, designed as part of the
process of implementation on a computer. Furthermore, both of these things
can make use of cleverness supplied by the modeler, which is why we describe
them here.

A neighborhood is based on the idea of moves that begin with one solution
representation, ν, and transform it into a different solution, ν′. Algorithms
that move iteratively from one solution to the next are called local search
algorithms. We refer to solution ν′ that can be reached from ν using a sin-
gle move as a neighbor of ν. We refer to all such solutions as being in the
neighborhood of ν. For the purpose of discussing local search, let N (ν) denote
the set of solutions that can be reached from ν with a single move. In other
words, N (ν) is the neighborhood of ν. We refer to the solution ν that defines
it as the center of the neighborhood. To indicate the number of members in
a neighborhood, we use the notation | N (ν) |.

Unless stated otherwise, we will be referring to perturbation or transfor-
mation moves, that operate on full solution vectors. In contrast, construction
moves operate on a partial vector (one where not all values in ν have been
specified) and result in a vector of increased length.

For problem mrp, if ν is equivalent to the δ variables, we could imagine
using any one of a variety of neighborhood structures. The simplest would
be a neighborhood based on moves that involve changing the value of one
element of ν. So to create a neighbor of a solution, we would take one value
of δi,t and change it (if it was zero, it would become one and if it was one,
it would become zero). The size of the corresponding neighborhood is P
times T , since each neighbor is defined by one element of δ changing values.
To have a name for this neighborhood structure, we will call it a “bit-flip”
neighborhood.

To describe some of the range of possibilities for neighborhood design,
consider the sequence representations given above. We can perform a swap
move, where one vector element is exchanged with the other. In the case of the
direct sequence representation, such a move can be visualized as two people
(the jobs) trading positions in a waiting line (the sequence). In the case of the

8.4 Heuristic Search Methods 151

positional representation, such a move corresponds to two positions trading
jobs. An insertion move is easy to visualize in the case of the direct sequence
representation: A person leaves her place in line and “butts in” somewhere
else (perhaps further back in the line).

We may think of the sequences as forming a graph with the nodes of
the graph representing the jobs and the edges of the graph representing the
order of the jobs. With this solution representation, we can make use of k-
opt moves. Figure 8.2 (a) gives a sequence with nine jobs as an example.
Figure 8.2 (b) and (c) show the outcome of a 2-opt move and a 3-opt move.
Such moves are the result of exchanging k edges in the graph (where k is
equal to two and to three in our example). While k edges have been removed
from the original sequence, some other k edges (shown as dotted lines) have
been included respectively.

�
�

�

�

��

�

�

�

	
 �

�
�

�

�

��

�

�

�

	 � �

�
�

�

�

��

�

�

�

	 �

Fig. 8.2. k-opt Moves

To complete our discussion of neighborhoods, we consider one that is of
both theoretical and practical interest. An enumeration neighborhood has
the property that every feasible solution can be reached from every other
feasible solution in one move. So for a sequencing problem using the direct
sequence representation, the neighborhood of a particular solution consists
of every permutation of the jobs minus the one particular permutation that
is the center of the neighborhood. Of course, for a sequencing problem, one
would never try to explore every solution. Such neighborhoods are used only
in conjunction with algorithms that select neighbors at random.

Another property of theoretical and practical interest in neighborhood
design is whether the neighborhood is connected. This refers to the useful
property that every feasible solution can be reached from every other feasible
solution in a sequence of moves (not necessarily only one). Clearly, enumer-
ation neighborhoods are an example of connected neighborhoods.

A function, f̂(ν), must be specified for move evaluation. The function
usually resembles f , but may differ so it is easier to compute or in order to
take advantage of special properties of the problem and/or the neighborhood
structure. For our purpose, one can think of the evaluation function as be-

152 8. Solutions

ing an approximation to f . In many applications f̂ is f (in which case, the
approximation is quite good).

A simple approach to addressing optimization problems is referred to as
steepest descent. Such an algorithm begins with an initial solution as the cur-
rent solution and then picks the neighbor with the best evaluation function
value to become the new current solution. This algorithm proceeds iteratively
until there are no improving moves in the neighborhood of the current solu-
tion. If all solutions in the neighborhood are worse than the current, such a
solution is referred to as a local minimum with respect to the neighborhood
and evaluation function.

We can restate this algorithm using abstract notation as follows. A steep-
est descent algorithm begins with an initial solution, ν(0), and selects solution
ν(i) at iteration i > 0 using the relation

ν(i) ← argmin
ν∈N (ν(i−1))

f̂(ν) (8.1)

(a tie breaking rule may be needed). The algorithm terminates at a local
minimum when there are only higher cost solutions in the neighborhood
of the current solution. The notation “argmin” means “the argument that
minimizes the expression.” We use the notation x ← y to mean that x takes
the value held by y. Read such an expression as “x gets y.” This is intended to
show a dynamic assignment of value as distinct from a statement of equality
provided by x = y.

We consider steepest descent to be a heuristic method of finding a solu-
tion. It relies on the heuristic notion of improvement, but has no guarantees
of finding the optimal solution. The methods we will consider are broadly
grouped under the title heuristic search and the title meta-heuristic. The
prefix “meta” refers to the fact that these methods provide general-purpose
control mechanisms for a search based on an underlying heuristic such as
local search.

The first meta-heuristic that we will consider is referred to as iterated
local search or ILS. ILS performs a steepest descent using some neighborhood
structure and when a local minimum is reached, some number of so-called kick
moves are performed using a different neighborhood structure (or occasionally
just a different evaluation function). In this way, the search escapes the local
minimum and can begin a descent using the original neighborhood structure.
For example the algorithm might use 2-opt moves until a local minimum
is reached and then perform a few k-opt kick moves with k > 2, where the
meaning of “a few” and the values of k are controlled by parameters and may
vary during the search. After the kick moves, the search resumes with 2-opt
moves beginning with the solution that results from the kick moves. There
are many variants of ILS, but this introduction gives the reader an overview
of the method.

A simple way of escaping local minima is to restart the steepest descent at
a random or arbitrary solution after a local minimum has been reached. We

8.4 Heuristic Search Methods 153

refer to this algorithm as steepest descent with random restarts (SDRR). The
meta-heuristic SDRR can be viewed as ILS with a single kick move that uses
an enumeration neighborhood, a random neighbor selection mechanism and
an evaluation function that accepts any move it sees. There are many other
ways of using neighborhoods to look for good solutions for hard problems, but
SDRR is actually often better than most of them. However, other methods
are very popular for a variety of reasons so we proceed with a brief description
of some of them.

Using randomness in a slightly different fashion is done in an algorithm
called greedy randomized adaptive search procedure (GRASP). Assume a
greedy heuristic. If we omit a greedy choice criterion for a random strategy
we can run the algorithm several times and obtain a large number of different
solutions. Thus a combination of best and random choice seems to be appro-
priate. Consider a list consisting of a number of (best, i.e., first best, second
best, third best etc.) alternatives and call it a candidate list. The length of
the candidate list is given either as an absolute value or a percentage of all
feasible alternatives. At the very heart of GRASP a number of alternatives
out of this candidate list is chosen randomly and a local search procedure is
applied to each of them and the best found solution is taken. The underlying
principle of GRASP is to investigate many hopefully good starting points
through the local search procedure and thereby to increase the possibility of
finding a good local optimum on at least one replication. The method is said
to be adaptive as the greedy function takes into account previous decisions
when performing the next choice.

It is necessary for modelers to understand the basics of heuristic search
methods because in order for these methods to be successful, modelers must
be involved in the process of defining neighborhoods and evaluation functions.
In subsequent sections we will cover the fundamental concepts necessary for
the creator of a model to provide assistance to the people who are doing
algorithm development.

There are a large number of meta-heuristics in the academic literature,
but the most popular methods based on local search are simulated annealing
and tabu search. So-called genetic algorithms were forced to undergo a name
change when it was discovered that they did not perform well unless they con-
tained a significant local search component. These algorithms are now called
evolutionary algorithms, and they make use of populations of solutions, but
typically also perform local search. All of these methods provide mechanisms
for escaping local minima.

In spite of various mathematical theorems concerning stylized versions
of these algorithms, there are no performance guarantees in practice. Often,
a large production planning problem, or even a fairly small production se-
quencing problem cannot reasonably be solved to provable optimality anyway.
These methods offer the advantage that they can explore solutions one after
the other and might (and often do) encounter good solutions along the way.

154 8. Solutions

In each of our algorithm descriptions, we include a function named BestCheck
that compares the current solution with the best found so far and updates
the best found as appropriate. General purpose functions are summarized in
Table 8.1.

Name Description

BestCheck(ν) If ν is better than the best seen so far, update the best seen
so far.

URan(l, u) Return a random number between l and u.

IRan(l, u) Return a random integer between l and u.

Obj(ν) Value of the evaluation function for ν.

Table 8.1. General Purpose Functions Used in Algorithm Statements

8.4.5 Simulated Annealing

Simulated annealing (SA) is based on an analogy with cooling metal. The
idea is that when metal cools, the molecules perform in a way that can be
modeled as a local search for the minimum energy configuration. The actual
behavior of an SA algorithm has only a tenuous connection with actual be-
havior of cooling metal, but the metaphor is appealing. The other thing that
is appealing to some people about SA is the existence of some mathemati-
cal theory concerning the behavior of some SA algorithms. The algorithms
are not the same as SA in practice and the behavior is present only after an
infinite amount of time. Furthermore, the theoretical behavior of the SA algo-
rithms is dominated by the behavior of completely random search. However,
the theory requires very sophisticated mathematics and is quite interesting
in its own right. The best SA algorithms do often perform better than SDRR
and have been effective in getting good solutions to hard problems.

SA algorithms escape local minima by using randomness in move selec-
tion. At each iteration of a simulated annealing algorithm, a move is se-
lected at random and the change in cost is computed for the move. Let
∆ = f̂(ν′) − f̂(ν). If a move from ν to ν′ is considered, it is accepted (the
move is made) with probability

exp(−∆/T)

if ∆ is positive (the move not improving) or with probability 1 if ∆ is not
positive. We refer to T as the temperature. For high values of T , the accep-
tance probability is near one for all moves; hence, the algorithm proceeds
from solution to solution at random. For very low values of T , only moves
that result in improvement (a decrease in the cost function) are likely to be
accepted. SA algorithms begin with high values of T and slowly (over a large
number of iterations) lower the temperature. The exact specification of this
process is referred to as a cooling schedule.

8.4 Heuristic Search Methods 155

We have adopted the algorithm statement and parameterization given in
Table 8.2 and Figure 8.3 because it is simple and although not necessarily
the best, the algorithm performance is quite stable. The function Initial-
izeTemp(InitProb) uses a number of iterations at increasing temperatures
in order to return a temperature value that will result in approximately Init-
Prob of moves being accepted. The function Frozen(MinPercent) returns
true if five temperatures in a row result in less than MinPercent percent
acceptance of moves.

Name Description

InitProb The initial temperature is set so that the probability of accept-
ing moves is approximately InitProb.

TempFactor The temperature is reduced by multiplying the current temper-
ature by TempFactor.

SizeFactor The number of iterations at each temperature (both during
InitializeTemp and cooling) is SizeFactor times the neighbor-
hood size.

MinPercent The algorithm terminates when five temperatures in a row re-
sult in less than MinPercent percent acceptance of moves.

Table 8.2. Canonical SA: Parameters

Begin with a randomly selected solution ν

T ← InitializeTemp(InitProb)

REPEAT

REPEAT SizeFactor × | N (ν) | times

Randomly select ν′ ∈ N (ν) (a neighbor)

∆ ← f̂(ν′) − f̂(ν) (change in Obj)

IF (∆ ≤ 0) OR (exp(−∆/T) < URan(0,1)) (good enough?)

ν ← ν′ (move)

BestCheck(ν)

T ← TempFactor × T (cool)

UNTIL Frozen(MinPercent)

Fig. 8.3. Canonical Simulated Annealing

SA algorithms terminate naturally based on the value of MinPercent,
but this can sometimes require far too much time. In such cases the algorithm
must be simply stopped and the best value found so far must be taken as
the best available answer. Basically the goal in setting SA parameters is to
reduce the running time to a reasonable level without too much degradation
in performance.

156 8. Solutions

8.4.6 Tabu Search

Unlike simulated annealing, canonical tabu search (TS) is deterministic; al-
though many implementations have probabilistic aspects. TS algorithms se-
lect moves according to a steepest descent scheme, except they make use of a
tabu list to force the search away from solutions selected for recent iterations.
This tends to cause the search to escape local minima. Moves are rejected if
they satisfy conditions given by the tabu list, which in its simplest form can
be thought of as a first-in-first-out (FIFO) list based on certain attributes
of the most recent κ moves. Solution vectors that are the result of moves
having the attributes found on the tabu list are removed from consideration
unless they meet an aspiration criterion. Aspiration criteria are used to avoid
removing very good moves from consideration. Since attributes of moves are
tabu, rather than recent solutions, many trial solutions may be forbidden that
have not been recently visited. Aspiration criteria are intended to make sure
that obviously good moves are not avoided because of the tabu mechanism.

A simple TS is shown in Figure 8.4. The only parameter is TabuMult
which is used to compute the tabu list length, κ ← TabuMult × n. Once
a bit position has changed value, the tabu list forbids reversing the change
for κ moves. The function Tabu(ν, ν′) returns true if attribute(s) of the
move is/are in the tabu list and the aspiration criteria are not satisfied. The
function UpdateTabuList(ν,ν′′) adds the attribute(s) of the move to the tabu
list and deletes the oldest member of the list.

Begin with a randomly selected solution ν

REPEAT

F ← +∞
FOR each ν′ ∈ N (ν) (a neighbor)

IF Obj(ν′) < F (best move so far?)

IF NOT Tabu(ν, ν′) (OK ?)

F ← Obj(ν′); ν′′ ← ν′ (record best)

UpdateTabuList(ν, ν′′) (forbid reversal)

ν ← ν′′ (make the move)

LTMem(ν)

BestCheck(ν)

UNTIL TimeLimit()

Fig. 8.4. Canonical Tabu Search

Setting the parameter values for a simple TS is particularly easy since
there is only one parameter and performance is fairly robust to the choice
of this parameter. The parameter is the tabu list length. The tabu list is
referred to as short term memory.

8.4 Heuristic Search Methods 157

Tabu search algorithms can be enhanced a great deal by using longer term
memory. This is a big topic, but very briefly the idea behind longer term
memory is to accomplish intensification and diversification. Intensification
involves attempts to visit regions of the search space that seem promising.
For example in a binary problem, a table can be kept of the frequencies of
zeros and ones in each bit position that have been observed in solutions that
have an objective value below some threshold. These frequencies can then
be used to construct a solution that can be used to restart the search if a
new best solution has not been found for a long time. Diversification involves
attempts to visit regions that have not been visited. A frequency table can
also be kept for all solutions visited and it can be used to construct solutions
that are unlike the typical solutions encountered during the search. Therefore,
appropriate information about solutions visited may be collected through a
function LTMem(ν).

8.4.7 Genetic and Evolutionary Algorithms

A reasonable starting point for construction of a genetic algorithm (GA)
would seem to be a “canonical GA.” In order to discuss GAs as they were
originally presented, it is useful to introduce the term bit string, which refers
to a vector whose elements can be either zero or one. This is easily extended,
but it is good place to start. For use, this is consistent with our example where
the vector ν consists of the zero-one (or “bit valued”) decision variables.

In contrast to the search methods discussed so far, a GA examines more
than one solutions at once. This set of solutions is called population. That is,
a simple GA begins with a population, i.e., a set, say Pop, of many bit strings
(each string of length n) and then recursively forms replacement populations
by use of crossover and mutation operators. The simplest form of crossover
is one-point crossover using two strings, a and b, as parents to produce two
children, c and d. One of the parents is chosen using fitness based selection.
That is, at random, but with a probability that decreases with increasing
objective function value. The other parent is selected at random. A crossover
point k is selected at random from integers between one and n − 1. Assign
values to c and d as follows:

ci ←
{

ai 1 ≤ i ≤ k
bi k < i ≤ n and di ←

{
bi 1 ≤ i ≤ k
ai k < i ≤ n

The mutation operator considers each bit position of a string and with some
(low) probability changes the bit’s value. The basic idea is that desirable bits
will be retained in subsequent generations due to fitness based selection for
crossover and a variety of new bit patterns are introduced due to random
selection of the crossover point and due to mutation.

A simple genetic algorithm is shown in Figure 8.5. Table 8.3 describes
the parameters and variables used by the algorithm. The functions FRSelect,
Cross, and SwapMutate must deviate slightly from a truly “canonical” GA.

158 8. Solutions

The function FRSelect (Fitness Ratio Select) returns the index into the pop-
ulation of a member selected at random with a probability of selection for
each member equal to the fitness of the member divided by the sum of the
fitness of all members in the population. Generally, GA’s are described for
maximization problems and the fitness is defined in the simplest case as the
evaluation function value. Since we are minimizing, we use classic GA tech-
nology and define the fitness of a member as the negative of the evaluation
function value.

Name Description

PopSize Population size (Parameter)

Pc Crossover probability (Parameter)

Pm Mutation probability (Parameter)

Gt Population at iteration t; a vector of bit strings

i, j Indexes into Gt of the selected member and mate, respectively

k Crossover “point”

Table 8.3. Canonical GA: Parameters and Variables

randomly initialize population, G0; t ← 0

REPEAT

REPEAT

FOR 1 ≤ i ≤ S BestCheck(Gt[i])

i ← FRSelect(Gt) (selection)

IF URan(0, 1) < Pc (crossover?)

j ← IRan(1,PopSize) (mate)

k ← IRan(1, n) (crossover point)

place Cross(i, j, k) and Cross(j, i, k) in Gt+1

ELSE (no crossover)

place string Gt[i] in Gt+1

UNTIL Gt+1 has PopSize vectors

FOR each 1 ≤ i ≤ PopSize (each Pop member)

IF (URan(0, 1) < Pm) SwapMutate(Gt+1[i])

t ← t + 1

UNTIL TimeLimit() OR Convergence()

Fig. 8.5. Canonical Genetic Algorithm

The function Cross(i, j, k) can make use of a variety of alternative cross-
over schemes. The classic crossover mechanism is referred to as one-point

8.4 Heuristic Search Methods 159

crossover. This is intended to mimic chromosomal crossover in sexual repro-
duction. Each of the two parent strings is cut into two pieces with the leftmost
k values in one piece and the rest in the other. The left part from the first
string is combined with the right part from the second string to form the
“child.” Another alternative is uniform crossover, which constructs a child
one element at a time. If both parents have the same value for an element,
the child acquires that value. If it differs, then the value from one of the par-
ents is selected at random (perhaps with greater probability assigned to the
parent that corresponds to the better objective function value). Crossover
for sequencing problems is also possible, but requires more notation than we
want to develop for an overview of GA.

In a canonical GA, after new solutions have been created by crossover
operations, a mutation operator is applied. This operator randomly perturbs
the solution. Although it is not always described this way, it is very common
for the mutation operator to be a few random moves using some simple
neighborhood. The idea is to mimic nature and also to diversify the search.
Figure 8.5 contains the function SwapMutate which performs a random swap
move if the random number is less than a parameter, Pm.

Regardless of which of the many crossover and mutation operators are
used, it is extremely likely that a child solution will be infeasible. This is par-
ticularly true for complex scheduling problems with numerous, complicated
constraints. There are two common ways to address this issue. One is to per-
form a repair to make changes to the solutions that will result in a feasible
solution that resembles the result of crossover and mutation. Another possi-
bility is to maintain a population not of solutions, but of coded solutions that
imply feasible solutions as a result of decoding (perhaps by implying the so-
lution of an LP or some other solvable problem). Crossover and mutation are
applied to the coded solutions and the corresponding objective function val-
ues are obtained by decoding. The details depend on the particular problem
being solved and are beyond the scope of our brief introduction.

GAs terminate when the population contains only solutions that are all
the same or nearly all the same. The function labeled Convergence() contains
the tests (typically based on parameters that are not shown). Mutation and
random parent selection helps avoid early convergence.

There are many modern components of GAs that are not shown in the
classic, canonical GA. Rather than using generational replacement, where the
entire population is replaced by the results of crossover and mutation on the
previous population, most modern GAs use steady-state replacement where
offspring are either added to the existing population or discarded if it is a
duplicate or has an objective function value that is not good enough. Often,
a descent is performed on offspring and the result of the descent is added
(perhaps after mutation). The selection of population members to be used
in crossover is typically also much more complicated and depends more on

160 8. Solutions

the quality of the solutions or their anticipated effect on the diversity of the
population.

Our goal in providing a brief description of SA, TS, and GA has been to
provide enough background information to enable a modeler to participate in
creating a working algorithm. Heuristic search is an active area of research.
New ways of enhancing these three methods as well as new methods are being
invented all of the time. A new method that is similar to heuristic search but
comes from a different perspective and offers enhancement to optimization
algorithms of all types is described in the next section.

8.5 Constraint Programming

The term constraint programming (CP) refers to a collection of modeling and
solution methods. As the name implies, a cornerstone is the ability to model
logical relationships directly. This goes far beyond the capabilities provided
by SOS1 and SOS2 to allow a full set of logical and non-linear operators.
For example, we can constrain production so that if SKU A is made then
B cannot be made unless D is made and C is not made, etc. In addition,
sequencing and precedence constraints can be modeled directly.

Another cornerstone of CP is constraint propagation, which facilitates do-
main reduction. The idea behind constraint propagation is that if a variable
is fixed at some value, or has its range of possible values reduced, then this
will have implications for the possible values of other variables due to inter-
actions within the constraints. For example, suppose we have the following
constraints:

. . .

δ1,1 + δ2,1 ≤ 1

δ1,1 + δ3,1 ≥ 1

. . .

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

If the value of δ2,1 were to be fixed at one by a search algorithm, we could
conclude that δ1,1 would have to be zero because of the first constraint shown.
Since δ1,1 appears in the second constraint, this fact is propagated to it and
used to reduce the domain of δ3,1 to be exactly one value, which is 1. So if
δ2,1 is fixed at 1, we can fix the values of two more variables and thereby have
a smaller problem to solve. Of course, these three variables may appear in
more constraints and allow further reductions. CP solvers maintain a network
representation of the constraints so that if a variable is fixed, the implications
for the values of other variables can be quickly determined.

Although there are graphical user interfaces for various problem types, a
majority of CP applications to date are done in conjunction with an object

8.5 Constraint Programming 161

oriented programming language. Commercial CP packages provide extremely
well developed base classes and operators. The range of problems that can
be addressed using CP is somewhat narrower than the range offered by gen-
eral heuristic search methods, so it is possible to develop more sophisticated
interfaces. The generality, flexibility and power of CP interfaces is constantly
improving.

Constraint propagation and domain reduction can be embedded in al-
gorithms that fix, and perhaps free the values of variables (or restrict and
expand their domains). Originally, CP algorithms all made use of a tree search
that is vaguely similar to branch and bound, but works by fixing and then
freeing variables. The process of freeing variables during expansion of a tree is
referred to as backtracking because the search goes back to previously visited
nodes in the tree. This form of search was prefered because it allows recovery
of previously generated constraint network information. Lately, researchers
have been making use of CP technology to enhance branch and bound algo-
rithms as well as heuristic search. The CP software propagates the effect of
newly fixed variables. Such applications are often referred to as cooperating
solvers.

The ability to model complicated requirements make CP well-suited for
scheduling problems. During the solution of a planning problem, the question
arises as to whether a feasible schedule can be found that will result in produc-
ing the quantities given by the plan. If none can be found, then the utilization
data or the changeover time data (or both) can be changed (i.e., increased).
Hence, CP methods can cooperate by solving embedded sub-problems such
as described in §8.4.3; CP methods have a comparative advantage when the
scheduling problems involve logical constraints.

9. Some Stochastic Extensions

Now that we have developed some practical models for production planning
within a supply chain and have outlined solution methods, we pursue some
topics that are very uncertain. The intention of this chapter is to address some
issues that are not included in commercial supply chain planning software
and are just barely being addressed in the research literature. As such, they
are speculative research topics. The models and solution methods that we
describe here may, or may not, ultimately be adopted. However, the modeling
issues are critical and must be addressed.

We use the term stochastics to refer to things that are best modeled as
random. Just as very few things are truly linear, very few things are truly
random. However, randomness is often the best model available. Suppose
person A flips a coin and then looks at the result but does not show person
B. Person A will not use a stochastic model of the result of the coin flip, but
that is the best that person B can do. Our concern here is with situations
where a stochastic model is the best that we can do, which is the case in a
great variety of situations.

Stochastic models can be appropriate for any of the data elements in
the models that we have developed. For example, the utilization fraction,
U(i, k), cannot be known with certainty. If the uncertainty is significant,
then a stochastic model is appropriate. Demand data are often particularly
uncertain, so stochastic models of demand are often used.

When dealing with a stochastic situation, it is often advisable to establish
policies that protect against uncertainties. For example, the idea of setting a
policy based on safety stock was mentioned in §6.3. Such policies are used to
trigger placement of an order for a particular item when its inventory level
reaches a reorder point. The reorder point policy can be improved so that on
average, a certain amount of safety stock will still remain when the order is
fulfilled and the new inventory arrives. This policy guards against uncertainty
in demand as well as uncertainty in the lead time required for replenishment.

Another stochastic issue that is often addressed by establishing a policy
is random yields. Particularly in electronics and biotechnology, but in other
industries as well, the quantity that is actually produced by a process is best
modeled as depending on the quantity that is started and a great deal of
randomness. In these situations policies are sometimes established to start

164 9. Some Stochastic Extensions

enough products so as to have a reasonable probability of obtaining the de-
sired quantity upon completion. Any extra production is placed in inventory
to reduce the requirements for the next production run.

Policies are a very important concept for dealing with stochastics, but we
will defer discussion of policies until Chapter 10. We will not address them
here for two reasons. First, there is already a rich literature and reasonable
software support for establishing policies in a stochastic production environ-
ment. Inventory and yield policies are covered in a number of production
planning texts. Second, a more compelling reason is that policies are opera-
tional controls. While these controls can provide data for the planning process
(as in §6.3), the process of establishing them is not part of the tactical plan-
ning that we have developed. We proceed to consider two important topics
for planning: load dependent lead times and creation of plans that take into
account the possibility of major events.

9.1 Lead Times and Congestion

When we introduced mrp in Chapter 3, we noted that a potentially serious
problem is that mrp models assume that the lead time is property of the item
or part. We captured this assumption with the notation LT (i) for the lead
time required to produce an order of part i. In §3.5, we noted that the time
required to produce a part really depends both on the part being produced
and the number of parts in the waiting line ahead of the order. It is usually
a very good approximation to say that actual lead times are proportional to
the length of the waiting lines.

There is no perfect way out of this problem because it is not possible
to foresee the future. We cannot know that a machine failure will produce
long waiting lines or that a work group will have a great day and complete
all of their work for the week on Monday. The best we can hope to do is to
model the uncertainty about the future in some useful way. We need some
understanding of waiting lines and then we can try to modify our planning
models to anticipate some of the effects of waiting lines.

In the academic literature, waiting lines are referred to as queues and
theories about waiting lines are grouped under the rubric queuing theory. At
first it might seem that using a French word to substitute for a perfectly
good pair of English words is valuable only to pompous academics. Perhaps.
However, we find the word queuing to be useful as a reminder that we are
not studying waiting lines themselves, but abstract models of them for the
purpose of adjusting our planning models.

It is useful to make a distinction between the lead time, which is used
for planning and flow time, which is the actual time between start of a job
(or, in some cases, issuance of the order for the job) and its completion. The
flow time can reasonably be modeled as random in most production settings.

9.1 Lead Times and Congestion 165

We use the lead time for planning, but then we get some flow time which is
usually not the same.

9.1.1 The Issues

If work arrived at a perfectly constant rate and work was performed at a
perfectly constant rate, there would be no queuing. But that is not the reality
that we must live with. Work arrives in bursts and it gets done in spurts
with interruptions for machine failures and a host of other events. We need
an abstract model in order to come to grips with queuing.

To be consistent with the jargon of queuing theory, we will make use of
the word server to denote resources that perform work. The rate at which
they perform work will be called the service rate. The rate at which work
arrives will be called the arrival rate. These words are useful because they
emphasize that we want to view queuing in an abstract way. The servers could
be an individual resource, a resource group, a production line, a factory or a
supplier.

The ratio of the arrival rate and the service rate is referred to as the
utilization and is often represented with the Greek letter ρ. The utilization
defined in this way corresponds pretty well to standard notions. For example,
if work arrives at an average rate of 6/hour and the server can complete an
average of 10/hour, then the server will be utilized 60% of the time in the
long run and will be idle (or at least not servicing the items of interest in this
example) 40% of the time. Notice that we are careful to use the words “long
run” and “average” because in the short run, the server can be busy much
more or less than 60%, and arrivals and service can be much faster or slower
than usual.

For a given service rate, increases in the arrival rate are exactly propor-
tional to increases in the utilization. For most of the models that we are
interested in during tactical production planning the capacity is fixed for
each resource, but we are making decisions that will effect the average arrival
rate. This is done both by setting the level of production and via selection of
the appropriate routing.

There are many ways to analyze queuing for both the long run and the
short run. This important topic is the subject of a large research literature
to which a few pointers are provided in the references. For the kinds of queu-
ing analysis needed for supply chain planning, computer simulation is very
popular.

Many commercial software packages are available with graphical user in-
terfaces that allow one to literally paint a picture of a production facility and
then input information about the bill of materials, routings, capacities and
the nature of the randomness that may be present. The simulation software
then recreates the operation of the system with realizations for the random
variables. This can be repeated numerous times with numerous realizations

166 9. Some Stochastic Extensions

and the results can be analyzed statistically to study the performance of the
system and the characteristics of the queues.

Regardless of the method of analysis, a critical point is that queuing time
is a non-linear function of the utilization as shown in Figure 9.1. The axis
labels are vague because these are representative curves that are roughly
accurate over a broad range of conditions. It is also qualitatively correct for
both short run queuing statistics as well as long run averages.

S
ta

n
d
a
rd

iz
e
d

 W
a
it

in
g
 T

im
e

Standardized Throughput

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 9.1. Representative Curves Showing Queuing Versus Utilization for Three
Different Situations

For fixed capacity planning, we can use the words “utilization” and “load-
ing” interchangeably, where by loading we mean the amount of work assigned
to a server (i.e., to a resource). Notice that in Figure 9.1 the sensitive part
of the curve is at heavy loading. That is to say, given that the server is heav-
ily loaded, fairly small changes in loading result in fairly large changes in
queuing. This is in contrast with the left side of the curve where fairly large
changes in the loading do not change the queuing very much.

It stands to reason that high average loadings result in long average queue
lengths. If the server is very busy and anything goes wrong, work will pile up
quickly. The shape of the curve depends on the characteristics of the arrival
of work and the characteristics of the server. If the arrival process is fairly
constant and the server is very reliable and consistent, then the curve will
have a sharp bend very near a utilization of 1. In contrast, a server that
is extremely failure prone and requires randomly varying times to complete
work will begin to generate queuing with lower utilizations. In the worst case,

9.1 Lead Times and Congestion 167

such a server also faces a highly unpredictable pattern of work arrival. These
three cases are depicted in Figure 9.1.

We can look at these curves another way. If one wants high utilization, one
needs queues or (what is intended in supply chain management) synchronized
arrivals. If work arrives in spurts then work is needed to keep the server busy
during lulls in the arrival process. Either way we look at it, we can see that
a reasonable definition for a bottleneck is a server that has high utilization
and queues are building up. In a supply chain, we might refer to the server
that has the highest average utilization as the bottleneck. If all of the other
servers had significantly lower utilizations, we can call it a sharp bottleneck.
This provides another view of the same concept that was developed in §6.6.

We can see immediately that if constant lead time estimates are to be
used, they should be “tight” for SKUs that are not routed through a bottle-
neck and “loose” for those that are. Keeping the lead times near the process-
ing time for non-bottlenecks will result in shorter overall lead times with no
significant cost in terms of reduced throughput. Conversely, for SKUs that
use a sharp bottleneck longer lead times are required both because that is
realistic and because it can result in better bottleneck management.

It is realistic because longer queues are going to be present at bottlenecks
and because we are planning and not scheduling. Schedule disruptions are
often common and most disruptive at the bottleneck. Our planning models
might as well acknowledge this. Providing the bottleneck with longer lead
times allows more flexibility in scheduling it. This in turn is valuable because
the throughput of a sharp bottleneck dictates the throughput of the larger
organization.

A more sophisticated approach is to use load dependent lead times. This
could be important in supply chain planning where decisions are being made
regarding how to assign production to lines, factories, or subcontractors. In
effect, these decisions determine the loading and therefore the flow times.
The catch is that the best decisions also are determined by the flow time (or
the lead time used for the optimization model).

9.1.2 Load Dependent Lead Times

Load dependent lead times are things that are not appropriately addressed
by safety stock. The state-of-the-art planning technology for these things is
to have a big meeting and argue. But we might also do it differently.

We attempt to extend the base SCP model as given in §5.5 to include
selection of a reasonable lead time estimate based on the loading of the line.
This is a research topic, but the model we develop here should help the reader
grasp the issue of load dependent lead times and its effect on planning. The
model we sketch here is very difficult to implement. We have implemented
a small test version in order to give an example, but our implementation
is not appropriate for practical applications. Our goal is to make the issues
associated with load dependent lead times concrete by providing a model.

168 9. Some Stochastic Extensions

For SKUs effected by load dependent lead times we use a piecewise esti-
mate of the utilization with enough breakpoints so that the difference in lead
time from one breakpoint to the next is one time bucket. Needless to say, we
do not want to go to the trouble of modeling variable lead times for every
SKU. We only want to consider SKUs for which the lead time varies signifi-
cantly as a result of decisions about how much to produce and how to route
the production. Figure 9.1 illustrates that this is the same as saying “those
SKUs that use resources that become heavily loaded.” For such SKUs, we
also do not necessarily want to model the lead time as a function of queuing
at every resource along the routing. Typically, there will be only one or two
critical resources that cause the lead time to vary with the load for a given
SKU. So we have a slightly tautological definition of our data requirements.
We need data concerning lead dependencies for those SKUs and those re-
sources that are important to model; see Table 9.1. For ease of exposition we
assume the existence of no more than one critical resource for each SKU.

LT (i, 0) Initial (and perhaps final) lead time for SKU i
K(i) Critical resource for SKU i
BP (i, r) A list indexed by r of utilization breakpoints for SKU i
LT (i, r) The lead time that corresponds to BP (i, r) for SKU i
ρ′(i) Number of lead time breakpoints for SKU i
H ′(i) Holding cost for SKU i during the lead time

Table 9.1. Additional Data Required for Load Dependent Lead Times

Conceptually we can add load dependent lead times to a model by replac-
ing LT (i) by

ρ′(i)∑
r=1

ρi,r,tLT (i, r) (9.1)

to do the lead time selection for every SKU i effected by load dependent
lead times. This expression uses a set of SOS1 (see §8.3) variables ρi,r,t,
r = 1, . . . , ρ′(i) for each SKU i effected by load dependent lead times for
every time t. The idea is that for each pair of i, t values, the value of ρ will
be one for only one value of r. The effect will be that the corresponding LT
value will have been selected.

Let r be an index into a discretized range of a macro ρ̂, which is an
approximation to the utilization of resource K(i):

ρ̂i,t(x) ≡
P∑

j=1

[U(j, K(i))xj,t + S(j, K(i))δj,t]

where K(i) is the critical resource for SKU i. The summation over all SKUs
using the index j is done because we are interested in setting the lead time
breakpoint for SKU i based on the total utilization of its critical resource
K(i). We add the constraints for the binary variables ρi,r,t

9.1 Lead Times and Congestion 169

ρ′(i)∑
r=1

ρi,r,t = 1

for all SKUs i that are effected by load dependent lead times or else we require
the sets to be SOS1 across r. Either way, the idea is that only one value of
r will have a ρ value that is one for each product in each time period. This
is the mechanism that is used to select the lead time that corresponds to the
capacity utilizations. We also add the constraints

ρ′(i)∑
r=1

BP (i, r)ρi,r,t ≥ ρ̂i,t(x)

and finally
ρ′(i)∑
r=1

ρi,r,tLT (i, r) ≥
ρ′(i)∑
r=1

ρi,r,t+1LT (i, r) − 1

for t between 1 and T−1 (one can add a constraint to make ρi,r,T+1 something
reasonable). The last constraint keeps the lead time from jumping down by
more than one time bucket. This is easy to see if the constraint is rewritten
as

ρ′(i)∑
r=1

ρi,r,t+1LT (i, r) −
ρ′(i)∑
r=1

ρi,r,tLT (i, r) ≤ 1

If it were allowed to jump down by more than one, passing would be possible.
That is, work started in a period would be modeled as being completed after
work released in the next period; this clearly would not make sense in most
practical cases. A closely related point is that jumps down of more than one
would invalidate the summation from i = LT (i, 0) in the I macro.

To summarize, a base model such as SCPa (see §6.1) is modified to make
use of the macro ρ̂. To illustrate without a lot of clutter, we use a version
of the objective function without the V and O terms. Such a new objective
function would be to minimize

T∑
t=1

P∑
i=1

⎛
⎝A(i)I−i,t + H(i)I+

i,t + H ′(i)
ρ′(i)∑
r=1

ρi,r,tLT (i, r)xi,t + C(i)δi,t

⎞
⎠

and the constraints

170 9. Some Stochastic Extensions

ρ′(i)∑
r=1

ρi,r,t = 1 ∀ i, t

ρ′(i)∑
r=1

BP (i, r)ρi,r,t ≥ ρ̂i,t(x) ∀ i, t

ρ′(i)∑
r=1

ρi,r,tLT (i, r) ≥
ρ′(i)∑
r=1

ρi,r,t+1LT (i, r) − 1 ∀ i, t

ρi,r,t SOS1 across r ∀ i, t

are added. Notice that ∀ t means t = 1, . . . , T except for the third set of
constraints (the ρ constraints), where the termination is at T − 1.

Because the lead times are modeled as varying with our decisions, the
cost of holding inventory during the lead time is no longer a sunk cost. We
have added the data element H ′ to account for this. However, one would
expect that H ′(i) ≈ H(i) would be an adequate approximation in most cir-
cumstances.

If we extend model SCPa to include load dependent lead times, the re-
sulting model is shown as SCPL in Figure 9.2. The shorthand notation ∀
and ∈ is abused in the interest of brevity to mean “for all appropriate values
of the indexes listed.” For example, ∀ t, � �∈ L(i) means the constraints are
repeated for t = 1, . . . , T and for values of � in the set formed by remov-
ing from 1, . . . , P the indexes that appear in the list of substitute sets L. In
some situations, ∀ t means t = 1, . . . , T − 1 and in other situations it means
t = 1, . . . , T ; the appropriate limit will generally be clear from the context.

Unfortunately, this model is non-linear because of the H ′ term in the
objective function which has LT (i, r) times xit. Since LT (i, r), by using ρi,r,t,
depends on x in this model, this term is not linear.

9.1.3 Solver Issues

In addition to the problem of the non-linear objective function, an important
detail remains. We said that “conceptually” one can replace LT (i) with ex-
pression (9.1). If heuristic search solvers or constrained programming solvers
are used, then one can actually make the replacement but not for pure MIP
solvers. The trouble is that the inventory macro would have expression (9.1)
as the terminating index for summation.

For exact MIP solvers based on branch and bound solutions to linear
programming relaxations, one cannot have variables as subscripts. This can
be remedied if for any master SKU at most one alternate has load dependent
lead times. For every constraint involving the lead time for an SKU i effected
by load dependent lead times, ρ′(i) constraints must be substituted, one for
each possible value of r, and then the SOS1 variables ρ are used to make it
so that only one of the constraints is meaningful.

9.1 Lead Times and Congestion 171

Minimize:

T∑
t=1

⎡
⎣ P∑

i=1

⎛
⎝A(i)I−

i,t + H(i)I+
i,t + H ′(i)

ρ′(i)∑
r=1

ρi,r,tLT (i, r)xi,t + C(i)δi,t + V (i)xi,t

⎞
⎠

+

K∑
k=1

O(k, t)yk,t

]
(SCPL)

subject to:

Ii,t(x, δ) +

t∑
τ=1

D(i, τ) ≥ 0 ∀ i, t

P∑
i=1

[U(i, k)xi,t + S(i, k)δi,t] ≤ 1 + yk,t ∀ k, t

yk,t ≤ F (k, t) ∀ k, t

δi,t ≥ xi,t

M
∀ i, t

δi,t ∈ {0, 1} ∀ i, t

yk,t ≥ 0 ∀ k, t

ρ′(i)∑
r=1

ρi,r,t = 1 ∀ i, t

ρ′(i)∑
r=1

BP (i, r)ρi,r,t ≥ ρ̂i,t(x) ∀ i, t

ρ′(i)∑
r=1

ρi,r,tLT (i, r) ≥
ρ′(i)∑
r=1

ρi,r,t+1LT (i, r) − 1 ∀ i, t

ρi,r,t SOS1 across r ∀ i, t

x�,t ≥ 0 ∀ t, � ∈ ⋃P

i=1
L(i)

x�,t = 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I−
�,t = 0 ∀ t, � ∈ ⋃P

i=1
L(i)

I+
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I−
�,t ≥ 0 ∀ t, � �∈ ⋃P

i=1
L(i)

I+
i,t − I−

i,t = Ii,t(x, δ) ∀ t, � �∈ ⋃P

i=1
L(i)

Fig. 9.2. SCPL Model

The implementation of this row selection mechanism is complicated. It is
hard to write the macro for master SKUs in general because one needs to
do row selection for the selected subset (i.e., in general one has to do two

172 9. Some Stochastic Extensions

selections: one for the substitute and the other for the lead time. This can
quickly become unwieldy). As stated, if there is only one substitute for which
the lead times vary, then the implementation can be manageable, although
still not trivial.

We are now back to the issue of defining the data. The goal here is to create
a model that does a reasonable job of anticipating lead times that will result
from load dependencies. Clearly, the maximum number of breakpoints needed
is enough to make the lead time differ by one bucket for each breakpoint. The
values for the breakpoints can be set using simulations, statistical analysis of
historical data, or engineering estimates.

Note that values greater than 1 for ρ̂ are possible so that LT can be given
special values for overtime. It might go down again for overtime if that is
realistic and then go back up if overtime reaches its capacity. Also note that
zero is a legitimate possibility, especially for light loadings.

9.1.4 Example

To illustrate the notation, we extend the example developed in §3.1 and §4.1
which we review briefly. Part AJ8172, or SKU 1, is routed through resource
1 (HR-101) and resource 2 (MT-402). Part LQ8811, or SKU 2, is routed only
through resource 1. For this example, we will assume that resource 1 is the
bottleneck and that there is usually very little queuing at resource 2. The
other SKUs are ordered from vendors and for this example we will assume
that the vendor’s overall utilization, and therefore the vendor’s lead times,
are not effected very much by the decisions that we make.

In the example developed to illustrate the mechanics of mrp and MRP
II, we assumed that LT (1) was 2 days and LT (2) was 3 days. Suppose in-
stead that based on analysis of past performance or a simulation study, the
lead time really depends on the utilization of resource 1 with the lead time
changing approximately at utilizations of 0.7, 0.9 and 1. The “default” lead
times of 2 and 3 are valid between 0.7 and 0.9 and overtime assumed to be
sufficient to reduce the lead time back down to default levels. So, to use our
notation, ρ′(i) = 4 and K(i) = {1} for i = 1, 2. The data for the lead time
model is summarized in Table 9.2. The value for ∞ can be anything that is
big enough to catch all possible values of ρ̂. A value of 2 or 3 should be more
than big enough and in many cases 1.5 might be adequate.

For the demand vector (20, 30, 10, 20, 30, 20, 30, 40) we solved model
SCPL using a zero demand last period to handle boundary conditions and
a crude approximation to the work in process holding cost term (H ′). The
solution can be found in a few seconds on a personal computer. The solutions
are dominated by beginning and ending effects because we have used a sim-
ple model for illustration purposes. The main point is the large qualitative
difference in the middle period of the optimal solutions for models with and
without load dependent lead times.

9.1 Lead Times and Congestion 173

r i BP (i, r) LT (i, r)

1 1 0.7 1

2 0.7 2

2 1 0.9 2

2 0.9 3

3 1 1 3

2 1 4

4 1 ∞ 2

2 ∞ 3

Table 9.2. Data for Load Dependent Lead Time Example

If the lead times are all fixed at their nominal values, the subcontrac-
tor was only used for 10 units of capacity to avoid tardiness. However, this
schedule would not really work because AJ8172a was being produced at a
level that resulted in 100% utilization of its critical resource. This would re-
sult in congestion, long lead times and failure to perform according to the
plan. Not only would AJ8172a experience longer lead times than planned,
so would its components that use the same critical resource. Hence, the plan
might not prove to have been realistic and therefore of limited value. The
better solution comes from a plan that captures the fact that lead times go
up with the utilization.

If we removed AJ8172b from the data, we found that for the cost struc-
ture in use, the optimal solution was to avoid long lead times and simply
incur the tardiness costs. A comparison of the objective function values with
and without an alternative gives an estimate of the value of having an alter-
native available. In many situations there are fixed costs associated with the
existence of alternatives such as spare capacity or even secondary suppliers.
The use of such a model can give a very concrete estimate of the tactical
value of such alternatives.

9.1.5 Complications and Discussion

This is a simple model, but it could be better than ignoring the fact that
lead times depend on the loading. The model is most effective where there is
a sharp bottleneck. It is most needed in supply chain planning environments
where there are multiple routings.

This model is really too simple if there is more than one resource in K.
Suppose there are two resources and one is loaded to capacity and the other
has almost no load. In this case, ρ̂ will be about 1/2 which will suggest very
little queuing, when in fact the heavy load on one of the two resources will
probably result in significant queuing. If two or three bottleneck resources
are in a series, interactions between them result in complicated, non-linear

174 9. Some Stochastic Extensions

functions. If the presence of multiple bottlenecks is a serious planning issue,
perhaps a remedy is to use the simple model given here to get a starting point
for computer simulations that can be used to search for a better solution.

As was the case with changeovers, we can get some managerial insights
from the models themselves. In §4.4.5 we noted that in addition to the ex-
tra capacity that one gets when changeover times are reduced, one gets the
benefit of a production system that is easier to manage as evidenced by the
much simpler planning models that are available. We find the same situation
here.

A facility with balanced capacity is harder to plan for than one with a
sharp bottleneck. With perfect balance, every resource is the bottleneck. To
put it another way, there can be value in the purchase of excess capacity
for inexpensive resources because it provides the simultaneous benefits of
reduced queuing (therefore, reduced lead times) and simpler, therefore better,
planning. In similar fashion, a facility that is operated very near its peak
capacity is harder to plan for than one that has some capacity cushion. This
is, of course, a delicate tradeoff. Utilization of capacity lowers average costs,
but at the expense of longer lead times and more planning and management
difficulties.

Pull based production control systems such as Kanban and CONWIP
provide benefits for planning systems by putting a cap on the work in process
and therefore on the sizes of queues. This has the effect of reducing the
dependency of the lead time on the loading and therefore allows simpler, yet
more precise, planning models to be used. Input/output control is a planning
concept designed to have the same effect by coupling the planning process
with execution results. One constrains the planned releases in the next period
into a resource to be no greater than the completed work in the previous
period. In this way, the WIP in the resource cannot grow and therefore neither
can the lead times in the long run. These sorts of control systems provide
benefits for planning systems that are discussed in the references provided in
§10.3.5.

The model we have presented is not really suitable for practical applica-
tion. Our goal was to sketch one approach in order to illustrate the issues
associated with planning when the lead times vary significantly with the
planned production quantities.

9.2 Scenarios

We refer to models that have no stochastic elements as being deterministic.
Up to this point, all models have been deterministic because all of the data
is assumed known. Even though the load dependent lead times model was
designed to accommodate queuing effects that are the result of stochastics,
the model itself made use of deterministic data.

9.2 Scenarios 175

We mentioned that none of the data can really be known with certainty.
For example, we have specified that the utilization fraction be given as data,
U(i, k), but the utilization fraction would be more accurately modeled as a
function U(i, k, ξ), where ξ is a random variable. The same is true of demand
and the other problem data. Whether it is worth the extra trouble to specify
such a function depends on how important the uncertainty is.

In general, dealing with uncertainty is an important part of the job of
production planners in a supply chain. Planners might express this based on
the need to be concerned about “what-if.” Such concerns are typically not
expressed as functions of random variables, but rather as concerns about par-
ticular changes in the model data. For example, there might be a possibility
of a new machine being purchased or the possibility of a new, large order be-
ing received. Hence, there really is not one set of data, but neither are there
a set of complicated functions that indicate the random nature of the data.
We represent this idea in an abstract way using a list of scenarios where each
scenario is a complete set of data for the planning model.

9.2.1 The Issues

For tactical planning purposes, we are not interested in scenarios that capture
a large number of relatively minor, high frequency events. We want to capture
the few most important events. We are interested in cancellation of large
orders, placement of large orders by a new customer, major disruptions at
suppliers, competitors, or customers, etc. We might want to have contingency
plans or we might want to hedge against these events.

Contingency plans are created for the purpose of being used once it be-
comes clear which scenario is occuring. For example, a plan might be de-
veloped for production once a large order is received. Hedging refers to the
creation of plans that take action in advance of knowing what will happen.
In the case of a large potential order, a hedged plan might call for increased
production of some components even before the order is received.

We define the scenarios so that each one has a full set of data for the
model. As a consequence most of the data in each scenario is the same as for
all of the others and only major data elements differ. Some solution techniques
and data management software can take advantage of this, but to keep our
descriptions simple, we will subscript all data by the scenario number. We
index the scenario set, S, by s. Let the number of scenarios be given by S. For
example, we give a capacity utilization estimate for each scenario and indicate
the capacity utilization estimate for SKU i on resource k under scenario s as
U(i, k, s). Using this notation we can see that the scenario list is a simplified
model intended to capture the important stochastic elements that would be
present in the more complicated function U(i, k, ξ).

For example, when we first developed MRP II in §4.1, we used capacity
estimates as shown in Table 4.1 and reproduced here as Table 9.3, which is
labeled as Scenario 1. Suppose that there is a chance that the capacity of

176 9. Some Stochastic Extensions

MT-402 would be doubled. This would create Scenario 2 with utilizations as
shown in Table 9.4.

Fraction Used By

Resource AJ8172 LQ8811

HR-101 1/480 1/960

MT-402 1/300

Table 9.3. Fraction of Capacity Utilized to Make Each SKU at Each Resource
Under Scenario 1

Fraction Used By

Resource AJ8172 LQ8811

HR-101 1/480 1/960

MT-402 1/600

Table 9.4. Fraction of Capacity Utilized to Make Each SKU at Each Resource
Under Scenario 2

If we tried to implement the mrp plan the capacity utilizations would be
as shown in Table 4.2, which is reproduced here as Table 9.5. Under Scenario
1, the mrp plan is not feasible because the capacity of MT-402 is exceeded
in Period 3 (the utilization is computed to be 4/3, which is greater than 1).
However, under Scenario 2 there would be sufficient capacity as shown in
Table 9.5. The question is: How much LQ8811 should we plan to make in Pe-
riod 3? Our decision will have implications both for the planned production
of AJ8172 in subsequent periods as well as plans for orders for, and inventory
position of, NN1100 and WN7342.

Period Resource Utilization Utilization

under Scenario 1 under Scenario 2

3 HR-101 100
480

+ 400
960

= 5
8

100
480

+ 400
960

= 5
8

MT-402 400
300

= 4
3

400
600

= 2
3

6 HR-101 100
480

= 5
24

100
480

= 5
24

Table 9.5. Anticipated Capacity Utilization for MRP II Example

We might want to just solve the problem for every scenario and look at
the result. So, for example, we would formulate S different SCPc models and
solve each one. We would then look at the solutions and use the information
to help guide the solution that we ultimately use for planning purposes. It

9.2 Scenarios 177

can be a little difficult to look through even a handful of large solutions and
then make decisions.

This type of model management is supported by most modeling language
packages as well as by the model management system that is part of the
solver in Microsoft Excel. Each scenario is a separate model. The models and
the solutions are maintained and indexed (perhaps using index names that
identify the scenario) for retrieval. This sort of system is particularly useful
for contingency planning.

A more sophisticated hedging model takes into account the likelihood of
each scenario and suggests a solution that is in some sense a compromise
between the solutions that are obtained using the data for each scenario
considered separately. We refer to the probability of occurrence of s (or,
more accurately, a realization “near” scenario s) as Pr(s). Estimating the
probabilities can be difficult. But it must be done either implicitly, as is the
case when the scenarios are solved separately and the decision maker must
weigh the various solutions, or explicitly. It seems better to be explicit about
the assumptions that are used for planning and perhaps better to get the
help of a computer to weight the various scenarios.

There are a lot of possible methods and models that consider the prob-
abilities of each scenario. For financial planning models, one often wants to
consider the tradeoffs between risk and return. In other situations, one might
want to maximize the probability of achieving some threshold level of the ob-
jective function or minimizing the probability of a really bad objective value.
But we argue that for tactical production planning, an appropriate objective
is to consider the expected (or “average”) value. One should minimize the
expected cost or maximize the expected profit.

We offer two reasons for using expectations. First, production planning
decisions are made many times per year so that the law of large numbers
suggests that over even a fairly short time horizon, we should see roughly the
average performance. This is especially true for production planning where
the individual decisions are not usually of potentially catastrophic size (un-
like, say, strategic planning). The second reason is that many of our models
rely on costs that are best described as proxies. These proxy costs, such as the
cost of tardiness, are very useful in helping to construct a good production
plan. However, they make any attempts to set objective function thresholds
or to trade off objective function values and risks dubious.

A third reason is that there is a possible solution technique available for
expected value models. In fact, for two time period models there are a number
of solution techniques available. These two-stage models can be appropriate
for capacity planning, but in most production planning situations more stages
are needed for a realistic model.

For multiple time stage problems with integer variables, there are very few
ways to look for solutions at this time. For the methods that are available, at
most a handful of time stages can reasonably be solved using currently avail-

178 9. Some Stochastic Extensions

able technology, so time buckets must generally be combined. Furthermore,
the problems must be fairly small, so typically an aggregated plan has to be
considered (see §6.6). In the next section we detail the progressive hedging
solution method and the corresponding stochastic model.

9.2.2 A Multi-stage Probabilistic Model With Recourse

The thing that makes multi-stage stochastic models difficult to solve is that
the model includes the fact that decisions in the future can depend on which
random events actually occur. With a deterministic model, we have assumed
that we know the future, so theoretically there would be no reason for any
changes to the plan. We are aware that this is not the case, but that is a
simplifying assumption that is made in a deterministic model.

In a multi-stage stochastic model, we must plan for decisions that are
conditional on the realizations of random variables. In other words, we have
to make the period one decisions and stick with them, but we can state that
our period two decisions will depend on which values that data took in the
first time bucket. (We use the words “time bucket,” “stage” and “period”
interchangeably.)

When we use a deterministic model, we know that we will really solve a
new problem after we find out what happens in period 1. No one in their
right mind would solve a 52 week MRPII model and then blindly follow
the plan for the next 52 weeks regardless of what happens. A planner might
create a plan for 52 weeks, execute the week-one-plan and then create a new
plan the following week, using new estimates of demand and new beginning
inventory levels, etc. However, the deterministic models do not explicitly
include in them the fact that plans will be adjusted later. Stochastic models
with recourse do.

This sort of model requires a great deal of notation, so rather than con-
tinuing with an ERP model that itself contains a lot of notation, we switch
to a canonical MIP representation. This also allows us to provide an overview
of the progressive hedging solution method that is part of the motivation for
the way we represent the models.

Stochastic Programming Notation. Assume that we have S scenarios
and T stages. For each scenario, s, and each stage, t, we are given a row vector
c(s, t) of length n(t), a m(t) × n(t) matrix A(s, t) and a column vector b(s, t)
of length m(t). Let N(t) be the index set 1, . . . , n(t) and M(t) be the index
set 1, . . . , m(t). For notational convenience let A(s) be (A(s, 1), . . . , A(s, T))
and let b(s) be (b(s, 1), . . . , b(s, T)).

The decision variables are a set of n(t) vectors; one vector for each sce-
nario. Notice that the solution is allowed to depend on the scenario. Let X(s)
be (x(s, 1), . . . , x(s, T)). We will use X as shorthand for the entire solution
system of x vectors (i.e., (X = x(1, 1), . . . , x(S, T)).

9.2 Scenarios 179

If we were prescient enough to know which scenario would be the real-
ization (call it s) and therefore the values of the random variables, we would
want to minimize

fs(X(s)) ≡
T∑

t=1

∑
i∈N(t)

[ci(s, t)xi(s, t)] (Ps)

subject to

A(s)X(s) ≥ b(s)

xi(s, t) ∈ {0, 1} i ∈ I(t), t = 1, . . . , T

xi(s, t) ≥ 0 i ∈ N(t) − I(t), t = 1, . . . , T.

where I(t) defines the set of integer variables in each time stage. Discounting
could easily be added. The notation AX is used to capture the usual sorts
of single period and period linking constraints that one typically finds in
multi-stage linear programming formulations such as SCPa.

Since we are not prescient, we must require solutions that do not require
foreknowledge and that will be feasible no matter which scenario is realized.
We refer to solution systems that satisfy constraints with probability one as
admissible. We refer to a system of solution vectors as implementable if for
scenario pairs s and s′ that are indistinguishable up to time t, is true that
xi(s, t′) = xi(s′, t′) for all 1 ≤ t′ ≤ t and each i in each N(t). We refer to the
set of all such solution systems as NS for a given set of scenarios S.

min
∑
s∈S

[Pr(s)fs(X(s))] (P)

subject to

A(s)X(s) ≥ b(s) s ∈ S

xi(s, t) ∈ {0, 1} i ∈ I(t), t = 1, . . . , T, s ∈ S

xi(s, t) ≥ 0 i ∈ N(t) − I(t), t = 1, . . . , T, s ∈ S

X ∈ NS

Unless time travel becomes possible, only solutions that are implement-
able are useful. Finding a solution for each scenario can be a useful exercise,
but in the end one particular set of decisions must be implemented for the
current period. It would be nice if the set of decisions happened to be optimal
for the scenario that ultimately unfolds; however, that is extremely unlikely.
Hence, a stochastic programming solution methodology must provide solu-
tions that do not depend on knowing which scenario will occur. When work-
ing with multi-stage problems, this means that the solution at each stage can
only depend on information that is available at that time stage.

180 9. Some Stochastic Extensions

Solutions that are not admissible, on the other hand, may have some
value. Although some constraints may represent laws of physics others may
be violated slightly without serious consequence. We would prefer an algo-
rithm that produces admissible solutions, but might settle for a solution that
violates some constraints, if the violations are not too severe.

The progressive hedging algorithm (ph) described below assures imple-
mentable solutions at all iterations and admissibility on convergence. If the
algorithm has to be terminated before convergence, the solution at that point
will have the critical property of implementability although it may or may
not be admissible. The longer the algorithm runs, the more likely it is to have
found a solution that has both desirable properties.

Approaches other than ph are possible for some types of integer problems.
A straightforward solution method is based on a reformulation called the
deterministic equivalent (DE). The DE is produced by reformulating the
original problem so that dependence on scenarios is eliminated implicitly. This
will be defined in a rigorous fashion after more notation has been developed;
but for now we note that for mixed integer problems the resulting instance
will typically be too large to be solved exactly even though smaller instances
can be solved to optimality using the DE formulation.

We are interested in the more general case where there can be any number
of integer variables in any and all stages and where any of the data can be
stochastic. We are also interested in methods that can accommodate more
than two stages and instances that are potentially too large for exact methods,
even for one scenario. In order to have all of these features, we must abandon
exact methods and make use of heuristics.

9.2.3 Progressive Hedging

The progressive hedging algorithm as described here is both intuitively ap-
pealing and has desirable theoretical properties: it converges to a global op-
timum in the convex case, there is a linear convergence rate in the case of a
linear stochastic problem, and if it converges in the non-convex case (and if
the sub-problems are solved to local optimality) then it converges to a locally
optimal solution.

To begin the ph implementation for P, we organize the scenarios and
decision times into a tree. The leaves (i.e., terminals of the tree) correspond to
scenario realizations. The leaves are grouped for connection to nodes at time
T . Each leaf is connected to exactly one time T node and each of these nodes
represents a unique realization up to time T . The time T nodes are connected
to time T −1 nodes so that each scenario connected to the same node at time
T − 1 has the same realization up to time T − 1. This is continued back to
time 1 (i.e., “now”). Hence, two scenarios whose leaves are both connected
to the same node at time t have the same realization up to time t. Clearly,
then, in order for a solution to be implementable, it must be true that if two

9.2 Scenarios 181

scenarios are connected to the same node at some time t the values of xi(t′)
must be the same under both scenarios for all i and for all t′ ≤ t.

To illustrate the notation developed thus far, we consider a very small
example with three decision stages (so T = 3) and two decisions per period,
one of which is binary the other of which is bounded above zero and only
three additional constraints. For any given scenario s the problem Ps is to
minimize:

3∑
i=1

2∑
j=1

cj(s, i)xj(s, i)

subject to

2∑
j=1

a1j(s, 1)xj(s, 1) ≤ b1(s, 1)

2∑
j=1

a2j(s, 1)xj(s, 1) ≤ b2(s, 1)

3∑
i=1

2∑
j=1

a1j(s, i)xj(s, i) ≤ b1(s, 3)

x1(s, t) ∈ {0, 1} t = 1, 2, 3

x2(s, t) ≥ 0 t = 1, 2, 3

Suppose that all data for t = 1 are known and the data for t > 1 will
become available before we will have to commit to the decision variables for
these times. Further suppose that the only data that are stochastic for t > 1
are c2 and a12. Now suppose that at t = 2, we will have c2 = 2 and a12 = 3
with probability 0.6 and c2 = 3, a12 = 3.7 as the only other possibility. If the
first case occurs, then we will know with certainty that for t = 3, the values
of c2 and a12 will both be 6, but in the second case there is a 0.5 chance
that they will be unchanged from t = 2 values and a 0.5 chance that they
will both be 6. This is seen much more easily with a scenario tree graph as
shown in Figure 9.3. This graph uses a circle for both nodes and leaves. For
each circle, this graph shows the pair (c2, a12) along with the unconditional
probability of realizing the scenario(s).

If we are not interested in contingency planning, the solution for any
particular scenario may not be of any value to us. Ultimately, we want to be
able to solve the problem of minimizing the expected value of the objective
function subject to meeting the constraints for all of the scenarios and also
subject to the constraint that the solution system will be implementable.
The way we obtain such solutions is to use progressive hedging. For each
scenario s, approximate solutions are obtained for the problem of minimizing,
subject to the constraints, the deterministic fs plus terms that penalize lack
of implementability. They make use of a system of row vectors, w, that have
the same dimension as the column vector system X, so we use the same

182 9. Some Stochastic Extensions

� � � � � � � � �

� � � �

� �
�

� 	

 � � �

�

� �
�

�
�

� 	

 � � �

�
�

�
�

 	

 � � �

�

� �
�

�
�

� 	

 � � �

�
�

�
�

 	

 � � �

�
�

� � �

� � �

� � �

Fig. 9.3. Scenario Tree for the Small Example Problem

shorthand notation. For example, w(s) means (w(s, 1), . . . , w(s, T)) for the
multiplier system.

In order to give a formal algorithm statement, we need to formalize some
of the scenario tree concepts. We use Pr(A) to denote the sum of Pr(s) over
all s for scenarios emanating from node A (i.e., those s that are the leaves
of the sub-tree having A as a root also referred to as s ∈ A). We use t(A) to
indicate the time index for node A (i.e., node A corresponds to time t).

Let the operator
HS(x′)←− x mean “assign the result of a heuristic search

optimization that attempts to find the argument x that minimizes the right
hand side of the expression with the search beginning at x′.” This is described

in detail in §8.4. We use
HS(•)←− x when the ph algorithm does not suggest a

starting solution for the search.
For typesetting convenience, we consider the constraints for problem

Ps to be represented by the symbols “X(s) ∈ Ωs.” We use X(t;A) on
the left hand side of a statement to indicate assignment to the vector
(x1(s, t), . . . , xN(t)(s, t)) for each s ∈ A. We refer to vectors at each itera-
tion using a superscript; e.g., w(0)(s) is the multiplier vector for scenario s
at ph iteration zero. The ph iteration counter is k.

If we defer briefly the discussion of termination criteria, a formal version of
the algorithm (with step numbering that matches in the informal statement
just given) can be stated as follows taking r > 0 as a parameter.

1. k ← 0
2. For all scenario indexes, s ∈ S

X(0)(s)
HS(•)←− X(s)fs(X(s)) : X(s) ∈ Ωs

9.2 Scenarios 183

and
w(0)(s) ← 0

3. k ← k + 1
4. For each node, A, in the scenario tree, and for t = t(A)

X
(k−1)

(t;A) ←
∑
s∈A

Pr(s)X(t; s)(k−1)/Pr(A)

5. For all scenario indexes, s ∈ S

w(k)(s) ← w(k−1)(s) + (r)
(
X(k−1)(s) − X

(k−1)
(s)

)
and

Xk(s)
HS(X(k−1)(s))←− X(s)fs(X(s)) + w(k)(s)X(s)

+r/2
∥∥∥X(s) − X

k−1
(s)

∥∥∥2

: X(s) ∈ Ωs.

6. If the termination criteria are not met, then go to Step 3.

The termination criteria are based mainly on convergence, but we must
also terminate based on time because non-convergence is a possibility. It-
erations are continued until k reaches some pre-determined limit K or the
algorithm has converged which we take to mean X

k
(s) is sufficiently close

to X
k−1

(s) for all s. One possible definition of “sufficiently close” is to re-
quire the distance (e.g., Euclidean, indicated by ‖·‖2) to be less than some
parameter. A much better choice is to consider only integer components of X
and require equality. This requires no metric or parameter and typically oc-
curs after far fewer iterations. Once the integer components of a solution are
(assumed) known, the real valued variables are obtained by solving the deter-
ministic equivalent problem (DE) with the integer values fixed. Although the
DE is much larger than the original sub-problems, fixing all of the integers
can more than mitigate this when there are even a modest number of integer
variables. (It would also be possible to solve the problem once the integers
have been fixed using any other method for multi-stage, linear stochastic
optimization). The only potential drawback to convergence based only on
integers (integer convergence) is that there is no theoretical guarantee that
a better solution would not be obtained by waiting for convergence of the
entire solution system (full convergence).

The vectors w can be interpreted as a dual price for the (implied) im-
plementability constraints. In other words, they have an interpretation as a
value of information. The algorithm is often classified as a “dual” method be-
cause we are essentially searching for good values of w. As we have described
it, the direct search will be for X and the values of w are implied.

184 9. Some Stochastic Extensions

An overall interpretation of the algorithm is that it provides an optimal
consensus solution. Hedging is a systematic way to find a compromise be-
tween the solutions for each scenario. The compromise takes into account the
probabilities and effects of each scenario and furthermore the fact that future
decisions can depend on the information that has become available over time.

9.2.4 A PH based Heuristic for SCPc

For large problems with integer variables, stochastic problems are often too
large to solve to optimality. Hence, ph serves as the foundation for the cre-
ation of heuristic algorithms. These algorithms benefit from designs that take
into account the special structure of the optimization problems to be solved.

The design of ph based heuristics for SCPc (and problems of that type)
is aided by analysis of the binary variables. Although they can be viewed
as indicators of production in a period, they can also be viewed as enabling
variables. This view is useful for our purposes. When δit is one, there is a
cost penalty in the objective function to cover changeover costs and there
is potentially a reduction in the available capacity as a result of changeover
times. When this cost and capacity penalty is incurred, production of SKU i
in time t is enabled.

We exploit the importance of these binary variables to create an im-
plementation of ph that avoids explicit inclusion of a quadratic term. The
heuristic algorithm forces convergence only for the binary variables. In other
words, in Step 5 of the ph algorithm, the w vector is updated only for the δ
variables and the objective function is penalized only for the deviation of δ
variables from their mean value at a node.

The objective function penalty for these binary variables is implemented
by simply using the absolute value of the difference. This is sensible, since
this is equal to the squared difference for binary variables. To linearize the
absolute value we add variables and constraints to obtain the positive or
negative difference, each of which itself has non-negative value. For values δ
and δ, the variable p and m can be used if the following constraints are added

p − m = δ − δ,
p ≥ 0
m ≥ 0

One of the things that makes the δ variables so important is their po-
tentially large objective function coefficients. This raises some issues with
respect to scaling. Rather than rescale the problem, we modify the update
of the w vector to be scaled by half the δ objective function coefficient. In
Step 5, the assignment of an updated w value is modified to be:

w(k)(s) ← w(k−1)(s) + (r)
(
δ(k−1)(s) − δ(k−1)(s)

)
C(i)/2

The penalty in the objective function is scaled in the same way.

9.2 Scenarios 185

For SCPc we extend the integer convergence criterion, which is that the
ph algorithm is terminated after a certain number of integer variables have
converged. The remaining variables are left free and the DE is solved to
optimality. The idea is that it is the integers that cause the solution times to
be excessive, so if enough of the integer variables can be fixed in the DE at
their converged values, the DE is then tractable.

The central role of the production indicators in the planning model mo-
tivates a heuristic search at termination that we describe here. Rather than
simply fixing those variables that have converged, we make use of ideas loosely
motivated by GRASP. After κ iterations of ph, it is terminated. For each bi-
nary variable that has converged, its value is fixed in the DE with probability
α. By varying α and κ the computational effort and expected solution quality
can be controlled.

10. Research Directions and References

The material that we have provided in the previous chapters has its founda-
tions in existing literature, which will be referenced and put into perspective
in this chapter. This also includes some historical remarks which should allow
the reader to follow the evolution of supply chain planning up to today.

Furthermore, the models and methods that we have described in the pre-
vious chapters are nested in a number of important areas of ongoing research.
In this chapter we also give the reader some pointers to the research litera-
ture. This is not intended to be exhaustive, but rather to provide the reader
with connections to the literature. An exhaustive review is out of question
because the respective literatures are so large and they are evolving all the
time. However, the references cited here should provide a more than adequate
entry point for further access to these research areas.

10.1 Supply Chain Management

A good definition of a supply chain was provided by Ganeshan and Harrison
(1995):

A supply chain is a network of facilities and distribution options that
performs the functions of procurement of materials, transformation
of these materials into intermediate and finished products, and the
distribution of these finished products to customers. Supply chains
exist in both service and manufacturing organizations, although the
complexity of the chain may vary greatly from industry to industry
and firm to firm.

Here we give a brief discussion of those supply chain management issues
that appear to have an influence on the overall management discussion when
it comes to implementation of our models in practice. We start with a histori-
cal perspective on the evolution of logistics and end with a couple of thoughts
concerning what might become important, especially for production planning
within a supply chain.

Since our aim is not writing a general textbook on supply chain man-
agement we should mention that over the last couple of years a number of

188 10. Research Directions and References

good textbooks have been written that deal with tactical and strategic sup-
ply chain management issues; see, e.g., Handfield and Nichols (1999), Shapiro
(2001b), Bowersox et al. (2002), Simchi-Levi et al. (2002), Chopra and Meindl
(2003). Consideration of the tactical and operational level, however, can be
primarily found in academic journals or in edited books with collections of
papers such as Tayur et al. (1999), Klose et al. (2002), de Kok and Graves
(2003), Dyckhoff et al. (2004) or Stadtler and Kilger (2005).

10.1.1 The Evolution of Logistics

Before the words “Supply Chain Management” became popular, many of
the activities associated with these words were referred to as logistics and
others as production planning. While we consider production planning later,
let us start with the primary objective of logistics. It can be described as
the delivery of the right product in the right place at the right time at the
least costs; see, e.g., Bowersox (1974), Christopher (1986). Historically, most
organizations had considered logistics to be deserving of modest priority.

Prior to 1950, logistics was treated on a fragmentary and often secondary
basis. Bowersox (1974) sees two major factors for this neglect and subsequent
development. First, prior to the time that computers emerged and before
applied analytical tools were generally at the disposal of business, there was
no reason to believe that an integrated attack on logistical activities would
accomplish improved performance. Second, the prolonged profit squeeze of
the early 1950s created an environment conducive to the development of new
cost control systems. Integrated logistics provided a productive arena for new
methods of cost reduction.

In the period from the mid 1950s to the mid 1960s the concept of in-
tegrated logistics crystallized. According to Bowersox (1974) the economic
climate at that times was responsible for the “flurry of attention to logis-
tical problems.” During the early 1960s, the horizons of emerging fields of
integrated logistics began to expand. Emphasis began to shift towards a pen-
etrating appraisal of the improved customer service capabilities enabled by a
highly integrated logistics system.

The period of the 1970s was characterized by the integration of the intra-
organizational logistics functions. Davis and Brown (1974) define logistics
management “as the managerial responsibility of organizing, controlling, di-
recting, staffing, and coordinating product flow from the point of initial pro-
curement to the point of ultimate consumption.” This definition encompasses
the activities of purchasing, inventory control, material handling, site deter-
mination, warehousing, packaging, order processing, and transportation in a
company. Furthermore, it should bridge the gap between the inbound flow of
raw materials and the distribution of finished products. Also, Bowersox (1974)
emphasized the need for an integrated treatment of intra-organizational func-
tions (refer to the logistics management process depicted in Figure 10.1). He
defines the logistical mission as the development of “a system that meets the

10.1 Supply Chain Management 189

stated corporate customer service at the lowest possible dollar expenditure.”
Development of a satisfactory program requires two levels of adjustment:
integration of the logistical system with other corporate systems like the pro-
duction system, the marketing system, or the finance system and development
of total cost balance between logistical system components such as facilities,
communication, inventory, transportation, and material movement.

Physical
Distribution

Value Added Material Flow

Requirements Information Flow

Industrial Enterprise

Manufacturing Purchasing SuppliersCustomers

Fig. 10.1. Logistics Management Process from Bowersox (1974)

Since the early 1980s the integration of company-overlapping aspects in
terms of logistics have become evident. In this connection the term Supply
Chain Management was mentioned for the first time by Oliver and Webber
(1982) (as noted by Christopher, 1999). Four aspects in which supply chain
management differs significantly from classic materials and manufacturing
control have been emphasized:

• Supply chain management views the supply chain as a single entity rather
than relegating fragmented responsibility for various segments in the sup-
ply chain to functional areas.

• Supply chain management calls for strategic decision making. Supply is a
shared objective of practically every function in the supply chain and is of
particular strategic significance because of its impact on overall costs and
market share.

• Supply chain management provides a different perspective on inventories
which are used as a balancing mechanism of last, not first, resort.

• Supply chain management requires a new approach to systems: integration,
not simply interfaces, is the key.

Over time the interest in inter-organizational integration has increased. Ac-
cording to Cooper et al. (1997) there is a definite need for the integration of
business operations in the supply chain that goes beyond logistics. In addi-
tion to the internal functions of an organization (e.g., logistics, manufactur-
ing, marketing, research) they see a need to integrate external organizations

190 10. Research Directions and References

(e.g., consumer, suppliers, customer) in the product process in order to re-
duce the time-to-market on new product introductions. The integration of
business processes across the supply chain that adds value for customers is
what they are calling supply chain management. This definition is similar to
the original definition of the term.

The references investigated so far imply that supply chain management
is to some extent a new slogan and not a completely new concept. According
to its original definition supply chain management means the integration of
independent organizations. A closer look at Figure 10.2 reveals that integra-
tion has taken place since the middle of the 1950s (stage two). Of course,
every stage was regarded as different independent units which have been in-
tegrated. But at some level of abstraction it does not matter whether only
business functions (e.g., procurement, production, sales) or entire companies
are considered. The underlying principle of integration is the same in all cases.
The difference is only the extent of the Supply Chain. This aspect has to be
taken into account when the supply chain is defined; see, e.g., Stevens (1989),
Christopher (1999), Lee and Billington (1993), Lamming (1996), Larson and
Halldorsson (2004).

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

B
a
r
r
i
e
r
s

Purchasing

Customers
Internal

Supply ChainSuppliers

Materials
Management

Distribution
Management

Maufacturing
Management

Distribution
Management

Manufacturing
Management

Materials
Management

DistributionSalesProduction
Material
Control

Stage One: Baseline

Stage Four: External Integration

Stage Three: Internal Integration

Stage Two: Functional Integration

Fig. 10.2. Stages in the Evolution of Logistics from Stevens (1989)

10.1 Supply Chain Management 191

10.1.2 Closed Loop Supply Chains and Reverse Logistics

In Europe manufacturers and importers of various products are legally
obliged to take-back and recover their products after use. In response, man-
ufacturers have set up collection and recycling networks eventually including
a network of regional storage centers where products that are collected via
municipalities and retailers are sorted and consolidated and then shipped to
some recycling subcontractors. Two different and yet closely related fields are
emerging in this area, reverse logistics and closed loop supply chain manage-
ment.

Reverse logistics deals with returning waste materials and used products
to the producer. While the functionality of logistics as we discussed it above
is often referred to as forward logistics, the collection and recovery of used
products refers to reverse logistics. Once forward and reverse logistics are
combined in the sense of reusing recovered and used products for remanufac-
turing and delivering those remanufactured products into customer markets
again, we speak about closed loop supply chains. We should mention that,
in the same spirit as having somewhat loosely coupled supply networks and
not necessarily just pure chains (see the definition on page 187), closed loop
supply chains are more of a network including cycles than just pure chains.

Closed loop supply chains assume product returns which may imply re-
manufacturing as well as disposal. Having our lead time discussion in mind,
we have a situation where remanufacturing lead time functions can be signif-
icantly different from production lead times. Nevertheless, from a modeling
standpoint our models may be used as a starting point for developing ex-
tended and useful models for reverse logistics and closed loop supply chain
management.

The importance of reverse logistics as well as remanufacturing used prod-
ucts into new ones has been widely recognized in the literature and in prac-
tice. Good sources on various aspects of closed loop supply chains and reverse
logistics can be found, e.g., in Fleischmann et al. (2001), Fleischmann (2001)
as well as some of the contributions in Guide Jr. and van Wassenhove (2003),
Dyckhoff et al. (2004). Savaskan et al. (2004), e.g., consider the problem of
choosing an appropriate reverse channel structure for the collection of used
products from customers. Options taken into account are collection by the
manufacturer himself, by an existing retailer or by subcontracting. An em-
pirical study within the automotive aftermarket industry was undertaken by
Richey et al. (2005) again underlining the importance of this growing field.

10.1.3 The Importance of Information Technology

As mentioned in §10.1.1 prior to the time that computers emerged and be-
fore applied analytical tools were generally at the disposal of business, the
overall process logistics was treated on a fragmentary basis. Gains in comput-
ing speed, coupled with improvements in communication and the flexibility of

192 10. Research Directions and References

data management software, have promoted a range of opportunities prevalent
to supply chain management and supply chain planning. However, compet-
itive advantage in supply chain management is gained not simply through
faster and cheaper communication of data.

Shapiro (1999) points out that “to effectively apply information technol-
ogy (IT) in managing its supply chain, a company must distinguish between
the form and function of Transactional IT and Analytical IT.” Transactional
IT comprises acquiring, processing, and communicating raw data about a
company’s past and current supply chain operations, and the compilation
and dissemination of reports summarizing these data. Analytical IT evalu-
ates supply chain decisions based on models constructed from so-called supply
chain databases. Usually these databases are derived from transactional data.
Analytical IT is comprised of these supply chain decision databases, as well as
modeling systems and communication networks linking corporate databases
to them. It is concerned with analyzing decisions over short, medium, and
long term futures.

According to Shapiro (1999, 2001a) inter-temporal coordination of supply
chain decisions has received far less attention than functional coordination.
Current efforts to improve supply chain management using IT and business
process redesign have only focused on the operational and strategic levels
with radically different time frames, planning concerns and organizational
needs. Little effort has been made to link analytic tools and databases at the
two extreme levels of planning.

Inter-temporal as well as functional integration can be achieved by the ap-
plication of a suite of optimization modeling systems which take operational,
tactical, and strategic aspects into account. These analytical IT systems are
linked to overlapping supply chain databases created in large part from data
provided by transactional IT systems. Figure 10.3 depicts a possible Supply
Chain System Hierarchy comprised of optimization modeling systems and
transactional systems responsible for inter-temporal and functional integra-
tion of supply chain activities in a manufacturing and distribution company
with multiple plants and distribution centers.

As IT and supply chain management continue to improve and model-
ing applications expand, it is expected that more and more companies will
implement versions of the entire system hierarchy in the near future. The
subsystems of the hierarchy are:

• Enterprise Resource Planning (ERP): managing the company’s transac-
tional data on a continuous, real-time basis, i.e., standardizing data and
information systems for order entry, financial accounting, purchasing, and
many other functions, across multiple facilities and business units,

• Materials Requirements Planning (mrp): developing net requirements of
raw materials and intermediate products to be manufactured or ordered
from vendors to meet demand for finished products,

10.1 Supply Chain Management 193

Strategic
Optimization

Modeling System

Tactical
Optimization

Modeling System

Production Planning
Optimization

Modeling Systems

Distribution Scheduling
Optimization

Modeling Systems

Logistics
Optimization

Modeling Systems

Production Scheduling
Optimization

Modeling Systems

Materials Requirements
Planning System

Distribution Requirements
Planning System

Enterprise Resource
Planning System

Analytical IT

Transactional IT

Scope

Strategic Analysis

Long-term
Tactical
Analysis

Short-term
Tactical
Analysis

Operational Analysis

Demand Forecasting
and Order

Management Systems

Fig. 10.3. Supply Chain System Hierarchy from Shapiro (1999)

• Distribution Requirements Planning (DRP): scheduling in-bound, inter-
facility, and out-bound shipments through the company’s logistics network,
taking into account a wide range of transportation factors such as vehicle
loading and routing, consolidation, modal choice, channel selection, and
carrier selection,

• Demand Forecasting and Order Management: combining data about cur-
rent orders with historical data to produce requirements for finished prod-
ucts to be met by operational, tactical, and strategic plans,

• Production Scheduling: addressing operational decisions at each plant of a
supply chain, e.g., the sequencing of orders on a machine, the timing of
major and minor changeovers, or the management of WIP,

• Distribution Scheduling: determining vehicle schedules and deciding on a
short-term basis which distribution center should serve each market based
on inventory availability,

194 10. Research Directions and References

• Production Planning: determining multi-period and multi-stage master
production plans of manufacturing, along with resource levels and resource
allocations, that minimize manufacturing costs,

• Logistics: determining a logistics master plan for the entire supply chain
that analyzes how demand for all finished products in all markets will be
met over the next appropriate period, and assigning markets to distribu-
tion centers and other facilities responsible for sourcing them with the goal
of minimizing controllable transportation, handling, warehousing, and in-
ventory costs across the entire logistics network,

• Tactical Optimization: determining an integrated supply / manufacturing
/ distribution / inventory plan for the company’s entire supply chain over
the appropriate couple of periods with respect to minimizing total supply
chain costs of meeting fixed demand but also incorporating estimated de-
mands based on forecasts, or to maximize net revenues if product mix is
allowed to vary,

• Strategic Optimization: analyzing resource acquisition and other strategic
decisions faced by the company such as the construction of new manufac-
turing facilities, development of acquisitions, or the design of supply chains
for new products.

The application of any optimization modeling system in the system hierar-
chy requires inputs from a supply chain database that is created by transform-
ing transactional data found in the ERP, mrp, DRP as well as the forecasting
and order management system.

Some of the principles for creating and exploiting decision supply chain
databases are as follows; see Shapiro (1999):

• Adapt Managerial Accounting Principles in Computing Costs
For the purpose of decision making, the managerial accounting or modeling
practitioner must develop relationships between direct and indirect costs,
rather than point estimates of them.

• Aggregation
As it is not necessary or desirable to describe operations at the individual
SKU level for the purpose of strategic or tactical planning, the modeling of
supply chain operations should incorporate suitable aggregation of prod-
ucts, customers, and suppliers.

• Incorporation of External Data Concerning Suppliers, Markets, and Eco-
nomies
Transactional data about the company’s operations are not sufficient in
scope for supply chain analysis of a strategic and tactical nature. An op-
timization model may require data about supplier costs and capacities,
and market conditions for the company’s products. Possibly, economic
data about long-term prospects for the company’s industry and national

10.1 Supply Chain Management 195

economies in which the company operates its supply chain may also be
required.

• Forecast Development
Analytical data in the supply chain databases help to address the com-
pany’s future. These data must be based on historical, transactional data.
The time horizon is longest for strategic planning, but some extrapolation
may be needed even for scheduling purposes (e.g., short-term forecasting
of demand from large customers).

• Parameters of Management Policies
The decision database must include data and structural inputs reflecting
company policies and managerial judgments about risks. The decision vari-
ables and constraints that mechanize our optimization models have to be
included.

• Integration of Model Outputs with Model Inputs
A supply chain decision database has to include output from optimization
models (like those developed in this book) as well as the data used in gen-
erating the model. Here graphical displays of model inputs and outputs are
necessary, too. (This feature is also valuable for comparing and contrasting
plans for multiple scenarios.)

The models developed in the earlier chapters are part of initiatives to
move down the hierarchy to develop and use optimization modeling systems.
Sustainable competitive advantage can only be achieved if IT innovations are
combined with complementary organizational and business initiatives as well
as a proper linkage to optimization models for production planning.

In the same spirit as shown in Figure 10.3 efforts have been made to group
the different tasks and items into a supply chain planning matrix (see Fig-
ures 10.4 and 10.5 taken from, and with detailed descriptions, in Fleischmann
and Meyr (2003) and some of the contributions in Stadtler and Kilger (2005),
Stadtler (2005)). The planning tasks are ordered according to the supply
chain processes procurement, production, distribution, and sales in one di-
mension of the matrix and according to long-term, mid-term, and short-term
decisions in the other dimension. Between the entries of the matrix there is
a wealth of information and material flows that go along similar lines as we
have seen in the system hierarchy above.

While Figure 10.5 refers to specific tasks to be undertaken in supply chain
management, Figure 10.4 provides a close linkage to respective systems and
can be seen as closely related to the supply chain system hierarchy described
above (see also Figure 10.3). It should be noted that some of the planning
functionalities described in the matrix in fact also include scheduling aspects.
Moreover, it should be noted that the systems may be completely different
depending on specific industries (so that some authors propose to have a
third dimension for the matrix). Computerized planning tools as they can
be deduced from the supply chain planning matrix or from the hierarchy

196 10. Research Directions and References

procurement production salesdistribution

Strategic Network Planning

Production

Planning

Transport

Planning

Distribution

Planning

Scheduling

Demand

Planning

Demand

Fulfilment &

ATP

Purchasing

& mrp

long-term

mid-term

short-term

Production

Planning

Distribution

Planning

Master Planning

Fig. 10.4. Supply Chain Planning Matrix – System Hierarchy

long-term

mid-term

short-term

procurement production salesdistribution

• personnel planning

• mrp

• contracts

• materials program

• supplier selection

• cooperations

• personnel planning

• ordering materials

• warehouse

replenishment

• transport

planning

• short-term

sales planning

• mid-term

sales planning

• distribution

planning

• lot-sizing

• machine

scheduling

• shop floor control

• master production

scheduling

• capacity planning

• plant location

• production system

• physical

distribution

structure

• product

program

• strategic sales

planning

flow of goods information flows

•

•

•

•

•

•

•

•

•

•

Fig. 10.5. Supply Chain Planning Matrix – Tasks

described above are often called advanced planning systems (APS). That
is, APS are computerized planning tools aiming at supporting the various
planning processes within supply chains.

Order management refers to management and control of customer orders
from the very first customer inquiry to the finished product delivery. Once
a customer order enters the systems of a company demand fulfillment is as-
sumed to support taking care about it. Order promising refers to decisions

10.1 Supply Chain Management 197

about the acceptance of orders and setting due dates for incoming orders.
Matching demand and supply asks for appropriate allocation of already ac-
cepted but yet incomplete orders with respect to yet unassigned stock as well
as projected supply. Existing inventory as well as projected production that
are not yet assigned to a specific customer order may be used for demand
fulfillment; we say that they are “available to promise” (ATP). Beyond ATP
quantities one may also consider free or unused capacities of production re-
sources; they are “capable to promise” (CTP). For an in-depth discussion of
ATP and CTP see Fleischmann and Meyr (2004).

Many companies use modern information technology to help them gain
competitive advantages in the marketplace. The rapid IT advancements have
provided tools to enable supply chain partners to share information with each
other. Yet, questions concerning the benefits that can be gained through the
sharing of information are frequently raised. Several researchers have exam-
ined the impact of information sharing on business performance; see, e.g., Lee
et al. (2000), Thonemann (2002), Zhao et al. (2002). A survey on the impacts
of sharing information including classification of well over 100 references is
provided by Huang et al. (2003), another comprehensive treatment is given
by Chen (2003).

One of the most common of information sharing issues is the so-called
bullwhip effect. It describes the effect that is observed when forecasts for
intermediate SKUs within a supply chain are based only on the demand
experienced for those SKUs: variability in the demand pattern is magnified.
That is, the further “away” we are from customer demand the more volatility
is observed. A mitigating solution is to treat intermediate SKUs as dependent
items by basing their forecast on the forecast for end items. This is exactly
what our models prescribe for intermediate items; however, it is challenging
to deploy such models across enterprise boundaries. For references on the
bullwhip effect see, e.g., Lee et al. (1997), Chen et al. (2000), Simchi-Levi
et al. (2002). It is also closely related to inventory control; see, e.g., Gavirneni
et al. (1999) and §10.3.2. Food for thought is provided by Daganzo (2003).
He describes control methods for eliminating bullwhip related instabilities
without increasing supplier costs and presents approximate cost formulas.

Various games and interactive simulations have become an important part
of the pedagogy of supply chain management. They are used to help explain
the material and information flows in production and distribution systems.
For example, the bullwhip effect is aptly demonstrated by the so-called beer
game. Based on these games and the delivery of exercises showing the de-
tails and complexity of production and distribution planning, an improved
understanding of supply chain issues may be demonstrated; see, e.g., the
contributions in Johnson and Pyke (2000). Moreover, the field of production
and operations management up to supply chain management reveals many
thought provoking issues related to developing teaching material and teaching
cases; see, e.g., Kanet and Barut (2003).

198 10. Research Directions and References

While software for supply chain management and enterprise resource plan-
ning is still lacking some type of planning functionality the transactional data
issues have greatly advanced over the last couple of years. Related hints can
be found, e.g., in Knolmayer et al. (2002), Stadtler and Kilger (2005). Fi-
nally, we mention Geunes and Pardalos (2003), who provide an annotated
bibliography on the extent to which network optimization approaches have
contributed to the advancement of supply chain management and financial
engineering research.

10.1.4 Supply Contracts

Supply chain integration refers to the connection of at least two parties within
a supply chain or network. In addition to activities associated with supply
chain management, integration refers to the fact that the parties have to agree
upon the way they interact with each other. Especially in the economics
literature there is a long history of analysis of the contractual treatment
of relationships; see, e.g., Tirole (1988), Katz (1989). Within the modern
supply chain discussion the importance of the topic has not diminished but
is gaining even more prominence, especially when system-wide optimization
is taking place and the incentives discussion as well as concepts like transfer
pricing are considered. Supply chains are, by their very nature, based on
partnerships. Products as well as the data necessary for an optimization must
be exchanged by the partners. What a supply contract may add to this is
the explicit specification of a relationship by articulating efficiency measures
or metrics that are direct input to our models such as, e.g., lead times or
capacity bounds.

A more normative examination of contracts is provided in the opera-
tions research literature. For example, Bassok and Anupindi (1997) examine
optimal ordering policies for a buyer where there is a pre-specified annual
minimum order quantity. Developing contracts also comes along with nego-
tiation processes between supply chain partners. Consider a supplier and its
retailer. Due to the supplier’s commitments with other customers the nego-
tiation could be, e.g., about the maximum order quantity the retailer can
order at a certain price; see, e.g., Homburg and Schneeweiss (2000).

Since various aspects come to mind when dealing with contracts we pro-
vide a classification scheme for supply chain contracts following Tsay et al.
(1999), Voß and Schneidereit (2002) as well as the literature given there.
While the classification could be developed along the lines of timing, pricing,
quantity, and quality we follow the idea of having contract clauses in the
foreground.

• Specification of Decision Rights
Decision rights have to be defined in order to make a contract executable.
Using different types of data and information, they constitute a determina-
tion of who is allowed to make decisions and within which range of action.

10.1 Supply Chain Management 199

Control mechanisms may be centralized or decentralized as well as global
versus local.

• Information
Supply partners have to mutually agree about which data and information
have to be exchanged at what time and through which channels.

• Pricing (including Incentives)
Pricing refers to the specification of financial terms of the supply partners.
Commitments have to be made regarding most aspects of the contract such
as production costs or retail prices but also the dynamic aspects of cost
functions (e.g., allowing for discounts in certain cases, having modified pric-
ing on different lead times based on alternate routings). We include also
the implementation of mechanisms to divide profits based on cooperation
as well as the arrangement for incentives.

• Bounds on Purchase Commitments
Upper and lower quantity bounds for the purchase of goods or products
have to be specified. This also includes terms of flexibility, e.g., regarding
early or late delivery as well as deviations from previously planned quan-
tity estimates.

• Allocation
Defines mechanisms for allocating goods in cases of limited availability.

• Timing (including Lead Times)
The time of delivery of items or parts has to be specified. The lead times
have to be determined and controlled. When linked with transportation
clauses, this includes possible definition of push or pull mechanisms for the
ordering processes.

• Transport
The contract can include clauses on how the delivery is performed (e.g., by
using third party logistics provider) including the definition of penalties for
modifications or late arrivals as well as items damaged during transport.
This is related to the implementation of rules for having various transport
possibilities enabling, e.g., expedited delivery in cases of necessary adjust-
ments in the lead times as described in §6.1.

• Quality
Thresholds for the quality of the parts or items as well as allowable mod-
ifications like possibilities for upgrades or price reductions in case of un-
availability of desired items are articulated in the contract.

• Buybacks or Return Policies
Responsibilities for unsold inventory or products with a different quality
than agreed upon have to be determined.

200 10. Research Directions and References

All these factors may become part of supply contracts. And yet, soft fac-
tors that are beyond our focus on optimization are important issues not to
be neglected. This includes language skills along multinational supply chains,
cultural differences as well as legal matters. From the optimization perspec-
tive we might add complications such as supply chain structures that may
be characterized as one-to-one, one-to-many, many-to-one, or many-to-many.
For some references see the bibliography in Cachon (2003).

10.2 mrp, MRP II and Beyond

Starting with basic concepts and then extending, we have provided an incre-
mental approach to building optimization models for production planning in
supply chains. Somehow this goes along the evolution of software available in
this field. While beginning with optimization “at your fingertips,” i.e., doing
everything by hand, we now see a tremendous success of software vendors
slowly entering the field of real planning functionality.

10.2.1 The Early Steps

Orlicky is widely credited with having “invented” mrp, or at least with pop-
ularizing it. The second edition of his seminal work on mrp is Orlicky (1975).
This book explains the methods and associated record keeping needed for
mrp. Bear in mind that mrp was a tremendous improvement over older man-
agement systems that were better suited to a make-to-stock environment.
Shorter product life cycles and make-to-order environments require a plan-
ning system that anticipates the need for varying mixes of components.

To make better use of mrp, deeper understanding of the relationships
between inventory and lead time was needed. Early work by Wight (such as
Wight (1974)) helped make mrp successful. In fact, Wight is often credited
with inventing MRP II as a way to make mrp logic work correctly.

The actual practice of MRP II was, and is, invented and reinvented by
the software firms, consultants, planners and schedulers who make it work.
A number of books and a large number of articles provide practical tips
for implementing and using MRP II such as Wallace (1990) and Luscombe
(1993). In such works, MRP II is referred to as a closed loop production
planning system because the capacity check is followed by adjustments to
the data followed by another execution of mrp and so forth.

A classic text by Vollmann et al. (1988) places mrp, MRP II and the as-
sociated planning tools in a broader perspective of planning and scheduling
tools popularized in the 1970’s and 80’s. At the time of their second edi-
tion in 1988, mathematical programming approaches to production planning
were considered to be an advanced concept. Simultaneous consideration of
an objective function along with the materials requirements constraint and

10.2 mrp, MRP II and Beyond 201

the capacity constraint was treated as part of the human aided processing of
MRP II. The book presents a number of sophisticated and practical methods
for planning as well as scheduling and forecasting.

At about the same time, some of the shortcomings of the overall phi-
losophy of MRP II were beginning to be discussed (see, e.g., Kanet (1988),
Spearman et al. (1990)). This process is on-going (see, e.g., Drexl et al. (1994),
Spearman and Hopp (1998)) in the academic literature. The task of bridging
the gap between verbally describing the philosophy of mrp and MRP II and
deriving mathematical models by means of simple objective functions and
constraints has been undertaken by Voß and Woodruff (2000).

Some lines of research address fundamental issues that determine the
difficulty of production planning and the successful execution of a plan. For
example, there is a large literature concerning SMED, where the seminal
work is Shingo (1985). Another vein of research follows Goldratt and Fox
(1986) and explores issues related to identifying and managing bottlenecks
in production facilities and business in general.

10.2.2 Supply Chain Planning

Based on the supply chain definition on page 187, even if we speak about
a chain, we really have or could have a network in mind. Among the more
strategic questions in this respect are those related to network design and
location. An early reference is Cohen and Lee (1988). More recently, Santoso
et al. (2005) consider large-scale supply chain network design problems under
uncertainty and discuss a framework for identifying and testing a variety of
candidate design solutions. In §10.4 we consider a location-allocation prob-
lem. For a review of integrated strategic and tactical models and design issues
see Goetschalckx et al. (2002).

Extending simple requirements planning for mrp and beyond is an impor-
tant topic in the literature. For instance, Graves et al. (1998) study models
for requirements planning in multi-stage production inventory systems. They
develop a mathematical model to capture many of the planning issues arising
in common industrial settings. The idea is to have a planning model for a
single stage system as a building block and to extend appropriately. Incor-
porating locational decisions into a supply chain planning model encounters
cross-facility capacity management. For some problems a multi-commodity
flow network formulation may be used as a modeling concept; see, e.g., Wu
and Golbasi (2004).

Meanwhile, a literature surrounding new technologies from ERP and sup-
ply chain management software vendors is beginning to appear (see, e.g., Gu-
maer (1996) as well as the references in §10.1). One of the evolving products
related to supply chain planning is the Advanced Planner & Optimizer from
SAP; a detailed discussion and implementation details can be found in Knol-
mayer et al. (2002), Dickersbach (2004). Especially in these technologies we

202 10. Research Directions and References

believe that solvers based on heuristic search and constraint programming
should play, and will play, a prominent role.

A final comment refers to the widespread use of ERP systems all over
the world. While common understanding is that mathematics and respective
models are universal, many other things like culture or language are not.
A thought provoking question for software vendors refers to the markets
and the possible use of ERP systems. As supply chains become global we
continue to encounter boundaries that are literally beyond planning in our
sense. Interesting entries into some literature, e.g., considering questions of
the use of mrp, MRP II, and ERP systems in, say, China are Wang et al.
(2005), Zhao et al. (2002).

10.3 Production Planning and Scheduling

The models that we have introduced are primarily oriented toward planning
for production, but as we noted plans must be constructed with an eye toward
the eventual creation of a corresponding schedule. There is a large body of
academic literature concerning planning, scheduling and closely related top-
ics. In the subsections that follow we provide some connections to this liter-
ature that can be used by the interested reader to gain access to these lines
of research. There are a number of outstanding texts devoted to production
planning and scheduling such as Johnson and Montgomery (1974), Hopp and
Spearman (2000), Nahmias (2004) and, in German, Domschke et al. (1997).
The citations in these books also provide a good entry point for further study
of the academic literature.

10.3.1 Lot Sizing Models

A Classification Scheme. Lot sizing problems can be characterized by a
variety of aspects and classification criteria. The most important distinction
refers to deterministic versus stochastic models. While in deterministic mod-
els all data are known in advance, in stochastic models data are based on
distributions or a measure of uncertainty.

Static models assume that parameter values do not change over the plan-
ning horizon (e.g., a continuous demand at the same rate in every period)
while dynamic models allow for variation. The planning horizon can be as-
sumed to be finite or infinite. Some of the most important data within lot
sizing models are cost data. They may refer to various sorts of cost, such as,
e.g., holding costs, setup costs, or production costs.

For the number of products we distinguish between models that consider
exactly one and those which take multiple products into account. The latter
may imply the difficulty of having to provide plans for these products on sev-
eral scarce resources. In multi-stage models other than in single-stage models

10.3 Production Planning and Scheduling 203

one considers a given product structure based on given interdependencies be-
tween the products as we have used it when defining data R(i, j) based on a
bill of materials.

An important distinguishing characteristic of lot sizing formulations is
capacity modeling. Capacitated models recognize that some resources are
given in a limited number or amount so that planning and scheduling systems
need to avoid overutilizing these resources. In situations were there is not
enough capacity, one might consider producing or ordering goods after they
are actually needed. In this respect one distinguishes between backorder,
when this indeed is possible (while paying, e.g., some sort of delay costs),
and lost sales (i.e., where the customer refuses to accept any produced items
after a given due date).

While in reality we are facing some finite production times, academics
often assume that they are able to produce infinitely fast. Depending on the
objectives this simplification may make sense.

To exemplify concepts we discuss some modeling aspects regarding a spe-
cific lot sizing problem in more detail.

The Capacitated Lot Sizing Problem. The capacitated lot sizing prob-
lem (CLSP) in its original form is a simple to state and yet difficult to solve
dynamic lot sizing problem that is very similar to our “better” MRP II model
(see model SCPc in §5.5). To start with a simple version of the models that
appear in the research literature, we assume that we have a set of P SKUs
that are to be produced within T time buckets.

As in §3.4, we have decision variables, xi,t, which specify the quantity of
SKU i to be produced in period t. That is, these variables indicate the lot
sizes which may change over time. Whenever production of an SKU i takes
place in any period we have to pay a setup cost which will be denoted by
C(i) using the same cost data as in §5.1.1. In order to enforce the payment
of the setup cost, we use an indicator variable, δi,t, that will be one if any of
SKU i will be produced in period t.

To simplify further we assume that there are no lead times, and there
is no bill of materials, i.e., all R(i, j) will be 0 and, therefore, omitted from
the model. As an important part of the objective function we have to pay
a holding cost H(i) for every unit of SKU i that is kept in stock. Inventory
of SKU i at period t will be denoted by Ii,t(x, δ) with Ii,0(x, δ) = I(i, 0)
indicating the beginning inventory of SKU i and D(i, t) the external demand
for SKU i in period t. Then the demand and materials requirement constraints
for all t = 1, ..., T and i = 1, ..., P read as follows:

t∑
τ=1

xi,τ + Ii,t−1(x, δ) −
t∑

τ=1

D(i, τ) − Ii,t(x, δ) ≥ 0

The meaning of these constraints refers to the fact that in each period we
need to have enough inventory from the previous period and enough made

204 10. Research Directions and References

in that period to fulfill the demand. Note that one of the assumptions of the
CLSP is that lead times are not explicitly considered, i.e., any production xi,t

is available within period t. Whatever remains goes over to the next period as
inventory. Equivalently, we could have used the following set of constraints:

xi,t + Ii,t−1(x, δ) − D(i, t) − Ii,t(x, δ) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

The modeling constraint for the production indicators is: δi,t ≥ xi,t

M . As
an art of modeling we ask ourselves how small M could be to do what it is
supposed to do? One guess refers to the amount yet to be produced, i.e.,

M =
T∑

τ=t

D(i, τ).

Furthermore, we have the integer constraint for the production indicator
δi,t ∈ {0, 1} and the non-negativity of the production xi,t ≥ 0.

As the CLSP is a capacitated problem, the last thing to take care of is the
available capacity. The capacity constraints typically used in the literature
can be rewritten to match those used in our models. Let U(i, t) denote the
fraction of available time needed to make one unit of SKU i. Then we have
the “capacity constraint”

∑P
i=1 U(i, t)xi,t ≤ 1 for all time buckets t. How-

ever, authors in the CLSP literature often use slightly different notation and
typically refer to time as the scarce resource. In other words, for them U(i, t)
represents the fraction of the time bucket consumed by one unit of SKU i.

To summarize, the CLSP is given in Figure 10.6

Minimize:
T∑

t=1

P∑
i=1

[H(i)Ii,t(x, δ) + C(i)δi,t]

subject to:

xi,t + Ii,t−1(x, δ) − D(i, t) − Ii,t(x, δ) ≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t − xi,t

M
≥ 0 i = 1, . . . , P, t = 1, . . . , T

P∑
i=1

U(i, t)xi,t ≤ 1 t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

Fig. 10.6. CLSP Model

A Modification. The CLSP generally considers P products that are not
linked by means of a BOM. As a matter of modeling variety we should note
that there is a possibility to define sets regarding the BOM, i.e., Pred(i) as

10.3 Production Planning and Scheduling 205

the set of predecessors of SKU i and Succ(i) as the set of successors of i.
Then

P∑
j=1

R(i, j)xj,τ can be replaced by
∑

j∈Succ(i)

R(i, j)xj,τ .

We will now consider a special situation where there is exactly one end-
item and the product structure is strictly convergent, which means that each
of the other SKUs is a component in only one subsequent SKU. Keeping the
numbering of the SKUs in a low-level-coding we assume a BOM where every
SKU but the first has exactly one successor (like in the simple example in
Figure 3.1 in §3.1). In such a case we name this successor of i by succi. The
product structure may be viewed as convergent because there is only a single
end item, which is SKU 1. As data in this restricted case we have R(i, succi)
indicating the quantity of SKU i needed to make one succi. Consider the
problem in Figure 10.7.

Minimize:
T∑

t=1

P∑
i=1

[H(i)Ii,t(x, δ) + C(i)δi,t]

subject to:

x1,t + I1,t−1(x, δ) − D(1, t) − I1,t(x, δ) ≥ 0 t = 1, . . . , T

xi,t + Ii,t−1(x, δ) − D(i, t) − R(i, succi)xsucci,t − Ii,t(x, δ) ≥ 0

i = 2, . . . , P, t = 1, . . . , T

δi,t − xi,t

M
≥ 0 i = 1, . . . , P, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

xi,t ≥ 0 i = 1, . . . , P, t = 1, . . . , T

Fig. 10.7. A Lot Sizing Model with Convergent Product Structure

As an advanced exercise one could verify that this model is an example
of the SCPc model on page 57 under very special conditions. This prob-
lem is interesting from a modeling standpoint as pointed out by Afentakis
et al. (1984) and Domschke et al. (1997). For instance, we may use a general
variable redefinition approach following Martin (1987). While staying with
the same data as above as well as the variables δi,t as production indicator
for production of SKU i in period t and Ii,t(x, δ) to denote the inventory of
SKU i at period t some additional binary variables will be defined. We call
them availability variables and they are denoted by zi,τ,t indicating, if they
take the value 1, that the demand for SKU i in period t is produced in some
period from the first period up to period τ . With these binary variables we
have a nice way of re-formulating our problem.

206 10. Research Directions and References

Let us discuss the availability variables in more detail. Whenever the
demand D(i, t) is produced in some period τ∗ ∈ {1, . . . , t} then zi,τ,t = 0
for τ ∈ {1, . . . , τ∗ − 1} and zi,τ,t = 1 for τ ∈ {τ∗, . . . , t}. That is, zi,τ,t = 1
indicates the (systemwide) availability of that demand.

We have to ensure that the demand for any period t is available not later
than in that period, i.e.:

zi,t,t = 1 i = 1, . . . , P, t = 1, . . . , T

Furthermore, one has to guarantee that the inventory for an SKU, once avail-
able, does not get lost:

zi,τ+1,t − zi,τ,t ≥ 0 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

Once the left hand side of this constraint is one, this indicates a change in
the availability and hence the production indicator needs to be forced to 1:

zi,τ+1,t − zi,τ,t ≤ δi,τ+1 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

Finally, we have to consider the BOM which is a convergent product structure
for this problem with a single end item, which is SKU 1:

zi,τ,t − zsucci,τ,t ≥ 0 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

The objective function has to consider all relevant costs over the planning
horizon which are setup costs and holding costs.

minimize:
T∑

t=1

P∑
i=1

C(i)δi,t +
T∑

t=1

t−1∑
τ=1

H(1)D(1, t)z1,τ,t

+
P∑

i=2

T∑
t=1

t−1∑
τ=1

H(i)D(i, t) [zi,τ,t − zsucci,τ,t]

The second term of the objective function considers holding costs for finished
amounts of the end item. Whenever an SKU is available but has not yet been
used for the production of its successor we have to account for the holding
costs as is done in the third term of the objective function. Without loss of
generality we can assume that there is a demand for all SKUs at the first
time bucket.

With this we can summarize the model in Figure 10.8. The solution to
this problem directly implies the values for xi,t. The reformulated version
of the problem is computationally attractive because the problem has only
binary variables and binary constraint coefficients. The use of big M has been
eliminated.

10.3 Production Planning and Scheduling 207

Minimize:
T∑

t=1

P∑
i=1

C(i)δi,t +

T∑
t=1

t−1∑
τ=1

H(1)D(1, t)z1,τ,t

+

P∑
i=2

T∑
t=1

t−1∑
τ=1

H(i)D(i, t) [zi,τ,t − zsucci,τ,t]

subject to:

zi,t,t = 1 i = 1, . . . , P, t = 1, . . . , T

zi,τ+1,t − zi,τ,t ≥ 0 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

zi,τ+1,t − zi,τ,t ≤ δi,τ+1 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

zi,τ,t − zsucci,τ,t ≥ 0 i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

zi,τ,t ∈ {0, 1} i = 1, . . . , P, τ = 1, . . . , t − 1, t = 1, . . . , T

δi,t ∈ {0, 1} i = 1, . . . , P, t = 1, . . . , T

Fig. 10.8. A Reformulation of the Lot Sizing Model from Figure 10.7

Further Dynamic Lot Sizing Models. A paper by Billington et al. (1983)
is the first that we know of to propose a model like SCPc. They also provide
some guidance for problem reduction based on the bottleneck (see §6.6). The
problem is viewed directly from the MRP II perspective by Adenso-Dı́az and
Laguna (1996) where the model includes the possibility of overtime. The ob-
jective is to minimize the use of overtime to meet the demand requirements.
Other works, such as Tardif and Spearman (1997) take a more algorithmic
approach. This work focuses on capacity constrained mrp systems and pro-
vides a methodology for finding capacity feasible production plans.

Many of the planning and scheduling models proposed in the research
literature are labeled as lot sizing. We have argued against lot sizing, but
really we oppose only static lot sizes. The literature on dynamic lot sizing is
primarily about scheduling, and this can be quite sensible.

An excellent example of this literature is a paper by Trigeiro et al. (1989),
which addresses a variant of the CLSP. Their assumptions are consistent with
the CLSP in that they ignore sequencing. They assume that production of
all parts from a family in a period is done in one batch that requires a setup.
The objective function considers holding costs (due to early completion),
temporal variations in production costs, and setup costs. The model is very
similar to the SCPc model given here except that they provide the modeling
details necessary to allow production of an SKU to span two time buckets.
They also provide details of a special purpose solution technique based on
Lagrangian relaxation that proves to be very effective for this problem.

208 10. Research Directions and References

A great deal of effort has been put into various modeling and solution
approaches for different modifications and generalizations of the CLSP; see,
e.g., Ertogral and Wu (2000), Suerie and Stadtler (2003), Stadtler (2003).
The CLSP may be extended in a variety of ways. Let us consider the case
where time buckets are so small that in each (“micro”) time bucket only one
SKU can be produced. In the literature this problem is referred to as Discrete
Lot Sizing and Scheduling Problem. Accordingly, the proportional lot sizing
and scheduling problem allows for the production of at most two SKUs in
one time bucket. For a survey on these and related problems see Drexl and
Kimms (1997).

Besides the problems already mentioned, the lot sizing literature is quite
large; see Domschke et al. (1997) for a comprehensive survey as well as, e.g.,
Clark and Armentano (1995), Katok et al. (1998), Tempelmeier and Der-
stroff (1996), Stadtler (2000). Each of these models makes different assump-
tions that result in a different model. All of them are intended to determine
production quantities. The lot sizing models typically assume a fixed lead
time of one period and do not consider alternative routings. These models
are similar to the basic model SCPc in that they are useful for production
scheduling within a factory, but not appropriate for assigning production to
factories within a supply chain. Alternatively, our work can also be seen as
extending the category denoted as “multiple-stage production planning with
limited resources” by Simpson and Erenguc (1996). In the lot sizing litera-
ture, if the work considers multiple levels in the bill of materials, the data
R(i, j) are often called production coefficients.

Naturally, most lot sizing problems cannot be solved without taking into
account capacity constraints as we have seen, e.g., for the CLSP. The ca-
pacity constraints may refer to a single machine or to non-identical parallel
production lines (heterogeneous machines), just to mention some possible
complications. Recent interest in solving such problems also considers the
application of meta-heuristics; see, e.g., Meyr (2002). Note that often the
sequencing problems are treated separately from the lot sizing problems; see
§10.3.3. Depending on specific industries this makes sense while for others
a simultaneous lot sizing and sequencing seems more appropriate which is
in line with our discussion regarding the supply chain planning matrix on
page 195.

A prototype modeling and optimization system for lot sizing problems
based on the branch and bound principle is provided by Belvaux and Wolsey
(2000). The user needs to formulate the problem as a MIP using Xpress-MP
(based on a modeling language, see §7.5) taking into account a reserved set
of key words for specific lot sizing objects.

10.3.2 Planning and Inventory Control

Planning Horizon. Often data evolve over time. Research on horizon is-
sues focuses on quantifying the diminishing effect of future data on initial

10.3 Production Planning and Scheduling 209

decisions. To formalize the different horizon concepts, we say that a problem
has a finite (planning) horizon if a finite number of, say T , time buckets is
considered for planning. Assume given numbers 1 ≤ td ≤ tf < T . If opti-
mal decisions up to period td are independent of the data beyond tf up to
T then td is called a decision or planning horizon and tf is called forecast
horizon; see Bes and Sethi (1988). As issues related to planning horizons and
forecasting are becoming more and more important in planning and supply
chain management, a comprehensive collection of references in this area, as
it is provided in Chand et al. (2002), is helpful.

Multiple Routings and Subcontractors. The presence of alternative
routings and subcontractors is an important feature of supply chain plan-
ning, which has not received enough attention. Chandra and Tombak (1992)
look at ways to evaluate the flexibility that is provided by alternate routings.
This work is useful during the design of supply chains. A paper by Kamien
and Li (1990) examines subcontracting at the aggregate level and discusses
economic effects and the structure of the subcontracting relationship. They
show that, under certain conditions, subcontracting reduces the variability
in production and inventory. This paper, like van Mieghem (1999), provides
insight into subcontracting policies but does not prescribe methods for pro-
duction planning in the presence of multiple routing opportunities.

A paper more directly related to our model for multiple routings is one by
Logendran and Ramakrishna (1997) who create a mathematical programming
model for the problem of scheduling work in manufacturing cells that have
duplicate machines available for bottleneck operations and/or subcontractors
who can perform the bottleneck operations. They also give details necessary
to use a general-purpose heuristic solution method described in §8.4.6.

Solution methodologies for single products with subcontracting are pro-
vided by Atamtürk and Hochbaum (2001). This work also considers the inter-
action between the operational decision to subcontract and tactical capacity
decisions. The paper provides algorithms and insights for both aspects of the
problem.

Inventory Control. The models that we have proposed in the preceding
chapters are appropriate for plans based on the best information available at
the time of the planning process as opposed to policies that are parameters for
making decisions. For example, a class of inventory control policies are of the
basic form Q,R where Q gives the quantity to order or to produce whenever
the inventory level gets down to R. An interesting example from this literature
is Sobel and Zhang (2001), where ordering policies are considered for a single
product when some of the demand is best modeled as being deterministic
and some is best modeled as stochastic. Although we might use the word
“planning” when describing the process of setting policies, it is clearly not
the same activity that we have been concerned with. However, the problem
statements are similar.

210 10. Research Directions and References

A problem tangentially related to the one studied in §6.1 is the problem
of setting inventory policies when there exist two supply modes with differing
lead times. Whittemore and Saunders (1977) look at the problem of deter-
mining the appropriate reorder policies when there are two delivery options:
one fast and expensive and the other slower and less expensive. They use
a stochastic dynamic programming formulation to balance the cost of back-
logging and order costs with the cost of holding inventory. Moinzadeh and
Nahmias (1988) produce an extension to Q,R policies for a similar model
in the continuous case, except that their model includes a cost per stockout
incident rather than per unit time.

There is also a considerable literature on setting inventory control poli-
cies for an entire bill of materials simultaneously. The multi-echelon inventory
and related literature provides methods for setting policies to control inven-
tory levels for a complete production/distribution system under a variety of
conditions; see, e.g., Chen (1998), Hwang and Singh (1998), Minner (2000),
Roundy (1986). In the simplest case, inventory policies set reorder points
that imply minimum planning levels for inventory (i.e., safety stock) as we
mentioned in §6.3. Formulas for setting safety stock levels are contained in
most operations management texts; see, e.g., Martinich (1997). Sethi et al.
(2005) have recently published a book that has planning and control models
for inventory and supply chain planning with uncertain demand.

One of the newer ideas related to inventory control is that of vendor man-
aged inventory (VMI). In fact this is about partnering. Assuming a supplier
and a retailer in a supply chain then VMI is about the suppler taking control
over the inventory policies of the retailer as well as the decisions influencing
production, distribution and shipment. An interesting study by Disney and
Towill (2003) investigates the impact of VMI on the bullwhip effect. The
analysis shows that with VMI implementation two sources of the bullwhip
effect may be completely eliminated.

Deterioration and Perishability. Deterioration may be regarded as the
process of decay, damage or spoilage of products such that they cannot be
used for their original purpose anymore, i.e., they gradually undergo a change
in storage and lose their utility at least partially. This is in contrast with
perishable items that, at some point in time, lose all of their value. Dete-
rioration (and perishability) need to concern supply chain managers when
thinking about inventory control as well as when undertaking production
planning with products eventually waiting in front of a resource in order to
be processed. While classical inventory models assume that inventory can be
stored indefinitely in order to meet future demands, this is not realistic for
products or items subject to deterioration or perishability. Early literature on
deterioration and perishability is chronicled in a survey by Nahmias (1982).
A more recent collection of references is compiled by Goyal and Giri (2001).

A few additional examples of this recently expanding literature are, e.g.,
Benkherouf et al. (2003), Balkhi and Benkherouf (2004). Quality alteration

10.3 Production Planning and Scheduling 211

of products can be affected by random changes in the ambient environment
resulting in possible deterioration in some periods while there is no deterio-
ration in others. Aggoun and Benkherouf (2002) consider inventory control
approaches in such an environment where, additionally, prices of the items
of different quality are allowed to change from period to period in a random
fashion.

Hsu (2000) represents an economic lot size model for perishable inventory
where stock deteriorating rates depend on the stock age as well as on their
production periods. The latter seems realistic as deteriorating items may
decay with variable speed at different points in time. Dye and Chang (2003)
discuss an economic order quantity system that includes time varying demand
and deteriorating items with conditions of permissible delay in payments.
Sana et al. (2004) investigate a production-inventory model for a deteriorating
item over a finite planning horizon with a linear time varying demand, finite
production rate and shortages. Inderfurth et al. (2005) provide analytical
insights into optimal lot sizing in a hybrid production/rework environment
when both switching from production to rework and vice versa is associated
with perceptible cost and time.

10.3.3 Machine Scheduling

Problems in machine scheduling are closely related to lot sizing problems, but
consider a higher level of detail than is used in a planning model. The solu-
tions to the planning models developed in the first part of this book are often
used as inputs to scheduling problems. Consequently, it is sometimes neces-
sary to solve the scheduling problems as part of the planning process in order
to verify that the induced problems have a solution. A simple example of this
is given in §8.4.3 where the capacity constraint is replaced with a scheduling
problem. A wide variety of scheduling problems have been considered in the
research literature.

Textbooks on the topic of scheduling include Baker (1974), Blazewicz
et al. (2001) and Brucker (2004). Related material with a focus on manufac-
turing has been collected in Pinedo (2005). A survey of research concerning
MIP modeling of changeovers in production planning and scheduling is pro-
vided by Wolsey (1997). A survey of research on sequencing with earliness
and tardiness penalties is provided by Baker and Scudder (1990).

An important topic in machine scheduling is the creation of production
sequences when there are significant setups, but only a single resource to
schedule. As introduced in §8.4.2 we speak of jobs which resume a collection
of one or more of the same SKU to be produced. If the jobs to be sequenced
are given (perhaps by the planning process) and the time to change from one
job to another depends on both jobs, then the problem of finding the fastest
sequence can be modeled as the traveling salesman problem (TSP). The TSP
is a classic problem where one is given a list of cities and the distances between
them and asked to find the shortest route that visits all cities. Replacing the

212 10. Research Directions and References

cities by jobs and the distances by production and changeover times, we see
that the model applies to sequencing problems as well.

There are a number of other models that are more general than the sin-
gle machine scheduling problem just introduced. A problem with multiple
resources in series where all jobs make use of all resources one after the other
is called a flow shop problem. To make it more practical, all sorts of modifica-
tions are treated in the literature, such as setup times or no-wait constraints.
For a survey on the literature in the first case see Cheng et al. (2000).

The second case requires that an SKU or a job once finished on one
resource has to be processed immediately after that on the next resource
without any interruption until it has left the last resource. For those so-
called continuous flow shop scheduling problems the processing of each job
has to be continuous, i.e., there must not be any waiting times between the
processing of any consecutive tasks regarding this job. To allow processing
of a job without interruption on all resources, the order in which the jobs
are processed on a resource is the same for all of them (assuming non-zero
processing times). If the objective is to finish all jobs as fast as possible this
modification reduces again to the TSP. If we strive for minimizing the sum
of the completion times of all jobs it relates to a generalization of the TSP
which is called time-dependent TSP; see Gouveia and Voß (1995), Fink and
Voß (2003).

When there are multiple resources in parallel, such models no longer apply
and the scheduling problems become much harder; see, e.g., Belouadah and
Potts (1994), Monma and Potts (1993). Another complication is when there
are multiple resources needed for each job in some order which varies from
job to job. This is referred to as the job shop scheduling problem; see, e.g.,
Vaessens et al. (1996), Pezzella and Merelli (2000), Meloni et al. (2004). In
the fully general case, these two problems are combined to create the hybrid
job shop problem; see, e.g., Imaizumi et al. (1998), Gupta et al. (1997).

Both the flow shop and the job shop scheduling problem generalize to
the resource constrained project scheduling problem which is concerned with
scheduling a set of jobs (or activities) subject to constraints on the availabil-
ity of several shared resources; see, e.g., Klein (2000). Naturally, one may
incorporate temporal constraints allowing the specification of minimal and
maximal time lags between two activities; see, e.g., Dorndorf et al. (2000)
who consider the minimization of the maximum of the completion times of
all activities. Using the resource constrained project scheduling problem to-
gether with a basic mrp model allows for a reasonable augmentation leading
to options for incorporating capacity constraints and variable lead times as
has been investigated, e.g., by Rom et al. (2002).

10.3.4 Aggregation and Part Families

An important form of abstraction in the planning process is the consideration
of aggregated parts and SKUs as developed in §6.6. This concept has appli-

10.3 Production Planning and Scheduling 213

cations outside the planning process as well. Given its importance, a variety
of research has been conducted concerning this topic.

Some of the earliest work on systematic formation of part families was
done by Soviet engineers in the later 1950’s to support application of cellular
manufacturing. The collection of a group of machines into a cell to process
a family of similar parts remains an important topic. There are a number of
algorithms available for dividing SKUs into groups to support manufacture
by different cells; see, e.g., Miltenburg and Zhang (1991), Venugopal (1999).
Another important application of part families is computer assisted process
planning (see, e.g., Koenig (1994)). This results in a hierarchy of families
driven by a part classification scheme. The classifications are done so that
it is possible to reuse process plans for similar parts when a new part is
designed. Such classification schemes, therefore, are based on manufacturing
characteristics and can be very useful for family formation for the purposes
described in §6.6.

Our application of part family formation was for the problem of aggregate
planning. This has also been the subject of a significant research literature. In
the 1970’s researchers at MIT collectively developed a planning system that
they referred to as hierarchical production planning (HPP). The HPP system
is designed to translate aggregate forecasts into part production requirements.
The overall HPP approach is described and justified in a paper by Hax and
Meal (1975).

The hierarchy is based on scheduling parts in increasing levels of disag-
gregation. At the lowest level, parts are scheduled. Before that, families of
parts are scheduled (intra-family changes do not require a setup, but inter-
family changes do). At the highest level are types which are part families
grouped according to similarities in production and demand. The schedul-
ing of types is referred to as aggregate planning and the decomposition into
family and part schedules is referred to as disaggregation. Bitran and Hax
(1977) suggested optimization of sub-problems for the various levels and a
rigorous means of linking them. We will now discuss simplified versions of
the optimization sub-problems to make their methodology more concrete.

Aggregate planning is a cost minimization problem with respect to tempo-
ral variations for production to meet demand forecasts. There are constraints
to assure that demand is met, periods are correctly linked via inventory, and
capacity is not exceeded. Disaggregation to families is done with the objective
of minimizing the total setup cost. A survey of disaggregation procedures is
contained in Bitran et al. (1981). The disaggregation to parts is done with the
objective of minimizing setup cost subject to capacity feasibility, producing
the quantities specified in the family disaggregation and keeping inventories
within safety stock and overstock limits. Bitran et al. (1982) have proposed
a two-stage version of the model which also schedules production of compo-
nents.

214 10. Research Directions and References

Although this approach is demonstrably better than mrp in some circum-
stances (see Hax and Candea (1984)), it is not universally applicable. It does
not consider due dates. Due dates can be an important factor as flow times
drop and competitive pressures increase. Their work is perhaps most appro-
priate when production of components can and must be begun in response
to forecast demand. A more severe problem is that the minimization of setup
“costs” is not generally appropriate. In some cases there are actual costs as-
sociated with a setup such as materials and supplies. But more generally, the
costs are due to lost capacity and in fact depend on the schedule and part
mix; see, e.g., Karmarkar (1987).

A hierarchical planning system was also proposed by Spearman et al.
(1989) for a specific type of control system known as CONWIP (see Spearman
et al. (1990)), where CONWIP stands for “constant work in process.” These
systems proposed the use of a hierarchical system as a way of dividing the
problem along sensible lines to improve the ability to solve the resulting
problems, which was our goal in §6.6 as well. A good reference for hierarchical
planning is Schneeweiss (1999). A somewhat extended view of aggregation
can also be found in Leisten (1998). A hierarchical planning approach in the
light of lot-sizing and scheduling allowing only one setup per period, i.e., at
most two products are allowed to be produced in each period, is discussed
by Rohde (2004).

10.3.5 Load Dependent Lead Times

Lead times are an important attribute of a product. Consequently, lead times
are the subject of research into their causes and effects; see, e.g., Bartezza-
ghi et al. (1994), Ben-Daya and Raouf (1994), Hopp et al. (1990), de Kok
and Fransoo (2003), Lambrecht et al. (1998), Lee et al. (1989), Ornek and
Collier (1988), Vendemia et al. (1995). The management of lead times at
the control level can be accomplished using control strategies such as CON-
WIP (see Spearman et al. (1990), Spearman and Hopp (1998)) or Kanban
(see Hall (1983), Krajewski et al. (1987), Kimura and Terada (1981), Schon-
berger (1986)). Use of these methods reduces variations in realized flow times
for physical parts due to congestion. But unless the planning systems take
lead times into account, the effect will be to increase the waiting time for
parts to enter production but not the overall flow time from order release
to completion. Clearly, it is better for parts to suffer congestion delays be-
fore they have started production rather than after (they can be rerouted
much more easily, for one thing) so use of CONWIP and Kanban have signif-
icant benefits. These benefits can be extended when coupled with a planning
system that is lead time sensitive.

It is useful to consider these systems under the classification scheme of
so-called push versus pull systems. Whereas in a pull system production is
initiated as a reaction to present demand, in a push system production is

10.3 Production Planning and Scheduling 215

performed in anticipation of future demand (see, e.g., Karmarkar (1987)).
CONWIP and Kanban may be referred to as pull systems.

Our primary interest is in including lead time effects in planning models.
Since congestion phenomena go along with bottlenecks causing load depen-
dent lead times it is useful to start with a queuing model in order to obtain
some approximations for the key parameters of the capacity constraint for-
mulation or objective functions to be implemented in an aggregate planning
model; see, e.g., Buzacott and Shantikumar (1993). As a side-remark we
should mention that congestion may be related to heavy loading or heavy
traffic, i.e., situations where the average fraction of time at which a server or
processor is free is small, or where a machine has little spare capacity. For
some mathematical background see, e.g., Kushner (2001).

In order to capture the relationship between system loading and waiting
times some authors discuss planning models with clearing functions. The idea
of clearing functions was introduced by Graves (1986) and further developed
by Karmarkar (1987) and Srinivasan et al. (1988). Recently Asmundsson
et al. (2002, 2003) employ a clearing function with the aim of modeling the
non-linear dependency between lead times and WIP workload.

Zijm and Buitenhek (1996) develop a scheduling model with load de-
pendent lead times that could be extended to a planning model but their
most important contribution to our work is that they provide guidance on
constructing functions for the waiting time given a loading. That is, they
develop a manufacturing planning and control framework for a machine shop
that includes workload oriented lead time estimates in order to account for the
necessity to consider both lead time and capacity management in a manage-
ment planning tool. For that purpose they suggest a method that determines
the earliest possible completion times of arriving jobs with the restriction that
the delivery performance of any other job in the system will not be adversely
affected, i.e., that every job can be completed and delivered in time. The goal
is to determine reliable planned lead times based on the workload that re-
sults in due dates for jobs that can be met and that can be implemented at a
capacity planning level, serving there as an input for a final detailed capacity
scheduling procedure that also takes into account additional resources, job
batching decisions as well as machine setup characteristics. They use queu-
ing network techniques to determine the mean and variance of lead times
dependent on lot sizes, production mix and expected annual production vol-
ume. Their framework is partly based on the work of Karmarkar (1993a) and
Karmarkar et al. (1985) as they employ for each network service station a
queuing model with multiple part types.

Our model in §9.1.2 could be seen as making use of a piecewise linear clear-
ing function for the tradeoff between loading and waiting time as envisioned
by Karmarkar (1989b) with extensions to include multiple routings or sub-
contractors. Figure 10.9 depicts some possible clearing functions where the
constant level clearing function corresponds to an upper bound for capacity

216 10. Research Directions and References

C
a
p
a
ci

ty

Work in Process (WIP)

nonlinear [Karmarkar; Srinivasan]

Constant proportion [Graves]

combined [Input/ Output-Control]Constant level [LP]

Fig. 10.9. Clearing Functions

as mainly employed by linear programming models. This implies instanta-
neous production without lead time constraints since production takes place
independently of WIP in the production system. The constant proportion
clearing function represents a control rule given by Graves (1986) which im-
plies infinite capacity and hence allows for unlimited output. In contrast to
the non-linear clearing function of Karmarkar (1987) and Srinivasan et al.
(1988), the combined clearing function in some region underestimates and
in others overestimates capacity. Moreover, the non-linear clearing function
relates WIP levels to output and lead times to WIP levels which are influ-
enced by the behavior of load dependent lead times. Additionally, the slope
of the clearing function represents the inventory turn with lead times given
by the inverse of the slope (see Karmarkar (1989a)). Special properties of the
clearing function allow for formulating a linear programming version in order
to develop a model which remains numerically tractable and, therefore, can
deal with the problem of combinatorial explosion of company or supply chain
size. The clearing function model reflects the characteristics and capabilities
of the production system better than models using fixed planned lead times
(like mrp).

Lautenschläger and Stadtler (1998) have a well developed method for
incorporating load dependent lead times in a capacitated lot sizing model.
They base their model on the standard CLSP assumption of a lead time of
one period, but their model automatically delays the planned completion if
the capacity is heavily utilized. Their work includes guidance on constructing
functions for the waiting time given a loading.

Jagannathan and Juang (1998) describe a model where the lead times
depend on lot sizes ordered. In this paper, the production level of each SKU

10.3 Production Planning and Scheduling 217

is considered separately for the purpose of determining lead times rather than
modeling shared resources and routings. They report on a solution method
specifically designed for their formulation. Enns (2001) describes simulation
experiments that link static lot sizes, lead times and the performance of an
mrp system.

Voß and Woodruff (2004) use a piecewise linear clearing function as sug-
gested by Karmarkar (1989a) in order to model the dependency of lead (or
waiting) times in their tactical planning model including multiple routing and
subcontractors and highlight the fact that lead times are dependent on the
decisions considering the utilization of production resources. Consequently,
in order to create realistic, feasible and robust production plans, it is imper-
ative to integrate the effects of load dependent lead times into the tactical
planning models. Research issues still remain on how high the utilization of
resources could be before being considered a bottleneck and on finding more
sophisticated approximations for the clearing function.

We will now give an overview of approaches to formulate clearing func-
tions in order to capture the non-linear relationship between lead times and
workload of the production system. A more comprehensive survey is compiled
in Pahl et al. (2005).

Graves (1986) studied the extent to which the job flow time (or WIP
inventory) depends on the utilization of each resource of a job shop or pro-
duction stage. The production system is modeled as a network of queues with
multiple routing and planned lead times as the decision variable. The clearing
function serves as a release control rule at each resource which determines
the amount of work performed during a time period which is a fixed portion
of the queue of work remaining at the start of the period. As this formulation
implies infinite capacity other functional formulations are suggested by, e.g.,
Karmarkar (1989a,b, 1993b), Srinivasan et al. (1988), Zijm and Buitenhek
(1996), Missbauer (2002), Lautenschläger and Stadtler (1998), Asmundsson
et al. (2002, 2003), Hwang and Uzsoy (2004), Caramanis and Anli (1999) and
Mendoza (2003).

As opposed to Graves (1986), Karmarkar (1989a) and Srinivasan et al.
(1988) model the non-linear relationship deriving a clearing function of the
following form:

Capacity = α(WIP) · WIP

Here, the clearing factor α specifies the fraction of the actual WIP which can
be completed, i.e., “cleared” by a resource in a given time period. Missbauer
(2002) refers to this factor as the “utilization factor.” In order to give an
idea how the clearing function “works” in an aggregate production planning
model we refer to the model of Asmundsson et al. (2002) as a reference.

The mathematical programming approach of Asmundsson et al. (2002)
models the non-linear dependency between lead times and WIP (workload) by
employing a clearing function, too. Special properties of the clearing function
allow for formulating a linear programming version in order to develop a

218 10. Research Directions and References

model which remains numerically tractable. In accordance with the procedure
of Karmarkar (1989a), Asmundsson et al. (2002) define the performance of a
resource (work center) as dependent on the workload. For that reason they
use a queuing model including variation coefficients for the service time and
the arrival time. Moreover, the utilization of a resource is formulated as a
function of the WIP. Also batching and lot sizing have an effect on lead times
especially when small batches give rise to frequent setup changes leading
to time losses for production, lower throughput and eventual starvation of
resources on further production stages.

In order to develop the clearing function, there are two methods avail-
able in the literature to date, where the first is the analytical derivation
from queuing network models and the second an empirical approximation
using a functional form which can be fitted to empirical data. Because of the
large amount of details in practical systems the complete identification of the
clearing function will not be possible, so we have to work with approxima-
tions. Asmundsson et al. (2002) integrate the estimated clearing function in
a mathematical programming model where the framework is based on the
production model of Hackman and Leachman (1989) with an objective func-
tion that minimizes the overall costs. It is assumed that backorders do not
occur and that all demand must be met on time. In contrast to Ettl et al.
(2000) the non-linear dynamic is incorporated in the clearing function in the
constraints and thus not included in the objective function. For more detail
see Asmundsson et al. (2003).

Modifications of batch sizes can be a good instrument to control the work-
load in the system since workload, WIP, safety stocks and lead times (or flow
times) are dependent on the choice of the batch size; see, e.g., Zipkin (1986),
Karmarkar (1989a), or Karmarkar et al. (1985).

Karmarkar (1989a) develops a capacity and release planning model which
explicitly takes into account WIP costs and lead time consequences caused
by the production system workload. For that purpose it is based on order
releases and batching and applies the traditional capacity planning method-
ology that combines release planning, master scheduling issues and seasonal
planning. Additionally, it aims at surmounting the shortcomings of aggregate
production planning models like those of Graves (1986), Kekre and Kekre
(1985) and the limitations of input/output - control models. Like Srinivasan
et al. (1988), Karmarkar (1989a) uses the non-linear “clearing function” to
represent the output as a function of the average WIP in the production sys-
tem. The form of the curve is also valid for synchronous deterministic flow
lines with batched flows. In order to keep things simple, Karmarkar (1989a)
considers a discrete period model for a single product production system to
proceed to the dynamic reformulation of the model.

Hwang and Uzsoy (2004) combine the work of Karmarkar (1987) and
Asmundsson et al. (2002) and add lot sizing in order to show how small
or large lot sizes influence the resulting production plans. For that purpose

10.4 Transportation 219

they present a single-product dynamic lot sizing model which takes into ac-
count WIP and congestion using queuing models such as those presented
by Karmarkar (1987, 1993b) and develop a clearing function which captures
the dependency of the expected throughput of a single-stage production sys-
tem closely related to the classical Wagner-Whitin model (see Wagner and
Whitin (1958)) including setups, expected WIP levels and lot sizes which
is then integrated in a dynamic lot sizing model. Results demonstrate that
their proposed model provides significantly more realistic performance and,
therefore, production plans than models ignoring the relationships between
lead times, workload, throughput, production mix and lot sizes (setups).

Before closing this section we should mention that research on workload
control has had a wealth of interest especially in the semiconductor industry.
This area has developed and considered various workload control concepts
investigating general dispatching and order release methods with a focus on
wafer fabrication, i.e., the combination of lot release and dispatching strate-
gies used to control the flow of lots through a semiconductor wafer fabrication
facility. Uzsoy et al. (1994) provide a general survey and review of production
planning and scheduling models in semiconductor manufacturing. A more re-
cent survey with a clear focus on workload control is provided by Fowler et al.
(2002). Moreover, we like to point to some references that we feel provide some
innovative or thought provoking ideas in one sense or another: Hackman and
Leachman (1989), Hung and Leachman (1996), Leachman (1993), Schoemig
(1999).

10.4 Transportation

Product movement and transportation is an important part of supply chain
management. Transportation modeling may be concerned with routing SKUs
between different machines (see §10.3.3) or between a variety of locations. We
have proposed extensions to our planning models for some aspects of trans-
portation planning, see §6.4. Within supply networks we are also concerned
about shipping, which in our models was assumed to be included in the lead
time without careful consideration of how to control it. Most related prob-
lems are those “above” our models, i.e., building up a transportation system,
and those “below,” i.e., up to now the real movement had been left out on
purpose. Much has been written about pure transportation problems as well
as on various generalizations; see, e.g., the surveys and collections of Laporte
and Gendreau (1995), Cordeau et al. (1998), Kwon et al. (1998), Hall (2003).

A family of models has been developed for optimization of the transporta-
tion of goods when production and demand quantities as well as the locations
of factories, distribution centers and customers are known in advance. This is
a classic optimization model as the basis for teaching and understanding the
application of optimization models in addition to being a useful transporta-
tion model. One form of the transportation problem is given in Figure 10.10

220 10. Research Directions and References

where the decision variables ti,j are the quantity of SKUs to transport or ship
from i to j and the data are the cost to transport or ship from i to j, T (i, j),
the demand at j, D(j), and the capacity at i, C(i). Often all i’s are called
origins and all j’s destinations. The number of origins is L and the number
of destinations is N .

Minimize:
L∑

i=1

N∑
j=1

T (i, j)ti,j

subject to:
L∑

i=1

ti,j = D(j) j = 1, . . . , N

N∑
j=1

ti,j ≤ C(i) i = 1, . . . , L

Fig. 10.10. Transportation Problem

While minimizing the cost of all shipped quantities, we have two sets of
constraints that guarantee that all the demands are fulfilled and that all the
capacity is not overused. This problem and many of its variants have been
thoroughly studied over the years and can be solved efficiently. See, e.g.,
Clarke and Wright (1964), Hall and Racer (1995), Solomon (1987).

This model has been the basis for a plethora of more realistic transporta-
tion models. For example, these include the binary transportation problem or
the more general design of transportation systems; see, e.g., Belenky (1998),
Bhaskaran and Turnquist (1990), Fleischmann (1998), Fleischmann et al.
(2001).

These transportation models find optimal quantities, but do not seek to
specify operational details such as delivery routes. Shipment cost data are
typically based on averages. When we consider models for optimal route
planning, we once again encounter the TSP, which is a classic both within
transportation planning as well as optimization in general (see §10.3.3).

Because the TSP is a hard problem there has been a lot of work for
almost every exact as well as every heuristic method or principle applied to
this problem (for excellent surveys on this see, e.g., the books by Lawler et al.
(1985), Reinelt (1994), Gutin and Punnen (2002)). Local search approaches
are very effective especially regarding real-world and large scale instances of
the TSP (see, e.g., Johnson and McGeoch (1997)).

The TSP offers lessons in the art of modeling linear problems. It can be
modeled, e.g., with a number of constraints that is linear in the problem
size, but a cubic number of variables or a linear number of variables and
exponential growth in the number of constraints; see, e.g., Gouveia and Voß

10.4 Transportation 221

(1995), Padberg and Sung (1991). From a teaching perspective one may learn
a lot once the question has been answered, “what makes a TSP a TSP?” (see
Sniedovich and Voß (2005)).

The TSP was also used as a very good starting point for various modifica-
tions and extensions such as the time constrained TSP or the time-dependent
TSP. An important literature concerns the vehicle routing problem where one
salesman is replaced (conceptually) by many vehicles perhaps not starting at
one and the same depot but at more than one depot; see, e.g., the collection in
Toth and Vigo (2002). Extensions may be considered in the same spirit as we
have seen it above for the TSP (e.g., with time windows). Finally, we arrive
at vehicle scheduling. Another research area is the problem of simultaneously
planning production and transportation as proposed by Daskin (1985). Ex-
amples from this literature include Blumenfeld et al. (1991), van Buer et al.
(1999) and van Roy (1989).

Transportation issues are often linked with locational decisions as well.
Usually the production and distribution locations are assumed to have been
optimized by a decision process that operates on a longer time scale than
the models considered in this book. Nevertheless, as locational decisions and
building a distribution network greatly influences transportation costs, these
problems are closely related to simultaneous production planning and supply
chain design. As an example we borrow a model from Domschke and Voß
(1990).

In this model we assume an enterprise which produces P products or
SKUs which are used at N different markets. External demand for SKU k
at market j is assumed to be D(j, k). While in the transportation model
presented above we had decision variables ti,j indicating the quantity of a
homogenous good to ship from i to j, these may be modified for handling
various products k = 1, . . . , P by adding one more index: ti,j,k. Cost values
are then given by T (i, j, k), correspondingly. This leads to the following set
of constraints guaranteeing that all demands are fulfilled.

L∑
i=1

ti,j,k = D(j, k) j = 1, . . . , N, k = 1, . . . , P

In this model we further apply some nice way of modeling non-linearities
by using, other than SOS2, some piecewise linear functions. Assuming pro-
duction within certain boundaries we consider a linear function that takes
into account (similar to our discussion of marginal transportation discounts in
§6.4.4) economies of scale. More specifically let us define λ(i, k) and B(q, i, k)
indicating a minimum and a maximum amount of production allowed at facil-
ity i for SKU k. The values λ(i, k) can be thought of as strategic lower limits
according to our first abstract optimization model on page 3. Within these
boundaries there are piecewise linear functions indicating production costs.
To illustrate the concept we first assume that we have q = 2 cost functions;
see Figure 10.11. The change between functions happens at some amount of

222 10. Research Directions and References

production, say B(1, i, k). That is, any amount of SKUs produced between
λ(i, k) and B(1, i, k) has a cost of C(1, i, k) per unit while any additional
SKU above B(1, i, k) is produced at a different cost rate between B(1, i, k)
and B(2, i, k) and accounts for a per unit cost of C(2, i, k). We may view
this as different cost rates of production with corresponding cost functions.
Naturally, this may be generalized to the case where we have more than one
intermediate boundary and a correspondingly enlarged number of piecewise
linear functions for production costs.

Costs

Amount of
Production

C(1,i,k) C(2,i,k)

(i,k) B(1,i,k) B(2,i,k)

Fig. 10.11. Cost Function

The production of an SKU is automatically allocated to the cost rates.
Variables xs

i,k indicate the number of SKUs k produced at location i at cost
rate s. Hence, to compute the production quantity for an SKU, the xs

i,k must
be summed over all rates. Binary variables zs

i,k indicate whether production
of k at i is allowed at cost rate s. We have the following constraints that set
these variables correctly depending on the overall number of SKUs produced.
If production takes place, it has to be at least λ(i, k), and with B(0, i, k) = 0
production variables are set as follows.

λ(i, k)z1
i,k ≤ x1

i,k ∀i, ∀k

(B(s − 1, i, k) − B(s − 2, i, k))zs
i,k ≤ xs−1

i,k ∀i, ∀k, s = 2, . . . , q

xs
i,k ≤ (B(s, i, k) − B(s − 1, i, k))zs

i,k ∀i, ∀k, s = 1, . . . , q

Production is going to take place at any of at most L locations depending
on whether we use these locations or not. Whenever we open up a facility
at a specific location, say i, then this implies some fixed costs of F (i). Using
variables yi indicating whether to open a facility at location i or not, these
location variables may also be used to allow the initialization of production
indicator variables:

z1
i,k ≤ yi i = 1, . . . , m, k = 1, . . . , P

10.5 Optimization 223

P Number of SKUs
L Number of possible locations
N Number of markets
q Number of production cost rates
D(j, k) External demand for SKU j at market k
F (i) Fixed cost for opening a facility at location i
C(s, i, k) Production cost rate s for SKU k at location i
B(s, i, k) Cost function boundary for rate s and SKU k at location i
B(0, i, k) = 0 (dummy cost function boundary)
λ(i, k) Lower bound for useful production of SKU k at location i
T (i, j, k) Transportation costs for SKU k between location i and market j

Table 10.1. Data for the Location-Allocation Model

yi Location variable
zs

i,k Production indicator variable for rate s and SKU k at location i
xs

i,k Production quantity at cost rate s for SKU k at location i
ti,j,k Transportation variable for SKU k between location i and market j

Table 10.2. Variables for the Location-Allocation Model

In the objective function

minimize:
L∑

i=1

F (i)yi+
L∑

i=1

N∑
j=1

P∑
k=1

T (i, j, k)ti,j,k+
q∑

s=1

L∑
i=1

P∑
k=1

C(s, i, k)xs
i,k

we consider the fixed costs for opening facilities,
∑L

i=1 F (i)yi, the sum of all
transportation costs,

∑L
i=1

∑N
j=1

∑P
k=1 T (i, j, k)ti,j,k, as well as the produc-

tion costs,
∑q

s=1

∑L
i=1

∑P
k=1 C(s, i, k)xs

i,k. Using data and variables as shown
in Tables 10.1 and 10.2 we can now summarize our model in Figure 10.12.

10.5 Optimization

A wealth of mathematics literature is devoted to one or the other aspect of
optimization. The research literature typically divides optimization problems
along a number of lines.

• We may distinguish between deterministic and stochastic models based on
the characteristics of the data that we are provided with.

• Up to this point we have considered only models with one objective function
but frequently multi-criteria models are considered. These are models with
more than one objective function. If we want to find an optimal solution
to a model with more than one objective, then we might have to provide
data concerning the relative importance of the objectives.

• We may distinguish between linear and non-linear models based on the
characteristics of the constraints and the objective function.

224 10. Research Directions and References

Minimize:

L∑
i=1

F (i)yi +

L∑
i=1

N∑
j=1

P∑
k=1

T (i, j, k)ti,j,k +

q∑
s=1

L∑
i=1

P∑
k=1

C(s, i, k)xs
i,k

subject to:

n∑
i=1

ti,j,k = D(j, k) ∀j, ∀k

m∑
j=1

ti,j,k =

q∑
s=1

xs
i,k ∀i, ∀k

z1
i,k ≤ yi ∀i, ∀k

λ(i, k)z1
i,k ≤ x1

i,k ∀i, ∀k

xs−1
i,k ≥ (B(s − 1, i, k) − B(s − 2, i, k))zs

i,k ∀i, ∀k, s = 2, . . . , q

xs
i,k ≤ (B(s, i, k) − B(s − 1, i, k))zs

i,k ∀i, ∀k, s = 1, . . . , q

ti,j,k ≥ 0 ∀i, ∀j, ∀k

xs
i,k ≥ 0 ∀i, ∀k, s = 1, . . . , q

zs
i,k ∈ {0, 1} ∀i, ∀k, s = 1, . . . , q

yi ∈ {0, 1} ∀i

Fig. 10.12. Location-Allocation Model

• Further, we may make distinctions between models with only real variables,
only binary variables, only integer variables or models that have mixtures
of two or more types of variables.

• Regarding input data, offline models assume all input data of a problem
instance as known in advance. On the other hand, there are many real-
world (decision) problems where one can not assume that all input data is
known beforehand. Online models cope with new data that become avail-
able dynamically, e.g., when the problem instance or the given constraints
change.

• We may also make distinctions concerning the effort required theoretically
in the worst case to find an optimal solution for a model. This, however,
is beyond the scope of our book; see Garey and Johnson (1979) for a
comprehensive treatment.

10.5 Optimization 225

10.5.1 Exact Methods

The literature on exact methods is far too large for us to consider. Conse-
quently, we restrict our attention only to those areas that were explicitly
discussed in Chapter 8.

For our purposes the term solver describes readily available software for
the solution of problems or models with certain properties. That is, there are
solvers for linear programming problems (LP solver), those for mixed integer
programs (MIP solver, which make special use of LP solver combined with
branch and bound), and constraint programming solver.

Branch and bound is a very old idea and can also be applied to problems
other than MIPs. A good discussion of early applications of branch and bound
for MIPs is Geoffrion and Marsten (1972). Beale and Tomlin’s proposal for
SOS facilities reportedly appeared first in Beale and Tomlin (1970). And as
in many other fields, branch and bound research is on-going (see, e.g., Liao
(1994), Belvaux and Wolsey (2000)).

An important issue once a MIP has been solved is referred to as sensitivity
analysis. A significant line of research has been devoted to providing methods
that determine the effect on the optimal solution of changes to the input
data. A related area of research concerns determining what changes to the
data would change a problem from being infeasible to feasible. An extensive
survey of this literature is provided by Greenberg (1998).

Constraint (logic) programming has origins in artificial intelligence; see
Robinson (1965), Laurière (1978). Early applications were to problems in
scheduling, e.g., by Fox and Smith (1984). Cooperation between CP and
methods developed for MIPs is a relatively new and promising research area;
see Hooker (1998), McAloon et al. (1998), Milano (2004).

10.5.2 Heuristic Search Methods

Heuristics for many optimization problems in production planning and supply
chain management are based on the notion of greediness as introduced in
§8.4.1. Especially in production planning many of these heuristics are called
scheduling rules. More specifically, we may speak of a priority rule to represent
the technique by which a number (a priority) is assigned to each job that has
to be processed. Then jobs are sequenced according to these numbers, e.g.,
in increasing order. A simple example is the earliest due date rule where
priority is given to jobs with an earlier due date over those with a later due
date. Priority rules may be characterized as being static or dynamic. They
are static, if they do not change the given priority once assigned. If some
information is included into the rule that might change the priority in due
course then it is called dynamic. An example is the nearest neighbor routine
for solving the TSP. Starting with a single city, any as yet unvisited city
can get a priority based on the distance to reach it. Then in every iteration
the city with the best priority (in this case the smallest value, the nearest

226 10. Research Directions and References

neighbor) among all cities not yet visited is chosen. From that city priorities
are again given to all unvisited cities until a route through all cities has been
found.

Priority rules for machine scheduling can be found, e.g., in Haupt (1989).
An overall good starting point into the area of heuristic search is the book of
Pearl (1984).

Much of the research on heuristic search literature focuses on meta-
heuristics, which have been defined as follows: “A meta-heuristic is an iter-
ative master process that guides and modifies the operations of subordinate
heuristics to efficiently produce high-quality solutions. It may manipulate a
complete (or incomplete) single solution or a collection of solutions at each
iteration.” (Voß et al. (1999), p. ix) These methods include simulated an-
nealing, tabu search, genetic algorithms and many others. Recent surveys
and collections can be found in Blum and Roli (2003), Glover and Kochen-
berger (2003), Ibaraki et al. (2005), Rego and Alidaee (2005), Ribeiro and
Hansen (2002), Voß (2001).

One of the key aspects regarding metaheuristics in general is the interplay
between intensification (concentrating the search into a specific subset of all
possible solutions; one can think in terms of a region of the search space) and
diversification (elaborating various diverse regions within the search space).
That is, it has very often been appropriate, on one hand, to explore promis-
ing regions of the search space in a detailed manner (intensification) and, on
the other hand, to lead the search into new and yet unexplored regions of
the search space (diversification). Within intelligent search including the rela-
tionship between these two significant mechanisms the exploration of memory
plays a most important role in ongoing research; see, e.g., Greistorfer and Voß
(2005).

Simulated annealing traces its origins to computational simulation of the
cooling of metals; see Kirkpatrick et al. (1983), Metropolis et al. (1953). Us-
ing certain cooling schedules, simulated annealing algorithms can be shown
to converge to optimal solutions; see, e.g., Lundy and Mees (1986) or Hajek
(1988). Cooling schedules used in practice usually differ significantly from
those that are theoretically best, since the latter would result in impracti-
cably large computing times. For a more detailed discussion of simulated
annealing and the effects of the cooling schedule see, e.g., Johnson et al.
(1989). Based on experience using the algorithm as described in §8.3, we rec-
ommend the parameter settings InitProb = 0.4, TempFactor = 0.8145,
SizeFactor = 4, and MinPercent = 2, which are slightly different from
those recommended by Johnson et al. (1989). Cooling schedules that may
behave superior to those offered by Johnson et al. are used in the Adaptive
Simulated Annealing developed by Ingber (1993).

Genetic algorithms originated in work by Holland and others; see, e.g.,
Holland (1975), Fogel (1998). Readers interested in mathematical character-
izations of early GA’s should refer to Liepins and Vose (1992). Attempts to

10.5 Optimization 227

characterize the theoretical behavior continue. See, for example, the work of
Salomon (1996) or Aytug and Koehler (1996).

The simple GA from Vose (1999) that we presented to ease exposition,
as well as the stylized versions used for theoretical analysis, can be improved
substantially for use in practice. For example, we recommend steady-state
replacement without duplicates (see Syswerda (1989) or Davis (1991)) rather
than generational replacement. The simple selection technique we gave is
dominated by others such as a linear normal ranking scheme for all parents;
see Whitley (1989). Many modern GAs perform a descent from each new
population member (i.e., they combine the ideas of GA and local search).
Genetic and evolutionary algorithms are large areas of ongoing research with
many new, partially tested ideas; see, e.g., Smith et al. (1998), Bäck (1997),
Reeves and Rowe (2003).

There exist several libraries for genetic algorithms. In principle, an ad-
vantage of using classic genetic algorithm libraries such as Genitor (2005)
or GAlib (2005) is that no neighborhood must be specified. If the built-in
genomes of a genetic algorithm library adequately represent one’s problem, a
user-specified objective function may be the only problem-specific code that
must be written. Unfortunately, genetic algorithms without a local search
component have not generally proven to be very effective. For a comprehen-
sive overview of genetic algorithm libraries the reader is referred to Pain and
Reeves (2002).

GAs are closely related to evolutionary strategies. Whereas the mutation
operator in a GA serves to protect the search from premature loss of in-
formation, evolutionary strategies may incorporate some sort of local search
procedure with self adapting parameters involved in the procedure. For some
interesting insights on evolutionary algorithms the reader is referred to Hertz
and Kobler (2000).

Tabu search was originally developed by Glover (1986) and has been ex-
tended in many directions as described in Glover and Laguna (1997). The
flexibility and general applicability of TS has caused it to be used in conjunc-
tion with other heuristic search methods and much of the development work
in TS is done as part of more general heuristic search efforts; see, e.g., Voß
et al. (1999).

Recently, scatter search ideas established a link between early ideas from
various sides – evolutionary strategies, TS and GAs. As an evolutionary ap-
proach, scatter search originated from strategies for creating composite deci-
sion rules and surrogate constraints. Scatter search is designed to operate on a
set of points, called reference points, that constitute good solutions obtained
from previous solution efforts. The approach systematically generates linear
combinations of the reference points to create new points, each of which is
mapped into an associated point that yields integer values for discrete vari-
ables. For a very comprehensive treatment of scatter search see Laguna and
Mart́ı (2003).

228 10. Research Directions and References

GRASP is usually composed of the following components: A greedy con-
struction phase combined with a probabilistic component and a local search
procedure. An adaptive mechanism is used to modify the greedy construc-
tion after each iteration. The basic concept goes back to ideas from Hart and
Shogan (1987). Resende and Festa (2005) present a general bibliography of
GRASP.

The research literature is full of comparisons of different heuristic search
methods for various problems and it is difficult to declare one or the other
method as clear winner. Nevertheless, based on our own research we believe
that more intelligent approaches have advantages (e.g., advanced TS imple-
mentations over SA; see, among others, Voß (1996), Fink and Voß (1999a),
Woodruff and Spearman (1992)).

One of the important research topics over the last couple of years is the
development of class libraries and frameworks; see Voß and Woodruff (2002),
Fink et al. (2003). The crucial problem of local search based meta-heuristics
libraries is a generic implementation of heuristic approaches as reusable soft-
ware components, which must operate on arbitrary solution spaces and neigh-
borhood structures. The drawback is that the user must, in general, provide
some kind of a problem/solution definition and a neighborhood structure,
which is usually done using sophisticated computer languages such as C++.

An early C++ class library for heuristic optimization by Woodruff (1997)
included both local search based methods and genetic algorithms. This li-
brary raised issues that illustrate both the promise and the drawbacks to the
adaptable component approach. From a research perspective such libraries
can be thought of as providing a concrete taxonomy for heuristic search. So
concrete, in fact, that they can be compiled into machine code. This taxon-
omy sheds some light on the relationships between heuristic search methods
for optimization and on ways in which they can be combined. Furthermore,
the library facilitates such combinations as the classes in the library can be
extended and/or combined to produce new search strategies.

From a practical and empirical perspective, these types of libraries provide
a vehicle for using and testing heuristic search optimization. A user of the
library must provide the definition of the problem specific abstractions and
may systematically vary and exchange heuristic strategies and corresponding
components.

We briefly mention one example from several heuristic optimization li-
braries from the research field, which differ, e.g., in the design concept, the
chosen balance between “ease-of-use” and flexibility and efficiency, and the
overall scope. All of these approaches are based on the concepts of object-
oriented programming.

HotFrame, a Heuristic OpTimization FRAMEwork implemented in
C++, provides both adaptable components that incorporate different meta-
heuristics and an architectural description of the collaboration among these
components and problem-specific complements. All typical application-speci-

10.5 Optimization 229

fic concepts are treated as objects or classes: problems, solutions, neighbors,
solution and move attributes. On the other side, meta-heuristics concepts
such as different methods and their building-blocks such as tabu criteria and
diversification strategies are also treated as objects. HotFrame uses gener-
icity as the primary mechanism to make these objects adaptable. That is,
common behavior of meta-heuristics is factored out and grouped in generic
classes, applying static type variation. Meta-heuristics template classes are
parameterized by corresponding aspects such as solution spaces and neigh-
borhood structures.

All heuristics such as TS, SA and GA are implemented in a consistent
way, which facilitates an easy embedding of arbitrary methods into applica-
tion systems or as parts of more advanced/hybrid methods. Both new meta-
heuristics and new applications can be added to the framework. For example,
the pilot method of Duin and Voß (1999) is a technique based on lookahead
that was readily implemented and added to HotFrame. Starting with a
simple greedy algorithm such as a construction heuristic the pilot method
builds primarily on the idea to look ahead for each possible local choice (by
computing a so-called “pilot” solution), memorizing the best result, and per-
forming the according move. The look ahead mechanism of the pilot method
is related to increased neighborhood depths as it exploits the evaluation of
neighbors at larger depths to guide the neighbor selection at depth one; see
also Voß et al. (2005).

HotFrame includes built-in support for solution spaces representable by
binary vectors or permutations, in connection with corresponding standard
neighborhood structures, solution and move attributes, and recombination
operators. Otherwise, the user may derive specialized classes from suitable
built-in classes or implement corresponding classes from scratch according to
a defined interface. For further information about HotFrame see Fink and
Voß (1999b, 2002).

10.5.3 Progressive Hedging

We limit our discussion of the stochastic programming literature to those
articles related to progressive hedging or multi-stage mixed integer problems.
Readers interested in more general treatment should see Kall and Wallace
(1994) or Birge and Louveaux (1997).

Progressive hedging is not the only method that has been proposed for
multi-stage stochastic MIPs. Klein Haneveld and van der Vlerk (1999) pro-
vide descriptions of general formulations and solution methods for integer
stochastic programs. Carøe and Tind (1997, 1998) describe two different
methods for stochastic MIPs. Schultz et al. (1998) have developed a math-
ematically sophisticated method of finding provably optimal solutions to
classes of stochastic MIPs. Jonsbr̊aten et al. (1998) describe a class of stochas-
tic MIPs where decisions affect the timing of information discovery along with
a solution method.

230 10. Research Directions and References

Progressive hedging has been used in a number of applications reported
in the literature. Mulvey and Vladimirou (1991, 1992) have reported success
solving network problems. Helgason and Wallace (1991), Wallace and Helga-
son (1991) have reported success solving fishery problems and have suggested
the use of tree based data structures for managing data of the ph progressive
hedging algorithm.

Birge et al. (1995) report on the use of progressive hedging for power
system optimization (although they use a linear, rather than a quadratic,
penalty term). Carøe and Schultz (1999) propose the use of a relaxation that
is similar to progressive hedging, but also uses a linear penalty. Both papers
report good computational results.

The progressive hedging algorithm as described in §9.2.3 developed by
Løkketangen and Woodruff (1996) is based on a more general algorithm pro-
posed by Rockafellar and Wets (1991). For some basics regarding an inter-
pretation as dual prices for the implementability constraints see, e.g., Wets
(1989). For move evaluation functions and respective tabu search mechanisms
associated with solving general stochastic MIPs see also the work described
in detail by Løkketangen and Glover (1996). For an application of this algo-
rithm to a classic single machine lot sizing problem see Haugen et al. (2001).
The notion of integer convergence for progressive hedging is introduced by
Løkketangen and Woodruff (1996). Related to the topics raised in this book
we investigate the progressive hedging algorithm in Woodruff and Voß (2006).
Based on the SCPc model we consider the case when an actor in the sup-
ply chain is faced with the potential for a major disruption. The progressive
hedging algorithm is combined with a GRASP aiming at a realistic chance
to solve models that explicitly consider the possibility of a “big bang” in the
supply chain.

10.5.4 Simulation

Owing to its inherent modeling flexibility, simulation is often regarded as a
proper means for supporting decision making, e.g., on supply chain design.
Especially, discrete event simulation has been used to analyze and improve
operations in logistic systems for more than two decades by now. Typical sim-
ulation tasks are to verify whether a system is able to produce the demanded
output per time unit, to determine buffer-sizes, to identify bottlenecks, or to
optimize control policies especially in cases when analytical tools are not at
hand or somewhat not applicable (e.g, due to computation times). In discrete
event simulation the state of a model changes at only a discrete, but possibly
random, set of simulated points in time.

For a good textbook on simulation we refer to Law and Kelton (2000).
Moreover, optimization in stochastic systems incorporating parametric (sta-
tic) as well as control (dynamic) optimization asks for simulation and has been
investigated to some extent; see, e.g., Gosavi (2003). A survey on available
simulation software is conducted by Swain (2003).

10.6 Modeling 231

As one example for supply chain simulation we mention van der Zee and
van der Vorst (2005), who provide a brief literature survey with the aim of
listing simulation model qualities essential for supporting successful decision
making on supply chain design. Based on this the authors propose an object-
oriented modeling framework that facilitates supply chain simulation.

10.6 Modeling

Modeling is a very broad and important topic. We have focused on the cre-
ation of mathematical models for optimization, but there are numerous al-
ternative model forms, some of which we have briefly mentioned. The work
of Pidd (2003) provides consideration of a wider view of modeling.

For a discussion of the art and science of MIP and LP modeling, the work
of Williams (2000) is arguably the best. This book covers a large number of
modeling concepts and considers the implications for solvability. The book is
very comprehensive. For a more gentle introduction, operations research and
management science textbooks such as the work of Hillier and Lieberman
(2004) or Moore and Weatherford (2001) are useful and these books contain
information about other facets of operations research modeling as well.

Muhanna (1993), Muhanna and Pick (1994) advocate object based ap-
proaches to the creation and management of mathematical programming
models in a fashion similar in spirit to the structured methods proposed
by Geoffrion (1992). Although not commercially available, the idea is com-
pelling. By creating object classes to correspond to model components, mod-
els can be constructed more quickly and maintained more efficiently. Their
work draws on concepts developed in the Object Oriented Modeling (OOM)
literature (see, e.g., Booch et al. (1998)). A related idea is the merging of
OOM techniques and modeling languages, particularly in the area of con-
straint logic programming and combinations with local search. For example,
Michel and van Hentenryck (2001) and Laburthe and Caseau (1998) explore
these notions.

In order to apply optimization methods to a new type of problem, corre-
sponding models and algorithms have to be “coded” so that they are accessi-
ble to a computer. One way to achieve this is the use of a modeling language.
Over the years substantial progress has been made in developing tools to
simplify the design and implementation of models and algorithms. One of
the research achievements is a considerable reduction in development time
while preserving most of the efficiency of specialized software.

Modeling languages are being extended into new domains such as com-
plementarity problems (see Ferris et al. (1999)) and stochastic linear pro-
gramming (see Buchanan et al. (2002)). Extension of the modeling language
domain to include combinatorial optimization problems is also the topic of
on-going research. Such problems can often be specified more naturally as
constraint programs than as integer programs, which can be exploited by

232 10. Research Directions and References

modeling languages that have constraint programming capabilities (Fourer
(1998), van Hentenryck (1999), van Hentenryck and Michel (2002)). These
approaches have been quite successfully applied to problems with a significant
number of logical constraints (for example, special scheduling and assignment
problems). Sometimes modeling language support for a mixture of CP and
MIP capabilities is the most effective means of addressing a particular prob-
lem (see, e.g., Jain and Grossmann (2001)).

Modeling languages provide very high-level algebraic and set notations
to concisely express mathematical problems that can then be solved using
state-of-the-art solvers. Because these modeling languages do not require
specific programming skills they are readily used by a wide audience. In
Chapter 7 we provided implementations of mrp, MRPII, and SCPc in
some popular modeling languages, namely AMPL (Algebraic Modeling Lan-
guage for Mathematical Programming; see, e.g., Fourer et al. (2002), Fourer
(1998)), GAMS (General Algebraic Modeling System; see Bisschop and Meer-
aus (1982), Brooke et al. (1992)), MPL (Mathematical Programming Lan-
guage), OPL (Optimization Programming Language), and Mosel (see, e.g.,
Colombani and Heipcke (2002), Guéret et al. (2002), Begain et al. (2001)).
As we have shown, the modeling languages provide the power and flexibility
to express well-known production planning models as optimization opportu-
nities and support their extension to enterprise planning models.

Bibliography

Adenso-Dı́az, B. and M. Laguna (1996). Modelling the load levelling problem
in master production scheduling for mrp systems. International Journal of
Production Research 34, 483–493.

Afentakis, P., B. Gavish, and U. Karmarkar (1984). Computationally efficient
optimal solutions to the lot-sizing problem in multistage assembly systems.
Management Science 30, 222–239.

Aggoun, L. and L. Benkherouf (2002). Filtering and predicting the cost of
hidden perished items in an inventory model. Journal of Applied Mathe-
matics and Stochastic Analysis 15 (3), 235–245.

Asmundsson, J., R.L. Rardin, and R. Uzsoy (2002). Tractable nonlinear
capacity models for aggregate production planning. Working paper, School
of Industrial Engineering, Purdue University, West Lafayette.

Asmundsson, J., R.L. Rardin, and R. Uzsoy (2003). An experimental com-
parison of linear programming models for production planning utilizing
fixed lead time and clearing functions. Working paper, School of Industrial
Engineering, Purdue University, West Lafayette.

Atamtürk, A. and D.S. Hochbaum (2001). Capacity acquisition, subcontract-
ing, and lot sizing. Management Science 47, 1081–1100.

Aytug, H. and G. J. Koehler (1996). Stopping criteria for finite length genetic
algorithms. INFORMS Journal on Computing 8, 183–191.

Bäck, T. (Ed.) (1997). Proceedings of the Seventh International Conference
on Genetic Algorithms, Michigan State University, East Lansing, MI, July
19-23, 1997. Morgan Kaufmann, San Francisco.

Baker, K.R. (1974). Introduction to Sequencing and Scheduling. Wiley, New
York.

Baker, K.R. and G.D. Scudder (1990). Sequencing with earliness and tardi-
ness penalties: A review. Operations Research 38, 22–36.

Balkhi, Z.T. and L. Benkherouf (2004). On an inventory model for deteriorat-
ing items with stock dependent and time–varying demand rates. Computers
& Operations Research 31, 223–240.

Bartezzaghi, E., G. Spina, and R. Verganti (1994). Lead-time models of
business processes. International Journal of Operations and Production
Management 14 (5), 5–20.

234 Bibliography

Bassok, Y. and R. Anupindi (1997). Analysis of supply contracts with total
minimum commitment. IIE Transactions 29, 373–381.

Beale, E.M.L. and J.A. Tomlin (1970). Special facilities in a general math-
ematical programming system for non-convex problems using ordered sets
of variables. In J. Lawrence (Ed.), Proceedings of the 5th International
Conference on Operations Research. Tavistock, London, 447–454.

Begain, K., G. Bolch, and H. Herold (2001). Practical Performance Modeling:
Application of the MOSEL Language. Kluwer, Boston.

Belenky, A.S. (1998). Operations Research in Transportation Systems: Ideas
and Schemes of Optimization Methods for Strategic Planning and Opera-
tions Management. Kluwer, Boston.

Belouadah, H. and C.N. Potts (1994). Scheduling identical parallel machines
to minimize total weighted completion time. Discrete Applied Mathemat-
ics 48, 201–218.

Belvaux, G. and L.A. Wolsey (2000). bc – prod: A specialized branch-and-cut
system for lot-sizing problems. Management Science 46, 724–738.

Ben-Daya, M. and A. Raouf (1994). Inventory models involving lead time
as a decision variable. Journal of the Operational Research Society 45,
579–582.

Benkherouf, L., A. Boumenir, and L. Aggoun (2003). A diffusion inven-
tory model for deteriorating items. Applied Mathematics and Computa-
tion 138 (1), 21–39.

Bes, C. and S.P. Sethi (1988). Concepts of forecast and decision horizons:
Applications to dynamic stochastic optimization problems. Mathematics
of Operations Research 13, 295–310.

Bhaskaran, S. and M.A. Turnquist (1990). Multiobjective transportation
considerations in multiple facility location. Transportation Research-A 24,
139–148.

Billington, P.J., J.O. McClain, and L.J. Thomas (1983). Mathematical pro-
gramming approaches to capacity-constraint mrp systems: Review, formu-
lation and problem reduction. Management Science 29, 1126–1141.

Birge, J.R. and F. Louveaux (1997). Introduction to Stochastic Programming.
Springer, New York.

Birge, J.R., S. Takriti, and E. Long (1995). Intelligent unified control of
unit commitment and generation allocation. Technical Report 94-26; re-
vised, University of Michigan, Ann Arbor, Department of Industrial and
Operations Engineering.

Bisschop, J. and A. Meeraus (1982). On the development of a general alge-
braic modeling system in a strategic planning environment. Mathematical
Programming Study 20, 1–29.

Bitran, G.R., E.A. Haas, and A.C. Hax (1981). Hierarchical production plan-
ning: A single stage system. Operations Research 29, 717–743.

Bitran, G.R., E.A. Haas, and A.C. Hax (1982). Hierarchical production plan-
ning: A two stage system. Operations Research 30, 232–251.

Bibliography 235

Bitran, G.R. and A.C. Hax (1977). On the design of hierarchical production
planning systems. Decision Sciences 8, 28–54.

Blazewicz, J., K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz (2001).
Scheduling Computer and Manufacturing Processes (2 ed.). Springer,
Berlin.

Blum, C. and A. Roli (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys 35 (3),
268–308.

Blumenfeld, D., L. Burns, and C. Daganzo (1991). Synchronizing production
and transportation schedules. Transportation Research-B 25, 23–37.

Booch, G., J. Rumbaugh, and I. Jacobson (1998). The Unified Modeling
Language User Guide. Addison-Wesley, Reading.

Bowersox, D.J. (1974). Logistical Management. MacMillan Publishing, New
York.

Bowersox, D.J., D.J. Closs, and M.B. Cooper (2002). Supply Chain Logistics
Management. McGraw-Hill, New York.

Brooke, A., D. Kendrick, A. Meeraus, and R. Rosenthal (1992). GAMS, A
User’s Guide and Tutorial. Scientific Press, South San Francisco, CA.

Brucker, P. (2004). Scheduling Algorithms (4 ed.). Springer, Berlin.
Buchanan, C.S., K.I.M. McKinnon, and G.K. Skondras (2002). The recursive

definition of stochastic linear programming problems within an algebraic
modeling language. Annals of Operations Research 104, 15–32.

Buzacott, J.A. and J.G. Shantikumar (1993). Stochastic Models of Manufac-
turing Systems. Englewood Cliffs, New York.

Cachon, G.P. (2003). Supply chain coordination with contracts. In A.G.
de Kok and S.C. Graves (Eds.), Supply Chain Management: Design, Coor-
dination and Operation, Handbooks in Operations Research and Manage-
ment Science. North-Holland, Amsterdam, 229–339.

Caramanis, M.C. and O.M. Anli (1999). Dynamic lead time modeling for JIT
production planning. In Proceedings of the IEEE International Conference
on Robotics and Automation, Volume 2. 1450–1455.

Carøe, C.C. and R. Schultz (1999). Dual decomposition in stochastic integer
programming. Operations Research Letters 24, 37–45.

Carøe, C.C. and J. Tind (1997). A cutting-plane approach to mixed 0-
1 stochastic integer programs. European Journal of Operational Re-
search 101, 306–316.

Carøe, C.C. and J. Tind (1998). L-shaped decomposition of two-stage
stochastic programs with integer recourse. Mathematical Programming 83,
451–464.

Chand, S., V.N. Hsu, and S. Sethi (2002). Forecast, solution, and rolling
horizons in operations management problems: A classified bibliography.
Manufacturing & Service Operations Management 4, 25–43.

236 Bibliography

Chandra, P. and M.M. Tombak (1992). Models for the evaluation of routing
and machine flexibility. European Journal of Operational Research 60,
156–165.

Chen, F. (1998). Stationary policies in multiechelon inventory systems with
deterministic demand and backlogging. Operations Research 46, 26–34.

Chen, F. (2003). Information sharing and supply chain coordination. In
A.G. de Kok and S.C. Graves (Eds.), Supply Chain Management: Design,
Coordination and Operation, Handbooks in Operations Research and Man-
agement Science. North-Holland, Amsterdam, 341–421.

Chen, F., Z. Drezner, J.K. Ryan, and D. Simchi-Levi (2000). Quantifying the
bullwhip effect in a simple supply chain: The impact of forecasting, lead
times, and information. Management Science 46, 436–443.

Cheng, T.C.E., J.N.D. Gupta, and G. Wang (2000). A review of flowshop
scheduling research with setup times. Production and Operations Manage-
ment 9, 262–282.

Chopra, S. and P. Meindl (2003). Supply Chain Management (2 ed.).
Prentice-Hall, Upper Saddle River.

Christopher, M. (1986). The Strategy of Distribution Management. Heine-
mann Professional Publishing, London.

Christopher, M. (1999). Logistics and Supply Chain Management: Strategies
for Reducing Cost and Improving Service. Pitman Publishing, London.

Clark, A.R. and V.A. Armentano (1995). A heuristic for a resource-
capacitated multi-stage lot-sizing problem with lead times. Journal of the
Operational Research Society 46, 1208–1222.

Clarke, G. and J.W. Wright (1964). Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research 12, 568–581.

Cohen, M.A. and H.L. Lee (1988). Strategic analysis of integrated production
distribution systems: Models and methods. Operations Research 36, 216–
228.

Colombani, Y. and S. Heipcke (2002). Mosel: An extensible environment
for modeling and programming solutions. In N. Jussien and F. Laburthe
(Eds.), Proceedings of CP-AI-OR’02 Le Croisic March 2002. 277–290.

Cooper, M.C., D.M. Lambert, and J.D. Pagh (1997). Supply chain manage-
ment: More than a new name for logistics. The International Journal of
Logistics Management 8 (1), 1–14.

Cordeau, J.-F., P. Toth, and D. Vigo (1998). A survey of optimization models
for train routing and scheduling. Transportation Science 32, 380–404.

Daganzo, C.F. (2003). A Theory of Supply Chains, Volume 526 of Lecture
Notes in Economics and Mathematical Systems. Springer, Berlin.

Daskin, M.S. (1985). Logistics: An overview of the state of the art and
perspectives on future research. Transportation Research-A 19, 383–398.

Davis, G.M. and S.W. Brown (1974). Logistics Management. Lexington
Books, Toronto.

Bibliography 237

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York.

de Kok, A.G. and S.C. Graves (Eds.) (2003). Supply Chain Management:
Design, Coordination and Operation. Handbooks in Operations Research
and Management Science. North-Holland, Amsterdam.

de Kok, T.G. and J.C. Fransoo (2003). Planning supply chain operations:
Definition and comparison of planning concepts. In A.G. de Kok and
S.C. Graves (Eds.), Supply Chain Management: Design, Coordination and
Operation, Handbooks in Operations Research and Management Science.
North-Holland, Amsterdam, 597–675.

Dickersbach, J.T. (2004). Supply Chain Management with APO. Springer,
Berlin.

Disney, S.M. and D.R. Towill (2003). Vendor–managed inventory and bull-
whip reduction in a two–level supply chain. International Journal of Op-
erations & Production Management 23 (6), 625–651.

Domschke, W., A. Scholl, and S. Voß (1997). Produktionsplanung (2 ed.).
Springer, Berlin.

Domschke, W. and S. Voß (1990). Ansätze zur strategischen Standort- und
Produktionsplanung - ein Anwendungsbeispiel. In K.-P. Kistner, J.H.
Ahrens, G. Feichtinger, J. Minnemann, and L. Streitferdt (Eds.), Oper-
ations Research Proceedings 1989. Berlin, Springer, 87–94.

Dorndorf, U., E. Pesch, and T. Phan-Huy (2000). A time-oriented branch-
and-bound algorithm for resource-constrained project scheduling with gen-
eralised precedence constraints. Management Science 46, 1365–1384.

Drexl, A., B. Fleischmann, H.-O. Günther, H. Stadtler, and H. Tempelmeier
(1994). Konzeptionelle Grundlagen kapazitätsorientierter PPS-Systeme.
Zeitschrift für betriebswirtschaftliche Forschung 46, 1022–1045.

Drexl, A. and A. Kimms (1997). Lot sizing and scheduling – Survey and
extensions. European Journal of Operational Research 99, 221–235.

Duin, C.W. and S. Voß (1999). The pilot method: A strategy for heuristic
repetition with application to the Steiner problem in graphs. Networks 34,
181–191.

Dyckhoff, H., R. Lackes, and J. Reese (Eds.) (2004). Supply Chain Manage-
ment and Reverse Logistics. Springer, Berlin.

Dye, C.-Y. and H.-J. Chang (2003). A replenishment policy for deteriorating
items with linear trend demand and shortages when payment periods are
offered. Information and Management Sciences 14 (2), 31–45.

Enns, S.T. (2001). MRP performance effects due to lot size and planned lead
time settings. International Journal of Production Research 39, 461–480.

Ertogral, K. and S.D. Wu (2000). Auction-theoretic coordination of produc-
tion planning in the supply chain. IIE Transactions 32, 931–940.

Ettl, M., G.E. Feigin, G.Y. Lin, and D.D. Yao (2000). A supply network
model with base-stock control and service requirements. Operations Re-
search 48, 216–232.

238 Bibliography

Ferris, M.C., R. Fourer, and D.M. Gay (1999). Expressing complementarity
problems in an algebraic modeling language and communicating them to
solvers. SIAM Journal on Computing 9, 991–1009.

Fink, A. and S. Voß (1999a). Applications of modern heuristic search methods
to pattern sequencing problems. Computers & Operations Research 26, 17–
34.

Fink, A. and S. Voß (1999b). Generic metaheuristics application to industrial
engineering problems. Computers & Industrial Engineering 37, 281–284.

Fink, A. and S. Voß (2002). HotFrame: A heuristic optimization framework.
In S. Voß and D.L. Woodruff (Eds.), Optimization Software Class Libraries.
Kluwer, Boston, 81–154.

Fink, A. and S. Voß (2003). Solving the continuous flow-shop scheduling
problem by metaheuristics. European Journal of Operational Research 151,
400–414.

Fink, A., S. Voß, and D.L. Woodruff (2003). Metaheuristic class libraries. In
F.W. Glover and G.A. Kochenberger (Eds.), Handbook of Metaheuristics.
Kluwer, Boston, 515–535.

Fleischmann, B. (1998). Design of freight traffic networks. In B. Fleischmann,
J.A.E.E. van Nunen, M.G. Speranza, and P. Stähly (Eds.), Advances in
Distribution Logistics, Volume 460 of Lecture Notes in Economics and
Mathematical Systems. Springer, Berlin, 55–81.

Fleischmann, B. and H. Meyr (2003). Planning hierarchy, modeling and ad-
vanced planning systems. In A.G. de Kok and S.C. Graves (Eds.), Supply
Chain Management: Design, Coordination and Operation, Handbooks in
Operations Research and Management Science. North-Holland, Amster-
dam, 455–523.

Fleischmann, B. and H. Meyr (2004). Customer orientation in advanced
planning systems. In H. Dyckhoff, R. Lackes, and J. Reese (Eds.), Supply
Chain Management and Reverse Logistics. Springer, Berlin, 297–321.

Fleischmann, M. (2001). Quantitative Models for Reverse Logistics. Springer,
Berlin.

Fleischmann, M., P. Beullens, J.M. Bloemhof-Ruwaard, and L.N. van
Wassenhove (2001). The impact of product recovery on logistics network
design. Production and Operations Management 10, 156–173.

Fogel, D.B. (Ed.) (1998). Evolutionary Computation: The Fossil Record.
IEEE Press, New York.

Fourer, R. (1998). Extending a general-purpose algebraic modeling language
to combinatorial optimization: A logic programming approach. In D.L.
Woodruff (Ed.), Advances in Computational and Stochastic Optimization,
Logic Programming, and Heuristic Search. Kluwer, Boston, 31–74.

Fourer, R., D.M. Gay, and B.W. Kernighan (2002). AMPL: A Modeling
Language for Mathematical Programming (2 ed.). Duxbury Press, Belmont,
CA.

Bibliography 239

Fowler, J.W., G.L. Hogg, and S.J. Mason (2002). Workload control in the
semiconductor industry. Production Planning & Control 13, 568–578.

Fox, M.S. and S.F. Smith (1984). ISIS: A knowledge-based system for factory
scheduling. Expert Systems 1, 25–49.

GAlib (2005). http://lancet.mit.edu/ga/. A C++ Library of Genetic
Algorithm Components; last checked Oct 2005.

Ganeshan, R. and T.P. Harrison (1995). http://silmaril.smeal.psu.edu/
misc/supply_chain_intro.html. An Introduction to Supply Chain Man-
agement; last checked Aug 2002.

Garey, M.R. and D.S. Johnson (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, New York.

Gavirneni, S., R. Kapuscinski, and S. Tayur (1999). Value of information in
capacitated supply chains. Management Science 45, 16–24.

Genitor (2005). http://www.cs.colostate.edu/~genitor/. The Genitor
Group; last checked Oct 2005.

Geoffrion, A.M. (1992). The SML language for structured modeling: Levels
1 and 2. Operations Research 40, 38–57.

Geoffrion, A.M. and R.E. Marsten (1972). Integer programming: A frame-
work and state-of-the-art survey. Management Science 18, 465–491.

Geunes, J. and P.M. Pardalos (2003). Network optimization in supply chain
management and financial engineering: An annotated bibliography. Net-
works 42, 66–84.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research 13, 533–549.

Glover, F.W. and G.A. Kochenberger (Eds.) (2003). Handbook of Metaheuris-
tics. Kluwer, Boston.

Glover, F. and M. Laguna (1997). Tabu Search. Kluwer, Boston.
Goetschalckx, M., C.J. Vidal, and K. Dogan (2002). Modeling and design of

global logistics systems: A review of integrated strategic and tactical mod-
els and design algorithms. European Journal of Operational Research 143,
1–18.

Goldratt, E.M. and R.E. Fox (1986). The Race. North River Press, Croton-
on-Hudson.

Gosavi, A. (2003). Simulation–Based Optimization. Kluwer, Boston.
Gouveia, L. and S. Voß (1995). A classification of formulations for the (time-

dependent) traveling salesman problem. European Journal of Operational
Research 83, 69–82.

Goyal, S.K. and B.C. Giri (2001). Recent trends in modeling of deteriorating
inventory. European Journal of Operational Research 134, 1–16.

Graves, S.C. (1986). A tactical planning model for job shops. Operations
Research 34, 522–533.

Graves, S.C., D.B. Kletter, and W.B. Hetzel (1998). A dynamic model for
requirements planning with application to supply chain optimization. Op-
erations Research 46, S35–S49.

240 Bibliography

Greenberg, H.J. (1998). An annotated bibliography for post-solution analysis
in mixed integer programming and combinatorial optimization. In D.L.
Woodruff (Ed.), Advances in Computational and Stochastic Optimization,
Logic Programming, and Heuristic Search. Kluwer, Boston, 97–148.

Greistorfer, P. and S. Voß (2005). Controlled pool maintenance for meta-
heuristics. In C. Rego and B. Alidaee (Eds.), Metaheuristic Optimization
Via Memory and Evolution. Kluwer, Boston, 387–424.

Guéret, C., C. Prins, and M. Sevaux (2002). Applications of Optimization
with Xpress-MP. Dash Optimization, Northants. Translated and revised
by S. Heipcke.

Guide Jr., V.D.R. and L.N. van Wassenhove (Eds.) (2003). Business As-
pects of Closed-Loop Supply Chains. Carnegie Mellon University Press,
Pittsburgh.

Gumaer, R. (1996). Beyond ERP and MRP II – Optimized planning and
synchronized manufacturing. IIE Solutions 28 (9), 32–35.

Gupta, J.N.D., A.M.A. Hariri, and C.N. Potts (1997). Scheduling a two-
stage hybrid flow shop with parallel machines at the first stage. Annals of
Operations Research 69, 171–191.

Gutin, G. and A.P. Punnen (Eds.) (2002). The Traveling Salesman Problem
and Its Variations. Kluwer, Boston.

Hackman, S.T. and R.C. Leachman (1989). A general framework for modeling
production. Management Science 35, 478–495.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of
Operations Research 13, 311–329.

Hall, R.W. (Ed.) (2003). Handbook of Transportation Science (2 ed.). Kluwer,
Boston.

Hall, R.W. and M. Racer (1995). Transportation with common carrier and
private fleets: System assignment and shipment frequency optimization.
IIE Transactions 27, 217–225.

Hall, W.R. (1983). Zero Inventories. McGraw-Hill, Homewood,Il.
Handfield, R.B. and E.L. Nichols (1999). Introduction to Supply Chain Man-

agement. Prentice Hall, Upper Saddle River.
Hart, J.P. and A.W. Shogan (1987). Semi-greedy heuristics: An empirical

study. Operations Research Letters 6, 107–114.
Haugen, K.V., A. Løkketangen, and D.L. Woodruff (2001). Progressive hedg-

ing as a meta-heuristic applied to stochastic lot-sizing. European Journal
of Operational Research 132, 116–122.

Haupt, R. (1989). A survey of priority rule–based scheduling. OR Spek-
trum 11, 3–16.

Hax, A.C. and D. Candea (1984). Production and Inventory Management.
Prentice-Hall, Englewood Cliffs, NJ.

Hax, A.C. and H.C. Meal (1975). Hierarchical integration of production plan-
ning and scheduling. In M.A. Geisler (Ed.), TIMS Studies in Management

Bibliography 241

Science, Volume 1: Logistics. North Holland/American Elsevier, New York,
53–69.

Helgason, T. and S.W. Wallace (1991). Approximate scenario solutions in
the progressive hedging algorithm. A numerical study with an application
to fisheries management. Annals of Operations Research 31, 425–444.

Hertz, A. and D. Kobler (2000). A framework for the description of evolu-
tionary algorithms. European Journal of Operational Research 126, 1–12.

Hillier, F.S. and G.J. Lieberman (2004). Introduction to Operations Research
(8 ed.). McGraw-Hill, New York.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Univer-
sity of Michigan Press, Ann Arbor.

Homburg, C. and C. Schneeweiss (2000). Negotiations within supply chains.
Computational & Mathematical Organization Theory 6, 47–59.

Hooker, J.N. (1998). Constraint satisfaction methods for generating valid
cuts. In D.L. Woodruff (Ed.), Advances in Computational and Stochastic
Optimization, Logic Programming, and Heuristic Search. Kluwer, Boston,
1–30.

Hopp, W.J. and M.L. Spearman (2000). Factory Physics (2 ed.). Irwin
McGraw-Hill, Boston.

Hopp, W.J., M.L. Spearman, and D.L. Woodruff (1990). Practical strategies
for lead time reduction. Manufacturing Review 3 (2), 78–84.

Hsu, V.N. (2000). Dynamic economic lot size model with perishable inventory.
Management Science 46, 1159–1169.

Huang, G.Q., J.S.K. Lau, and K.L. Mak (2003). The impacts of sharing pro-
duction information on supply chain dynamics: A review of the literature.
International Journal of Production Research 41, 1483–1517.

Hung, Y.F. and R.C. Leachman (1996). A production planning methodol-
ogy for semiconductor manufacturing based on iterative simulation and
linear programming calculations. IEEE Transactions on Semiconductor
Manufacturing 9, 257–269.

Hwang, J. and M.R. Singh (1998). Optimal production policies for multi-stage
systems with setup costs and uncertain capacities. Management Science 44,
1279–1294.

Hwang, S. and R. Uzsoy (2004). A single-product dynamic lot sizing model
with work in process and congestion. Technical report, School of Industrial
Engineering, Purdue University, West Lafayette.

Ibaraki, T., K. Nonobe, and M. Yagiura (Eds.) (2005). Metaheuristics:
Progress as Real Problem Solvers. Springer, New York.

Imaizumi, J., Y. Yamakoshi, M. Murakami, and S. Morito (1998). A decom-
position approach to two-stage hybrid flow shop scheduling with diverging
jobs. Communications of the Operations Research Society of Japan 43,
624–631.

242 Bibliography

Inderfurth, K., G. Lindner, and N.R. Rachaniotis (2005). Lot sizing in a
production system with rework and product deterioration. International
Journal of Production Research 43, 1355–1374.

Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical
and Computer Modelling 18, 29–57.

Jagannathan, R. and L.S. Juang (1998). Solution methods for material re-
quirement planning with lot-size dependent lead times. Annals of Opera-
tions Research 76, 201–217.

Jain, V. and I.E. Grossmann (2001). Algorithms for hybrid MILP/CP models
for a class of optimization problems. INFORMS Journal on Computing 13,
258–276.

Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon (1989). Op-
timization by simulated annealing: An experimental evaluation; Part I,
Graph partitioning. Operations Research 37, 865–892.

Johnson, D.S. and L.A. McGeoch (1997). The traveling salesman problem:
A case study. In E.H.L. Aarts and J.K. Lenstra (Eds.), Local Search in
Combinatorial Optimization. Wiley, Chichester, 215–310.

Johnson, L.A. and D.S. Montgomery (1974). Operations Research in Produc-
tion Planning, Scheduling and Inventory Control. Wiley, New York.

Johnson, M.E. and D.F. Pyke (Eds.) (2000). Special Issue on Teaching Supply
Chain Management, Volume 9 (1) of Production and Operations Manage-
ment.

Jonsbr̊aten, T.W., R.J.-B. Wets, and D.L. Woodruff (1998). A class of
stochastic programs with decision dependent random elements. Annals
of Operations Research 82, 83–106.

Kall, P. and S.W. Wallace (1994). Stochastic Programming. Wiley, New York.
Kamien, M.I. and L. Li (1990). Subcontracting, coordination, flexibility, and

production smoothing in aggregate planning. Management Science 36,
1352–1363.

Kanet, J.J. (1988). Mrp 96: Time to rethink manufacturing logistics. Pro-
duction and Inventory Management Journal 29 (2), 57–61.

Kanet, J.J. and M. Barut (2003). Problem-based learning for production and
operations management. Decision Sciences Journal of Innovative Educa-
tion 1, 99–118.

Karmarkar, U.S. (1987). Lot sizes, lead times and in-process inventories.
Management Science 33, 409–418.

Karmarkar, U.S. (1989a). Batching to minimize flow times on parallel het-
erogeneous machines. Management Science 35, 607–613.

Karmarkar, U.S. (1989b). Capacity loading and release planning with work-
in-process (WIP) and leadtimes. Journal of Manufacturing and Operations
Management 2, 105–123.

Karmarkar, U.S. (1993a). Lot size, manufacturing lead times and utilization.
Working paper no. QM8321, University of Rochester.

Bibliography 243

Karmarkar, U.S. (1993b). Manufacturing lead times, order release and ca-
pacity loading. In S.C. Graves, A. Rinnooy Kan, and P. Zipkin (Eds.), Lo-
gistics of Production and Inventory, Volume 4 of Handbooks in Operations
Research and Management Science. North-Holland, Amsterdam, 287–329.

Karmarkar, U.S., S. Kekre, and S. Kekre (1985). Lot sizing in multi-item
multi machine job shops. IIE Transactions 17, 290–297.

Katok, E., H.S. Lewis, and T.P. Harrison (1998). Lot sizing in general as-
sembly systems with setup costs, setup times, and multiple constrained
resources. Management Science 44, 859–877.

Katz, M.L. (1989). Vertical contractual relations. In R. Schmalensee and
R.D. Willig (Eds.), Handbook of Industrial Organization. Elsevier, New
York.

Kekre, S. and S. Kekre (1985). Work-in-process considerations in job shop
capacity planning. Technical report, GSIA, Carnegie Mellon University.

Kimura, O. and H. Terada (1981). Design and analysis of pull system, a
method of multi-stage production control. International Journal of Pro-
duction Research 19, 241–253.

Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vecchi (1983). Optimization by
simulated annealing. Science 220, 671–680.

Klein, R. (2000). Scheduling of Resource-Constrained Projects. Kluwer,
Boston.

Klein Haneveld, W.K. and M.H. van der Vlerk (1999). Stochastic integer
programming: General models and algorithms. Annals of Operations Re-
search 85, 39–57.

Klose, A., M.G. Speranza, and L.N. van Wassenhove (Eds.) (2002). Quantita-
tive Approaches to Distribution Logistics and Supply Chain Management,
Volume 519 of Lecture Notes in Economics and Mathematical Systems.
Springer, Berlin.

Knolmayer, G., P. Mertens, and A. Zeier (2002). Supply Chain Management
based on SAP Systems. Springer, Berlin.

Koenig, D.T. (1994). Manufacturing Engineering: Principles for Optimiza-
tion (2 ed.). Taylor & Francis, Washington.

Krajewski, L.J., B.E. King, L.P. Ritzman, and D.S. Wong (1987). Kan-
ban, mrp, and shaping the manufacturing environment. Management Sci-
ence 33, 39–57.

Kushner, H.J. (2001). Heavy Traffic Analysis of Controlled Queueing and
Communication Networks. Springer, New York.

Kwon, O.K., C.D. Martland, and J.M. Sussman (1998). Routing and schedul-
ing temporal and heterogeneous freight car traffic on rail networks. Trans-
portation Research-E 34, 101–115.

Laburthe, F. and Y. Caseau (1998). SALSA: A language for search algo-
rithms. In M. Maher and J.-F. Puget (Eds.), Principles and Practice of
Constraint Programming – CP98, Volume 1520 of Lecture Notes in Com-
puter Science. Springer, Berlin, 310–324.

244 Bibliography

Laguna, M. and R. Mart́ı (2003). Scatter Search. Kluwer, Boston.
Lambrecht, M.R., P.L. Ivens, and N.J. Vandaele (1998). ACLIPS: A ca-

pacity and lead time integrated procedure for scheduling. Management
Science 44, 1548–1561.

Lamming, R. (1996). Squaring lean supply with supply chain management.
International Journal of Operations & Production Management 16 (2),
183–196.

Laporte, G. and M. Gendreau (Eds.) (1995). Freight Transportation, Vol-
ume 61 of Annals of Operations Research.

Larson, P.D. and A. Halldorsson (2004). Logistics versus supply chain man-
agement: an international survey. International Journal of Logistics 7 (1),
17–31.

Laurière, J.-L. (1978). A language and a program for stating and solving
combinatorial problems. Artificial Intelligence 10, 29–127.

Lautenschläger, M. and H. Stadtler (1998). Modelling lead times depending
on capacity utilization. Technical report, Technische Hochschule Darm-
stadt, Darmstadt, Germany.

Law, A.M. and W.D. Kelton (2000). Simulation Modeling and Analysis (3rd
ed.). McGraw-Hill, Boston.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (Eds.)
(1985). The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, Chichester.

Leachman, R.C. (1993). Modeling techniques for automated production plan-
ning in the semiconductor industry. In T.A. Ciriani and R.C. Leachman
(Eds.), Optimization in Industry: Mathematical Programming and Mod-
elling Techniques in Practice. Wiley, New York, 1–30.

Lee, H.L. and C. Billington (1993). Material management in decentralized
supply chains. Operations Research 41, 835–847.

Lee, H.L., V. Padmanabhan, and S. Whang (1997). Information distortion
in a supply chain: The bullwhip effect. Management Science 43, 546–558.

Lee, H.L., K.C. So, and C.S. Tang (2000). The value of information sharing
in a two-level supply chain. Management Science 46, 626–643.

Lee, T.S., E.M. Malstrom, S.B. Vardeman, and V.P. Petersen (1989). On the
refinement of the variable lead time/constant demand lot-sizing model: The
effect of true average inventory level on the traditional solution. Interna-
tional Journal of Production Research 27, 883–899.

Leisten, R. (1998). An LP-aggregation view on aggregation in multi-level
production planning. Annals of Operations Research 82, 413–434.

Liao, C.J. (1994). A new node selection strategy in the branch-and-bound
procedure. Computers & Operations Research 21, 1095–1101.

Liepins, G.E. and M.D. Vose (1992). Characterizing crossover in genetic
algorithms. Annals of Mathematics and Artificial Intelligence 5, 27–34.

Bibliography 245

Logendran, R. and P. Ramakrishna (1997). A methodology for simultane-
ously dealing with machine duplication and part subcontracting in cellular
manufacturing systems. Computers & Operations Research 24, 97–116.

Løkketangen, A. and F. Glover (1996). Probabilistic move selection in tabu
search for zero-one mixed integer programming problems. In I.H. Osman
and J.P. Kelly (Eds.), Meta-Heuristics: Theory & Applications. Kluwer,
Boston, 467–487.

Løkketangen, A. and D.L. Woodruff (1996). Progressive hedging and tabu
search applied to mixed integer (0,1) multistage stochastic programming.
Journal of Heuristics 2, 111–128.

Lundy, M. and A. Mees (1986). Convergence of an annealing algorithm.
Mathematical Programming 34, 111–124.

Luscombe, M. (1993). MRP II: Integrating the Business. Butterworth-
Heinemann, Oxford.

Martin, R.K. (1987). Generating alternative mixed-integer programming
models using variable redefinition. Operations Research 35, 820–831.

Martinich, J.S. (1997). Production and Operations Management: An Applied
Modern Approach. Wiley, New York.

McAloon, K., C. Tretkoff, and G. Wetzel (1998). Disjunctive programming
and cooperative solvers. In D.L. Woodruff (Ed.), Advances in Compu-
tational and Stochastic Optimization, Logic Programming, and Heuristic
Search. Kluwer, Boston, 75–96.

Meloni, C., D. Pacciarelli, and M. Pranzo (2004). A rollout metaheuristic
for job shop scheduling problems. Annals of Operations Research 131,
215–235.

Mendoza, G.R. (2003). Transient Behavior of Stochastic Networks: Appli-
cation to Production Planning with Load-Dependent Lead Times. Ph. D.
thesis, Georgia Institute of Technology.

Metropolis, N., M. Rosenbluth, A. Rosenbluth, A. Teller, and E. Teller (1953).
Equation of state calculations by fast computing machines. Journal of
Chemical Physics 21, 1087–1092.

Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines.
European Journal of Operational Research 139, 277–292.

Michel, L. and P. van Hentenryck (2001). Modeler++: A modeling layer for
constraint programming libraries. Technical report, Wye College (Imperial
College), Ashford, Kent UK.

Milano, M. (Ed.) (2004). Constraint and Integer Programming. Kluwer,
Boston.

Miltenburg, J. and W. Zhang (1991). A comparative evaluation of nine well-
known algorithms for solving the cell formation problem in group technol-
ogy. Journal of Operations Management 10 (1), 44–72.

Minner, S. (2000). Strategic Safety Stocks in Supply Chains, Volume 490 of
Lecture Notes in Economics and Mathematical Systems. Springer, Berlin.

246 Bibliography

Missbauer, H. (2002). Lot sizing in workload control systems. Production
Planning and Control 13 (7), 649–664.

Moinzadeh, K. and S. Nahmias (1988). A continuous review model for an
inventory system with two supply modes. Management Science 34, 761–
773.

Monma, C.L. and C.N. Potts (1993). Analysis of heuristics for preemp-
tive parallel machine scheduling with batch setup times. Operations Re-
search 41, 981–993.

Moore, J.H. and L.R. Weatherford (2001). Decision Modeling with Microsoft
Excel (6 ed.). Prentice-Hall, Upper Saddle River.

Muhanna, W.A. (1993). An object-oriented framework for model manage-
ment and DSS development. Decision Support Systems 9, 217–229.

Muhanna, W.A. and R.A. Pick (1994). Meta-modeling concepts and tools
for model management: A systems approach. Management Science 40,
1093–1123.

Mulvey, J.M. and H. Vladimirou (1991). Applying the progressive hedging
algorithm to stochastic generalized networks. Annals of Operations Re-
search 31, 399–424.

Mulvey, J.M. and H. Vladimirou (1992). Stochastic network programming
for financial planning problems. Management Science 38, 1642–1664.

Nahmias, S. (1982). Perishable inventory theory: A review. Operations Re-
search 30, 680–708.

Nahmias, S. (2004). Production and Operations Analysis (5 ed.). McGraw-
Hill / Irwin, Chicago.

Oliver, R.K. and M.D. Webber (1982). Outlook. Booz, Allen & Hamilton.
Orlicky, J. (1975). Material Requirements Planning: The New Way of Life

in Production and Inventory Management. McGraw-Hill, New York.
Ornek, A.M. and P.I. Collier (1988). The determination of in-process in-

ventory and manufacturing lead time in multi-stage production systems.
International Journal of Operations and Production Management 8 (1),
74–80.

Padberg, M. and T. Sung (1991). An analytical comparison of different formu-
lations of the travelling salesman problem. Mathematical Programming 52,
315–357.

Pahl, J., S. Voß, and D.L. Woodruff (2005). Production planning with load
dependent lead times: A survey. Technical report, University of Hamburg.

Pain, A.R. and C.R. Reeves (2002). Genetic algorithm optimization software
class libraries. In S. Voß and D.L. Woodruff (Eds.), Optimization Software
Class Libraries. Kluwer, Boston, 295–329.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, Reading.

Pezzella, F. and E. Merelli (2000). A tabu search method guided by shift-
ing bottleneck for the job shop scheduling problem. European Journal of
Operational Research 120, 297–310.

Bibliography 247

Pidd, M. (2003). Tools for Thinking: Modelling in Management Science (2
ed.). Wiley, Chichester.

Pinedo, M.L. (2005). Planning and Scheduling in Manufacturing and Ser-
vices. Springer, New York.

Reeves, C.R. and J.E. Rowe (2003). Genetic Algorithms – Principles and
Perspectives. Kluwer, Boston.

Rego, C. and B. Alidaee (Eds.) (2005). Metaheuristic Optimization via Mem-
ory and Evolution. Kluwer, Boston.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for
TSP Applications, Volume 840 of Lecture Notes in Computer Science.
Springer, Berlin.

Resende, M.G.C. and P. Festa (2005). An updated bibliography of GRASP.
http://www.research.att.com/~mgcr/doc/graspbib.pdf, last checked
Oct 2005.

Ribeiro, C.C. and P. Hansen (Eds.) (2002). Essays and Surveys in Meta-
heuristics. Kluwer, Boston.

Richey, R.G., S.E. Genchev, and P.J. Daugherty (2005). The role of resource
commitment and innovation in reverse logistics performance. International
Journal of Physical Distribution & Logistics Management 35 (4), 233–257.

Robinson, J.A. (1965). A machine-oriented logic based on the resolution
principle. Journal of the ACM 12, 23–41.

Rockafellar, R.T. and R.J.-B. Wets (1991). Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of Operations Research 16,
119–147.

Rohde, J. (2004). Hierarchical supply chain planning using artificial neural
networks to anticipate base–level outcomes. OR Spectrum 26, 471–492.

Rom, W.O., O.I. Tukel, and J.R. Muscatello (2002). MRP in a job shop envi-
ronment using a resource constrained project scheduling model. Omega 30,
275–286.

Roundy, R. (1986). A 98%-effective lot-sizing rule for a multi-product,
multi-stage production/inventory system. Mathematics of Operations Re-
search 11, 699–727.

Salomon, R. (1996). Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions – A survey of some theoretical
and practical aspects of genetic algorithms. Biosystems 39, 263–278.

Sana, S., S.K. Goyal, and K.S. Chaudhuri (2004). A production-inventory
model for a deteriorating item with trended demand and shortages. Euro-
pean Journal of Operational Research 157, 357–371.

Santoso, T., S. Ahmed, M. Goetschalckx, and A. Shapiro (2005). A stochastic
programming approach for supply chain network design under uncertainty.
European Journal of Operational Research 167, 96–115.

Savaskan, C., S. Bhattacharya, and L.N. van Wassenhove (2004). Closed-
loop supply chain models with product remanufacturing. Management
Science 50, 239–252.

248 Bibliography

Schneeweiss, C.A. (1999). Hierarchies in Distributed Decision Making.
Springer, New York.

Schoemig, A.K. (1999). On the corrupting influence of variability in semicon-
ductor manufacturing. In P.A. Farrington, H.B. Nembhard, D.T. Sturrock,
and G.W. Evans (Eds.), Proceedings of the 1999 Winter Simulation Con-
ference. 837–842.

Schonberger, R.J. (1986). World Class Manufacturing: The Lessons of Sim-
plicity Applied. The Free Press, New York.

Schultz, R., L. Stougie, and M.H. van der Vlerk (1998). Solving stochas-
tic programs with integer recourse by enumeration: A framework using
Gröbner basis reductions. Mathematical Programming 83, 229–252.

Sethi, S.P., H. Yan, and H. Zhang (2005). Inventory and Supply Chain Man-
agement with Forecast Updates. Springer, New York.

Shapiro, J.F. (1999). Bottom–up vs. top–down approaches to supply chain
modeling. In S. Tayur, R. Ganeshan, and M. Magazine (Eds.), Quantitative
Models for Supply Chain Management. Kluwer, Boston, 737–759.

Shapiro, J.F. (2001a). Modeling and IT perspectives on supply chain inte-
gration. Information Systems Frontiers 3, 455–464.

Shapiro, J.F. (2001b). Modeling the Supply Chain. Duxbury, Pacific Grove.
Shingo, S. (1985). A Revolution in Manufacturing: The SMED System. Pro-

ductivity Press, Cambridge. Translated by A.P. Dillon.
Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi (2002). Designing and

Managing the Supply Chain (2 ed.). Irwin McGraw-Hill, Boston.
Simpson, N.C. and S.S. Erenguc (1996). Multiple-stage production planning

research: History and opportunities. International Journal of Operations
and Production Management 16 (6), 25–40.

Smith, G.D, N.C. Steele, and R.F. Albrecht (Eds.) (1998). Artificial Neural
Nets and Genetic Algorithms. Proceedings of the International Conference
in Norwich, UK, 1997. Springer, New York.

Sniedovich, M. and S. Voß (2005). What makes the TSP a TSP? Technical
report, University of Melbourne.

Sobel, M.J. and R.Q. Zhang (2001). Inventory policies for systems with
stochastic and deterministic demand. Operations Research 49, 157–162.

Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research 35, 254–265.

Spearman, M.L. and W.J. Hopp (1998). Teaching operations management
from a science of manufacturing. Production and Operations Manage-
ment 7 (2), 132–145.

Spearman, M.L., W.J. Hopp, and D.L. Woodruff (1989). A hierarchical con-
trol architecture for CONWIP production systems. Journal of Manufac-
turing and Operations Management 2, 147–171.

Spearman, M.L., D.L. Woodruff, and W.J. Hopp (1990). CONWIP: A pull
alternative to Kanban. International Journal of Production Research 28,
879–894.

Bibliography 249

Srinivasan, A., M. Carey, and T.E. Morton (1988). Resource pricing and
aggregate scheduling in manufacturing systems. Working paper, (revised
Dec 1990), GSIA.

Stadtler, H. (2000). Improved rolling schedules for the dynamic single-level
lot-sizing problem. Management Science 46, 318–326.

Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple con-
strained resource: Internally rolling schedules with lot-sizing windows. Op-
erations Research 51, 487–502.

Stadtler, H. (2005). Supply chain management and advanced planning –
basics, overview and challenges. European Journal of Operational Re-
search 163, 575–588.

Stadtler, H. and C. Kilger (Eds.) (2005). Supply Chain Management and
Advanced Planning (3 ed.). Springer, Berlin.

Stevens, G.C. (1989). Integrating the supply chain. International Journal of
Physical Distribution & Logistics Management 19, 3–8.

Suerie, C. and H. Stadtler (2003). The capacitated lot-sizing problem with
linked lot sizes. Management Science 49, 1039–1054.

Swain, J.J. (2003). Simulation reloaded: Sixth biennial survey of discrete–
event software tools. OR/MS Today 30 (4), 46–57.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J.D. Schaf-
fer (Ed.), Proceedings of the 3rd International Conference on Genetic Al-
gorithms. Morgan Kaufmann, San Mateo, 2–9.

Tardif, V. and M.L. Spearman (1997). Diagnostic scheduling in finite-capacity
production environments. Computers & Industrial Engineering 32, 867–
878.

Tayur, S., R. Ganeshan, and M. Magazine (Eds.) (1999). Quantitative Models
for Supply Chain Management. Kluwer, Boston.

Tempelmeier, H. and M. Derstroff (1996). A Lagrangean-based heuristic
for dynamic multilevel multiitem constrained lotsizing with setup times.
Management Science 42, 738–757.

Thonemann, U.W. (2002). Improving supply-chain performance by shar-
ing advance demand information. European Journal of Operational Re-
search 142, 81–107.

Tirole, J. (1988). The Theory of Industrial Organization. MIT Press, Cam-
bridge.

Toth, P. and D. Vigo (Eds.) (2002). The Vehicle Routing Problem. Society
for Industrial & Applied Mathematics, SIAM, Philadelphia.

Trigeiro, W.W., L.J. Thomas, and J.O. McClain (1989). Capacitated lot
sizing with setup times. Management Science 35, 353–366.

Tsay, A.A., S. Nahmias, and N. Agrawal (1999). Modeling supply chain
contracts: A review. In S. Tayur, R. Ganeshan, and M. Magazine (Eds.),
Quantitative Models for Supply Chain Management. Kluwer, Boston, 299–
336.

250 Bibliography

Uzsoy, R., C. Lee, and L. Martin-Vega (1994). A review of production plan-
ning and scheduling models in the semiconductor industry part ii: shop-
floor control. IIE Transactions 26 (5), 44–55.

Vaessens, R.J.M., E.H.L. Aarts, and J.K. Lenstra (1996). Job shop scheduling
by local search. INFORMS Journal on Computing 8, 302–317.

van Buer, M.G., D.L. Woodruff, and R.T. Olson (1999). Solving the medium
newspaper production/distribution problem. European Journal of Opera-
tional Research 115, 237–253.

van der Zee, D.J. and J.G.A.J. van der Vorst (2005). A modeling framework
for supply chain simulation: Opportunities for improved decision making.
Decision Sciences 36, 65–95.

van Hentenryck, P. (1999). The OPL Optimization Programming Language.
MIT Press, Cambridge. With contributions by I. Lustig, L. Michel, and
J.-P. Puget.

van Hentenryck, P. and L. Michel (2002). The modeling language OPL – A
short overview. In S. Voß and D.L. Woodruff (Eds.), Optimization Software
Class Libraries. Kluwer, Boston, 263–294.

van Mieghem, J.A. (1999). Coordinating investment, production, and sub-
contracting. Management Science 45, 954–971.

van Roy, T.J. (1989). Multi-level production and distribution planning with
transportation fleet optimization. Management Science 35, 1443–1453.

Vendemia, W.G., B.E. Patuwo, and M.S. Hung (1995). Evaluation of lead
time in production/inventory systems with non-stationary stochastic de-
mand. Journal of the Operational Research Society 46, 221–233.

Venugopal, V. (1999). Soft-computing-based approaches to the group tech-
nology problem: A state-of-the-art review. International Journal of Pro-
duction Research 37, 3335–3357.

Vollmann, T.E., W.L. Berry, and D.C. Whybark (1988). Manufacturing Plan-
ning and Control Systems (2 ed.). Dow Jones-Irwin, Homewood.

Vose, M.D. (1999). The Simple Genetic Algorithm: Foundations and Theory.
MIT Press, Boston.

Voß, S. (1996). Dynamic tabu search strategies for the traveling purchaser
problem. Annals of Operations Research 63, 253–275.

Voß, S. (2001). Meta-heuristics: The state of the art. In A. Nareyek (Ed.),
Local Search for Planning and Scheduling, Volume 2148 of Lecture Notes
in Artificial Intelligence. Springer, Berlin, 1–23.

Voß, S., A. Fink, and C. Duin (2005). Looking ahead with the pilot method.
Annals of Operations Research 136, 285–302.

Voß, S., S. Martello, I.H. Osman, and C. Roucairol (Eds.) (1999). Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimiza-
tion. Kluwer, Boston.

Voß, S. and G. Schneidereit (2002). Interdependencies between supply con-
tracts and transaction costs. In S. Seuring and M. Goldbach (Eds.), Cost
Management in Supply Chains. Physica, Heidelberg, 253–272.

Bibliography 251

Voß, S. and D.L. Woodruff (2000). Supply chain planning: Is mrp a good
starting point? In H. Wildemann (Ed.), Supply Chain Management. TCW,
München, 177–203.

Voß, S. and D.L. Woodruff (Eds.) (2002). Optimization Software Class Li-
braries. Kluwer, Boston.

Voß, S. and D.L. Woodruff (2004). A model for multi-stage production plan-
ning with load dependent lead times. In R.H. Sprague (Ed.), Proceedings
of the 37th Annual Hawaii International Conference on System Science.
IEEE, Piscataway, DTVEA03 1–9.

Wagner, H.M. and T.M. Whitin (1958). Dynamic version of the economic
lot size model. Management Science 5, 89–96.

Wallace, S.W. and T. Helgason (1991). Structural properties of the progres-
sive hedging algorithm. Annals of Operations Research 31, 445–456.

Wallace, T.F. (1990). MRP II: Making it Happen. Oliver Wight Limited
Publications, Essex Junction, VT.

Wang, C., L. Xu, X. Liu, and X. Qin (2005). ERP research, development
and implementation in China: An overview. International Journal of Pro-
duction Research 43, 3915–3932.

Wets, R.J.-B. (1989). The aggregation principle in scenario analysis and
stochastic optimization. In S.W. Wallace (Ed.), Algorithms and Model
Formulations in Mathematical Programming. Springer, Berlin, 91–113.

Whitley, D. (1989). The genitor algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In J.D. Schaffer (Ed.),
Proceedings of the 3rd International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, 116–121.

Whittemore, A.S. and S.C. Saunders (1977). Optimal inventory under
stochastic demand with two supply options. SIAM Journal on Applied
Mathematics 32, 293–305.

Wight, O.W. (1974). Production and Inventory Management in the Computer
Age. Cahners, Boston, MA.

Williams, H.P. (2000). Model Building in Mathematical Programming (4 ed.).
Wiley, Chichester.

Wolsey, L.A. (1997). MIP modelling of changeovers in production planning
and scheduling problems. European Journal of Operational Research 99,
154–165.

Woodruff, D.L. (1997). A class library for heuristic search optimization.
INFORMS Computer Science Technical Section Newsletter 18 (2), 1–5.

Woodruff, D.L. and M.L. Spearman (1992). Sequencing and batching for two
classes of jobs with deadlines and setup times. Production and Operations
Management 1 (1), 87–102.

Woodruff, D.L. and S. Voß (2006). Planning for a big bang in a supply chain:
Fast hedging for production indicators. In R.H. Sprague (Ed.), Proceedings
of the 39th Annual Hawaii International Conference on System Science.
IEEE, Piscataway, DTIDSE03 1–6.

252 Bibliography

Wu, S.D. and H. Golbasi (2004). Multi-item, multi-facility supply chain plan-
ning: models, complexities, and algorithms. Computational Optimization
and Applications 28, 325–356.

Zhao, X., F. Lai, and S. Young (2002). A study of manufacturing resources
planning (MRPII) implementation in China. International Journal of Pro-
duction Research 40, 3461–3478.

Zhao, X., J. Xie, and J. Leung (2002). The impact of forecasting model
selection on the value of information sharing in a supply chain. European
Journal of Operational Research 142, 321–344.

Zijm, W.H.M. and R. Buitenhek (1996). Capacity planning and leadtime
management. International Journal of Production Economics 46/47, 165–
179.

Zipkin, P.H. (1986). Models for design and control of stochastic, multi-item
batch production systems. Operations Research 34, 91–104.

Index

abstraction, 7
advanced planning system (APS), 196
aggregation, 72, 74, 212
algorithm
– branch and bound, 138
– evolutionary, 153
– genetic, 153, 157–160, 226
– iterated local search (ILS), 152
– local search, 150, 152
– progressive hedging, 180–185, 230
– simulated annealing (SA), 154–155,

226
– steepest descent with random restarts

(SDRR), 153
– tabu search (TS), 156–157, 227
AMPL, 84–95, 232
APS, see advanced planning system
argmin, 152
arrival rate, 165
aspiration criterion, 156
ATP, see available to promise
available to promise (ATP), 197

backorder, 52, 203
backtracking, 161
bill of materials (BOM), 19, 22
– convergent, 205
– divergent, 27
binary variable, 136
binding constraint, 73
bit string, 157
bit-flip neighborhood, 150
BOM, see bill of materials
bottleneck, 73, 167
– sharp, 167
bound
– lower, 138
– upper, 140
branch and bound, 138–141, 148, 161,

225
– tree, 138
branching, 138

– direction, 138, 142
bullwhip effect, 197

capable to promise (CTP), 197
capacitated lot sizing problem (CLSP),

203–204, 207
capacity, 31
– constraint, 3, 35, 36, 39, 51, 68, 211
– planning, 4, 166, 177
– – rough cut, 79
center of a neighborhood, 150
changeover, 38, 38–43, 46, 76
– sequence dependent, 41
clearing function, 215
closed loop supply chain, 191
CLSP, see capacitated lot sizing

problem
coefficient
– production, 208
conditional decision, 178
congestion, 164
connected neighborhood, 151
consolidation, 67
constraint, 13–14
– binding, 73
– capacity, see capacity constraint
– integrality, 17, 142
– requirements, 35
constraint programming, 160–161, 225,

232
constraint propagation, 160
contingency plan, 175
continuous flow shop problem, 212
contract
– supply chain, 198
CONWIP, 174, 214
cooling schedule, 154
cooperating solver, 161
costs
– changeover, 46
– fixed, 67
– holding, 45

254 Index

– marginal, 45, 46
– sunk, 46
– tardiness, 52
CP, see constraint programming
crossover, 157
– one-point, 157, 159
– uniform, 159
CTP, see capable to promise

data, 9, 15, 168
DE, see deterministic equivalent
deadline, 51
decision vector, 147
deterioration, 210
deterministic, 16, 174
– equivalent (DE), 180
direct sequence, 148
disaggregation, 72, 213
discount
– all container, 69
– marginal, 69, 221
– transportation, 69
discrete lot sizing and scheduling

problem, 208
distribution requirements planning

(DRP), 193
diversification, 157, 226
domain reduction, 160
DRP, see distribution requirements

planning
due date, 51

empty summation, 11
end-of-horizon effects, 64
enterprise resources planning (ERP),

27, 37, 192
enumeration neighborhood, 151
ERP, see enterprise resources planning
evaluation function, 150, 151
evolutionary algorithm, 153
execution, 5

facility location, 70, 221–222
family
– part, 74
feedback, 5
FIFO, see first-in-first-out
first-in-first-out (FIFO), 156
fitness, 158
fitness based selection, 157
flow shop problem, 212
flow time, 164
forward logistics, 191
function

– evaluation, 150, 151
– objective, 37

GA, see genetic algorithm
GAMS, 96–105, 232
general integer variable, 142
generational replacement, 159
genetic algorithm (GA), 153, 157–160,

226
GRASP, 153, 228
greedy heuristic, 147
greedy randomized adaptive search

procedure, 153, 228

hedging, 175
– progressive, 180–185, 229
heuristic, 145
– greedy, 147
– meta, see meta-heuristic
– search, 145–160
hierarchical production planning

(HPP), 213
holding costs, 45
horizon, 64, 208
HPP, see hierarchical production

planning

ILS, see iterated local search
indicator variable, 24, 203
information technology (IT), 191
– analytical IT, 192
– transactional IT, 192
integer, 17
integrality, 17, 142
integration, 189
intensification, 157, 226
inventory, 48, 66, 209
– ending, 65
– minimum inventory level, 66
– negative, 52
– tolerance, 65, 82
– work in process, see work in process

inventory
IT, see information technology
iterated local search (ILS), 152

JIT, see just-in-time
job, 148, 211
job shop problem, 212
just-in-time (JIT), 20

Kanban, 174

lead time, 19, 164

Index 255

– load dependent, 167–174, 214
– nominal, 82
leaf, 180
LHS (left hand side), 14
linear program, 136
linear programming, 136
load dependent lead time, 167–174
loading, 166, 167
local minimum, 152
local search, 150, 152
location, 70
logistics, 70, 188–190
– forward, 191
– reverse, 191
long term memory, 157
lost sales, 47, 203
lot sizing, 19, 29, 202–208
low-level-coding, 23
lower bound, 138
LP, see linear program
– relaxation, 137
LP solver, 148, 225

machine scheduling, 211
macro, 47
make or buy, 4
manufacturing resources planning, see

MRP II
marginal costs, 45, 46
master production schedule, 24, 28, 194
master SKU, 60
materials requirements planning, see

mrp
Maximal MPL, see MPL
memory
– long term, 157
– short term, 156
meta-heuristic, 152, 226
MINC (a cost minimization problem),

13
minimum
– local, 152
MIP, see mixed integer program
MIP solver, 225
mixed integer program (MIP), 135
– binary, 136
model, 2, 7–18, 123, 223, 231
– deterministic, 174
– linear, 17
– multi-criteria, 223
– multi-stage, 202
– multi-stage probabilistic, 178
– multi-stage stochastic, 178

modeling language, 81–133, 135, 231
Mosel, 123–133, 232
move, 150
– construction, 150
– evaluation, 151
– insertion, 151
– k-opt, 151
– kick, 152
– swap, 150
– transformation, 150
movement
– product, 66–70
MPL, 106–113, 232
mrp, 19–29, 49, 86, 99, 107, 116, 126,

200
– relaxed, 137
MRP II, 31–38, 49, 78, 89, 99, 109, 118,

129, 200–201
multi-criteria optimization, 223
multi-stage model, 202
multiple routings, 59, 209
mutation, 157

nearest neighbor, 225
neighbor, 150
neighborhood, 150–154
– bit-flip, 150
– center of, 150
– connected, 151
– enumeration, 151
nervousness, 28
network design, 201
notation, 9
notational variable, 47

objective function, 11–13, 37
offspring, 159
operator
– crossover, 157
– mutation, 157
OPL, 114–122, 232
optimization, 2, 15, 223–225
– multi-criteria, 223
optimization model, 2, see model
order management, 193, 196
ordered set, 84, 123
overtime, 49–51

part aggregation, 74
part family, 74, 212
partially explored (variable), 139
passing, 169
period, 178
perishability, 210

256 Index

permutation, 148
pilot method, 229
plan
– contingency, 175
– stable, 62
planning, 4, 193
– aggregate, 213
planning horizon, 23, 65, 202, 209
policy, 163, 164, 209
– reorder, 210
population, 157
positional sequence, 148
priority rule, 225
product movement, 66–70
production coefficient, 208
production planning, 4, 70, 175, 200
– hierarchical, 213
production tree, 126
program
– linear, 136
– mixed integer, 135
progressive hedging, 180–185, 229
– integer convergence, 183, 185, 230
pull, 174
pull system, 214
push system, 214

queue, 164, 167
queuing, 164, 166
queuing theory, 164

random, 16, 154, 163
– yields, 163
relaxation, 137
– LP, 137
reorder point, 163
reorder policy, 163, 210
replacement
– generational, 159
– steady-state, 159
representation, 148, 151
– direct sequence, 148
– positional sequence, 148
– sparse, 98
requirements constraint, 35
resource, 31, 32, 165, 166
– bottleneck, 73
– critical, 168
– non-bottleneck, 74
resource constrained project scheduling

problem, 212
reverse logistics, 191
RHS (right hand side), 14

root, 138
routing(s), 31, 70
– alternate, see routing(s), multiple
– alternative, see routing(s), multiple
– multiple, 59, 76, 209

SA, see simulated annealing
safety stock, 66, 210
scatter search, 227
scenario, 16, 174, 175
scheduled receipts, 19
scheduling, 4, 5, 211
– machine, 211
scheme
– solution representation, 148, 151
SCP, see supply chain planning
SDRR, see steepest descent with

random restarts
semi-continuous, 141
sensitivity analysis, 225
sequence dependent changeover, 41
sequencing problem, 148, 212
server, 165–167
service rate, 165
set, 11
– ordered, 84, 123
– special ordered, 143
setup, 46
shipping, 67
short term memory, 156
shortage, 66
simulated annealing (SA), 154–155, 226
simulation, 230
– discrete event, 230
single minute exchange of die (SMED),

42, 201
single-stage model, 202
SKU, see stock keeping unit
– master, 60
slack, 74
SMED, see single minute exchange of

die
solution, 3
– current, 152
– representation scheme, 148, 151
solver, 15, 225
– cooperating, 161
SOS, see special ordered set
sparse format, 123
sparse representation, 98
special ordered set (SOS), 143–145
– SOS1, 143, 160
– SOS2, 143, 160
stable plan, 62

Index 257

stage, 178
steady-state replacement, 159
steepest descent, 152
– with random restarts (SDRR), 153
stochastics, 16, 163
stock keeping unit (SKU), 19
strategy, 4
subcontracting, 60, 209
summation, 8
– empty, 11
sunk costs, 46
sunset constraint, 91, 101, 110, 130
supply chain, 1, 70
– closed loop, 191
supply chain contract, 198
supply chain management, 1, 4–5,

187–200
supply chain planning (SCP), 4, 55, 192
supply chain planning matrix, 195
swap move, 150
symbol, 9

tabu list, 156
– length, 156
tabu search (TS), 156–157, 227
tardiness, 51–55, 65
tardiness cost, 52
temperature, 154
time bucket, 178
transformation, 150
transport, 66–70, 219
– discount, 69
transportation problem, 220
traveling salesman problem (TSP), 211,

220

tree
– branch and bound, 138
– root node, 138
TS, see tabu search
TSP, see traveling salesman problem
type, 213

uncertainty, 15, 163, 175
upper bound, 140
utilization, 32, 165–167, 175

variable, 9
– binary, 136
– free, 139
– general integer, 142
– integer, 17, 135
– notational, 47
– partially explored, 139
– random, 178
– semi-continuous, 141
vehicle routing problem, 221
vendor managed inventory (VMI), 210
VMI, see vendor managed inventory

waiting line, 164
WIP, see work in process inventory
work in process inventory (WIP), 48,

62, 174

Xpress-Mosel, see Mosel

yields
– random, 163

