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Preface

While R is the software of choice and the undisputed leader in many fields of statistics, this is
not so in econometrics; yet, its popularity is rising both among researchers and in university
classes and among practitioners. From user feedback and from citation information, we gather
that the adoption rate of panel-specific packages is even higher in other research fields outside
economics where econometric methods are used: finance, political science, regional science,
ecology, epidemiology, forestry, agriculture, and fishing.

This is the first book entirely dedicated to the subject of doing panel data econometrics in
R, written by the very people who wrote most of the software considered, so it should be nat-
urally adopted by R users wanting to do panel data analysis within their preferred software
environment. According to the best practices of the R community, every example is meant to
be replicable (in the style of package vignettes); all code is available from the standard online
sources, as are all datasets. Most of the latter are contained in a dedicated companion package,
pder. The book is supposed to be both a reasonably comprehensive reference on R function-
ality in the field of panel data econometrics, illustrated by way of examples, and a primer on
econometric methods for panel data in general.

While we have tried to cover the vast majority of basic methods and much of the more
advanced ones (corresponding roughly to graduate and doctoral level university courses), the
book is still less exhaustive than main reference textbooks (one for all, Baltagi, 2013) the a pri-
ori being that the reader should be able to apply all the methods presented in the book through
available R code from plm and related, more specialized packages.

One should note from the beginning that, from a computational viewpoint, the average R user
tends to be more advanced than users of commercial statistical packages. R users will generally
be interested in interactive statistical programming whereby they can be in full control of the
procedures they use and eventually be looking forward to write their own code or adapt the
existing one to their own purposes. All that said, despite its reputation, R lends itself nicely to
standard statistical practice: issuing a command, reading output. Hence the potential readership
spans an unusually broad spectrum and will be best identified by subject rather than by level of
technical difficulty.

Examples are usually written without employing advanced features but still using a fair
amount of syntax beyond what would be the plain vanilla “estimate, print summary” procedure
sketched above; the reader replicating them will therefore be exposed to a number of simple
but useful constructs—ranging from general purpose visualization to compact presentation of
results—stemming from the fact that she is using a full-featured programming language rather
than a canned package.

The general level is introductory and aimed at both students and practitioners. Chapters 1–2,
and to some extent 4–5, cover the basics of panel data econometrics as taught in undergradu-
ate econometrics classes, if at all. With some overlapping, the main body of the book (Ch. 3–6)
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covers the typical subjects of an advanced panel data econometrics course at graduate level.
Nevertheless, the coverage of the later chapters (especially 7–10) spans fields typical of current
applied research; therefore it should appeal particularly to graduate students and researchers.
For all this, the book might play two main roles: companion to advanced textbooks for grad-
uate students taking a panel data course, with Chapters 1–7 covering the course syllabus and
8–10 providing more cutting-edge material for extensions; and reference text for practition-
ers or applied researchers in the field, covering most of the methods they are ever likely to
use, with applied examples from recent literature. Nevertheless, its first half can be used in an
undergraduate course as well, especially considering the wealth of examples and the possibility
to replicate all material. Symmetrically, the last chapters can appeal to researchers wanting to
employ cutting-edge methods—for which there is usually around only quite unfriendly code
written in matrix language by methodologists—with the relative user-friendliness of R. As an
example, Ch. 10 is based on the R tutorials one of the authors gives at the Spatial Econometrics
Advanced Institute in Rome, the world-leading graduate school in applied spatial econometrics.

Econometrics is a late comer to the world of R, although of course much of basic econometrics
employs standard statistical tools, which were present in base R. Typical functionality, address-
ing the emphasis on model assumptions and testing, which is characteristic of the discipline,
started to appear with the lmtest package and the accompanying paper of Zeileis & Hothorn
(2002); a review paper on the use of R in econometrics, focused on teaching, was published at
about the same time (Racine & Hyndman, 2002). This was followed by further dedicated pack-
ages extending the scope of specialized methods to structural equation modeling, time series,
stability testing, and robust covariance estimation, to name a few; while despite the availability
of some online tutorials, no dedicated book would appear in print until Kleiber & Zeileis (2008).

In the wake of any organized and comprehensive R package for panel data econometrics,
Yves Croissant started developing plm in 2006, presenting one early version of the software at
the 2006 useR! Conference in Vienna. Giovanni Millo joined the project as coauthor shortly
thereafter. Two years later, an accompanying paper to plm (Croissant & Millo, 2008) featured
prominently in the econometrics special issue of the Journal of Statistical Software testifying
the improved availability of econometric methods in R and the increased relevance of the R
project for the profession.

More recently, Kevin Tappe has become the third author. Liviu Andronic, Arne Henningsen,
Christian Kleiber, Ott Toomet, and Achim Zeileis importantly contributed to the package at
various times. Countless users provided feedback, smart questions, bug reports, and, often,
solutions.

Estimating the user base is no simple task, but the available evidence points at large and
growing numbers. The 2008 paper describing an earlier version of the package has since been
downloaded almost 100,000 times and peaked on Goggle Scholar’s list as the 25th most cited
paper in the Journal of Statistical Software, the leading outlet in the field, before hitting the
five-year reporting limit. At the time of writing, it counts over 400 citations on Google Scholar,
despite the widespread bad habit of not citing software papers. The monthly number of package
downloads from a leading mirror site has been recently estimated at 6,000.

Chapters 2, 3, 6, 7, and 8 have been written by Yves Croissant; 1, 5, 9 (except the first genera-
tion unit root testing section), and 10 by Giovanni Millo, chapter 4 being co-written.

The book has been produced through Emacs+ESS (Rossini et al., 2004) and typeset in LaTeX
using Sweave (Leisch, 2002) and later knitr (Xie, 2015). Plots have been made using ggplot2
(Wickham, 2009) and tikz (Tantau, 2013).

The companion package to this book is pder (Croissant & Millo, 2017); the methods
described are mainly in the plm package (Croissant & Millo, 2008) but also in pglm (Croissant,
2017) and splm (Millo & Piras, 2012). General purpose tests and diagnostics tools of packages
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car (Fox & Weisberg, 2011), lmtest (Zeileis & Hothorn, 2002), sandwich (Zeileis, 2006b), and
AER (Kleiber & Zeileis, 2008) have been used in the code, as have some more specialized tools
available in MASS (Venables & Ripley, 2002), censReg (Henningsen, 2017), nlme (Pinheiro
et al., 2017), survival (Therneau & Grambsch, 2000), truncreg (Croissant & Zeileis, 2016), pcse
(Bailey & Katz, 2011), and msm (Jackson, 2011). dplyr (Wickham & Francois, 2016) has been
used to work with data.frames and Formula with general formulas. stargazer (Hlavac, 2013)
and texreg (Leifeld, 2013) were used to produce fancy tables, the fiftystater package (Murphy,
2016) to plot a United States map. The packages presented and the example code are entirely
cross-platform as being part of the R project.
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1

Introduction

This book is about doing panel data econometrics with the R software. As such, it is aimed at
both panel data analysts who want to use R and R users who endeavor in panel data analysis.
In this introductory chapter, we will motivate panel data methods through a simple example,
performing calculations in base R, to introduce panel data issues to the R user; then we will
give an overview of econometric computing in R for the analyst coming from different software
packages or environments.

1.1 Panel Data Econometrics: A Gentle Introduction

In this section we will introduce the broad subject of panel data econometrics through its
features and advantages over pure cross-sectional or time-series methods. According to Baltagi
(2013), panel data allow to control for individual heterogeneity, exploit greater variability for
more efficient estimation, study adjustment dynamics, identify effects one could not detect
from cross-section data, improve measurement accuracy (micro-data instead of aggregated),
use one dimension to infer about the other (as in panel time series).

From a statistical modeling viewpoint, first and foremost, panel data techniques address one
broad issue: unobserved heterogeneity, aiming at controlling for unobserved variables possibly
biasing estimation.

Consider the regression model

y = 𝛼o + 𝛽ox + 𝛾oz + 𝜖o

where x is an observable regressor and z is unobservable. The feasible model on observables

y = 𝛼 + 𝛽x + 𝜖

suffers from an omitted variables problem; the ols estimate of 𝛽 is consistent if z is uncorrelated
with either y or x: otherwise it will be biased and inconsistent.

One of the best-known examples of unobserved individual heterogenetiy is the agricul-
tural production function by Mundlak (1961) (see also Arellano, 2003, p. 9) where output y
depends on x (labor), z (soil quality) and a stochastic disturbance term (rainfall) so that the
data-generating process can be represented by the above model; if soil quality z is known to
the farmer, although unobservable to the econometrician, it will be correlated with the effort x
and hence 𝛽ols will be an inconsistent estimator for 𝛽.

This is usually modeled with the general form:

ynt = 𝛼 + 𝛽⊤xnt + (𝜂n + 𝜈nt) (1.1)

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R



2 Panel Data Econometrics with R

where 𝜂n is a time-invariant, generally unobservable characteristic. In the following we will
motivate the use of panel data in the light of the need to control for unobserved heterogeneity.
We will eliminate the individual effects through some simple techniques. As will be clear from
the following chapters, subject to further assumptions on the nature of the heterogeneity there
are more sophisticated ways to control for it; but for now we will stay on the safe side, depending
only on the assumption of time invariance.

1.1.1 Eliminating Unobserved Components

Panel data turn out especially useful if the unobserved heterogeneity z is (can be assumed)
time-invariant. Leveraging the information on time variation for each unit in the cross section,
it is possible to rewrite the model (1.1) in terms of observables only, in a form that is equivalent
as far as estimating 𝛽 is concerned. The simplest one is by subtracting one cross section from
the other.

1.1.1.1 Differencing Methods
Time-invariant individual components can be removed by first-differencing the data: lagging
the model and subtracting, the time-invariant components (the intercept and the individual
error component) are eliminated, and the model

Δynt = 𝛽⊤Δxnt + Δ𝜈nt (1.2)

(where Δynt = ynt − yn,t−1, Δxnt = xnt − xnt−1 and, from (1.1), Δ𝜖nt = 𝜖nt − 𝜖n,t−1 for t = 2,… ,T)
can be consistently estimated by pooled ols. This is called the first-difference, or fd estimator.

1.1.1.2 LSDV Methods
Another possibility to account for time-invariant individual components is to explicitly
introduce them into the model specification, in the form of individual intercepts. The second
dimension of panel data (here: time) allows in fact to estimate the 𝜂ns as further parameters,
together with the parameters of interest 𝛽. This estimator is referred to as least squares dummy
variables, or lsdv. It must be noted that the degrees of freedom for the estimation do now
reduce to NT − N − K because of the extra parameters. Moreover, while the 𝛽 vector is
estimated using the variability of the full sample and therefore the estimator is NT-consistent,
the estimates of the individual intercepts �̂�n are T-consistent, as relying only on the time
dimension. Nevertheless, it is seldom of interest to estimate the individual intercepts.

1.1.1.3 Fixed Effects Methods
The lsdv estimator is adding a potentially large number of covariates to the basic specification
of interest and can be numerically very inefficient. A more compact and statistically equivalent
way of obtaining the same estimator entails transforming the data by subtracting the average
over time (individual) to every variable. This, which has become the standard way of estimating
fixed effects models with individual (time) effects, is usually termed time-demeaning and is
defined as:

ynt − ȳn. = (xnt − x̄n.)𝛽 + (𝜈nt − �̄�n.) (1.3)

where ȳn. and x̄n. denote individual means of y and X.
This is equivalent to estimating the model

ynt = 𝛼n + xnt𝛽 + 𝜈nt ,
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i.e., leaving the individual intercepts free to vary, and considering them as parameters to
be estimated. The estimates �̂�n can subsequently be recovered from the ols estimation of
time-demeaned data.

Example 1.1 individual heterogeneity – Fatalities data set
The Fatalities dataset from Stock and Watson (2007) is a good example of the importance of
individual heterogeneity and time effects in a panel setting.

The research question is whether taxing alcoholics can reduce the road’s death toll. The basic
specification relates the road fatality rate to the tax rate on beer in a classical regression setting:

fraten = 𝛼 + 𝛽beertaxi + 𝜖n.

Data are 1982 to 1988 for each of the continental US states.
The basic elements of any estimation command in R are a formula specifying the model

design and a dataset, usually in the form of a data.frame. Pre-packaged example datasets are
the most hassle-free way of importing data, as needing only to be called by name for retrieval.
In the following, the model is specified in its simplest form, a bivariate relation between the
death rate and the beer tax.

data("Fatalities", package="AER")

Fatalities$frate <- with(Fatalities, fatal / pop * 10000)

fm <- frate ̃ beertax

The most basic step is a cross-sectional analysis for one single year (here, 1982). One pro-
ceeds first creating a model object through a call to lm, then displaying a summary.lm of it.
Printing to screen occurs when interactively calling an object by name. Notice that subsetting
can be done inside the call to lm by feeding an expression that solves into a logical vector to the
subset argument: data points corresponding to TRUEs will be selected, FALSEs discarded.

mod82 <- lm(fm, Fatalities, subset = year == 1982)

summary(mod82)

Call:

lm(formula = fm, data = Fatalities, subset = year == 1982)

Residuals:

Min 1Q Median 3Q Max

-0.936 -0.448 -0.107 0.230 2.172

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.010 0.139 14.46 <2e-16 ***

beertax 0.148 0.188 0.79 0.43

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.67 on 46 degrees of freedom

Multiple R-squared: 0.0133, Adjusted R-squared: -0.00813

F-statistic: 0.621 on 1 and 46 DF, p-value: 0.435
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The beer tax turns out statistically insignificant. Turning to the last year in the sample (and
employing coeftest for compactness):

mod88 <- update(mod82, subset = year == 1988)

library("lmtest")

coeftest(mod88)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.859 0.106 17.54 <2e-16 ***

beertax 0.439 0.164 2.67 0.011 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

the coefficient is significant and positive! Similar results appear for any single year in the
sample.

Pooling all cross sections together, without considering any form of individual effect, can be
done using the regular lm function or, equivalently, plm; in this second case, for reasons which
will be clearer in the following, this is not the default behavior, so the optional model argument
has to be specified, setting it to ’pooling’.

Drawing on this much enlarged dataset does not change the qualitative result:

library("plm")

poolmod <- plm(fm, Fatalities, model="pooling")

coeftest(poolmod)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8533 0.0436 42.54 < 2e-16 ***

beertax 0.3646 0.0622 5.86 1.1e-08 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Taxing beer would seem to increase the number of deaths from road accidents so that, extend-
ing this line of reasoning far beyond what the given evidence supports, i.e., far outside the given
sample, one could even argue that free beer might lead to safer driving. Similar results, contra-
dicting the most basic intuition, appear for any single year in the sample.

Panel data analysis will provide a solution to the puzzle. In fact, we suspect the presence of
unobserved heterogeneity: in specification terms, we suspect the restriction 𝛼n = 𝛼∀n in the
more general model

fratent = 𝛼n + 𝛽beertaxnt + 𝜖nt

to be invalid. If omitted from the specification, the individual intercepts – but for a general
mean – will end up in the error term; if they are not independent of the regressor (here,
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if unobserved state-level characteristics are related to how the local beer tax is set) the
ols estimate will be biased and inconsistent.

As outlined above, the simplest way to get rid of the individual intercepts is to estimate the
model in differences. In this case, we consider differences between the first and last years in
the sample. A limited amount of work on the dataset would be sufficient to define a new vari-
able Δ5ynt = ynt − yn,t−5 but, as it turns out, for reasons that will become clear in the following
chapters, the diff method well-known from time series does work in the correct way when
applied to panel data through the plm package, i.e., diff(y, s) is correctly calculated as
ynt − ynt−s:

dmod <- plm(diff(frate, 5) ̃ diff(beertax, 5), Fatalities, model="pooling")

coef(dmod)

(Intercept) diff(beertax, 5)

-0.02524 -0.95554

Estimation on five-year differences finally yields a sensible result: after controlling for state
heterogeneity, higher taxation on beer is associated with a lower number of fatalities.

As discussed, another way to control for time-invariant unobservables is to estimate them
out explicitly. Separate intercepts could be easily added in plain R using the formula syntax:

lsdv.fm <- update(fm, . ̃ . + state - 1)

lsdvmod <- lm(lsdv.fm, Fatalities)

coef(lsdvmod)[1]

beertax

-0.6559

The estimate is numerically different but supports the same qualitative conclusions.
Fixed effects (within) estimation yields an equivalent result in a more compact and efficient

way. Specifying model=’within’ in the call to plm is not necessary because this estimation
method is the default one.

library("plm")

femod <- plm(fm, Fatalities)

coeftest(femod)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

beertax -0.656 0.188 -3.49 0.00056 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fixed effects model, requiring only minimal assumptions on the nature of heterogeneity,
is one of the simplest and most robust specifications in panel data econometrics and often
the benchmark against which more sophisticated, and possibly efficient, ones are compared
and judged in applied practice. Therefore it is also the default choice in the basic estimating
function plm.
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Example 1.2 no heterogeneity – Tileries data set
There are cases when unobserved heterogeneity is not an issue. The Tileries dataset con-
tains data on output and labor and capital inputs for 25 tileries in two regions of Egypt, observed
over 12 to 22 years. We estimate a production function. The individual units are rather homo-
geneous, and the technology is standard; hence, most of the variation in output is explained
by the observed inputs. Here, a pooling specification and a fixed effects one give very similar
results, especially if restricting the sample to one of the two regions considered:

data("Tileries", package = "pder")

coef(summary(plm(log(output) ̃ log(labor) + machine, data = Tileries,

subset = area == "fayoum")))

Estimate Std. Error t-value Pr(>|t|)

log(labor) 0.9174031 0.04661 19.681312 2.933e-45

machine 0.0001074 0.01244 0.008638 9.931e-01

coef(summary(plm(log(output) ̃ log(labor) + machine, data = Tileries,

model = "pooling", subset = area == "fayoum")))

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.173423 0.07054 2.4584 1.493e-02

log(labor) 0.964845 0.03818 25.2705 3.992e-60

machine 0.002243 0.01000 0.2242 8.228e-01

Notice that we have employed yet another way of compactly looking at the coefficients’ table
only, instead of printing the whole model summary: the coef.plm extractor method, applied
to a summary.plm object.

By the object orientation of R, applying coef to a model or to the summary of a model – in
object terms, to a plm or to a summary.plm – will yield different results. The curious reader
might want to try it himself.

In the following chapters we will see how to test formally for the absence of significant indi-
vidual effects. For now let us concentrate on how to get things done in R, and the relation to
how you would in some other environments.

1.2 R for Econometric Computing

R is widely considered a powerful tool with a relatively steep learning curve. This is true only up
to a point as far as econometric computing with R is considered. In fact, rather than complicated,
R is scalable: it can adapt to the level of difficulty/proficiency adequate for the current user. One
might say that R is a “complicated” statistical tool in the same way as a drill is a more complicated
tool than a hammer, or a screwdriver. Just like a drill, nevertheless, R can actually turn screws:
although it can also do so much more.1

In a sense, R encompasses most other econometric software, with the exception of that based
exclusively on a graphical user interface. While the effective way to use R for econometric com-
puting is to take advantage from its peculiarities, e.g., leveraging the power of object orientation,

1 A drill can be used in place of a hammer for driving nails too, although with limited efficiency. So can R; but this is
another story.
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it is in fact possible to mimic in R both the modus operandi of procedural statistical packages
and of course the functionality of other matrix languages.

In the following we will briefly hint at effective ways to perform econometric computing in
R, referring the reader to Kleiber and Zeileis (2008) for a more complete treatment; then, in
order to provide a friendly introduction to users of different software, we will show how R can
be employed the way one would use a “canned” statistical package, or a “hard-boiled” matrix
language.

1.2.1 The Modus Operandi of R

R can be used interactively, issuing one command at a time and reading the results from the
session log; or it can be operated in batch mode, writing and then executing an R script. The
two modes usually mix up, in that even if one writes commands in an editor, it is customary to
execute them one by one, or possibly in small groups.

An edited .R file has a number of advantages, first of all that the whole session will be com-
pletely reproducible as long as the original data are available. There are nevertheless ways to
recover all statements used from a session log, which can be turned into an executable .R script
with a reasonable amount of editing, or even more easily from the command history, so that if
one starts loosely performing some exploratory calculation and then changes his or her mind,
perhaps because of some interesting result, nothing is lost. In short, after an interactive session,
one can save:
• the session log in a text file (.txt)
• the command history in a text file (.Rhistory)
• the whole workspace, or a selection of objects, in a binary file (.Rdata or, respectively,
.rda)
From a structured session’s approach, there are two competing approaches to the preserva-

tion of a reproducible statistical analysis, like one that led to writing a scientific paper: either “the
data are real,”, or “the commands are real.” In the first case, one saves all the objects that have
been created during the work session: perhaps the original data, as read from the original source
into a data.frame but most importantly the model, and possibly test, objects produced by
the statistical procedures so that each one can be later (re)loaded, inspected, and printed out,
yielding the needed scientific results. In the second case, the original data are kept untrans-
formed, next to plain text files containing all the R statements necessary for full reproduction of
the given analysis. This can be done by simply conserving the data file and one or more .R files
containing the procedures; or in more structured formats like the popular Sweave framework
and utility (Leisch, 2002), whereby the whole scientific paper is dynamically reproducible.

The “commands are real” approach has the advantage of being entirely based on human-
readable files (supposing the original data are also, as is always advisable, kept in
human-readable format), and its clarity is hard to surpass. Any analysis is reproducible
on every platform where R can be compiled, and any file is open to easy inspection in a text
editor, should anything go wrong, while binary files, even from Open Source software like R,
are always potentially prone to compatibility problems, however unlikely. But considerations
on computational and storage demands also play a role.

Computations are performed just once in the first case – but for the (usually inexpensive)
extraction of results from already estimated model objects – and at each reproduction in the
second; so that the “real data” approach can be preferable, or even the only practical alternative,
for computationally heavy analyses. By contrast, the “real commands” approach is much more
parsimonious from the viewpoint of storage space, as besides the original data one only needs
to archive some small text files.
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1.2.2 Data Management

1.2.2.1 Outsourcing to Other Software
In the same spirit, although R is one of the best available tools for managing data, users with
only a casual knowledge of it can easily preprocess the data in the software of their choice and
then load them into R. The foreign package (R Core Team, 2017) provides easy one-step import
from a number of popular formats. Gretl (Cottrell and Lucchetti, 2007) took it one step further,
providing the ability to call R from inside Gretl and to send to it the current dataset. In general,
passing through a conversion into tab- (or space-, or comma-) delimited text and a call to the
read.table function will solve most import problems and provide an interface between R
and anything else, including spreadsheets.

1.2.2.2 Data Management Through Formulae
Even at this level one should notice, however, that R formulae are very powerful tools, accepting
a number of transformations that can be done “on the fly” eliminating most of the need for data
pre-processing. An obvious example are logs, lags, and differences or, as seen above, the inclu-
sion of dummy variables. Power transformations and interaction terms can also be specified
inside formulae in a very compact way. A limited investment of time can let even the casual
user discover that most of his usual pre-processing can be disposed of, leaving a clean process
from the original raw dataset to the final estimates.

Perhaps the use of formulae in R is the first investment an occasional user might want to do,
for all the time and errors it saves by streamlining the flow between the original data and the
final result.

1.3 plm for the Casual R User

This book is best for readers with familiarity with the basics of R. Nevertheless, using R inter-
actively – the way econometric software is usually employed – to perform most of the analyses
presented here requires very few language-related concepts and only three basic abilities:

• how to import data,
• which commands to issue to obtain estimates,
• optionally, how to save the output to a text file or render it toward LATEX (but one could as

well copy results from the active session).

This corresponds to the typical work flow of a statistician using specialized packages, where one
issues one single high-level command, possibly of a very rich nature and with lots of switches,
performing some complicated statistical procedure in batch mode, and gets the standard output
printed out on screen.

Distinctions are of course sharper than this, and the boundaries between specialized
packages, where macro commands perform batch procedures, and matrix languages, where in
principle estimators have to be written down by the user, are blurred. In fact, and with time,
packages have grown proprietary programming features and sometimes matrix languages of
their own, so that much development on the computational frontier of econometric methods
can be done by the users in interpreted language, just as happens in the R environment, rather
than provided in compiled form by the software house. A notable example of this convergence
is Gretl (Cottrell and Lucchetti, 2007), a gui-based open-source econometric package with
full-featured scripting capabilities, entirely programmable and extensible. Some well-known
commercial offerings have also taken similar paths.
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From the other end of the spectrum, matrix languages have built up huge libraries of
ready-made, high-level functions performing complex procedures in one go.

In the following, for the sake of exposition, we will stick to cliché and assume that users of
procedural languages expect to run a regression issuing one single command, although per-
haps with a lot of arguments, and obtain a lengthy and very comprehensive output containing
all the estimation results and diagnostics they might ever need, while matrix language users
seek to perform regressions from scratch as 𝛽 = (X⊤X)−1X⊤y, and obtain any post-estimation
diagnostics in the same fashion.

1.3.1 R for the Matrix Language User

The latter viewpoint in our stylized world is that of die-hard econometricians-programmers,
who do anything by coding estimators in matrix language. Understandably, the transition
toward R is easier done in this case, as it too is a matrix language in its own right. Armed with
some cheat sheet providing the translation of basic operators, users of matrix languages can
be up and running in no time, learning the important differences in syntax and the language
idiosyncrasies of R along the way. As for the moment, here is how linear regression “from
scratch” is done in R:

Example 1.3 linear regressions – Fatalities data set
In order to perform linear regression “by hand” (i.e., without resorting to a higher level function
than simple matrix operators), we have to prepare the y vector and the X matrix, intercept
included and then use them in the R translation of the least squares formula:

y <- Fatalities$frate

X <- cbind(1, Fatalities$beertax)

beta.hat <- solve(crossprod(X), crossprod(X,y))

Notice the use of the numerically efficient operators solve and crossprod instead of
the plain syntax solve(t(X) %*% X) %*% t(X) %*% y, which – up to the numerically
worst conditioned cases – would produce identical results. (Notice also that we do not need
to explicitly make a vector of ones: binding by column (cbind-ing) the scalar 1 to a vector of
length N , the former is recycled as needed.)

Next, we check that our hand-made calculation produces the same coefficients as the
higher-level function lm:2

beta.hat

[,1]

[1,] 1.8533

[2,] 0.3646

mod <- lm(frate ̃ beertax, Fatalities)

coef(mod)

(Intercept) beertax

1.8533 0.3646

2 Notice that although the coefficients produced by the two methods are numerically the same, from a software
viewpoint they are two different object types: the former a 2 × 1 matrix, the latter a (named) numeric vector.
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It is less straightforward to perform an lsdv or a fixed effects analysis. In the former case,
one must create a matrix of state dummy variables: this is cumbersome to do in plain matrix
language but is much easier if leveraging the features of R’s formulae: in the latter case, it is
enough to add the individual index under form of a factor: i.e., the R type for qualitative
variables.3

LSDVmod <- lm(frate ̃ beertax + state - 1, Fatalities)

coef(LSDVmod)["beertax"]

beertax

-0.6559

Estimation is also relatively easy in the fixed effects case, provided that a peculiar feature of R
without an obvious counterpart in other matrix languages steps in: ragged arrays. In the follow-
ing snippet, themean function is applied along the individual index to obtain the time means for
each individual, which are then replicated along the length of the time dimension. The vectors
of time averages are then subtracted from the original vectors to obtain the time-demeaned
data, on which plain ols can be applied (attach and detach are used to bring the con-
tents of the data.frame to user level, to avoid having to point at each variable through the
Fatalities$… prefix).

attach(Fatalities)

frate.tilde <- frate - rep(tapply(frate, state, mean),

each = length(unique(year)))

beertax.tilde <- beertax - rep(tapply(beertax, state, mean),

each = length(unique(year)))

lm(frate.tilde ̃ beertax.tilde - 1)

Call:

lm(formula = frate.tilde ̃ beertax.tilde - 1)

Coefficients:

beertax.tilde

-0.656

detach(Fatalities)

This simple example already gives an idea of the small computational complications arising
from lsdv or fixed effects estimation. For example, it would not work for unbalanced panels
as is. The simple modification required to generalize the above snippet to the unbalanced case
is left as an exercise for the willing reader.

1.3.2 R for the User of Econometric Packages

The opposite vision is to resort to macro commands. At a bare minimum, users who are familiar
with procedural languages can obtain the same result with R:
• issue estimation command,
• get printed output

3 Text labels like state names would be automatically converted, while numerical codes would not. In the latter case,
one would use as.factor(state) within the formula.
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despite the logical separation between the steps of creating a model object, summarizing it, and
printing the summary, which can a) be executed separately but can also b) be nested inside the
same statement, exploiting the functional logic of R, by which “inner” arguments are evaluated
first, (implicitly) printing the summary of a model object which is estimated on the fly inside
the same statement.4 Easier done than said:

summary(plm(fm, Fatalities))

Oneway (individual) effect Within Model

Call:

plm(formula = fm, data = Fatalities)

Balanced Panel: n = 48, T = 7, N = 336

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.58696 -0.08284 -0.00127 0.07955 0.89780

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

beertax -0.656 0.188 -3.49 0.00056 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 10.8

Residual Sum of Squares: 10.3

R-Squared: 0.0407

Adj. R-Squared: -0.12

F-statistic: 12.1904 on 1 and 287 DF, p-value: 0.000556

The construct summary(myestimator(myformula, mydata, ...)) will generally
work, displaying estimation results to screen, for most estimators. Diagnostics will often have
a formula method so that a statement along the lines of mytest(myformula, mydata,
...) will produce the desired output, or, at most, they will require the trivial task of making
a “model” object before applying the desired test to it: which can as well happen in one single
statement, like mytest(myestimator(myformula, mydata, ...)). In this sense, R
is a good substitute of procedural languages, at least those that require text input from the
command line; despite the fact of also being so much more.

If one is not scared of typing, we might even say that inputting the above statement is not far
from the level of difficulty of using a point-and-click gui. Sure it is not any more difficult to
read output from the above R command than that of the standard regression in a gui package.

1.4 plm for the Proficient R User

A better knowledge of R will disclose a wealth of possibilities streamlining the production pro-
cess of empirical research. Actually, while R might look difficult or unfriendly to the beginner,

4 Intentionally convoluted sentence. This is what actually happens under the bonnet, but the user need not
necessarily worry about it.
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for the proficient user the overall workload when producing a piece of scientific research may
turn out to be much lower than with competing solutions. The convenient features that allow
for a more advanced management of research activity with respect to the usual paradigm “an-
alyze the data – save the results – write the paper around them” can also be seen in the light of
producing reproducible econometric research.

1.4.1 Reproducible Econometric Work

Performing econometric work in R, possibly in conjunction with LATEX through literate sta-
tistical tools like Sweave (Leisch, 2002) and knitr (Xie, 2015), satisfies desirable standards of
reproducibility.

Following Peng (2011), “[an] important barrier [to reproducible research] is the lack of
an integrated infrastructure for distributing [it] to others.” Yet such infrastructures have
recently emerged in statistics and have been proposed for econometric practice. As advocated
by Koenker and Zeileis (2009), one way of ensuring the complete reproducibility of one’s
research is to provide a self-contained Sweave file – “a tightly coupled bundle of code and
documentation” – including all the text as well as the code generating the results of the paper
so that, given the original data, the complete document can be reproduced exactly by anybody,
on practically any computing platform.

Three aspects of R are worth highlighting in this context: object orientation; code availabil-
ity, documentation, and management; and reproducible econometric research through literate
programming functionalities. The latter two, in particular, help situate econometric work (prop-
erly) done with R toward the better end of the reproducibility spectrum in Peng (2011), the “gold
standard” of full replication, as providing “a detailed log of every action taken by the computer,”
which can be replicated by anyone with any type of machine and an Internet connection. In this
sense, R code is linked and executable (Peng, 2011, Fig.1) without the need for either proprietary
software or particular hardware/operating system, with the only possible limit of computing
power.

As for availability, R is open-source software (OSS); hence, all code can be used, inspected,
copied, and possibly modified at will. Source code, in the words of Koenker and Zeileis (2009),
is “the ultimate form of documentation for computational science,” and being accessible it can
more easily be subjected to critical scrutiny (on the subject, see also Yalta and Lucchetti, 2008;
Yalta and Yalta, 2010).

Besides accessibility, being OSS has important consequences on numerical accuracy (see
Yalta and Yalta, 2007) and, what matters most here, on the particular aspect of reproducibility.
The R project encourages (in a sense, enforces) documentation of code through its packaging
system: in order for a package to build, every (user-level) function inside it must be properly
documented, with valid syntax and working examples, as checked by automated scripts. Relia-
bility levels are explicit too: the main distribution site, the Comprehensive R Archive Network
(cran.r-project.org) accepts stable versions of packages, subject to a further validation step; ear-
lier versions of code, labeled according to development status (from “Planning” to “Mature”),
are to be found on collaborative development platforms of which R-Forge (r-forge.r-project
.org/) (Theußl and Zeileis, 2009) is a prominent example. The latter, although typically contain-
ing very recent methods, are subject to all the above mentioned quality controls but also allow
for immediate patching of code; all changes are tracked inside the system’s version history and
are open to inspection from any user.

Lastly, and perhaps most importantly here, R explicitly encourages reproducibility of
research through utilities like Sweave (Leisch, 2002), which implements literate programming
techniques weaving together code and documentation in a dynamic document, as discussed
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in Meredith and Racine (2009) and Koenker and Zeileis (2009, 2.5). Convenient interfaces
for weaving together R and LATEX are available, from Emacs + ESS (Rossini et al., 2004) to the
more recent RStudio (Racine, 2012). This book has in fact been prepared as a dynamic LATEX
document, using the Emacs editor in ESS mode.

1.4.2 Object-orientation for the User

R has object-orientation features. Beside their user-friendliness, such features have a role
of their own in reproducibility: simplifying the code makes it more readable and using
modular, high-level components with sensible defaults for the different objects is generally
safer, especially for the accident-prone data manipulations and transformations typical of
panel data.

Methods for extracting (individual, average, or pooled) coefficients, standard errors and mea-
sures of fit from model objects of different kinds work with the same syntax, although with
different internals, transparently for the user. Formulae with compact representations of lags
and differences can be supplied to panel estimators, where the above operators will automati-
cally adjust to the particular context of panel data. Moreover, compact formulations of dynamic
models can be indexed, as in lag(x, 1:i) for xt−1,… , xt−i, and used inside flow control
structures, simplifying the making of large tables. Preliminary data manipulation can often be
avoided altogether, calculating lags, differences, logs, or more specific panel operations, such
as averaging or demeaning over the time or individual dimension, inside the model formula. As
observed before, this generally allows to maintain only two files: the original data source and
the procedures, with obvious benefits to reliability and replicability of results.

The flexibility object-orientation features provide is highlighted when considering that the
R workspace can contain objects of many different kinds at the same time: in this instance,
panel or simple models, model formulae, matrices or lists of weights for representing spatial
dependence, and, differently from some widespread econometric packages, datasets of various
dimensions at the same time. Such flexibility is particularly useful in research work that blends
methods from different lines of research together, in order to avoid having to use different soft-
ware environments for the tasks at hand, and the common pitfalls of not saving the code relative
to preliminary data manipulations, or that which combines the results together (see Peng, 2011,
p. 1226).

1.5 plm for the R Developer

The last frontier for plm users is to become developers. The operation of plm is based on
a specific data infrastructure able to deal with the peculiar aspects of panel data: basically,
their double indexing feature, the possibility of unbalancedness, and the frequent need for
transformations along one (or both) dimension(s). This mid-level functionality for (panel) data
transformation is in general accessible at user level and can be very handy for those develop-
ing new methods, e.g., involving estimation over transformed data. It is in fact already in use
by a number of other packages: in particular, but not only, some packages aimed at more spe-
cific needs presented in this book (pglm, splm), which are based on this infrastructure and are
mostly compliant with plm’s conventions and syntax.

Just as the econometric estimation of a fixed effects model proceeds through applying stan-
dard ols to demeaned data, so does the implementation in plm, like many others. Yet, unlike
many other software packages, here these steps can be readily performed in an explicit fashion.
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Example 1.4 explicit within transformation – Fatalities data set
In order to demonstrate within regression, we apply the transformation functions directly in
the model formula, excluding a priori the intercept (which has been transformed out):

w.mod <- plm(Within(frate) ̃ Within(beertax) - 1, data=Fatalities,

model = "pooling")

coef(w.mod)

Within(beertax)

-0.6559

(If trying this at home, remember that, unlike the coefficient, the standard error from this
model’s output would have to be adjusted by the degrees of freedom to match that of the canned
within routine. See the discussion in the next chapter, 2.2.3.)

As often happens with R, “ideas are turned into software” (Chambers, 1998) in a natural way,
the computational approach following the conceptual flow of the statistical reasoning. More-
over, while all of the software tools provided, being open-source, can ultimately be inspected by
the skilled programmer, in the case of plm much of the infrastructure is available at user level,
conveniently packaged with help and examples, both for instruction purposes and as a building
block for further development.

1.5.1 Object-orientation for Development

One last observation is in order, whose scope is not limited to plm or panel data economet-
rics. For a developer, working inside the R project has the huge benefit that she is able to access
a majority of all available statistical techniques from inside her preferred computing environ-
ment, by simply loading the relevant package. In our particular field, this means that one can
leverage functionality from, say, general statistics, such as, e.g., using principal components
analysis to approximate common factors (see Chapter 8); or from quantitative geography, such
as calculating distances between the centroids of regions to make spatial weights matrices (see
Chapter 10). This has to do with the functional orientation of R, by which complex (statistical)
tasks are abstracted into functions and therefore made available irrespective of the internals
(what happens under the hood).

Another side of abstraction is object-orientation: generic methods are often provided, which
particularize into different actual computations depending on the object they are fed. Simple
examples are summary and plot, which will produce different outcomes if applied to, say, a
numeric or an lm.

A related, relevant feature of R, and in general of the S language (Chambers, 1998), for the
developer is that functions are a data type. This means that a function (the abstraction of a sta-
tistical procedure) can be passed on to another statistical procedure simply calling it by name.
A simple example is the case of the Wald test for generic linear restrictions of the form R𝛾 = r
on the parameter vector 𝛾 :

Wald(R�̂� − r)⊤[R⊤V̂R]−1(R�̂� − r) (1.4)

Taking the ols estimate of the linear model as an example, the standard – or “classi-
cal” – covariance matrix V̂ols =

∑N
n=1 𝜖

2

N−(K+1)
(Z⊤Z)−1 will only be appropriate if the errors are

independent and identically distributed. If heteroscedasticity is present, the parameter
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estimates �̂�ols are still consistent, but V̂ols is not. The test can then be robustified employing a
heteroscedasticity-consistent covariance estimator in place of V̂ols (Zeileis, 2006a).

The R counterpart of the Wald test is the linearHypothesis function, aliased by
the abbreviation lht (Fox and Weisberg, 2011). Mimicking the relevant statistical procedure,
the latter will use coef and – by default – vcovmethods to extract �̂� and V̂ from the estimated
model, plugging them into (1.4). By default, an lm object will contain V̂ols but the user can,
optionally, provide a different way to calculate the covariance under form of the function
argument vcov.

Example 1.5 Wald test with user-supplied covariance – Tileries data set
As previously seen, the production function model in the Tileries dataset is a good can-
didate for a pooling specification. Below, for the sake of exposition, we estimate a linearized
Cobb-Douglas version of the production function, in order to test a hypothesis of constant
returns to scale. It seems appropriate, as a first step, to estimate a pooled specification by ols:

data("Tileries", package = "pder")

til.fm <- log(output) ̃ log(labor) + log(machine)

lm.mod <- lm(til.fm, data = Tileries, subset = area == "fayoum")

before proceeding to test the restriction H0 ∶ 𝛾1 + 𝛾2 = 1

library(car)

lht(lm.mod, "log(labor) + log(machine) = 1")

Linear hypothesis test

Hypothesis:

log(labor) + log(machine) = 1

Model 1: restricted model

Model 2: log(output) ̃ log(labor) + log(machine)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 175 0.602

2 174 0.600 1 0.00104 0.3 0.58

Allowing for heteroscedasticity is as easy as passing on vcovHC to the vcov argument:
library(car)

lht(lm.mod, "log(labor) + log(machine) = 1", vcov=vcovHC)

Linear hypothesis test

Hypothesis:

log(labor) + log(machine) = 1

Model 1: restricted model

Model 2: log(output) ̃ log(labor) + log(machine)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)

1 175

2 174 1 0.23 0.63
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The qualitative findings are unchanged, but this is not the point. As the Note in the output
reminds us, a different covariance estimator has been employed.

Being generic methods, both lht and vcovHC will select and apply the appropriate partic-
ular procedure depending on the object type. Thus, if fed an lm, inside lht.lm coef.lm and
vcovHC.lmwill be applied, with the relevant defaults; if aplm is provided instead,coef.plm
and vcovHC.plm will be used.

By default, the most appropriate method for estimating the parameters’ covariance in a panel
setting is by allowing for clustering. This is what will happen if feeding the vcovHC function to
the lht together with a plm object: the vcovHC generic will select the vcovHC.plm method
for doing the actual computing.

Example 1.6 user-supplied covariance, continued – Tileries data set
The pooled specification by ols can be estimated through plm as well:

plm.mod <- plm(til.fm, data = Tileries, model = "pooling", subset = area == "fayoum")

before proceeding to test H0:

library(car)

lht(plm.mod, "log(labor) + log(machine) = 1", vcov = vcovHC)

Linear hypothesis test

Hypothesis:

log(labor) + log(machine) = 1

Model 1: restricted model

Model 2: log(output) ̃ log(labor) + log(machine)

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)

1 167

2 166 1 0.76 0.38

Another different covariance has been employed this time, which allows for clustering at indi-
vidual level: an idea that will be explored in Chapter 5. For now it will be sufficient to say that
this one, next to heteroscedasticity, allows for error correlation in time within each individual.

Again, constant returns to scale are not rejected; but now our conclusion is valid in a much
more general context.

The programmer writing alhtmethod for, say, a hypotheticalmymodel class will not have to
bother about these downstream details because all he needs is for mymodel objects to expose
vcov and coefmethods and, eventually, to provide alternative covariance estimators, embod-
ied in turn into vcovXX.mymodel functions. Then his function will automatically reproduce
equation (1.4) in the new context. The plm package has been designed to be compliant with
this framework and to allow for easy extensions along the lines sketched above.

Next to the issue of designing modular code for easier production and maintenance by
re-employing existing functionality in new contexts, object orientation also has important
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computational advantages in terms of efficiency. As we have seen, object orientation means that
the statistical “objects” (the coefficient vector, the covariance) are mapped to computational
tools according to types. From the point of view of the developer faced with computational
efficiency and accuracy issues, this means that often she is able to exploit the peculiar structure
of the problem at hand. Specialized methods (usually written and compiled in C or FORTRAN)
are often available, speeding up computations by many orders of magnitude for a specific class
of problems.

One simple example is the inversion of block-diagonal symmetric matrices; a typical problem
in panel data estimation by gls, where the estimated error covariance matrix, which is NT ×
NT , has to be solved. An obvious improvement is to exploit the property that the inverse of a
block-diagonal matrix is made of the inverses of the individual blocks; nevertheless, defining the
error covariance as a bdsmatrix object allows to use the fast solve.bdsmatrix method
from the package by the same name (Therneau, 2014). This solution is used, e.g., for the ggls
estimators described in Chapter 5: a procedure for which computational efficiency is critical,
as being statistically appropriate for very large N panels, where on the other hand it becomes
computationally problematic.

Another instance where special matrix types greatly extend the feasibility boundaries is in
spatial models: here, sparse matrices are common, which contain a vast majority of zeros. Sim-
plifying, one could say that sparse matrix algebra methods rely on the additional information
on the position of zeros, avoiding both to consume memory for storing them, and to waste
resources to compute on them. Sparse matrix methods from the package spam (Furrer and Sain,
2010) and from the more general matrix algebra package Matrix (Bates and Maechler, 2016)
have been extensively employed in the spatial panel methods described in Chapter 10, together
with optimizers from nlme (Pinheiro et al., 2017) and MaxLik (Henningsen and Toomet, 2011)
(a discussion is to be found in Millo, 2014, Section 5.2).

On a different but related note, innovation in object types has in turn affected the symbolic
descriptions of models: formulae, from which model matrices and responses are derived for
actual computation. The extension of the formula object class into the Formula class, which
inherits from the former generalizing it to allow multi-part models and multiple responses
(Zeileis and Croissant, 2010), is the basis for the consistent specification of a number of esti-
mators based on combining different levels of instrumentation. The consistent and flexible plm
implementation of the econometric methods described in Chapters 6 and 7 is made possible
by the extended functionality of Formulae.

This book is on using, rather than developing, panel data methods in R. This short discussion,
therefore, cannot but scratch the surface of the wealth of computing infrastructure available
to the user who turns toward developing her own methods. We hope to have at least given an
intuition and some directions for further inquiry to any user of plm and related packages who
wants to extend the methods contained herein, leveraging the power of the R environment at
large. As Borges put it, “This plan is so vast that each writer’s contribution is infinitesimal.”

1.6 Notations

This book is necessarily notation-heavy. Moreover, conventions differ across the various sub-
fields of panel data econometrics covered herein. A considerable effort has been made to present
formalizations in a consistent way across chapters, although sometimes this can entail a depar-
ture from the usual habits.

This section is therefore meant as a reference for the whole book.
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1.6.1 General Notation

The probability is denoted by P , the expected value is denoted by E , the variance by V , the
trace by tr , the correlation coefficient by cor , and the standard deviation by 𝜎 . A quadratic
form is denoted by q and the identity matrix by I . A set of covariates defines two matrices:
P , which returns the fitted values when post-multiplied by a vector; and M , which returns the

residuals: P = X(X⊤X)−1X and M = I − P. The Cholesky decomposition of a matrix is denoted
by C , so that:

CAC⊤ = I

1.6.2 Maximum Likelihood Notations

For models estimated by the maximum likelihood method, the objective function is denoted by
ln L , the Jacobian by J , the gradient by g , the Hessian by H and the information matrix

by I. For generic presentations of the log-likelihood method, the generic set of parameters is
denoted by 𝜃 .

The statistics of the three tests are denoted by LR , LM , and Wald for, respectively, a
likelihood ratio, a Lagrange multiplier, and a Wald test.

1.6.3 Index

A panel is constituted of N individuals denoted by n (when necessary, m is used as an alias
for n).

Each individual is observed during T different periods denoted by t (when necessary, s is
used as an alias to the t index).

The size of the sample is denoted by O , it is equal to
∑N

n=1 Tn, where Tn is the number of
time series for individual n. If Tn = T ∀n (balanced panel case), we have O = NT .

The K covariates are indexed by k ; note that a column of ones is not consider in this count.

1.6.4 The Two-way Error Component Model

Consider now the two-way error-component model (the more usual one-way individual error
component model is obtained as a special case); it writes for an observation:

ynt = 𝛼 + 𝛽⊤xnt + 𝜖nt = 𝛾⊤znt + 𝜖nt

𝜖nt = 𝜂n + 𝜇t + 𝜈nt

y is the response, 𝛼 the intercept, x the vector of K covariates with associated coefficients
𝛽 . It would be sometimes easier to consider z , which is obtained by adding a 1 in the first

position of vector x: z⊤nt = (1, x⊤nt), with the vector of associated coefficients 𝛾 with 𝛾⊤ = (𝛼, 𝛾⊤).
The error of the model 𝜖 is the sum of a time-invariant individual effect 𝜂 , an

individual-invariant time-effect 𝜇 , and a residual error 𝜈 . Except for some time-series
and spatial methods, 𝜈 is assumed to be i.i.d..

The variance is denoted by 𝜎2; we therefore have for the error and its components: 𝜎2
𝜖 , 𝜎2

𝜂 , 𝜎2
𝜇

and 𝜎2
𝜈 .
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All estimated values are represented by the “true” value with a hat so that, for example, the
estimated coefficients, the residuals, and the estimated variance of the errors are respectively:
𝛽, 𝜖, and 𝜎2

𝜖 .
In matrix form, the same model is written:

y = 𝛼j + X𝛽 + 𝜖 = Z𝛾 + 𝜖
𝜖 = D𝜂𝜂 + D𝜇𝜇 + 𝜈

where j is a vector of 1, X and Z the covariate matrices (the latter including a first column of
ones, the former without it), 𝜂 the vector of N individual effects, 𝜇 the vector of T time effects,
and 𝜈 the vector of O residual effects.

D denotes a matrix of dummy variables; D𝜂 and D𝜇 are respectively the dummy variable
matrices for individuals and periods. In the case of balanced panels, and if the observations are
ranked first by individual, then by time series (“the t index changes faster”), these two matrices
can be expressed using Kronecker products. Denoting by J = jj⊤ a square matrix of ones, we
have:

D𝜂 = IN ⊗ JT

D𝜇 = JT ⊗ IN

The covariance matrix of the errors 𝜖 is denoted by Ω . Some simplifying assumptions lead to:

Ω𝜖 = 𝜎2
𝜈 INT + 𝜎2

𝜂 IN ⊗ JT + 𝜎2
𝜇JT ⊗ IN

or Ω𝜖 = 𝜎2
𝜈 Σ , with:

Σ = INT +
𝜎2
𝜂

𝜎2
𝜈

IN ⊗ JT +
𝜎2
𝜇

𝜎2
𝜈

JT ⊗ IN

1.6.5 Transformation for the One-way Error Component Model

For the one-way individual error component model, the last term disappears. In this case, we’ll
denote S the matrix that if post-multiplied by a variable, returns a vector of length O contain-
ing the individual sums of the variable, each one being repeated TN times.

S = IN ⊗ JT

We’ll also make use of the matrix Ī = I − J̄ , which post-multiplied by a variable, returns the
variable in deviation from its overall mean:

Ī = I − J̄

In the case of balanced panels, the between and within matrices, respectively denoted by B
and W , can be defined:

B = 1
T

S = 1
T

IN ⊗ JT

W = I − B = INT − 1
T

IN ⊗ JT

Denoting 𝜎2
𝜄 = 𝜎2

𝜈 + T𝜎2
𝜂 , the covariance matrix of the error can be written:

Ω𝜖 = 𝜎2
𝜈

(
W +

𝜎2
𝜄

𝜎2
𝜈

B
)

= 𝜎2
𝜈

(
W + 1

𝜙2 B
)
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with 𝜙 = 𝜎𝜈

𝜎𝜄
. We’ll also denote 𝜃 = 1 − 𝜙 the fraction of the individual mean that is sub-

tracted in the gls model.
Two other transformation matrices are used: D and O perform respectively the

first-difference and the orthogonal deviation of a vector.

1.6.6 Transformation for the Two-ways Error Component Model

Back to the two-ways error component model, we now have two between matrices:

B𝜂 = IN ⊗ JT∕T
B𝜇 = JT ⊗ IN∕N

The within matrix is, denoting by J̄ = JNT∕NT the matrix that post multiplied by a vector
representing a variable returns its overall mean repeated NT times:

W = I − B𝜂 − B𝜇 + J̄

Denote further B̄𝜂 = B𝜂 − J̄ and B̄𝜇 = B𝜇 − J̄ . The covariance matrix of the errors then writes:

Ω𝜖 = 𝜎2
𝜈

(
W + 1

𝜙2
𝜂

B̄𝜂 +
1
𝜙2
𝜇

B̄𝜂 +
1
𝜙2

2
J̄
)

with:

𝜙2
𝜂 =

𝜎𝜈√
𝜎2
𝜈 + T𝜎2

𝜂

𝜙2
𝜇 =

𝜎𝜈√
𝜎2
𝜈 + N𝜎2

𝜇

𝜙2
2 =

𝜎𝜈√
𝜎2
𝜈 + T𝜎2

𝜂 + N𝜎2
𝜇

as for the one-way individual error component model, 𝜃i = 1 − 𝜙i for i = 𝜂, 𝜇, 2

1.6.7 Groups and Nested Models

The group effect is denoted by λ , the G groups are indexed by g .

1.6.8 Instrumental Variables

The matrix of instruments is denoted by L , the number of instruments by M .

1.6.9 Systems of Equations

We consider a system of L equations indexed by l , aliased by m when necessary. Ξ is
the matrix of dimension O × L where each column contains the error vector for one of the
equations. Its covariance matrix is denoted by Σ :

Σ = E(Ξ⊤Ξ)

its elements being denoted by 𝜎 .
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1.6.10 Time Series

The most general time-series model considered in the book is defined by the following
equations:

ynt = 𝜌yt−1 + 𝛾⊤znt + 𝜖nt

𝜖nt = 𝜂n + 𝜈nt

𝜈nt = 𝜓𝜈nt−1 + 𝜁nt

where 𝜌 is the auto-regressive coefficient of the ar(1) model, 𝜓 the coefficient of the ar(1)
process for 𝜈, and 𝜁 are iid errors.

When lags are needed, they’ll be denoted by l and the number of lags is denoted by L . It
is sometimes useful to know the beginning of the process; this will be denoted by − S , 1 being
the first available observation.

1.6.11 Limited Dependent and Count Variables

For the ordered model, the J levels of the dependent variables, defined by the thresholds 𝜇 ,
are denoted by j .

For Poisson models, the Poisson parameter is denoted by 𝜃 . In the cross-series case, it is
equal to:

𝜃n = 𝜂nλnt

where λ is a linear combination of the covariates. Λ and Y are respectively the sums of λ and
of the response for one individual. For the Negbin model, 𝛿 is the parameter of the distribution
and 𝜈 the parameter that links the expected value and the variance of the response.

1.6.12 Spatial Panels

The proximity matrix is denoted by W , its elements by 𝑤 . It can be constructed either on
binary neighborhood or on the distance d between two individuals. The most general model
considered in this book is described by the following equations:

y = λ(IT ⊗W )y + Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈
𝜈 = 𝜌(IT ⊗W )𝜈 + 𝜁
𝜁t = 𝜓𝜁t−1 + 𝜉t , t = 1,… ,T

The first equation defines a sar model, and the auto-regressive spatial coefficient for the
response is denoted by λ . The third equation defines a sem model: it indicates that
the non-individual part of the error of the model is also spatially auto-correlated, the
auto-regressive spatial coefficient being denoted by 𝜌 . Finally, the last equation indicates
that the residual component of the model is serially auto-correlated, with an ar(1) coefficient
denoted by 𝜓 ; and 𝜉 defines i.i.d.errors.

To simplify the notation, we’ll also define matrices A = I − λW and, B = I − 𝜌W which
return respectively the spatial filter of the response and the error.
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2

The Error Component Model

The error component model is relevant when the slopes, i.e., the marginal effects of the covari-
ates on the response, are the same for all the individuals, the intercepts being a priori different.
Note that for some authors, the error component model is a byword for the “random-effects
model” as opposed to the “fixed-effects model.” These two estimators will be analyzed in this
chapter as two different ways to consider the individual component of the error terms for the
same error component model (assuming no correlation and correlation with the regressors,
respectively).

This is the landmark model of panel data econometrics, and this chapter presents the main
results about it.

2.1 Notations and Hypotheses

2.1.1 Notations

For the observation of individual n at period t, we can write the model to be estimated, denoting
by ynt the response, xnt the vector of K covariates, 𝜖nt the error, 𝛼 the intercept, and 𝛽 the vector
of parameters associated to the covariates:

ynt = 𝛼 + x⊤nt𝛽 + 𝜖nt (2.1)

It’ll be sometimes easier to store the intercept and the slopes in the same vector of coefficients.
Denoting by 𝛾⊤ = (𝛼, 𝛽⊤) this vector and z⊤nt = (1, x⊤nt) the associated vector of covariates, the
model can then be written:

ynt = z⊤nt𝛾 + 𝜖nt (2.2)

For the error component model, the error is the sum of two effects:

• the first, 𝜂n is the individual effect for individual n,
• the second, 𝜈nt is the residual effect, also called the idiosyncratic effect.

𝜖nt = 𝜂n + 𝜈nt (2.3)

For the whole sample, we’ll denote by y the vector containing the response and X the matrix
of covariates, storing the observations ordered by individual first and then by period. We’ll
suppose from now that the panel is balanced, which means that we have the same number of
observations (T) for all the individuals (N). In this case, y is a vector of length NT and X a matrix
of dimension NT × K .

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11

y12

⋮

y1T

y21

y22

⋮

y2T

⋮

yN1

yN2

⋮

yNT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
11 x2

11 … xK
11

x1
12 x2

12 … xK
12

⋮ ⋮ ⋱ ⋮

x1
1T x2

1T … xK
1T

x1
21 x2

21 … xK
21

x1
22 x2

22 … xK
22

⋮ ⋮ ⋱ ⋮

x1
2T x2

2T … xK
2T

⋮ ⋮ ⋱ ⋮

x1
N1 x2

N1 … xK
N1

x1
N2 x2

N2 … xK
N2

⋮ ⋮ ⋱ ⋮

x1
NT x2

NT … xK
NT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Denoting by j a vector of ones of length NT , we get:

y = 𝛼j + X𝛽 + 𝜖 (2.4)

When we want to use the extended vector of coefficients, we denote Z = (j,X), and the model
to be estimated is:

y = Z𝛾 + 𝜖 (2.5)

2.1.2 Some Useful Transformations

Panel data econometricians usually break the total variation up into the sum of intra-individual
and inter-individual variations. These two variations can easily be obtained by transforming the
data using different transformation matrices, which can be written using Kronecker products.

The Kronecker product of 2 matrices, denoted A⊗ B, is the matrix obtained by multiplying
each element of A by B.

Ik denotes the identity matrix of dimension k, jl is a vector of ones of length l and Jl = jl × j⊤l
is a matrix of 1 of dimension l × l.

The inter-individual (or between) transformation is obtained by using a transformation matrix
denoted by B, which is defined by:

B = IN ⊗ JT∕T

For example, we have, for N = 2 and T = 3:

B =

(
1 0
0 1

)
⊗

⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝

1
1
1

⎞⎟⎟⎟⎠
(

1 1 1
)
∕3

⎤⎥⎥⎥⎦
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=

(
1 0
0 1

)
⊗

⎛⎜⎜⎜⎝

1∕3 1∕3 1∕3
1∕3 1∕3 1∕3
1∕3 1∕3 1∕3

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∕3 1∕3 1∕3 0 0 0
1∕3 1∕3 1∕3 0 0 0
1∕3 1∕3 1∕3 0 0 0

0 0 0 1∕3 1∕3 1∕3
0 0 0 1∕3 1∕3 1∕3
0 0 0 1∕3 1∕3 1∕3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We then have:

(Bx)⊤ = (x̄1, x̄1,… , x̄1, x̄2, x̄2,… , x̄2,… , x̄N ., x̄N .,… , x̄N .)
To get the intra-individual (or within) transformation, we’ll use a transformation matrix

W defined as:
W = INT − IN ⊗ JT∕T = INT − B

These two matrices have very important properties:
• they are symmetric, so we then have B⊤ = B and W⊤ = W ,
• they are idempotent, which means that W × W = W and B × B = B. For example, for the

between transformation, if we apply it twice to x, we obtain: (B × B) × z = B × (B × z). One
computes the individual means of a vector, which already contains individual means; the
vector is, therefore, unchanged; we then have (B × B) × z = B × z, and the same reasoning
applies to W ,

• they perform a decomposition of a vector, which means that B × z + W × z = z, as W = I − B
and therefore W + B = I,

• they are orthogonal: W⊤B = 0. Indeed, as the two matrices are symmetric and using the
result that W = I − B, we have: W⊤B = W × B = (I − B) × B = B − B × B = B − B = 0.
W (Bz) consist in taking the deviations from individual means of the individual means and
is therefore equal to 0 irrespective of z.
W and B therefore perform an orthogonal decomposition of a vector z; this means that

pre-multiplying z by each of the two matrices, we obtain two vectors that sum to z and for
which the inner product is 0.

2.1.3 Hypotheses Concerning the Errors

𝜖 is the sum of a vector 𝜈 of length NT containing the idiosyncratic part of the error and of the
individual effect 𝜂, which is a vector of length N for which each element is repeated T times.
This can be written in matrix form:

𝜖 = (IN ⊗ jT )𝜂 + 𝜈 (2.6)
The estimated model will be defined by estimated parameters �̂�⊤ = (�̂�, 𝛽⊤) and by a vector of

residuals 𝜖.
y = �̂�j + X𝛽 + 𝜖 (2.7)
y = Z�̂� + 𝜖 (2.8)
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Subtracting (2.5) from (2.8) enables to write the residuals as a function of the errors:
𝜖 = 𝜖 − Z(�̂� − 𝛾) (2.9)

To get a similar expression in terms of X and 𝛽, we use (2.4) and (2.7):
𝜖 = 𝜖 − (�̂� − 𝛼)j − X(𝛽 − 𝛽)

The mean of this expression is, denoting j̄ = j∕(N × T):
j̄⊤𝜖 = j̄⊤𝜖 − (�̂� − 𝛼) − j̄⊤X(𝛽 − 𝛽)

In a linear model with an intercept, j̄⊤𝜖, which is the average of the residuals, is 0. Using the
two previous equations, we get:

𝜖 = (I − J̄)(𝜖 − X(𝛽 − 𝛽)) = Ī(𝜖 − X(𝛽 − 𝛽)) (2.10)
with J̄NT = jj⊤∕(NT) a matrix that post-multiplied by a vector returns a vector of the same
length containing the overall mean. Ī = I − J̄ , post-multiplied by a vector returns the vector
in deviations from the overall mean.

The expressions (2.9 and 2.10) will be used all along this chapter to analyze the properties of
the estimators.

The following hypotheses are made concerning the errors:
• the expected values of the two components of the error are supposed to be 0; anyway, their

means can’t be identified if there is an intercept in the model,
• the individual effects 𝜂n are homoscedastic and mutually uncorrelated,
• the idiosyncratic part of the error 𝜈nt is also homoscedastic and uncorrelated,
• the two components of the errors are uncorrelated.
In this case, the covariance matrix of the errors depends only on the variance of the two compo-
nents of the errors, i.e., the two parameters 𝜎2

𝜈 and 𝜎2
𝜂 . Concerning the variance and covariances

of the errors, we then have:
• for the variance of one error: E(𝜖2

nt) = 𝜎2
𝜂 + 𝜎2

𝜈 ,
• for the covariance of two errors of the same individual for two different periods:

E(𝜖nt𝜖ns) = 𝜎2
𝜂 ,

• for the covariance of two errors of two different individuals (belonging to the same period or
not): E(𝜖nt𝜖mt) = E(𝜖nt𝜖ms) = 0.
For a given individual n, the covariance matrix of the vector of errors for this individual

𝜖⊤n = (𝜖n1, 𝜖n2,… , 𝜖nt) is:
Ωnn = E(𝜖n𝜖

⊤
n ) = 𝜎2

𝜈 IT + 𝜎2
𝜂 JT (2.11)

For the whole sample, we have 𝜖⊤ = (𝜖⊤1 , 𝜖
⊤
2 ,… , 𝜖⊤N ), and the covariance matrix is a square matrix

of dimension NT that contains submatrices E(𝜖n𝜖m). For n = m, this submatrix is given by (2.11);
for n ≠ m, this is a 0 matrix given the hypothesis of no correlation between the errors of two
different individuals. The covariance matrix of the errors Ω is then a block-diagonal matrix, the
N blocks being the matrix given by the equation (2.11). This matrix can then be expressed as a
Kronecker product:

Ω = IN ⊗ (𝜎2
𝜈 IT + 𝜎2

𝜂 JT ) = 𝜎2
𝜈 INT + 𝜎2

𝜂 (IN ⊗ JT )

This matrix can also be usefully expressed in terms of the two transformation matrices within
and between described in subsection 2.1.2. In fact, B = 1

T
IN ⊗ JT and W = I − B. Introducing

these two matrices in the expression of Ω, we get:
Ω = 𝜎2

𝜈 (B + W ) + T𝜎2
𝜂B
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which finally implies, denoting 𝜎2
𝜄 = 𝜎2

𝜈 + T𝜎2
𝜂 :

Ω = 𝜎2
𝜈W + 𝜎2

𝜄 B (2.12)

Finally, all along this chapter, we’ll suppose that both components of the errors are uncorre-
lated with the covariates: E(𝜂 ∣ x) = E(𝜈 ∣ x) = 0.

2.2 Ordinary Least Squares Estimators

The variability in a panel has two components:

• the between or inter-individual variability, which is the variability of panel’s variables
measured in individual means, which is z̄n or, in matrix form, Bz,

• the within or intra-individual variability, which is the variability of panel’s variables measured
in deviation from individual means, which is znt − z̄n or, in matrix form Wz = z − Bz.

Three estimations by ordinary least squares can then be performed: the first one on raw data,
the second one on the individual means of the data (between model), and the last one on the
deviations from individual means (within model).

2.2.1 Ordinary Least Squares on the Raw Data: The Pooling Model

The model to be estimated is y = 𝛼j + X𝛽𝜖 = Z𝛾 + 𝜖. Using the second formulation, the sum of
squares residuals can be written:

(y⊤ − 𝛾⊤Z⊤)(y − Z𝛾)

and the first-order conditions for a minimum are (up to the −2 multiplicative factor):

Z⊤𝜖 = 0 (2.13)

The first column of Z is a vector of ones associated to 𝛼, which is the first element of 𝛾 . There-
fore, dividing the first element of this vector by the number of observations leads to:

ȳ = �̂� + x̄⊤𝛽 (2.14)

This is the well-known result that the mean of the sample, i.e., (x̄, ȳ) is on the regression
line of the ordinary least squares estimator. The K other first-order conditions imply that∑

n
∑

t𝜖ntxknt = 0, which can be rewritten, the average residual ̄̂𝜖 being equal to 0:∑
n
∑

t(𝜖nt − ̄̂𝜖)(xknt − x̄k)
N × T

= 0 (2.15)

which means that the sample covariances between the residuals and the covariates are 0.
Solving (2.13), we get the ordinary least squares estimator for the whole vector of coefficients:

�̂�ols = (Z⊤Z)−1Z⊤y (2.16)

Substituting y by Z𝛾 + 𝜖 in (2.16),

�̂�ols − 𝛾 = (Z⊤Z)−1Z⊤𝜖 (2.17)

To get the estimator of the slopes, one splits Z in (j,X) and �̂�⊤ in (�̂�, 𝛽⊤):
(
�̂�

𝛽

)
=

(
NT j⊤X
X⊤j X⊤X

)−1 (
j⊤y
X⊤y

)
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The formula for the inverse of a partitioned matrix is given by:(
A11 A12

A21 A22

)−1

=

(
A−1

11 (I + A12F2A21A−1
11 ) −A−1

11 A12F2

−F2A21A−1
11 F2

)
(2.18)

with F2 = (A22 − A21A−1
11 A12)−1. The upper left block may also be written: F1 = (A11 −

A12A−1
22 A21)−1

We have here:

(Z⊤Z)−1 =

(
1∕NT + j⊤XFX⊤j∕(NT)2 −j⊤XF⊤∕NT

−FX⊤j∕NT F

)

with F = (X⊤(I − J̄)X)−1. J̄z returns a vector of length NT for which all the elements are the
vector mean z̄. One can easily check that this matrix is idempotent. We then have:

𝛽 = (X⊤(I − J̄)X)−1X⊤(I − J̄)y (2.19)
which is a formula similar to (2.16), but with variables pre-multiplied by I − J̄ , this transfor-
mation removing the overall mean of every variable. For the intercept �̂�, we find the same
expression as (2.14). In order to analyze the characteristics of the ols estimator, we substitute
in (2.19) y by 𝛼j + X𝛽 + 𝜖:

𝛽 = 𝛽 + (X⊤(I − J̄)X)−1X⊤(I − J̄)𝜖
The estimator is then unbiased (E(𝛽) = 𝛽) if E(X⊤(I − J̄)𝜖) = 0, i.e., if the theoretical covari-

ances between the covariates and the errors are all 0. This result is directly linked with expres-
sion (2.13), which indicates that the ols estimator is computed so that empirical covariances
between the residuals and the covariates are all 0. The estimator is consistent if: plim 𝛽 = 𝛽.
This expression is:

plim 𝛽 = 𝛽 + plim
( 1

NT
X⊤(I − J̄)X

)−1
plim 1

NT
X⊤(I − J̄)𝜖

The first term is the population covariance matrix of the covariates and the second one the
population covariance vector of the covariates and the errors. The estimator is therefore con-
sistent if the covariance matrix of the covariates exists, is not 0, and if the covariances between
the covariates and the errors are all 0. The variance of the ols estimator is given by:

V(�̂�ols) = E((�̂�ols − 𝛾)(�̂�ols − 𝛾)⊤) = (Z⊤Z)−1Z⊤ΩZ(Z⊤Z)−1 (2.20)
Note that for the error component model, the covariance matrix of the errors Ω doesn’t

reduce to a scalar times the identity matrix because of the correlation induced by the individ-
ual effects. Therefore, the variance of the ols estimator doesn’t reduce to V(�̂�ols) = 𝜎2(Z⊤Z)−1,
and using this expression in tests will lead to biased inference.

In conclusion, the ols estimator, even if it is unbiased and consistent, has two limitations:
• the first one is that the usual estimator of the variance is not correct and should be replaced

by a more complex expression,
• the second is that, in this context, ols is not the best linear unbiased estimator, which means

that there exist other linear unbiased estimators that are more efficient.

2.2.2 The between Estimator

The between estimator is the ols estimator applied to the model pre-multiplied by B, i.e., the
model in individual means.

By = BZ𝛾 + B𝜖 = 𝛼j + BX𝛽 + B𝜖
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Note that the items of the model that don’t exhibit intra-individual variations are unaffected
by this transformation. This is the case of the column of 1 associated to the intercept, of
the matrix (IN ⊗ jT ) associated to the individual effects and also of some covariates with no
intra-individual as, for exemple, the gender in a sample of individuals. Note also that the N × T
observations of this model are in fact N distinct observations of individual means repeated T
times. Using as in the case of the ols estimator, the formula of the inverse of a partitioned
matrix, the between estimator is:

𝛽b = (X⊤(B − J̄)X)−1X⊤(B − J̄)y = (X⊤B̄X)−1X⊤B̄y (2.21)

B̄ = B − J̄ is a matrix that transforms a variable in its individual means in deviation from the
overall mean. The variance of 𝛽 is obtained by replacing y by 𝛼j + X𝛽 + 𝜖:

𝛽b − 𝛽 = (X⊤B̄X)−1X⊤B̄𝜖
V(𝛽b) = (X⊤B̄X)−1X⊤B̄ΩB̄X(X⊤B̄X)−1

The expression ofΩ given by (2.12) implies that B̄Ω = 𝜎2
𝜄 (B − J̄). Consequently, the expression

of the variance of the between estimator is simply:

V(𝛽b) = 𝜎2
𝜄 (X⊤B̄X)−1 (2.22)

For the full vector of the coefficients (including the intercept 𝛼), the between estimator and
its variance are:

�̂�b = (Z⊤BZ)−1Z⊤By (2.23)
V(�̂�b) = 𝜎2

𝜄 (Z⊤BZ)−1 (2.24)

To estimate 𝜎2
𝜄 , we use the deviance of the between model: q̂B = 𝜖⊤b B𝜖b. Using (2.23) and (2.9):

𝜖b = (I − Z(Z⊤BZ)−1Z⊤B)𝜖
B𝜖b = (B − BZ(Z⊤BZ)−1Z⊤B)𝜖 = Mb𝜖

The Mb matrix is idempotent, and its trace is, using the property that the trace is invariant
under cyclical permutations: tr(Mb) = tr(B) − tr(IK+1) = N − K − 1. We then have q̂b = 𝜖⊤Mb𝜖

and E(q̂b) = E(tr(𝜖⊤Mb𝜖)) = E(tr(Mb𝜖𝜖
⊤)) = tr(MbΩ)) = 𝜎2

𝜄 tr(Mb). The unbiased estimator of
𝜎2
𝜄 is then �̂�2

𝜄 = q̂b∕(N − K − 1). The one returned by an ols program is: q̂b∕(NT − K − 1)
and the covariance matrix of the coefficients should then be multiplied by (NT − K − 1)∕
(N − K − 1).

2.2.3 The within Estimator

The within estimator is obtained by applying the ols estimator to the model pre-multiplied by
the W matrix.

Wy = W (𝛼j + X𝛽 + 𝜖) = WX𝛽 + W𝜈

The within transformation removes the vector of 1 associated to the intercept and the
matrix associated to the vector of individual effects. It also removes covariates that don’t
exhibit intra-individual variation. Applying ols to the transformed model leads to the
within estimator:

𝛽w = (X⊤WX)−1X⊤Wy (2.25)

The variance of 𝛽w is:

V(𝛽w) = (X⊤WX)−1X⊤WΩWX(X⊤WX)−1
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WΩ = W (𝜎2
𝜈W + 𝜎2

𝜄 B) = 𝜎𝜈W . The within transformation therefore induces a correlation
among the errors of the model. The variance of the within estimator reduces to:

V(𝛽w) = 𝜎2
𝜈 (X⊤WX)−1 (2.26)

we then have, in spite of this correlation, the standard expression of the variance. In order to esti-
mate 𝜎2

𝜈 , one uses the deviance of the within estimator: q̂w = 𝜖⊤wW𝜖w. Using (2.25) and (2.10):

𝜖w = (I − X(X⊤WX)−1X⊤W )𝜖
W𝜖w = (W − WX(X⊤WX)−1X⊤W )𝜖 = Mw𝜖

The matrix Mw is idempotent and its trace is tr(Mw) = tr(W ) − tr(IK ) = NT − N − K .
We then have E(q̂w) = E(tr(𝜖⊤Mw𝜖)) = E(tr(Mw𝜖𝜖

⊤)) = tr(MwΩ)) = 𝜎2
𝜈 tr(Mw). The unbiased

estimator of 𝜎2
𝜈 is then �̂�2

𝜈 = q̂w∕(NT − N − K), and the one returned by an ols program is:
q̂w∕(NT − K − 1). The covariance matrix of the coefficients should then be multiplied by:
(NT − K − 1)∕(NT − N − K).

The within model is also called the “fixed-effects model” or the least-squares dummy variable
model, because it can be obtained as a linear model in which the individual effects are estimated
and then taken as fixed parameters. This model can be written:

y = X𝛽 + (IN ⊗ jT )𝜂 + 𝜈

where 𝜂 is now a vector of parameters to be estimated. There are therefore N + K parameters
to estimate in this model.1 The estimation of this model is computationally feasible if N is not
too large. In a micro panel of large size, the estimation becomes problematic.

The equivalence between both models may be established using the Frisch-Waugh theorem
or using the formula of the inverse of a partitioned matrix. The Frisch-Waugh theorem states
that it is equivalent to regress y on a set of covariates X1,X2 or to regress the residuals of
y from a regression on X2 on the residuals of X1 on a regression on X2. The application of
the Frisch-Waugh theorem in this context consists in regressing each variable with respect
to X2 = IN ⊗ jT and getting the residuals. Here, for each variable, the residual is znt − �̂�n. The
first-order condition of the sum of squared residuals minimization is X⊤

2 𝜖 = 0. X2 being a matrix
which selects the individuals, we finally get for every individual, denoting z̄n. =

∑T
t=1 znt

T
:

T∑
t=1

(znt − �̂�n) =
T∑

t=1
znt − T �̂�n = 0

Consequently, we have �̂�n = z̄n. and the residuals are the deviations of the variable from its
individual means. Therefore, the Frisch-Waugh theorem implies that the fixed effect model can
be estimated by applying the ols estimator to the model transformed in deviations from the
individual means, i.e., by regressing Wy on WX.

With the within coefficients in hand, specific intercepts for every individual in the sample
𝛼 + 𝜂n can then be computed:

�̂�n = ȳn. − x̄⊤n.𝛽

where z̄n. is the vector of individual means of z.
If one wants to define individual effects with 0 mean in the sample, a general intercept can be

computed: �̂� = ̄̄y − ̄̄x⊤𝛽, ̄̄z being the overall mean of z. We then have for every individual in the
sample �̂�n = �̂�n − �̂� = (ȳn. − ̄̄y) − (x̄n. − ̄̄x)⊤𝛽

1 The N individual effects and the intercept 𝛼 can’t both be identified. The choice made here consists in setting 𝛼 to 0.
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Example 2.1 within estimator – TobinQ data set
To illustrate the estimation of the estimators seen in this chapter, we use the TobinQ dataset
of the pder package. These data concern 188 American firms for 35 years (from 1951 to 1985).

data("TobinQ", package = "pder")

Schaller (1990) wishes to test Tobin (1969)’s theory of investment. In this model, the main
variable that explains investment is the ratio between the value of the firm and the replacement
cost of its physical capital, this ratio being called “Tobin Q”. If the financial market is perfect,
the value of the firm equals the actual value of its future profits. If the Tobin Q is greater than 1,
this means that the profitability of investment is greater than its cost and so that the investment
is valuable. The response is therefore the rate of investment (investment divided by the capital
stock) and the covariate is Tobin Q.

The plm package provides the plm function to estimate linear models on panel data. Its main
arguments are:

• formula, the symbolic description of the model,
• data, thedata.frame, which can be either an ordinarydata.frameor apdata.frame;

in the first case, the index may be added to indicate the individual and time index,
• model, the estimator one wants to compute: ’within’, ’between’, ’pooling’ (which

is the ols estimator) and ’random’ (which is the gls estimator that will be presented in
the next section).

We first create a pdata.frame using the pdata.frame function. This is done indicating
in the index:

• a character vector of length two indicating the individual and time index,
• a character vector of length one indicating the individual index (in this case, it is assumed

that there is no time index in the data),
• an integer indicating the number of periods (only for a balanced panel with observations first

ordered by individuals and then by period),
• NULL, the default: in this case, it is assumed that the first two columns of the data.frame

contain the individual and the time index.

These different possibilities are illustrated below, the first two columns ofTobinQ containing
the individual and the time index.

pTobinQ <- pdata.frame(TobinQ)

pTobinQa <- pdata.frame(TobinQ, index = 188)

pTobinQb <- pdata.frame(TobinQ, index = c('cusip'))

pTobinQc <- pdata.frame(TobinQ, index = c('cusip', 'year'))

The pdim function can be used to inspect the individual and time dimensions of the
data. It has a method for pdata.frame objects (without any further argument) and for
data.frame. In the latter case, the index argument can be set; if not, it is once more
assumed that the first two columns of the data.frame contain the individual and the time
index.

pdim(pTobinQ)

Balanced Panel: n = 188, T = 35, N = 6580
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pdim(TobinQ, index = 'cusip')

pdim(TobinQ)

A pdata.frame has an index attribute, which is a data.frame that contains the index.
It can be extracted using the index function:

head(index(pTobinQ))

cusip year

2 2824 1951

3 2824 1952

4 2824 1953

5 2824 1954

6 2824 1955

7 2824 1956

We then estimate the three models we have described:

Qeq <- ikn ̃ qn

Q.pooling <- plm(Qeq, pTobinQ, model = "pooling")

Q.within <- update(Q.pooling, model = "within")

Q.between <- update(Q.pooling, model = "between")

Either simple or extended printing of the results is obtained as usual with R applying the
print.plm or summary.plm methods to the object containing the fitted model. For
example, for the within estimator, we get:

Q.within

Model Formula: ikn ̃ qn

Coefficients:

qn

0.00379

summary(Q.within)

Oneway (individual) effect Within Model

Call:

plm(formula = Qeq, data = pTobinQ, model = "within")

Balanced Panel: n = 188, T = 35, N = 6580

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.21631 -0.04525 -0.00849 0.03365 0.61844

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

qn 0.003792 0.000173 22 <2e-16 ***

---
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Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 36.7

Residual Sum of Squares: 34.1

R-Squared: 0.0702

Adj. R-Squared: 0.0428

F-statistic: 482.412 on 1 and 6391 DF, p-value: <2e-16

For the within estimator, the fixef.plm method computes the individual effects. Three
flavors of fixed effects may be obtained depending on the value of the type argument:
• ’level’, the default value, returns the individual intercepts, i.e., �̂� + �̂�n,
• ’dfirst’ returns the individual effects in deviations from the first individual; �̂� is in this

case the intercept for the first individual,
• ’dmean’ returns the individual effects in deviations from their mean; in this case, �̂� is the

average of the individual intercepts.

head(fixef(Q.within))

2824 6284 9158 13716 17372 19411

0.1453 0.1281 0.2581 0.1100 0.1267 0.1695

head(fixef(Q.within, type = "dfirst"))

6284 9158 13716 17372 19411 19519

-0.01723 0.11279 -0.03528 -0.01856 0.02420 -0.01038

head(fixef(Q.within, type = "dmean"))

2824 6284 9158 13716 17372 19411

-0.014213 -0.031448 0.098581 -0.049492 -0.032778 0.009986

We then illustrate the equivalence of the within estimator and the least-squares dummy vari-
ables estimator. For this later estimator, we use the lm function with the cusip variable used
as a covariate, as it is the individual index. The default behavior of lm is to remove the first level
of the factor. The fixed effects are then equal to those obtained using the fixef.plm function
with the argument type equal to ’dfirst’.

head(coef(lm(ikn ̃ qn + factor(cusip), pTobinQ)))

(Intercept) qn factor(cusip)6284

0.145290 0.003792 -0.017235

factor(cusip)9158 factor(cusip)13716 factor(cusip)17372

0.112794 -0.035279 -0.018564

2.3 The Generalized Least Squares Estimator

The within estimator is a regression on data that have been transformed so that the individual
effects vanish (they are, so to say, “transformed out”), while the least squares dummy variables
considers the individual effects as parameters to be estimated (they are “estimated out”); both
give identical estimates of the slopes. On the contrary, the gls estimator considers the individ-
ual effects as random draws from a specific distribution and seeks to estimate the parameters
of this distribution in order to obtain efficient estimators of the slopes.
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2.3.1 Presentation of the GLS Estimator

When the errors are not correlated with the covariates but are characterized by a non-scalar
covariance matrix Ω, the efficient estimator is the generalized least squares estimator:

�̂�gls = (Z⊤Ω−1Z)−1(Z⊤Ω−1y) (2.27)

In order to compute the variance of �̂�gls, we substitute as previously y by Z𝛾 + 𝜖. We then
have:

�̂�gls − 𝛾 = (Z⊤Ω−1Z)−1Z⊤Ω−1𝜖

Using a reasoning similar to (2.20), we obtain the variance of the estimator:

V(�̂�gls) = (X⊤Ω−1X)−1X⊤Ω−1E(𝜖𝜖⊤)Ω−1X(X⊤Ω−1X)−1

= (X⊤Ω−1X)−1 (2.28)

The hypothesis we have made concerning the errors implies that the covariance matrix of
the errors is given by (2.12): Ω = 𝜎2

𝜈W + (T𝜎2
𝜂 + 𝜎2

𝜈 )B, which is a linear combination of two
idempotent and orthogonal matrices. Ω depends only on two parameters: the variances of the
two components of the error terms (𝜎2

𝜈 and 𝜎2
𝜂 ). We have shown, in subsection 2.1.2, that these

two matrices are idempotent (B × B = B and W × W = W ) and orthogonal (B × W = 0). The
expression of powers of Ω is then particularly simple:

Ω𝑣 = 𝜎2
𝜄

𝑣B + 𝜎2
𝜈

𝑣W (2.29)

which can be easily checked, for example for 𝑣 = 2. This result can also be extended to negative
integers and to rationals; we then have, for 𝑣 = −1:

Ω−1 = 1
𝜎2
𝜄

B + 1
𝜎2
𝜈

W

and the gls estimator of the random error model and its variance are then:

�̂�gls =
(

1
𝜎2
𝜈

Z⊤WZ + 1
𝜎2
𝜄

Z⊤BZ
)−1 ( 1

𝜎2
𝜈

Z⊤Wy + 1
𝜎2
𝜄

Z⊤By
)

(2.30)

V(�̂�gls) =
(

1
𝜎2
𝜈

Z⊤WZ + 1
𝜎2
𝜄

Z⊤BZ
)−1

(2.31)

For the vector of slopes, we obtain:

𝛽gls =
(

1
𝜎2
𝜈

X⊤WX + 1
𝜎2
𝜄

X⊤B̄X
)−1 ( 1

𝜎2
𝜈

X⊤Wy + 1
𝜎2
𝜄

X⊤B̄y
)

(2.32)

V(𝛽gls) =
(

1
𝜎2
𝜈

X⊤WX + 1
𝜎2
𝜄

X⊤B̄X
)−1

(2.33)

This estimator is called the random effects model, as opposed to the fixed effects model. This
results from the fact that, as observed, in this case, the individual effects are considered as
random deviates, the parameters of whose distribution we seek to estimate.

The dimension of the matrix Ω is given by the size of the sample. If the sample is large, it is
therefore not practical to compute the estimator according to the matrix formula (2.27). A more
efficient way is to apply ols on suitably pre-transformed data. To this end, one has to compute
the C matrix such that: C⊤C = Ω−1 and then use this matrix to transform all the variables of
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the model. Denoting ỹ = Cy and Z̃ = CZ the transformed variables, the estimation by ols on
transformed variables gives:

�̂� = (Z̃⊤Z̃)−1Z̃⊤ỹ = (Z⊤C⊤CZ)−1Z⊤C⊤Cy = (Z⊤Ω−1Z)−1Z⊤Ω−1y

which is the gls given by (2.30). The expression of the matrix C is obtained using equation (2.29)
for 𝑣 = −0.5:

C = Ω−0.5 = 1
𝜎𝜄

B + 1
𝜎𝜈

W

This transformation consists in a linear combination of the between and within trans-
formations with weights depending on the variances of the two error components. In fact,
pre-multiplying the variables by 𝜎𝜈Ω−0.5 (which is equivalent to premultiplication by Ω−0.5 and
simplifies notation), the weights become respectively 𝜎𝜈

𝜎𝜄
and 1. The transformed variable is

therefore:

z̃nt =
𝜎𝜈

𝜎𝜄
z̄n. + (znt − z̄n.) = znt −

(
1 −

𝜎𝜈

𝜎𝜄

)
z̄n. = znt − 𝜃z̄n.

with, denoting 𝜙 = 𝜎𝜈

𝜎𝜄
:

𝜃 = 1 − 𝜙 = 1 −

√
𝜎2
𝜈

T𝜎2
𝜂 + 𝜎2

𝜈

= 1 − 1√
1 + T 𝜎2

𝜂

𝜎2
𝜈

As will be explained in detail below, the importance of the individual effects in the composite
errors, measured by their share of the total variance, determines how close the estimator will be
to either the within or the pooled ols, which are obtained as special cases, respectively, when
the variance of the individual effects 𝜎𝜂 dominates (𝜃 → 1) or vanishes (𝜃 → 0).

2.3.2 Estimation of the Variances of the Components of the Error

In order to make operational the estimator, residuals from consistent estimators are used to
estimate the unknown parameters 𝜎𝜈 and 𝜎𝜂 (and hence 𝜎𝜄). The estimator obtained is then
called the feasible generalized least squares estimator.

Consider the errors of the model 𝜖nt , their individual mean 𝜖n. and their deviations from these
individual means 𝜖nt − 𝜖n.. By hypothesis, we have: V(𝜖nt) = 𝜎2

𝜈 + 𝜎2
𝜂 . For the individual means,

we get:

𝜖n. =
1
T

T∑
t=1

𝜖nt = 𝜂n +
1
T

T∑
t=1

𝜈nt

V(𝜖n.) = 𝜎2
𝜂 +

1
T
𝜎2
𝜈 = 𝜎2

𝜄 ∕T

The variance of the deviation from the individual means is easily obtained by isolating terms
in 𝜖nt :

𝜖nt − 𝜖n. = 𝜖nt −
1
T

T∑
t=1

𝜖nt =
(

1 − 1
T

)
𝜖nt −

1
T

∑
s≠t
𝜖st

the sum then contains T − 1 terms. The variance is:

V(𝜖nt − 𝜖n.) =
(

1 − 1
T

)2
𝜎2
𝜈 +

1
T2 (T − 1)𝜎2

𝜈
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which finally leads to:

V(𝜖nt − 𝜖n.) =
T − 1

T
𝜎2
𝜈

If 𝜖 were known, natural estimators of these two variances 𝜎2
𝜄 et 𝜎2

𝜈 would be:

�̂�2
𝜄 = T

∑N
n=1 𝜖

2
n.

N
= T

∑N
n=1

∑T
t=1 𝜖

2
n.

NT
= T 𝜖

⊤B𝜖
NT

= 𝜖⊤B𝜖
N

(2.34)

�̂�2
𝜈 =

T
T − 1

∑N
n=1

∑T
t=1 (𝜖nt − 𝜖n.)2

NT
=

∑N
n=1

∑T
t=1 (𝜖nt − 𝜖n.)2

N(T − 1)

= 𝜖⊤W𝜖

N(T − 1)

(2.35)

i.e., estimators based on the norm of the errors transformed using the between and
within matrices. Of course, the errors are unknown, but consistent estimation of the
variances may be obtained by substituting the errors by residuals obtained from a consistent
estimation of the model. Among the numerous estimators available, the one proposed by
Wallace and Hussain (1969) is particularly simple as it consists on using the ols residuals to
write the sample counterpart of equations (2.34) and (2.35)

�̂�2
𝜄 =

𝜖⊤olsB𝜖ols

N

�̂�2
𝜈 =

𝜖⊤olsW𝜖ols

N(T − 1)
The estimated variance of the individual effects can then be obtained:

�̂�2
𝜂 =

�̂�2
𝜄 − �̂�2

𝜈

T
The estimator of Amemiya (1971) is based on the estimation of the within model. We first

compute the overall intercept

�̂� = ̄̄y − 𝛽w ̄̄x

and then compute the residuals 𝜖w:

𝜖w = y − �̂�j − 𝛽wX

These residuals are then used to compute the two quadratic form.

�̂�2
𝜄 =

𝜖⊤wB𝜖w

N

�̂�2
𝜈 =

𝜖⊤wW𝜖w

N(T − 1)
Note that the later is just the deviance of the within estimation divided by N × (T − 1). Note

also that the variance of the individual effect is overestimated if the model contains some
time-invariant variables which disappear with the within transformation.

In this case, Hausman and Taylor (1981) proposed the following adjustment: 𝜖w are regressed
on all the time-invariant variables in the model and the residuals of this regression 𝜖ht are
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substituted with 𝜖w in the computation of the quadratic forms. This will reduce the estimate
of �̂�2

𝜄 and leave unchanged the estimate of �̂�2
𝜈 , so that the estimate of �̂�𝜂 will also decrease.

For the Swamy and Arora (1972) estimator, the within and the between models are estimated.
The residuals of the between model are used for the first quadratic form and those of the
within model for the second one.

�̂�2
𝜄 =

𝜖⊤b B𝜖b

N − K − 1

�̂�2
𝜈 =

𝜖⊤wW𝜖w

N(T − 1) − K
Note that Swamy and Arora (1972) use the degrees of freedom of both regressions for the

estimation of the variances, i.e., K is deduced from the number of observations. Note also that
B𝜖b and W𝜖w are the residuals of the between and within regressions computed on the trans-
formed data, so that the numerators of the two quadratic forms are the deviances of the two
regressions.

For all these estimators, 𝜎2
𝜂 is not directly estimated but obtained by subtracting �̂�2

𝜈 from �̂�2
𝜄 .

In small samples, it can therefore be negative, and in this case it is set to 0.
On the contrary, for the Nerlove (1971) estimator, 𝜎2

𝜂 is estimated by computing the empirical
variance of the fixed effects of the within model, as the estimate of 𝜎𝜈 is obtained by dividing
the quadratic form of the within residuals by the number of observations.

�̂�n = ȳn. − 𝛽wx̄n.

�̂�2
𝜂 =

N∑
n=1

(�̂�n − ̄̂𝜂)2∕(N − 1)

�̂�2
𝜈 =

𝜖⊤wW𝜖w

N × T

Example 2.2 random effects model – TobinQ data set
The random effects model is obtained by setting model to ’random’. Specific arguments
indicate how the variances are estimated.

• random.method is one of ’walhus’ for Wallace and Hussain (1969), ’swar’ for Swamy
and Arora (1972), amemiya for Amemiya (1971), ’ht’ for Hausman and Taylor (1981) and
’nerlove’ for Nerlove (1971).

• random.models is an alternative to the random.methods argument : it is a character
vector of length 1 or 2 that indicates which preliminary estimations are performed in
order to estimate the variances; for example, c("within", "between") use the
within residuals to estimate 𝜎𝜈 and the between residuals to estimate 𝜎𝜄, c("pooling")
or ("pooling", "pooling") use the pooling residuals for the estimation of both
variances,

• random.dfcor is a numeric vector of length 2; it indicates what is the denominator of the
two quadratic forms. If :
– 0 the number of observations is used (NT ,N),
– 1, the numerators of the theoretical formulas are used (N(T − 1),N)
– 2, the number of estimated parameters are deduced (N(T − 1) − K ,N − K − 1).
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The following two commands estimate the same Swamy and Arora (1972) model :

Q.swar <- plm(Qeq, pTobinQ, model = "random", random.method = "swar")

Q.swar2 <- plm(Qeq, pTobinQ, model = "random",

random.models = c("within", "between"),

random.dfcor = c(2, 2))

summary(Q.swar)

Oneway (individual) effect Random Effect Model

(Swamy-Arora's transformation)

Call:

plm(formula = Qeq, data = pTobinQ, model = "random", random.method = "swar")

Balanced Panel: n = 188, T = 35, N = 6580

Effects:

var std.dev share

idiosyncratic 0.00533 0.07303 0.73

individual 0.00202 0.04493 0.27

theta: 0.735

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.2330 -0.0475 -0.0103 0.0336 0.6211

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.159327 0.003425 46.5 <2e-16 ***

qn 0.003862 0.000168 22.9 <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 37.9

Residual Sum of Squares: 35.1

R-Squared: 0.0742

Adj. R-Squared: 0.074

F-statistic: 526.854 on 1 and 6578 DF, p-value: <2e-16

The results indicate that the part in the variance of the individual effect is about one fourth.
The parameter called 𝜃 is the part of the individual mean that is removed from each variable for
the gls estimator. It can be written as 1 − 1√

1+T𝜎2
𝜂
∕𝜎2

𝜈

and is here equal to 73%. This high value

is due to the large time dimension of this panel (T = 35). This implies that the gls estimator is
closer to the within estimator (𝜃 = 1) than to the ols estimator (𝜃 = 0).

The part of the result that deals with the estimation of the two components of the error may
also be obtained by applying the ercomp function either to the gls fitted model or using a
formula – data interface:

ercomp(Qeq, pTobinQ)

ercomp(Q.swar)
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We then compare the results obtained with the 4 estimation methods we’ve presented:

Q.walhus <- update(Q.swar, random.method = "swar")

Q.amemiya <- update(Q.swar, random.method = "amemiya")

Q.nerlove <- update(Q.swar, random.method = "nerlove")

Q.models <- list(swar = Q.swar, walhus = Q.walhus,

amemiya = Q.amemiya, nerlove = Q.nerlove)

sapply(Q.models, function(x) ercomp(x)$theta)

swar.id walhus.id amemiya.id nerlove.id

0.7351 0.7351 0.7361 0.7489

sapply(Q.models, coef)

swar walhus amemiya nerlove

(Intercept) 0.159327 0.159327 0.159328 0.159344

qn 0.003862 0.003862 0.003862 0.003855

The first sapply command extracts from the ercomp object the theta element, indicat-
ing the proportion of the individual mean that is removed from the variables. These are very
close to each other, and consequently, the estimated coefficients for the 4 models are almost
identical.

2.4 Comparison of the Estimators

We have four different estimators of the same model : the between and the within estimators use
only one source of the variance of the sample, while the ols and the gls estimators use both.

Note first that, if the hypothesis that the errors and the covariates are uncorrelated is true, all
these models are unbiased and consistent, which means that they should give similar results, at
least in large samples.

We’ll first analyze the relations between these estimators; we’ll then compare their variances;
and finally we’ll analyze in which circumstances we should use fixed or random effects.

2.4.1 Relations between the Estimators

We can expect the ols and gls estimators to give intermediate results between the within and
the between estimators as they use both sources of variance. From equation (2.32), the
gls estimator can be written :

𝛽gls = (X⊤WX + 𝜙2X⊤B̄X)−1(X⊤Wy + 𝜙2X⊤B̄y)

Using (2.21) and (2.25), 𝛽gls can then be expressed as a weighted average of the within and
the between estimators.

𝛽gls = (X⊤WX + 𝜙2X⊤B̄X)−1(X⊤WX𝛽w + 𝜙2X⊤B̄X𝛽b)

A similar result applies to the ols estimator which is the gls estimator for 𝜙 = 1.

𝛽ols = (X⊤WX + X⊤B̄X)−1(X⊤WX𝛽w + X⊤B̄X𝛽b)

For the ols estimator, the weights are very intuitive because they are just the shares of the
intra- and the inter-individual variances of the covariates. For the gls estimator, the weights
depend not only on the shares of the variance of the covariates but also on the variance of the
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errors, which determines the 𝜙 parameter. The gls estimator will always give less weight to the
between variation, as 𝜙 is lower than 1. It leads to two special cases :

• 𝜙 → 0; this means that 𝜎𝜈 is “small” compared to 𝜎𝜂 . In this case, the gls estimator converges
to the within estimator,

• 𝜙 → 1; this means that 𝜎𝜈 is “large” compared to 𝜎𝜂 . In this case, the gls estimator converges
to the ols estimator.

The relation between the estimators can also be illustrated by the fact that the ols and the
gls can be obtained by stacking the within and between transformations of the model:2(

Wy
By

)
=

(
WZ
BZ

)
𝛾 +

(
W𝜖

B𝜖

)
(2.36)

The matrix of covariance of the errors of this stacked model is :(
𝜎2
𝜈W 0
0 𝜎2

𝜄 B

)
(2.37)

Applying ols to (2.36), we get;

(Z⊤WZ + Z⊤BZ)−1(Z⊤Wy + Z⊤By) = (Z⊤Z)−1Z⊤y

which is the ols estimator,
while applying gls to (2.36) yields the gls estimator of equation (2.30).

(Z⊤WZ + 𝜙2Z⊤BZ)−1(Z⊤Wy + 𝜙2Z⊤By)

2.4.2 Comparison of the Variances

From equation (2.33), the variance of the gls estimator can be written :

V(𝛽gls) = 𝜎2
𝜈 (X⊤WX + 𝜙2X⊤B̄X)−1 (2.38)

The variance of the within estimator being : 𝜎2
𝜈 (X⊤WX)−1, V(𝛽w) − V(𝛽gls) is a positive defi-

nite matrix, and the gls estimator is therefore more efficient than the within estimator. Simi-
larly, equation (2.22) shows that the variance of the between may be written 𝜎2

𝜈 (𝜙2X⊤B̄X)−1 and
therefore V(𝛽b) − V(𝛽gls) is also a positive definite matrix.

2.4.3 Fixed vs Random Effects

The individual effects are not fixed or random by nature. Within the same framework (the indi-
vidual effects model), they are treated as either a vector of constant parameters or the realization
of random deviates for the purpose of estimation, depending on their probabilistic structure
and, in particular, on their correlation with the explanatory variables.

In a micro-panel, the random effects approach is appealing, as we work on a sample with
numerous individuals who are randomly drawn from a very large population. There is no inter-
est in estimating the individual effects, and the random effect approach is more appropriate,
given the way the sample was obtained.

2 See Baltagi (2013).
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On the contrary, in a macro-panel, the sample is fixed or quasi-fixed and almost exhaus-
tive (think of the countries of the world or the large enterprises of a country). In this case, the
estimation of the individual effects may be an interesting result, and the fixed effects approach
seems relevant.

Anyway, the main argument that leads to choose one of the two approaches is the possibility
of correlation between some covariates and the individual effects. If we maintain the hypothesis
that the idiosyncratic error is uncorrelated with the covariates (E(X⊤𝜈) = 0), two situations can
occur :

• E(X⊤𝜂) = 0 : the individual effects are not correlated; in this case, both models are consistent,
but the random effects estimator is more efficient that the fixed effects model,

• E(X⊤𝜂) ≠ 0 : the individual effects are correlated; in this case, only the fixed effects method
gives consistent estimates as, with the within transformation, the individual effects vanish.

Example 2.3 comparison of the estimators – TobinQ data set
The following command extracts the coefficient of qn and its standard deviation for the four
estimators (we consider only the Swamy and Arora (1972) method for the gls estimator, as all
the random effects models give very similar results).

sapply(list(pooling = Q.pooling, within = Q.within,

between = Q.between, swar = Q.swar),

function(x) coef(summary(x))["qn", c("Estimate", "Std. Error")])

pooling within between swar

Estimate 0.0043920 0.0037919 0.0051847 0.0038622

Std. Error 0.0001529 0.0001726 0.0007491 0.0001683

The ols and gls estimators are in the interval defined by the within and between estimators,
and the gls estimator is closer to the within estimator than ols.

Looking at the standard deviations, ols seems to be the most efficient model, but remember
that the standard formula for computing the variance of the ols estimator is biased if indi-
vidual effects are present. The standard deviation for the gls estimator (1.683E-04) is slightly
lower than for the within estimator (1.726E-04) and much lower than for the between estimator
(7.491E-04).

The formal relation between the different estimators is then illustrated by computing the
shares of the variances for the covariate qn. For this purpose, we’ll extract this series from the
padata.frame, which is not, as for data.frame, a numeric vector, but a pseries object,
which inherits from the pdata.frame it has been extracted from the index attribute. The
summary.psries method applied to this object indicate the variance structure of the series:

summary(pTobinQ$qn)

total sum of squares: 314300

id time

0.43081 0.09393

We can use the Within and the Between function with this series in order to compute its
within and the between transformations, and then the weights of the within and the between
estimators in the ols estimator.
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SxxW <- sum(Within(pTobinQ$qn) ̂ 2)

SxxB <- sum((Between(pTobinQ$qn) - mean(pTobinQ$qn)) ̂ 2)

SxxTot <- sum( (pTobinQ$qn - mean(pTobinQ$qn)) ̂ 2)

pondW <- SxxW / SxxTot

pondW

[1] 0.5692

pondW * coef(Q.within)[["qn"]] +

(1 - pondW) * coef(Q.between)[["qn"]]

[1] 0.004392

The weight of the within model is 57%. The ols estimator (0.0044) is then about half
way between the between estimator (0.0052) and the within estimator (0.0038). To get the
gls estimator, we first estimate the parameter 𝜙 using the residuals of the within and the
between estimators:

T <- 35

N <- 188

smxt2 <- deviance(Q.between) * T / (N - 2)

sidios2 <- deviance(Q.within) / (N * (T - 1) - 1)

phi <- sqrt(sidios2 / smxt2)

The weights for the within and the between estimators and the gls estimator are then com-
puted:

pondW <- SxxW / (SxxW + phi ̂ 2 * SxxB)

pondW

[1] 0.9496

pondW * coef(Q.within)[["qn"]] +

(1 - pondW) * coef(Q.between)[["qn"]]

[1] 0.003862

The weight of the within estimator (0.95) is much larger for the gls estimator than for the
ols estimator. This is mainly due to the fact that T is large (35 years). The gls estimator (0.039)
is therefore very close to the within estimator (0.0038).

2.4.4 Some Simple Linear Model Examples

Even if they are of limited practical interest, given that relevant econometric models usually
contain several covariates, simple linear models have a great pedagogical value, as they enable
the graphical representation of the sample and estimators using regression lines. They are for
this reason very useful to illustrate the relationship between the estimators. We’ll use succes-
sively four data sets.

Example 2.4 simple linear model – ForeignTrade data set
The first one, called ForeignTrade, has been used by Kinal and Lahiri (1993) to construct
a full model of external exchange for developing countries, which will be presented in details
in chapter 6. For now, we’ll simply analyze the link between the imports (imports) and the
national product (gnp). Both variables are measured in log and per capita.

The following commands create a pdata.frame, extract the covariate and apply to it
the summary.pdata.frame method, which computes the decomposition of its variance.
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We then use the ercomp function in order to compute the variances of the error components.
Finally, to estimate all the models, we first create a vector containing the names of the
models, and we then use the sapply function in order to extract the coefficient from these
fitted models.

data("ForeignTrade", package = "pder")

FT <- pdata.frame(ForeignTrade)

summary(FT$gnp)

total sum of squares: 4111

id time

0.982480 0.007638

ercomp(imports ̃ gnp, FT)

var std.dev share

idiosyncratic 0.0863 0.2938 0.07

individual 1.0779 1.0382 0.93

theta: 0.942

models <- c("within", "random", "pooling", "between")

sapply(models, function(x) coef(plm(imports ̃ gnp, FT, model = x))["gnp"])

within.gnp random.gnp pooling.gnp between.gnp

0.90236 0.76816 0.06366 0.04871

For this model, the variance of the covariate and of the error is almost only due to the
inter-individual variation (respectively 98 and 93%). In this case, the gls estimator consists
in removing 94% of the individual mean and is therefore almost identical to the within
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Figure 2.1 Imports in terms of the national product for the ForeignTrade data.
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model. Concerning the ols estimator, which takes into account almost all the inter-individual
variation, it is very close to the between estimator. Finally, the first two models give results that
are very different from the last two models and return a much higher elasticity. The Figure 2.1
indicates that there is a strong negative correlation between the individual effects and the
covariate. In this case, the estimators that do not control for the individual effects are biased
downward. This is the case for the ols and the between estimators, and to a much lesser extent
for the gls estimator, which uses only a very small part of the inter-individual variation.

Example 2.5 simple linear model – TurkishBanks data set
The TurkishBanks data were used by El-Gamal and Inanoglu (2005) to analyze production
costs of banks. The only covariate is the production, and both variables are in logs. Computing
as before, we get:

data("TurkishBanks", package = "pder")

TurkishBanks <- na.omit(TurkishBanks)

TB <- pdata.frame(TurkishBanks)

summary(log(TB$output))

total sum of squares: 2692

id time

0.84730 0.01255

ercomp(log(cost) ̃ log(output), TB)

var std.dev share

idiosyncratic 0.329 0.574 0.6

individual 0.216 0.464 0.4

theta:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.619 0.651 0.651 0.647 0.651 0.651

sapply(models, function(x)

coef(plm(log(cost) ̃ log(output), TB, model = x))["log(output)"])

within.log(output) random.log(output) pooling.log(output)

0.5064 0.6471 0.8007

between.log(output)

0.8531

The variation of the covariate is mainly inter-individual (85%), but for the error, the share of
the individual effect and that of the idiosyncratic effect are similar (40% and 60%). The ols and
the between estimators are therefore very close. The gls estimator is about halfway between
the ols and the within estimators because the transformation removes about 65% of the indi-
vidual mean. The Figure 2.2 indicates that the individual effects are positively correlated with
the covariate, and consequently, the between, the ols and in a lesser extent the gls estimators
are upward-biased.

Example 2.6 simple linear model – TexasElectr data set
The TexasElectr data are used by Kumbhakar (1996) and Horrace and Schmidt (1996) and
concern the production cost of electric firms in Texas. We first define the cost as being the
sum of labor expense explab, capital expense expcap, and fuel expense exfuel. The same
computations are then done as above.
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Figure 2.2 Cost in terms of output for the TurkishBanks data.

data("TexasElectr", package = "pder")

TexasElectr$cost <- with(TexasElectr, explab + expfuel + expcap)

TE <- pdata.frame(TexasElectr)

summary(log(TE$output))

total sum of squares: 113.5

id time

0.8234 0.1685

ercomp(log(cost) ̃ log(output), TE)

var std.dev share

idiosyncratic 0.10681 0.32681 0.99

individual 0.00109 0.03299 0.01

theta: 0.0808

sapply(models, function(x)

coef(plm(log(cost) ̃ log(output), TE, model = x))["log(output)"])

within.log(output) random.log(output) pooling.log(output)

2.6325 1.2260 1.1804

between.log(output)

0.8689

The variation of the covariate is mainly inter-individual (82%); yet this is not the case for the
error, for which the idiosyncratic share is very important: therefore, only a very small part of
the individual mean is removed while applying the gls estimator. The gls and ols estimators
are therefore almost equal. The within estimator is much higher because the individual effects
and the covariate are negatively correlated (see Figure 2.3).



46 Panel Data Econometrics with R

10

11

12

13

14

15

8 109 11
log(output)

lo
g(

co
st

)

ols

random

within

id

dp&l

epec

gsu

hl&p

sps

swepco

tesco

tp&l

between

models

Figure 2.3 Cost and output for the TexasElectr data set.

Example 2.7 simple linear model – DemocracyIncome25 data set
The last dataset used is DemocracyIncome25 used by Acemoglu, Johnson, Robinson, and
Yared (2008). This dataset deals with 25 countries, observed over 7 25-year periods between
1850 and 2000. The authors analyze the dynamic causal relationship between wealth and
democracy. Their analysis will be reproduced in detail in chapter 7. For now, we’ll simply analyze
the relationship between democracy (democracy) and wealth (income) lagged one period.

data("DemocracyIncome25", package = "pder")

DI <- pdata.frame(DemocracyIncome25)

summary(lag(DI$income))

total sum of squares: 135

id time

0.4298 0.4891

ercomp(democracy ̃ lag(income), DI)

var std.dev share

idiosyncratic 0.0586 0.2422 0.79

individual 0.0155 0.1243 0.21

theta: 0.378

sapply(models, function(x)

coef(plm(democracy ̃ lag(income), DI, model = x))["lag(income)"])

within.lag(income) random.lag(income) pooling.lag(income)

0.1870 0.2101 0.2309

between.lag(income)

0.2892
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Figure 2.4 Democracy and lagged income for the data DemocracyIncome25.

The share of the inter-individual variation for the covariate and for the error are rather weak
(43 and 21%). 41% of the individual mean is removed from the variables in order to compute
the gls estimator. Finally, Figure 2.4 shows that there is no obvious correlation between
the individual effects and the covariate; consequently, the 4 estimators are rather close to
each other.

2.5 The Two-ways Error Components Model

The two-ways error component is obtained by adding a time-invariant effect 𝜇t to the model.

ynt = 𝛼 + 𝛽xnt + 𝜂n + 𝜇t + 𝜈nt

2.5.1 Error Components in the Two-ways Model

We make for the time effects the same hypotheses that we made for the individual effects:

• 𝜇 has a zero mean and is homoscedastic, its variance is denoted by 𝜎2
𝜇 ,

• the time effects are mutually uncorrelated, E(𝜇t𝜇s) = 0 ∀t ≠ s,
• the time effects are uncorrelated with the individual effects and the idiosyncratic terms.

With these hypotheses, the covariance matrix of the errors becomes:

Ω = 𝜎2
𝜈 INT + 𝜎2

𝜂 IN ⊗ JT + 𝜎2
𝜇JN ⊗ IT
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As for the individual error component model, we write this covariance matrix as a linear
combination of idempotent and mutually orthogonal matrices. To this aim, we write:

B𝜂 = IN ⊗ JT∕T , B𝜇 = JT ⊗ IN∕N and J̄ = 1
NT

JNT

B𝜂 × x computes, as before, the individual means x̄n., B𝜇 × x the time means x̄.t and J̄x the
overall mean ̄̄x. Finally, the within matrix now produces deviations from the individual and the
time means: xnt − x̄n. − x̄.t + ̄̄x:

W = I − B𝜂 − B𝜇 + J̄

With these notations, we get:

Ω = 𝜎2
𝜈W + (T𝜎2

𝜂 + 𝜎2
𝜈 )B𝜂 + (N𝜎2

𝜇 + 𝜎2
𝜈 )B𝜇 − 𝜎2

𝜈 J̄

It can be easily checked that these matrices are idempotent. On the contrary, they are not
all orthogonal, as B𝜂 × B𝜇 = J̄ ≠ 0. The product of these two matrices allows to compute the
time means of the individual means, which results in the overall mean. For this reason, we use
B̄𝜂 = B𝜂 − J̄ and B̄𝜇 = B𝜇 − J̄ , which return respectively the individual and the time means in
deviations from the overall mean. We finally obtain:

Ω = 𝜎2
𝜈W + (T𝜎2

𝜂 + 𝜎2
𝜈 )B̄𝜂 + (N𝜎2

𝜇 + 𝜎2
𝜈 )B̄𝜇 + (T𝜎2

𝜂 + N𝜎2
𝜇 + 𝜎2

𝜈 )J̄

2.5.2 Fixed and Random Effects Models

As for the individual effects model, the two-ways fixed effects model can be obtained in two
different ways:

• by estimating by ols the model that includes individual and time dummies,
• by estimating by ols the model where all the variables have been transformed in deviations

from the individual and the time means: znt − z̄n. − z̄.t + ̄̄z.

For the gls model the variables are pre-multiplied by Ω−0.5 or more simply by:

𝜎𝜈Ω−0.5 = W +
𝜎𝜈√

𝜎2
𝜈 + T𝜎2

𝜂

B̄𝜂 +
𝜎𝜈√

(𝜎2
𝜈 + N𝜎2

𝜇)
B̄𝜇 +

𝜎𝜈√
𝜎2
𝜈 + T𝜎2

𝜂 + N𝜎2
𝜇

J̄

Collecting terms, we obtain the following expression for the transformed data:

z̃nt = znt − 𝜃𝜂 z̄n. − 𝜃𝜇 z̄.t + (𝜃𝜂 + 𝜃𝜇 − 𝜃2) ̄̄z

with:

⎧⎪⎪⎨⎪⎪⎩

𝜃𝜂 = 1 − 𝜎𝜈√
𝜎2
𝜈
+T𝜎2

𝜂

= 1 − 𝜙𝜂

𝜃𝜇 = 1 − 𝜎𝜈√
𝜎2
𝜈
+N𝜎2

𝜇

= 1 − 𝜙𝜇

𝜃2 = 1 − 𝜎𝜈√
𝜎2
𝜈
+T𝜎2

𝜂
+N𝜎2

𝜇

= 1 − 𝜙2

Example 2.8 two-ways effect model – TobinQ data set
We’ve previously stored the four random effect models in a list calledQ.models. The two-ways
effect model is obtained by setting the effect argument to ’twoways’.
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Q.models2 <- lapply(Q.models, function(x) update(x, effect = "twoways"))

sapply(Q.models2, function(x) sqrt(ercomp(x)$sigma2))

swar walhus amemiya nerlove

idios 0.06970 0.06970 0.06969 0.06850

id 0.04508 0.04508 0.04573 0.04735

time 0.02093 0.02093 0.02170 0.02262

sapply(Q.models2, function(x) ercomp(x)$theta)

swar walhus amemiya nerlove

id 0.7472 0.7472 0.7505 0.7624

time 0.764 0.764 0.772 0.7843

total 0.6863 0.6863 0.6933 0.7085

The first sapply command extracts the standard deviations of the three components of the
error. As for the individual effects model, the estimates of the variance components are very
similar. The standard deviation of individual effects is more than twice the one of time effects.
The second command extracts the theta parameters. About 75% of the individual and time
means are removed from the variables.

2.6 Estimation of a Wage Equation

Example 2.9 multiple linear model – UnionWage data set
The estimation of a wage function is an important subject in econometrics, especially in panel
data econometrics, the main covariate of interest being generally education. We use here the
UnionWage dataset used by Vella and Verbeek (1998), who investigated the impact of union
negotiations on wages and the potential endogeneity of this covariate. The data concern 545
men observed during 8 years, from 1980 to 1987.

data("UnionWage", package = "pglm")

pdim(UnionWage)

Balanced Panel: n = 545, T = 8, N = 4360

The response, wage, is the log of the hourly wage. The covariates are: whether wages are
set during negotiations with unions union, the number of years of education school, the
number of years of experience exper and its square, the community com, which identifies
black black and Hispanic hispworkers, whether one lives in a rural area rural, the marital
status married, having a health problem health, the region region, and the activity sector
sector.

The within and ols models are estimated, including or not occupation dummies.

UnionWage$exper2 <- with(UnionWage, exper ̂ 2)

wages.within1 <- plm(wage ̃ union + school + exper + exper2 +

com + rural + married + health +

region + sector, UnionWage)

wages.within2 <- plm(wage ̃ union + school + exper + exper2 +

com + rural + married + health +

region + sector + occ, UnionWage)

wages.pooling1 <- update(wages.within1, model = "pooling")

wages.pooling2 <- update(wages.within2, model = "pooling")
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Table 2.1 Wage Equation.

Dependent variable:

log of hourly wage

pooling estimation within estimation

(1) (2) (3) (4)

union membership 0.176∗∗∗ 0.146∗∗∗ 0.080∗∗∗ 0.079∗∗∗

(0.017) (0.017) (0.020) (0.019)
education years 0.078∗∗∗ 0.090∗∗∗

(0.005) (0.005)
experience years 0.070∗∗∗ 0.076∗∗∗ 0.111∗∗∗ 0.112∗∗∗

(0.010) (0.010) (0.009) (0.008)
experience years squared −0.002∗∗∗ −0.002∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
black −0.130∗∗∗ −0.155∗∗∗

(0.023) (0.023)
hispanic −0.047∗∗ −0.059∗∗∗

(0.022) (0.022)
rural residence −0.116∗∗∗ −0.131∗∗∗ 0.048∗ 0.050∗

(0.019) (0.018) (0.029) (0.029)
married 0.102∗∗∗ 0.110∗∗∗ 0.038∗∗ 0.040∗∗

(0.015) (0.015) (0.018) (0.018)
health problems −0.035 −0.058 −0.010 −0.017

(0.054) (0.054) (0.047) (0.047)
Intercept 0.273∗∗∗ −0.039

(0.091) (0.076)
region dummies Yes Yes Yes Yes
sector dummies Yes Yes Yes Yes
occupation dummies Yes No Yes No
Observations 4,360 4,360 4,360 4,360
R2 0.278 0.264 0.192 0.190

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Estimation results are presented in Table 2.1, using the stargazer library (Hlavac, 2013). We
use several possibilities offered by the library to improve the appearance of the table:

• the omit argument is used to omit two sets of coefficients corresponding to the region
and sector factors; omit.labels indicates how the information about these covariates
will be included in the table,

• the F statistic and adjusted R2 are removed from the output using omit.stat,
• customized names for the response and the covariates are provided withdep.var.labels

and covariate.labels
• column.labels and column.separate are used to indicate the method of estimation

used for the first two and the last two models.
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library("stargazer")

stargazer(wages.pooling2, wages.pooling1, wages.within2, wages.within1,

omit = c("region", "sector", "occ"),

omit.labels = c("region dummies", "sector dummies", "occupation

dummies"),

column.labels = c("pooling estimation", "within estimation"),

column.separate = c(2, 2),

dep.var.labels = "log of hourly wage",

covariate.labels = c("union membership", "education years",

"experience years", "experience years squared",

"black", "hispanic", "rural residence",

"married", "health problems",

"Intercept"),

omit.stat = c("adj.rsq", "f"),

title = "Wage equation",

label = "tab:wagesresult",

no.space = TRUE

)

Table 2.1 exactly matches the results presented in Vella and Verbeek (1998) in columns (2),
(1), (3), and (4).

Looking at the results, we see that the union premium is about 18% with the ols model and
falls to 8% for the within model. This indicates that the individual effects are strongly positively
correlated with union membership. The return of education is about 8% more wage for one
more year of education. This is a consistent result only if the education level is uncorrelated
with the individual effects. If there is any correlation, the only consistent model is the within
model; unfortunately, the within transformation eliminates all the time-invariant covariates
(education, community, and rural residence).

This example illustrates the main concern about panel data econometrics, the correlation
between some covariates and the two components of the error term:

• if there is no correlation, use gls, which gives consistent and efficient estimators and allows
estimating the coefficients for time-invariant covariates;

• if there is correlation only with the individual component of the error, use the within model; it
provides consistent estimates, but the effect of time-invariant covariates cannot be estimated;

• if there is correlation between any covariates and both components of the error term, none
of the models we have presented are consistent. Vella and Verbeek (1998) argued that the
endogeneity of union membership is not limited to the time-invariant part of the error. In
this case, all the models presented, including the within model, are inconsistent, and the
authors propose a more sophisticated estimation procedure in order to obtain a consistent
estimator.
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3

Advanced Error Components Models

3.1 Unbalanced Panels

For unbalanced panels, the number of observations for each individual is now individual spe-
cific and denoted by Tn. We’ll denote by O =

∑N
n=1 Tn the total number of observations. Com-

pared to the balanced panel case, three complications appear:

• firstly, the covariance matrix of the errors cannot be written any more as a linear combination
of idempotent and mutually orthogonal matrices (for the one-way error component model,
the within and the between matrices), the weights being the variances of the errors (𝜎2

𝜂 and
𝜎2
𝜄 ). Denoting by D𝜂 and D𝜇 two matrices of individual and time dummies, matrices of the

type S = DD⊤, returning either the sum of the values for an individual or for a time series,
will explicitly appear, and these matrices are not idempotent;

• secondly, for the individual effects model, the within transformation still consists of remov-
ing the individual mean from the variable. On the contrary, for the two-ways effects, the
within transformation is not obtained by performing a difference with the individual and
time means, as in the balanced panel case, but requires more tedious matrix algebra;

• finally, to estimate the components of the variance, we will still compute quadratic forms of
the residuals of some consistent preliminary estimations, but there is no obvious choice of
denominators, as there was in the balanced case.

3.1.1 Individual Effects Model

The model to be estimated can be written:

y = Z𝛾 + 𝜖 = Z𝛾 + D𝜂𝜂 + 𝜈

The fixed effects model may be estimated by regressing y on X and D𝜂 . Like in the balanced
panel case, the Frisch-Waugh theorem enables to avoid the estimation of the fixed effects. The
estimation of 𝛽 may be obtained by regressing in a first stage y and X on D𝜂 , computing the
residuals and then regressing in the second stage the residuals of y on those of X. As in the
balanced panel case, these residuals are just the individual within transformation, i.e., znt − z̄n.
or W𝜂z in matrix form, and the fixed effects model is simply obtained by regressing W𝜂y on W𝜂X.

For the gls model, the covariance matrix of the errors is:

Ω = 𝜎2
𝜈 I + 𝜎2

𝜂D𝜂D⊤
𝜂 = 𝜎2

𝜈

(
I +

𝜎2
𝜂

𝜎2
𝜈

D𝜂D⊤
𝜂

)
= 𝜎2

𝜈Σ
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The gls estimator writes:

�̂�gls = (Z⊤Ω−1Z)−1Z⊤Ω−1Z

D𝜂D⊤
𝜂 is a block-diagonal matrix that contains N square matrices of ones of dimension Tn.

For balanced panels, Tn = T ∀n and S = TB. Sz returns the sum of the values of z for each
individual. Ω is also a block-diagonal matrix, with blocks Ωn of the form:

Ωn = 𝜎2
𝜈 ITn

+ 𝜎2
𝜂 JTn

= 𝜎2
𝜈

[
ĪTn

+
𝜎2
𝜈 + Tn𝜎

2
𝜂

𝜎2
𝜈

J̄Tn

]

with Ī = I − J̄ .
The inverse of a block-diagonal matrix being equal to a block-diagonal matrix for which the

blocks are the inverses of those of the initial matrix, it is sufficient to calculate the inverse of Ωn.
As it is a linear combination of two idempotent and orthogonal matrices, the general formula
for any power of Ωn is:

Ω𝑣
n = 𝜎2𝑣

𝜈

[
ĪTn

+

(
𝜎2
𝜈 + Tn𝜎

2
𝜂

𝜎2
𝜈

)𝑣
J̄Tn

]

In particular, the inverse is:

Ω−1
n = 1

𝜎2
𝜈

[
ĪTn

+
𝜎2
𝜈

𝜎2
𝜈 + Tn𝜎

2
𝜂

J̄Tn

]

which can also be written as Ω−1
n = Ω−0.5

n Ω−0.5
n , with:

Ω−0.5
n = 1

𝜎𝜈

⎡⎢⎢⎢⎣
ĪTn

+
𝜎𝜈√

𝜎2
𝜈 + Tn𝜎

2
𝜂

J̄Tn

⎤⎥⎥⎥⎦
The gls estimator may then be obtained by applying ols on variables that have been

transformed by pre-multiplying them by Ω−0.5
n or, equivalently, by 𝜎𝜈Ω−0.5

n (which will simplify
notation):

𝜎𝜈Ω−0.5
n zn =

⎡⎢⎢⎢⎣
ĪTn

+
𝜎𝜈√

𝜎2
𝜈 + Tn𝜎

2
𝜂

J̄Tn

⎤⎥⎥⎥⎦
zn =
⎡⎢⎢⎢⎣
ITn

−
⎛⎜⎜⎜⎝
1 −

𝜎𝜈√
𝜎2
𝜈 + Tn𝜎

2
𝜂

J̄Tn

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
zn

As in the balanced case, the transformed data can be expressed as quasi-differences, z̃nt =
znt − 𝜃nzn., with:

𝜃n = 1 −
𝜎𝜈√

𝜎2
𝜈 + Tn𝜎

2
𝜂

= 1 − 𝜙n

the only difference being that now, the proportion of the individual mean that is removed is not
a constant, as it depends on the number of observations for each individual.

3.1.2 Two-ways Error Component Model

For the two-ways error component model, we have:

ynt = 𝛼 + 𝛽⊤xnt + 𝜂n + 𝜇t + 𝜈nt
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or, in matrix form:

y = 𝛼j + X𝛽 + D𝜂𝜂 + D𝜇𝜇 + 𝜈

where D𝜂 and D𝜇 are matrices of respectively individual and time dummies. Pre-multiplying a
vector by S𝜂 = D𝜂D⊤

𝜂 and S𝜇 = D𝜇D⊤
𝜇 returns, respectively, the individual and time sum of the

variable.
D⊤
𝜂 D𝜂 and D⊤

𝜇D𝜇 are two diagonal matrices that contain the number of observations for
each individual and time-series. Pre-multiplying a vector by B𝜂 = D⊤

𝜂 (D⊤
𝜂 D𝜂)−1D𝜂 or by

B𝜇 = D⊤
𝜇 (D⊤

𝜇D𝜇)−1D𝜇 returns, respectively, the individual and the time series means. Finally,
D⊤
𝜇D𝜂 is a T × N matrix of ones and zeros, which indicates whether an observation for a

specific individual and time period is present or not.
To help visualizing these matrices, we consider a panel with 3 individuals and 4 periods; the

panel is unbalanced, as the first individual is not observed in the third and fourth periods, and
the third one is not observed in the first period.

D𝜂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D⊤
𝜂 D𝜂 =

⎛⎜⎜⎜⎝

2 0 0
0 4 0
0 0 3

⎞⎟⎟⎟⎠
D⊤
𝜇D𝜇 =

⎛⎜⎜⎜⎜⎝

2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

⎞⎟⎟⎟⎟⎠
D⊤
𝜇D𝜂 =

⎛⎜⎜⎜⎜⎝

1 1 0
1 1 1
0 1 1
0 1 1

⎞⎟⎟⎟⎟⎠

D𝜂D⊤
𝜂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D𝜇D⊤
𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3.1.2.1 Fixed Effects Model
The fixed effects model can be estimated regressing y on X and the two matrices associated
with the effects vectors D𝜂 and D𝜇 .

The application of the Frisch-Waugh theorem implies that the estimation can be performed
by regressing in a first stage y, X, and D𝜇 on D𝜂 and then, in a second stage, by regressing the
residuals of y on those of X and D𝜇 , which means regressing W𝜂y on W𝜂X and W𝜂D𝜇 .
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Applying the same theorem again, one can regress in W𝜂y and W𝜂X on W𝜂D𝜇 in the first stage,
and the residuals of W𝜂y on those of W𝜂X in the second stage.

Residuals of a regression on W𝜂D𝜇 are obtained by pre-multiplying the variables by the
matrix:

W = I − W𝜂D𝜇(D⊤
𝜇W𝜂D𝜇)−W𝜂D𝜇

where, for any matrix A, A− is the generalized inverse of A. Finally, the two-ways error compo-
nent fixed effects model may be obtained by applying to y and every column of X the following
transformation:

(I − W𝜂D𝜇(D⊤
𝜇W𝜂D𝜇)−W𝜂D𝜇)W𝜂z

The double-within transformation consists then, for unbalanced panels, in multiplying any
data vector by the following matrix:

W = W𝜂 − W𝜂D𝜇(D⊤
𝜇W𝜂D𝜇)−W𝜂D𝜇W𝜂

Therefore, the two-ways fixed effects model is still easy to compute even if the panel is unbal-
anced: all that is required is ols estimation and the computation of deviations from the indi-
vidual means. One proceeds as follows:

• first, the individual within transformation is applied to X, y and D𝜇 ,
• next, W𝜂X and W𝜂y are regressed on W D𝜇 ,
• finally, from these regressions, the residuals of W𝜂X and W𝜂y are obtained; then the residuals

of the latter are regressed on those of the former.

The within transformation is performed on K + T + 1 variables, and then K + 1 preliminary
linear estimations are performed on T covariates before the final estimation for which there are
K covariates.

Note that no specific matrix computation is required and that, in particular, the matrix of indi-
vidual dummies, which is often very large (O × N), need not to be stored during the estimation.

3.1.2.2 Random Effects Model
The variance matrix of the errors is:

Ω = 𝜎2
𝜈 I + 𝜎2

𝜂D𝜂D⊤
𝜂 + 𝜎2

𝜇D𝜇D⊤
𝜇 = 𝜎2

𝜈Σ

with:

Σ = I +
𝜎2
𝜂

𝜎2
𝜈

D𝜂D⊤
𝜂 +

𝜎2
𝜇

𝜎2
𝜈

D𝜇D⊤
𝜇

Denote 𝜎2
𝜈Σ𝜂 = 𝜎2

𝜈

(
I + 𝜎2

𝜂

𝜎2
𝜈

D𝜂D⊤
𝜂

)
the covariance matrix of the errors of the individual

one-way error components model. We then have:

Ω = 𝜎2
𝜈Σ = 𝜎2

𝜈

(
Σ𝜂 +

𝜎2
𝜇

𝜎2
𝜈

D𝜇D⊤
𝜇

)

Σ𝜂 is block-diagonal, with blocks: ITn
+ 𝜎2

𝜂

𝜎2
𝜈

JTn
= ĪTn

+ 𝜎2
𝜈

𝜎2
𝜈
+Tn𝜎

2
𝜂

J̄Tn
. ĪTn

and J̄Tn
being idempotent

and orthogonal, the matrix Σ0.5
𝜂 (defined so that Σ0.5

𝜂 Σ0.5
𝜂 = Σ𝜂) is also a block-diagonal matrix

with blocks: ĪTn
+
√

𝜎2
𝜈
+Tn𝜎

2
𝜂

𝜎𝜈
J̄Tn

. We then have:

Σ = Σ0.5
𝜂 Σ0.5

𝜂 +
𝜎2
𝜇

𝜎2
𝜈

D𝜇D⊤
𝜇
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Σ = Σ0.5
𝜂

(
I +

𝜎2
𝜇

𝜎2
𝜈

Σ−0.5
𝜂 D𝜇D⊤

𝜇Σ−0.5
𝜂

)
Σ0.5
𝜂

for which the inverse is:

Σ−1 = Σ−0.5
𝜂

(
I +

𝜎2
𝜇

𝜎2
𝜈

Σ−0.5
𝜂 D𝜇D⊤

𝜇Σ−0.5
𝜂

)−1

Σ−0.5
𝜂

We then apply the following result: (I + XX⊤)−1 = I − X(I + X⊤X)−1X⊤ to the matrix in
brackets:(

I +
𝜎2
𝜇

𝜎2
𝜈

Σ−0.5
𝜂 D𝜇D⊤

𝜇Σ−0.5
𝜂

)−1

= I −
𝜎2
𝜇

𝜎2
𝜈

Σ−0.5
𝜂 D𝜇

(
I +

𝜎2
𝜇

𝜎2
𝜈

D⊤
𝜇Σ−1

𝜂 D𝜇

)−1

D⊤
𝜇Σ−0.5

𝜂

Finally, we have:

Σ−1 = Σ−1
𝜂 −

𝜎2
𝜇

𝜎2
𝜈

Σ−1
𝜂 D𝜇

[
I +

𝜎2
𝜇

𝜎2
𝜈

D⊤
𝜇Σ−1

𝜂 D𝜇

]−1

D⊤
𝜇Σ−1

𝜂

and the gls estimator is:

�̂� = (Z⊤Σ−1Z)−1Z⊤Σ−1y

Let Z̃ = Σ−0.5
𝜂 Z and D̃𝜇 = Σ−0.5

𝜂 D𝜇 the matrix of the covariates and of the time dummies mea-
sured in quasi-difference from the individual means. We then have:

Z⊤Σ−1Z = Z̃⊤Z̃ −
𝜎2
𝜇

𝜎2
𝜈

Z̃⊤D̃𝜇

(
I +

𝜎2
𝜇

𝜎2
𝜈

D̃⊤
𝜇 D̃𝜇

)−1

D̃⊤
𝜇 Z̃

and a similar expression for Z⊤Σ−1y. With the two matrices D̃𝜇 and Z̃ in hand, the computation
of the estimator requires:

• computing the cross products of the two matrices Z̃⊤Z̃, Z̃⊤D̃𝜇 and D̃⊤
𝜇 D̃𝜇 ,

• computing the inverse of a matrix of dimension T .

These are reasonable computational tasks: note especially that the matrix of individual effects
needn’t be stored and that the dimension of the matrix that has to be inverted is T and not N
or O and that, at least for micro-panels, T is relatively small. Note also that computation of the
gls estimator requires explicit matrix operations and it can no longer be obtained as a series
of linear regressions on transformed data.

3.1.3 Estimation of the Components of the Error Variance

Remember that, in the balanced panel case, we used the result that natural estimators of �̂�2
𝜄 and

�̂�2
𝜈 were:

⎧⎪⎨⎪⎩
�̂�2
𝜄 = 𝜖⊤B𝜖

N

�̂�2
𝜈 = 𝜖⊤W𝜖

N(T−1)

Feasible estimates were obtained by replacing 𝜖 by the residuals 𝜖 from a consistent estima-
tion. For the balanced case, N and N(T − 1) were natural denominators. This is no longer the
case when the panel is unbalanced, as Tn is not the same for all individuals (and Nt is not the
same for all time periods).



58 Panel Data Econometrics with R

The strategy used here consists in computing the expected values of the quadratic forms in
order to obtain unbiased estimators of the variance components:

• first, for a given estimator, define the matrix MV that transforms the errors into the residuals
of the V estimator: 𝜖V = MV 𝜖,

• compute the two quadratic forms of the within and between transformation of the residuals:
q̂V

w = 𝜖V⊤W𝜖V and q̂V
b = 𝜖V⊤B𝜖V (q̂V

b𝜂 = 𝜖V⊤B𝜂𝜖V and q̂V
b𝜇 = 𝜖V⊤B𝜇𝜖V for the two-ways error

component model).
• compute the expected values of these quadratic forms, which are functions of 𝜎2

𝜈 , 𝜎2
𝜂 (and 𝜎2

𝜇

for the two-ways model),
• equate the quadratic forms to their expected values and solve the system of two (or three

equations for the two-ways error component model) for 𝜎2
𝜈 , 𝜎2

𝜂 (and 𝜎2
𝜇 in the latter case).

Different estimators are obtained using different preliminary models to obtain the residuals.
Among the numerous possible choices, as previously seen on chapter 2:

• Wallace and Hussain (1969) use the residuals of the pooling estimator for the two quadratic
forms,

• Amemiya (1971) use the residuals of the ols estimator for the two quadratic forms,
• Swamy and Arora (1972) use the residuals of the ols estimator for the first quadratic form

and those of the ols estimator for the second one.

The model and its estimation are:{
y = Z𝛾 + 𝜖 = 𝛼j + X𝛽 + 𝜖
y = Z�̂� + 𝜖 = �̂�j + X𝛽 + 𝜖

(3.1)

The intercept can be removed by pre-multiplying every element of the model by: Ī = I − J̄ ,
which subtracts from every variable its overall mean and therefore removes the intercept, as
Īj = 0.{

Īy = ĪX𝛽 + Ī𝜖
Īy = ĪX𝛽 + 𝜖

(3.2)

Subtracting the expression of the model and of its estimation, we get:{
Z(�̂� − 𝛾) + 𝜖 − 𝜖 = 0
ĪX(𝛽 − 𝛽) + 𝜖 − Ī𝜖 = 0

(3.3)

The three estimators we use (ols, within, and between) can be seen as gls estimators of this
model, with V being equal, respectively, to I, W , and B:{

�̂� = (Z⊤VZ)−1Z⊤Vy = 𝛾 + (Z⊤VZ)−1Z⊤V𝜖
𝛽 = (X⊤ĪV ĪX)−1X⊤ĪV Īy = 𝛽 + (X⊤ĪV ĪX)−1X⊤ ĪV Ī𝜖

(3.4)

Using the two previous expressions, we get 𝜖 = MV 𝜖 with:

MV = I − Z(Z⊤VZ)−1Z⊤V = Ī − ĪX(X⊤ ĪV ĪX)−1X⊤ĪV Ī (3.5)

MV is the matrix that transforms the error vector into the residuals vector. Note that it is
not a symmetric matrix, at least unless V = I (which corresponds to the pooling model). The
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quadratic form of the residuals with a matrix A is:

q̂V
A = 𝜖V⊤A𝜖V = 𝜖⊤MV⊤AMV 𝜖

q̂V
A being a scalar, it is also equal to its trace:

q̂V
A = tr(𝜖⊤MV⊤AMV 𝜖)

Using the cyclic property of the trace operator, we get:

q̂V
A = tr(MV⊤AMV 𝜖𝜖⊤)

from which, taking expectations, we obtain:

E(q̂V
A ) = tr(MV⊤AMV E(𝜖𝜖⊤)) = tr(MV⊤AMVΩ)

with Ω = 𝜎2
𝜈 I + 𝜎2

𝜂S𝜂 + 𝜎2
𝜇S𝜇 .

Finally, we get:

E(q̂V
A ) = 𝜎2

𝜈 tr(MV⊤AMV ) + 𝜎2
𝜂 tr(MV⊤AMV S𝜂) + 𝜎2

𝜇tr(MV⊤AMV S𝜇)

Replacing MV by its expression and denoting ΘA = X⊤AX, we get:

E(q̂V
A ) =
⎛⎜⎜⎜⎝

tr(ĪAĪ) − 2tr(Θ−1
V ΘĪAĪV ) + tr(Θ−1

V ΘĪAĪ)
tr(ĪAĪS𝜂) − 2tr(Θ−1

V ΘĪAĪS𝜂V ) + tr(Θ−1
V ΘĪAĪΘ−1

V ΘV S𝜂V )
tr(ĪAĪS𝜇) − 2tr(Θ−1

V ΘĪAĪS𝜇V ) + tr(Θ−1
V ΘĪAĪΘ−1

V ΘV S𝜇V )

⎞⎟⎟⎟⎠

⊤ ⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜇

⎞⎟⎟⎟⎠
or, denoting ΥA = Z⊤AZ:

E(q̂V
A ) =
⎛⎜⎜⎜⎝

tr(A) − 2tr(Υ−1
V ΥVA) + tr(Υ−1

V ΥA)
tr(AS𝜂) − 2tr(Υ−1

V ΥV S𝜂A) + tr(Υ−1
V ΥAΥ−1

V ΥV S𝜂V )
tr(AS𝜇) − 2tr(Υ−1

V ΥV S𝜇A) + tr(Υ−1
V ΥAΥ−1

V ΥV S𝜇V )

⎞⎟⎟⎟⎠

⊤ ⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜇

⎞⎟⎟⎟⎠
The most common estimators are obtained by considering the quadratic forms with the

within, between-individual, and between-time matrices. We then get the following system of
equations:

⎛⎜⎜⎜⎝

q̂V
w

q̂V
b𝜂

q̂V
b𝜇

⎞⎟⎟⎟⎠
= H
⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜇

⎞⎟⎟⎟⎠
(3.6)

with

H =
⎛⎜⎜⎜⎝

tr(MV⊤W MV ) tr(MV⊤W MV S𝜂) tr(MV⊤W MV S𝜇)
tr(MV⊤B𝜂MV ) tr(MV⊤B𝜂MV S𝜂) tr(MV⊤B𝜂MV S𝜇)
tr(MV⊤B𝜇MV ) tr(MV⊤B𝜇MV S𝜂) tr(MV⊤B𝜇MV S𝜇)

⎞⎟⎟⎟⎠
(3.7)

Using the following results: ĪW = W , tr(W ) = O − N − T + 1, W S𝜂 = 0, W S𝜇 = 0,
B𝜂S𝜂 = S𝜂 , B𝜇S𝜇 = S𝜇 , tr(S𝜇) = tr(S𝜂) = O, tr(B𝜂) = N , tr(B𝜇) = T , ĪB𝜂 ĪS𝜂 = ĪS𝜂 and tr(ĪS𝜂) =
O −
∑

nTn∕O, ĪB𝜇 ĪS𝜇 = ĪS𝜇 and tr(ĪS𝜇) = O −
∑

tNt∕O, tr(ĪB𝜂) = N − 1, tr(ĪB𝜇) = T − 1,
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tr(ĪB𝜇 ĪS𝜂) = T −
∑

nT2
n∕O, tr(ĪB𝜂 ĪS𝜇) = N −

∑
tN2

t ∕O, tr(B𝜇S𝜂) = T , tr(B𝜂S𝜇) = N , we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(q̂V
W ) = 𝜎2

𝜈 [O − N − T + 1 − 2tr(Θ−1
V ΘĪVW ) + tr(Θ−1

V ΘW )]
+ 𝜎2

𝜂 [tr(Θ−1
V ΘWΘ−1

V ΘV S𝜂V )]
+ 𝜎2

𝜇[tr(Θ−1
V ΘWΘ−1

V ΘV S𝜇V )]

E(q̂V
B𝜂
) = 𝜎2

𝜈 [N − 1 − 2tr(Θ−1
V ΘĪV B𝜂 ) + tr(Θ−1

V ΘB̄𝜂 )]

+ 𝜎2
𝜂

[
O −
∑

nT2
n∕O + 2tr(Θ−1

V ΘĪS𝜂V ) + tr(Θ−1
V ΘB̄𝜂Θ

−1
V ΘV S𝜂V )

]

+ 𝜎2
𝜇

[
N −
∑

tN2
t ∕O − 2tr(Θ−1

V ΘĪS𝜇V ) + tr(Θ−1
V ΘB̄𝜂Θ

−1
V ΘV S𝜇V )

]

E(q̂V
B𝜇
) = 𝜎2

𝜈 [T − 1 − 2tr(Θ−1
V ΘĪV B𝜇 ) + tr(Θ−1

V ΘB̄𝜇 )]

+ 𝜎2
𝜂

[
T −
∑

nT2
n∕O − 2tr(Θ−1

V ΘĪS𝜂V ) + tr(Θ−1
V ΘB̄𝜇Θ

−1
V ΘV S𝜂V )

]

+ 𝜎2
𝜇

[
O −
∑

tN2
t ∕O − 2tr(Θ−1

V ΘĪS𝜇V ) + tr(Θ−1
V ΘB̄𝜇Θ

−1
V ΘV S𝜇V )

]

or:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E(q̂V
W ) = 𝜎2

𝜈 [O − N − T + 1 − tr(Υ−1
V ΥW )]

+ 𝜎2
𝜂 [tr(Υ−1

V ΥWΥ−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[tr(Υ−1

V ΥWΥ−1
V ΥV S𝜇V )]

E(q̂V
B𝜂
) = 𝜎2

𝜈 [N − 2tr(Υ−1
V ΥB𝜂V ) + tr(Υ−1

V ΥB𝜂 )]
+ 𝜎2

𝜂 [O − 2tr(Υ−1
V ΥS𝜂V ) + tr(Υ−1

V ΥB𝜂Υ
−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[N − 2tr(Υ−1

V ΥB𝜂S𝜇V ) + tr(Υ−1
V ΥB𝜂Υ

−1
V ΥV S𝜇V )]

E(q̂V
B𝜇
) = 𝜎2

𝜈 [T − 2tr(Υ−1
V ΥB𝜇V ) + tr(Υ−1

V ΥB𝜇 )]
+ 𝜎2

𝜂 [T − 2tr(Υ−1
V ΥB𝜇S𝜂V ) + tr(Υ−1

V ΥB𝜇Υ
−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[O − 2tr(Υ−1

V ΥS𝜇V ) + tr(Υ−1
V ΥB𝜇Υ

−1
V ΥV S𝜇V )]

The estimator is obtained by equating the quadratic form and its expected value:

⎛⎜⎜⎜⎝

q̂V 1
w

q̂V 2
b𝜂

q̂V 3
b𝜇

⎞⎟⎟⎟⎠
= H
⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜇

⎞⎟⎟⎟⎠
The H matrices corresponding to the three most common estimators are presented in

Figure 3.1.

Example 3.1 unbalanced panel – Tileries data set
To illustrate the estimation of unbalanced panels, we employ the Tileries data, concerning
the weekly production of cement floor tiles for 25 Egyptian small-scale tileries in 1982–1983.
The data are observed over 66 weeks in total, and aggregated on periods of three weeks. The
number of observations for each firm ranges from 12 to 22, which can be checked using the
pdim function.



⎛⎜⎜⎜⎝

q̂V 1
w

q̂V 2
b𝜂

q̂V 3
b𝜇

⎞⎟⎟⎟⎠
= H

(
𝜎2
𝜈

𝜎2
𝜂

)

Amemiya (1971):

H =
⎛⎜⎜⎜⎝

O − N − T + 1 − K 0 0
N − 1 + tr(Θ−1

W ΘB−J̄ ) O −
∑

nT2
n∕O N −

∑
tN2

t ∕O
T − 1 + tr(Θ−1

W ΘB𝜇−J̄ ) T −
∑

nT2
n∕O O −

∑
tN2

t ∕O

⎞⎟⎟⎟⎠
Wallace and Hussain (1969):

H =
⎛⎜⎜⎜⎝

O − N − T + 1 − tr(Υ−1
I ΥW ) tr(Υ−1

I ΥWΥ−1
I ΥS𝜂 ) tr(Υ−1

I ΥWΥ−1
I ΥS𝜇 )

N − tr(Υ−1ΥB𝜂 ) O − 2tr(Υ−1
I ΥS𝜂 ) + tr(Υ−1

I ΥB𝜂Υ
−1
I ΥS𝜂 ) N − 2tr(Υ−1

I ΥB𝜂S𝜇 ) + tr(Υ−1
I ΥB𝜂Υ

−1
I ΥS𝜇 )

T − tr(Υ−1
I ΥB𝜇 ) T − 2tr(Υ−1

I ΥB𝜇S𝜂 ) + tr(Υ−1
I ΥB𝜇Υ

−1
I ΥS𝜂 ) O − 2tr(Υ−1

I ΥS𝜇 ) + tr(Υ−1
I ΥB𝜇Υ

−1
I ΥS𝜇 )

⎞⎟⎟⎟⎠
Swamy and Arora (1972):

H =
⎛⎜⎜⎜⎝

O − N − T + 1 − K 0 0
N − K − 1 O − tr(Υ−1

B𝜂
ΥS𝜂 ) N − tr(Υ−1

B𝜂
ΥB𝜂S𝜇B𝜂 )

T − K − 1 T − tr(Υ−1
B𝜇
ΥB𝜇S𝜂B𝜇 ) O − tr(Υ−1

B𝜇
ΥS𝜇 )

⎞⎟⎟⎟⎠
Figure 3.1 Estimators of the variance components for unbalanced panels.
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data("Tileries", package = "pder")

head(Tileries, 3)

id week area output labor machine

1 2 1 fayoum 5.650 4.533 4.663

2 2 2 fayoum 6.522 5.347 4.234

3 2 3 fayoum 6.303 4.970 4.234

pdim(Tileries)

Unbalanced Panel: n = 25, T = 12-22, N = 483

We estimate a Cobb-Douglas production function where the production (output) depends
on the quantity of two inputs, labor (labor) and machines (machine). We first check that the
same fixed effects model can still be estimated either by applying ols on the within transformed
variables or using individual dummy variables:

Tileries <- pdata.frame(Tileries)

plm.within <- plm(log(output) ̃ log(labor) + log(machine), Tileries)

y <- log(Tileries$output)

x1 <- log(Tileries$labor)

x2 <- log(Tileries$machine)

lm.within <- lm(I(y - Between(y)) ̃ I(x1 - Between(x1)) + I(x2 - Between(x2)) - 1)

lm.lsdv <- lm(log(output) ̃ log(labor) + log(machine) + factor(id), Tileries)

coef(lm.lsdv)[2:3]

log(labor) log(machine)

0.87062 0.02438

coef(lm.within)

I(x1 - Between(x1)) I(x2 - Between(x2))

0.87062 0.02438

coef(plm.within)

log(labor) log(machine)

0.87062 0.02438

The one-way random effects model is then estimated:

tile.r <- plm(log(output) ̃ log(labor) + log(machine), Tileries, model = "random")

summary(tile.r)

Oneway (individual) effect Random Effect Model

(Swamy-Arora's transformation)

Call:

plm(formula = log(output) ̃ log(labor) + log(machine), data = Tileries,

model = "random")

Unbalanced Panel: n = 25, T = 12-22, N = 483

Effects:

var std.dev share

idiosyncratic 0.002640 0.051377 0.81

individual 0.000623 0.024964 0.19

theta:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.489 0.573 0.582 0.578 0.590 0.598
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Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1866 -0.0272 0.0031 0.0000 0.0334 0.2268

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.2779 0.0608 4.57 6.1e-06 ***

log(labor) 0.9088 0.0300 30.25 < 2e-16 ***

log(machine) 0.0240 0.0270 0.89 0.38

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 4.84

Residual Sum of Squares: 1.3

R-Squared: 0.732

Adj. R-Squared: 0.731

F-statistic: 656.318 on 2 and 480 DF, p-value: <2e-16

The transformation parameter is now individual specific; more precisely, it depends on the
number of available observations for every individual. The 𝜃 parameter here varies from 0.49
to 0.60.

The two-ways random effect model is obtained by setting the effect argument to
’twoways’.

We check that the ols model cannot be obtained any more by applying ols to variables
where the individual and time means have been removed.

plm.within <- plm(log(output) ̃ log(labor) + log(machine),

Tileries, effect = "twoways")

lm.lsdv <- lm(log(output) ̃ log(labor) + log(machine) +

factor(id) + factor(week), Tileries)

y <- log(Tileries$output)

x1 <- log(Tileries$labor)

x2 <- log(Tileries$machine)

y <- y - Between(y, "individual") - Between(y, "time") + mean(y)

x1 <- x1 - Between(x1, "individual") - Between(x1, "time") + mean(x1)

x2 <- x2 - Between(x2, "individual") - Between(x2, "time") + mean(x2)

lm.within <- lm(y ̃ x1 + x2 - 1)

coef(plm.within)

log(labor) log(machine)

0.86951 0.03539

coef(lm.within)

x1 x2

0.88085 0.03554

coef(lm.lsdv)[2:3]

log(labor) log(machine)

0.86951 0.03539

Finally we estimate the time and individual random effects model, using the three methods
of estimation we have described:
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wh <- plm(log(output) ̃ log(labor) + log(machine), Tileries,

model = "random", random.method = "walhus",

effect = "twoways")

am <- update(wh, random.method = "amemiya")

sa <- update(wh, random.method = "swar")

ercomp(sa)

var std.dev share

idiosyncratic 0.002589 0.050884 0.77

individual 0.000625 0.025001 0.19

time 0.000158 0.012551 0.05

theta:

Min. 1st Qu. Median Mean 3rd Qu. Max.

id 0.4934 0.5769 0.5858 0.5813 0.5941 0.6019

time 0.1962 0.3461 0.3544 0.3487 0.3625 0.3702

total 0.1665 0.3023 0.3097 0.3058 0.3186 0.3295

The shares of the individual and the time effects in the total error variance are now about 19
and 5% for the Swamy-Arora estimator.

re.models <- list(walhus = wh, amemiya = am, swar = sa)

sapply(re.models, function(x) sqrt(ercomp(x)$sigma2))

walhus amemiya swar

idios 0.05167 0.05088 0.05088

id 0.02778 0.03192 0.02500

time 0.01177 0.01267 0.01255

sapply(re.models, coef)

walhus amemiya swar

(Intercept) 0.27420 0.28560 0.26528

log(labor) 0.90778 0.90062 0.91279

log(machine) 0.02696 0.02774 0.02692

3.2 Seemingly Unrelated Regression

3.2.1 Introduction

Very often in economics, the phenomenon under investigation is not well described by
a single equation but by a system of equations. It is particularly the case in the field of
micro-econometrics of consumption or production. For example, the behavior of a producer
is described by a minimum cost equation along with equations of factor demand. In this case,
there are two advantages in considering the whole system of equations:
• firstly, the errors of the different equations for an observation may be correlated. In this case,

even if the estimation of a single equation is consistent, it is inefficient because it does not
take into account the correlation between the errors,

• secondly, economic theory may impose restrictions on different coefficients of the system, for
example, the equality of two coefficients in two different equations of the system. In this case,
these restrictions can be taken into account using the method of constrained least squares.
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3.2.2 Constrained Least Squares

Linear restrictions on the vector of coefficients to be estimated can be represented using a
restriction matrix R and a numeric vector q:

R𝛽 = q

For example, if the sum of the first two coefficients must equal 1 and the first and third ones
should be equal, the joint restrictions can be written as:

(
1 1 0
1 0 −1

)⎛⎜⎜⎜⎝

𝛽1

𝛽2

𝛽3

⎞⎟⎟⎟⎠
=

(
1
0

)

To estimate the constrained ols estimator, we write the Lagrangian:

L = 𝜖⊤𝜖 + 2𝜆⊤(R𝛽 − q)

with 𝜖 = y − Z𝛾 and 𝜆 the vector of Lagrange multipliers associated to the different constraints.1
The Lagrangian can also be written as:

L = y⊤y − 2𝛽⊤X⊤y + 𝛽⊤X⊤X𝛽 + 2𝜆(R𝛽 − q)

The first-order conditions become:
⎧⎪⎨⎪⎩

𝜕L
𝜕𝛽

= −2X⊤y + 2X⊤X𝛽 + 2R⊤𝜆 = 0

𝜕L
𝜕𝜆

= 2(R𝛽 − q) = 0

which can also be written in matrix form:(
X⊤X R⊤

R 0

)(
𝛽

𝜆

)
=

(
X⊤y

q

)

The constrained ols estimator can be obtained using the formula for the inverse of a parti-
tioned matrix (see equation 2.18):

⎛⎜⎜⎝
A11 A12

A21 A22

⎞⎟⎟⎠

−1

=
⎛⎜⎜⎝

B11 B12

B21 B22

⎞⎟⎟⎠
=
⎛⎜⎜⎝

A−1
11 (I + A12F2A21A−1

11 ) −A−1
11 A12F2

−F2A21A−1
11 F2

⎞⎟⎟⎠
with F2 = (A22 − A21A−1

11 A12)−1 and F1 = (A11 − A12A−1
22 A21)−1.

We have here F2 = −(R(X⊤X)−1R⊤)−1. The constrained estimator is then: 𝛽c = B11X⊤y + B12q,
with B11 = (X⊤X)−1(I − R⊤(R(X⊤X)−1R⊤)−1R(X⊤X)−1) and B12 = (X⊤X)−1R⊤(R(X⊤X)−1R⊤)−1

The unconstrained estimator being 𝛽nc = (X⊤X)−1X⊤y, we finally get:

𝛽c = 𝛽nc − (X⊤X)−1R⊤(R(X⊤X)−1R⊤)−1(R𝛽nc − q)

The difference between the constrained and the unconstrained estimators is then a linear
combination of the excess of the linear constraints of the model evaluated for the unconstrained
model.

1 These multipliers are multiplied by two in order to simplify the first- order conditions.
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3.2.3 Inter-equations Correlation

We consider a system of L equations denoted yl = Xl𝛽l + 𝜖l, with l = 1… L. In matrix form, the
system can be written as follows:

⎛⎜⎜⎜⎜⎜⎝

y1

y2

⋮

yL

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

X1 0 … 0
0 X2 … 0
⋮ ⋮ ⋱ ⋮

0 0 … XL

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝛽1

𝛽2

⋮

𝛽L

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

𝜖1

𝜖2

⋮

𝜖L

⎞⎟⎟⎟⎟⎟⎠
The covariance matrix of the errors of the system is:

Ω = E(𝜖𝜖⊤) = E

⎛⎜⎜⎜⎜⎜⎝

𝜖1𝜖
⊤
1 𝜖1𝜖

⊤
2 … 𝜖1𝜖

⊤
L

𝜖2𝜖
⊤
1 𝜖2𝜖

⊤
2 … 𝜖2𝜖

⊤
L

⋮ ⋮ ⋱ ⋮

𝜖L𝜖
⊤
1 𝜖L𝜖

⊤
2 … 𝜖L𝜖

⊤
L

⎞⎟⎟⎟⎟⎟⎠
We suppose that the errors of two equations l and m for the same observations are correlated

and that the covariance, denoted by 𝜎lm, is constant. With this hypothesis, the covariance matrix
is:

Ω =

⎛⎜⎜⎜⎜⎜⎝

𝜎11I 𝜎12I … 𝜎1LI
𝜎12I 𝜎22I … 𝜎2LI
⋮ ⋮ ⋱ ⋮

𝜎1LI 𝜎2LI … 𝜎LLI

⎞⎟⎟⎟⎟⎟⎠
Denoting by Σ the matrix of inter-equations covariances, we have:

Σ =

⎛⎜⎜⎜⎜⎜⎝

𝜎11 𝜎12 … 𝜎1L

𝜎12 𝜎22 … 𝜎2L

⋮ ⋮ ⋱ ⋮

𝜎1L 𝜎2L … 𝜎LL

⎞⎟⎟⎟⎟⎟⎠
Ω = Σ⊗ I

Because of the inter-equations correlations, the efficient estimator is the gls estimator: 𝛽 =
(X⊤Ω−1X)−1X⊤Ω−1y. This estimator, first proposed by Zellner (1962), is known by the acronym
sur for seemingly unrelated regression. It can be obtained by applying ols on transformed data,
each variable being pre-multiplied by Ω−0.5. This matrix is simply Ω−0.5 = Σ−0.5 ⊗ I. Denoting
by rlm the elements of Σ−0.5, the transformed response and covariates are:

ỹ =

⎛⎜⎜⎜⎜⎜⎝

r11y1 + r12y2 +…+ r1LyL

r21y1 + r22y2 +…+ r2LyL

⋮

rL1y1 + rL2y2 +…+ rLLyL

⎞⎟⎟⎟⎟⎟⎠
and X̃ =

⎛⎜⎜⎜⎜⎜⎝

r11X1 r12X2 … r1LXL

r21X1 r22X2 … r2LXL

⋮ ⋮ ⋱ ⋮

rL1X1 rL2X2 … rLLXL

⎞⎟⎟⎟⎟⎟⎠
Σ is a matrix that contains unknown parameters, which can be estimated using residuals

of a consistent but inefficient preliminary estimator, like ols. The efficient estimator is then
obtained the following way:



Advanced Error Components Models 67

• first, each equation is estimated separately by ols and we note Ξ̂ = (𝜖1, 𝜖2,… , 𝜖L) the N × L
matrix for which every column is the residual vector of one of the equations in the system,

• then, estimate the covariance matrix of the errors: Σ̂ = Ξ̂⊤Ξ̂∕N ,
• compute the matrix Σ̂−0.5 and use it to transform the response and the covariates of the model,
• finally, estimate the model by applying ols on transformed data.

Σ−0.5 can conveniently be computed using the Cholesky decomposition, i.e., computing the
lower-triangular matrix C such that CC⊤ = Σ−1.

3.2.4 SUR With Panel Data

Applying the sur estimator on panel data is straightforward when only the between or the
within variability of the data is taken into account. In this case, one just has to apply the above
formula using the variables in individual means (between-sur) or in deviations from individual
means (within-sur). Taking into account both sources of variability requires more attention
and leads to the sur error component model proposed by Avery (1977) and Baltagi (1980). The
errors of the model then present two sources of correlation:

• the correlation of the sur model, i.e., inter-equations correlation,
• the correlation taken into account in the error component model, i.e., the intra-individual

correlations.

Every observation is now characterized by three indexes: zlnt is the observation of z for
equation l, individual n and period t. The observations are first ordered by equation, then by
individual. Denoting 𝜖⊤ln = (𝜖⊤ln1, 𝜖

⊤

ln2,… , 𝜖⊤lnT ) the error vector for equation l and individual n,
one gets:

E(𝜖ln𝜖
⊤
mn) = 𝜎2

𝜈lm
IT + 𝜎2

𝜂lm
JT

The errors concerning different individuals being uncorrelated, the correlation matrix for two
equations and all individuals is:

E(𝜖l𝜖
⊤
m) = IN ⊗ (𝜎𝜈lm

IT + 𝜎𝜂lm
JT )

= 𝜎𝜈lm
INT + 𝜎𝜂lm

IN ⊗ JT
= 𝜎𝜈lm

(W + B) + T𝜎𝜂lm
B

= 𝜎𝜈lm
W + (𝜎𝜈lm

+ T𝜎𝜂lm
)B

= 𝜎𝜈lm
W + 𝜎𝜄lm B

Finally, for the whole system of equations, denoting Σ𝜈 and Σ𝜄 the two matrices of dimension
L × L containing the parameters 𝜎𝜈lm

and 𝜎1lm
, the covariance matrix of the errors is:

Ω = Σ𝜈 ⊗W + Σ𝜄 ⊗ B

The sur error component model may be obtained by applying ols on transformed data,
every variable being pre-multiplied by Ω−0.5.

Ω−0.5 = Σ−0.5
𝜈 ⊗W + Σ−0.5

𝜄 ⊗ B (3.8)

and may be estimated using the Cholesky decomposition of Σ−1
𝜈 and Σ−1

𝜄 (see Kinal and
Lahiri, 1990).

The two error covariance matrices being unknown, the error-component sur estimator is
obtained with the following steps:

• first, each equation is estimated separately using a consistent method of estimation (for
example ols): we denote by W Ξ̂ and BΞ̂ the matrices of residuals in deviation from the
individual means and in individual means, respectively,
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• next, we estimate the error covariance matrices: Σ̂𝜈 = (W Ξ̂)⊤(W Ξ̂)∕(N(T − 1)) and
Σ̂𝜄 = (BΞ̂)⊤(BΞ̂)∕(N − 1),

• we then compute the matrices Σ̂−0.5
𝜈 and Σ̂−0.5

𝜄 and hence, through 3.8, we obtain the trans-
formed variables ỹ and X̃,

• finally, we apply ols on ỹ and X̃.
Different choices of preliminary estimates lead to different sur-error component estimators.

For example, Baltagi (1980) used the method of Amemiya (1971) while Avery (1977) chose the
one of Swamy and Arora (1972).

Example 3.2 SUR estimation – TexasElectr data set
A common application of the sur model is the analysis of production cost. The cost function
returns the minimum cost of production C for a given vector of prices of the F production
factors p⊤ = (p1, p2,… , pF ) and the level of output q. The minimum cost function is C(p, q). It
has several properties:
• it is homogeneous of degree 1 with respect to the factor prices: C(𝜆p, q) = 𝜆C(p, q),
• the demand functions for production factors are the derivatives of the minimum cost func-

tion with respect to factor prices,2 i.e., the gradient of the cost function: 𝜕C
𝜕p
(p, q) = x(p, q)

• the Hessian matrix of the cost function is symmetric: 𝜕2C
𝜕pi𝜕pj

= 𝜕2C
𝜕pj𝜕pi

.

The most common functional form assumed for the cost function is the translog, defined by:

ln C(p, q) = 𝛽0 + 𝛽q ln q +
F∑

i=1
𝛽i ln pi

+ 0.5𝛽qqln2q + 0.5
F∑

i=1

F∑
j=1
𝛽ij ln pi ln pj

Dividing total cost and factor prices by one of these prices (the first, for example), homogene-
ity of degree 1 with respect to prices is imposed:

ln C
p1

(p, q) = 𝛽0 + 𝛽q ln q +
F∑

i=2
𝛽i ln

pi

p1

+ 0.5𝛽qqln2q + 0.5
F∑

i=2

F∑
j=2
𝛽ij ln

pi

p1
ln

pj

p1

Shephard’s lemma implies that: 𝜕 ln C
𝜕 ln pi

= 𝜕C
𝜕pi

pi

C
= pixi

C
= si, that is, the logarithmic derivative of

the cost with respect to the price of a factor equals the share of that factor in total cost. The
share of factor j is then:

sj =
𝜕 ln C
𝜕 ln pj

= 𝛽j +
F∑

i=2
𝛽ij ln

pi

p1

It is customary to divide each price and the production by their means. In this case, ln q and
ln pi are zero at the sample mean, which gives an intuitive meaning to the first-order coefficients.
𝛽q is then the cost elasticity with respect to the production level at the sample mean, and 𝛽i the
share of factor i in the cost at the sample mean.

The data we use concern the production cost of ten electricity producers in Texas over
18 years (from 1966 to 1983). They have been analyzed by Kumbhakar (1996), Horrace and

2 This result is known as Shephard’s lemma.



Advanced Error Components Models 69

Schmidt (1996) and Horrace and Schmidt (2000). Three production factors are used: fuel,
labor, and capital. For each factor, we observe unit factor prices (pfuel, plab, and pcap) and
factor expenses (expfuel, explab, and expcap).

We first compute the prices in logarithms, we divide them by their sample mean, and we
also divide them by one of the prices, here fuel price. We perform this task using the mutate
function of the dplyr package.

data("TexasElectr", package = "pder")

library("dplyr")

TexasElectr <- mutate(TexasElectr,

pf = log(pfuel / mean(pfuel)),

pl = log(plab / mean(plab)) - pf,

pk = log(pcap / mean(pcap)) - pf)

The production is also measured in logarithms and divided by its sample mean.

TexasElectr <- mutate(TexasElectr, q = log(output / mean(output)))

We then compute total production cost by summing the expenses for the three factors and
factor shares. Finally, we measure the cost in logarithms and divide it by its sample mean and
by the reference price.

TexasElectr <- mutate(TexasElectr,

C = expfuel + explab + expcap,

sl = explab / C,

sk = expcap / C,

C = log(C / mean(C)) - pf)

Finally, we compute the squares and the interaction terms for the variables.

TexasElectr <- mutate(TexasElectr,

pll = 1/2 * pl ̂ 2,

plk = pl * pk,

pkk = 1/2 * pk ̂ 2,

qq = 1/2 * q ̂ 2)

We define the three equations of the system, one for total cost and the other two for factor
shares.3

cost <- C ̃ pl + pk + q + pll + plk + pkk + qq

shlab <- sl ̃ pl + pk

shcap <- sk ̃ pl + pk

Factor shares being the derivatives of the cost function, the following restrictions must be
imposed:
• the coefficient ofpl in the cost equation must equal the intercept in the labor share equation,
• the coefficient of pk in the cost equation must equal the intercept in the capital share

equation,

3 The fuel share is omitted to avoid perfect collinearity, given that the three shares sum to one.
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• the coefficient of pll in the cost equation should equal the coefficient associated to pl in
the labor share equation,

• the coefficient of pkk in the cost equation should be equal to the coefficient associated to pk
in the capital share equation,

• the coefficient of plk in the cost equation should equal the coefficient of pk in the labor
share equation and the coefficient of pl in the capital share equation.
We construct for this purpose a 6 (number of restrictions) by 14 (number of coefficients)

matrix.

R <- matrix(0, nrow = 6, ncol = 14)

R[1, 2] <- R[2, 3] <- R[3, 5] <- R[4, 6] <- R[5, 6] <- R[6, 7] <- 1

R[1, 9] <- R[2, 12] <- R[3, 10] <- R[4, 11] <- R[5, 13] <- R[6, 14] <- -1

The first line of the matrix indicates that the second coefficient (the one associated to pl in
the cost equation) must be equal to the ninth (the constant term in the labor share equation).

The sur model is estimated providing a list of formulae, defining the system of equations
to be estimated, as the first argument to plm. The different formulae in the list can be named,
which makes the output more readable. The model argument is set to ’random’ in order
to estimate the sur error components model. Lastly, the arguments restrict.matrix and
restrict.rhs allow to specify the matrix R and the vector q defining the linear constraints
of the model. If, as happens here, all elements of q are zero, the restrict.rhs argument can
be omitted.

z <- plm(list(cost = C ̃ pl + pk + q + pll + plk + pkk + qq,

shlab = sl ̃ pl + pk,

shcap = sk ̃ pl + pk),

TexasElectr, model = "random",

restrict.matrix = R)

summary(z)

Oneway (individual) effect Random Effect Model

(Swamy-Arora's transformation)

Call:

plm.list(formula = list(cost = C ̃ pl + pk + q + pll + plk +

pkk + qq, shlab = sl ̃ pl + pk, shcap = sk ̃ pl + pk), data = TexasElectr,

model = "random", restrict.matrix = R)

Balanced Panel: n = 10, T = 18, N = 180

Effects:

Estimated standard deviations of the error

cost shlab shcap

id 0.1429 0.0248 0.0270

idios 0.0377 0.0195 0.0175

Estimated correlation matrix of the individual effects

cost shlab shcap

cost 1.0000 . .

shlab -0.6926 1.00 .

shcap -0.0964 0.21 1
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Estimated correlation matrix of the idiosyncratic effects

cost shlab shcap

cost 1.0000 . .

shlab 0.2813 1.000 .

shcap -0.0766 0.204 1

- cost

Estimate Std. Error t-value Pr(>|t|)

(Intercept) -0.22924 0.04175 -5.49 6.2e-08 ***

pl 0.12484 0.00614 20.32 < 2e-16 ***

pk 0.31573 0.00612 51.59 < 2e-16 ***

q 0.85452 0.01200 71.20 < 2e-16 ***

pll 0.13698 0.00931 14.71 < 2e-16 ***

plk -0.04025 0.00867 -4.64 4.3e-06 ***

pkk 0.19884 0.00832 23.90 < 2e-16 ***

qq 0.19821 0.01150 17.23 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- shlab

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.12484 0.00614 20.32 < 2e-16 ***

pl 0.13698 0.00931 14.71 < 2e-16 ***

pk -0.04025 0.00867 -4.64 4.3e-06 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- shcap

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.31573 0.00612 51.59 < 2e-16 ***

pl -0.04025 0.00867 -4.64 4.3e-06 ***

pk 0.19884 0.00832 23.90 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results indicate the presence of increasing returns to scale, as q is significantly lower
than 1. Factor shares at the sample mean for labor and capital are respectively 12 and 31%.

3.3 The Maximum Likelihood Estimator

An alternative to the ols estimator presented in the previous chapter is the maximum likeli-
hood estimator. Contrary to the gls estimator, the parameters are not estimated sequentially
(first 𝜙 and then 𝛽) but simultaneously.

3.3.1 Derivation of the Likelihood Function

In order to write the likelihood of the model, the distribution of the errors must be perfectly
characterized; compared with the gls model, we then must add an hypothesis concerning the
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distribution of the two components of the error term, the individual 𝜂 and the idiosyncratic 𝜈
effects: we’ll suppose that they are both normally distributed. The likelihood is the joint density
for the whole sample, which is the product of the individual densities in the case of a random
sample. This is not the case here, as the Tn observations of individual n are correlated because
of the common individual effect. The model to be estimated is then:

ynt = 𝛽⊤xn + 𝜂n + 𝜈nt

with 𝜂n ∼ N(0, 𝜎𝜂) and 𝜈nt ∼ N(0, 𝜎𝜈). For a given value of the individual effect, 𝜂n, the density
for ynt is:

f (ynt ∣ 𝜂n) =
1√

2𝜋𝜎𝜈
e−

1
2

(
ynt−𝛽⊤xnt−𝜂n

𝜎𝜈

)2

For a given value of 𝜂, the distribution of yn = yn1,… , ynt is the one of a vector of independent
random deviates, and the joint distribution is therefore the product of individual densities:

f (yn ∣ 𝜂n) =
(

1
2𝜋𝜎2

𝜈

) Tn
2

e−
1

2𝜎2
𝜈

∑Tn
t=1 (ynt−𝛽⊤xnt−𝜂n)2

The unconditional distribution is obtained by integrating out the individual effects 𝜂, which
means that the mean value of the density is computed for all possible values of 𝜂:

f (yn) =
1√

2𝜋𝜎2
𝜂

∫

+∞

−∞
f (yn ∣ 𝜂n)e

− 1
2

(
𝜂

𝜎𝜂

)2

d𝜂 = 1√
2𝜋𝜎2

𝜂

(
1

2𝜋𝜎2
𝜈

) Tn
2

∫

+∞

−∞
e−

1
2

Ad𝜂

with, denoting 𝜖nt = ynt − 𝛽⊤xnt , 𝜖n = ȳn − 𝛽⊤xn and 𝜎2
𝜄n = 𝜎2

𝜈 + Tn𝜎
2
𝜂 :

A =
T∑

t=1

(𝜖nt − 𝜂)2

𝜎2
𝜈

+ 𝜂2

𝜎2
𝜂

= 1
𝜎2
𝜈

(
𝜎2
𝜄n

𝜎2
𝜂

𝜂2 − 2Tn𝜖n.𝜂 +
∑

t
𝜖2

nt

)

= 1
𝜎2
𝜈

(
𝜎𝜄n

𝜎𝜂
𝜂 − Tn𝜖n.

𝜎𝜂

𝜎𝜄n

)2

+ 1
𝜎2
𝜈

(∑
t
𝜖2

nt − T2
n𝜖

2
n.
𝜎2
𝜂

𝜎2
𝜄n

)

Denoting by z2 the first term, we have dz = 𝜎𝜄n

𝜎𝜈𝜎𝜂
d𝜂 and the joint density is then (denoting

𝜙n = 𝜎𝜈

𝜎𝜄n
):

f (yn) =
(

1
2𝜋𝜎2

𝜈

) Tn
2

𝜙ne
− 1

2𝜎2
𝜈

(∑
t
𝜖2

nt−T2
n 𝜖

2
n.
𝜎2
𝜂

𝜎2
𝜄n

)

For the second term, we have:
∑

t
𝜖2

nt − T2
n𝜖

2
n.
𝜎2
𝜂

𝜎2
𝜄n
=
∑

t
𝜖2

nt − Tn(1 − 𝜙2
n)𝜖2

n. =
∑

t
(𝜖nt − (1 − 𝜙n)𝜖n.)2

so that the joint density for an individual is finally:

f (yn) =
(

1
2𝜋𝜎2

𝜈

) Tn
2

𝜙ne
− 1

2𝜎2
𝜈

∑
t
(𝜖nt−(1−𝜙n)𝜖n.)2
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The contribution of the n-th individual to the log likelihood function is simply the logarithm
of the joint density:

ln Ln = −
Tn

2
ln 2𝜋 −

Tn

2
ln 𝜎2

𝜈 +
1
2

ln𝜙2
n −

1
2𝜎2

𝜈

∑
t
(𝜖nt − (1 − 𝜙n)𝜖n.)2

The log likelihood function is then obtained by summing over all the individuals of the panel:

ln L = −
∑

nTn

2
ln 2𝜋 −

∑
nTn

2
ln 𝜎2

𝜈 +
1
2
∑

n
ln𝜙2

n −
1

2𝜎2
𝜈

∑
n

∑
t
(𝜖nt − (1 − 𝜙n)𝜖n.)2

or, more simply in the special case of a balanced panel:

ln L = −NT
2

ln 2𝜋 − NT
2

ln 𝜎2
𝜈 +

N
2

ln𝜙2 − 1
2𝜎2

𝜈

∑
n

∑
t
(𝜖nt − (1 − 𝜙)𝜖n.)2

Note also that:∑
n

∑
t
(𝜖nt − (1 − 𝜙)𝜖n.)2 =

∑
n

∑
t
(𝜖nt − 𝜖n.)2 + 𝜙2

∑
n

Tn𝜖
2
n. = 𝜖⊤W𝜖 + 𝜙2𝜖⊤B𝜖

3.3.2 Computation of the Estimator

The first derivatives of the log likelihood are, denoting z̃nt = znt − (1 − 𝜙)z̄n.:
𝜕 ln L
𝜕𝛽

= − 2
𝜎2
𝜈

(X̃⊤ỹ − (X̃⊤X̃)𝛽) (3.9)

𝜕 ln L
𝜕𝜎2

𝜈

= −NT
2𝜎2

𝜈

+ 1
2𝜎4

𝜈

(𝜖⊤W𝜖 + 𝜙2𝜖⊤B𝜖) (3.10)

𝜕 ln L
𝜕𝜙2 = N

2𝜙2
𝜖⊤B𝜖
2𝜎2

𝜈

(3.11)

Solving (3.9), we obtain:

𝛽 = (X̃⊤X̃)−1X̃⊤ỹ (3.12)

The estimator of 𝜎2
𝜈 is simply obtained by using (3.10) as the residual variance of the model

estimated on the transformed data:

�̂�2
𝜈 =

𝜖⊤W𝜖 + �̂�2𝜖⊤B𝜖
NT

(3.13)

Finally, using (3.11) and (3.13), the transformation parameter is:

�̂�2 = 𝜖⊤W𝜖

(T − 1)𝜖⊤B𝜖
(3.14)

The estimation can be performed iteratively. Starting from an estimator of 𝛽 (for example
the within estimator), we calculate �̂�2 using the formula given by 3.14. We then transform the
response and the covariates using this estimator of 𝜙2 and we compute a second estimation of
𝛽 using (3.12). These computations are repeated until the convergence of 𝛽 and 𝜙2. 𝜎2

𝜈 is then
estimated using (3.13).

Example 3.3 maximum likelihood estimator – RiceFarms data set
The maximum likelihood estimator is available in the pglm package. Thepglm function enables
maximum likelihood estimation of generalized linear models for panel data.4 We have to specify

4 See chapter 9.
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the distribution of the errors of the model, here normal, by setting the argument family to
’gaussian’.

data("RiceFarms", package = "splm")

Rice <- pdata.frame(RiceFarms, index = "id")

library("pglm")

rice.ml <- pglm(log(goutput) ̃ log(seed) + log(totlabor) + log(size),

data = Rice, family = gaussian)

summary(rice.ml)

——————————————–

Maximum Likelihood estimation

Newton-Raphson maximisation, 5 iterations

Return code 2: successive function values within tolerance limit

Log-Likelihood: -460.5

6 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

(Intercept) 5.3125 0.2038 26.07 < 2e-16 ***

log(seed) 0.2200 0.0283 7.76 8.2e-15 ***

log(totlabor) 0.2855 0.0311 9.20 < 2e-16 ***

log(size) 0.5280 0.0326 16.17 < 2e-16 ***

sd.id 0.1190 0.0171 6.95 3.7e-12 ***

sd.idios 0.3637 0.0086 42.28 < 2e-16 ***

—

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

——————————————–

The coefficients are very similar to those obtained with the gls estimator. The two parameters
called sd.idios and sd.id are the estimated standard deviations of the idiosyncratic and of
the individual parts of the error. These values are also almost equal to those obtained using the
gls estimator.

3.4 The Nested Error Components Model

3.4.1 Presentation of the Model

The nested random effect model is relevant when the individuals can be put together in different
groups. For example, with a panel of firms, groups may be constituted by regions or production
sectors.

In this chapter, we’ll restrict ourselves to panels with two characteristics:

• panels without time effects,
• balanced panels inside each group, which means that, for every group, the number of obser-

vations for each individual is the same.
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The number of individuals and the length of time series for two groups may be different.
This is why this model, presented in Baltagi et al. (2001) is called the unbalanced nested error
component model, even if its unbalancedness must be understood in the very restrictive sense
we’ve just described.

Three effects will now be considered: the usual individual 𝜂 and idiosyncratic 𝜈 effects, but
also a new one that represents group effects 𝜆. Denoting by D𝜆 the matrix of group dummies:

y = 𝛼 + X𝛽 + D𝜂𝜂 + D𝜆𝜆 + 𝜈

Ω is block-diagonal with G (the number of groups) blocks of the following shape:

Ωg = 𝜎2
𝜂 [INg

⊗ JTg
] + 𝜎2

𝜆
[JNg

⊗ JTg
] + 𝜎2

𝜈 [INg
⊗ ITg

]

Replacing JR by RJ̄R and IR by ĪR + J̄R, this can be rewritten as a linear combination of three
symmetric, idempotent, and orthogonal matrices which sum to I:

Ωg = [𝜎2
𝜈 INg

⊗ ĪTg
] + (𝜎2

𝜈 + T𝜎2
𝜂 )[ĪNg

⊗ J̄Tg
] + (𝜎2

𝜈 + T𝜎2
𝜂 + NT𝜎2

𝜆
)[J̄Ng

⊗ J̄Tg
]

where:

• INg
⊗ ĪTg

is the within-individual transformation,
• ĪNg

⊗ J̄Tg
is the between-individual transformation measured as a difference with the group

mean,
• J̄Ng

⊗ J̄Tg
is the between-group transformation.

This expression enables to easily find the expression for 𝜎𝜈Ω−0.5
g , denoting 𝜙𝜂 =

𝜎𝜈√
𝜎2
𝜈
+T𝜎2

𝜂

and

𝜙𝜆 =
𝜎𝜈√

𝜎2
𝜈
+T𝜎2

𝜂
+NT𝜎2

𝜆

:

𝜎𝜈Ω−0.5
g = [IN ⊗ ĪT ] + 𝜙𝜂[ĪN ⊗ J̄T ] + 𝜙𝜆[J̄Ng

⊗ J̄T ]

which finally writes:

𝜎𝜈Ω−0.5
g = [INg

⊗ ITg
] − 𝜃𝜂[INg

⊗ J̄Tg
] − 𝜃𝜆[J̄Ng

⊗ J̄Tg
]

with 𝜃𝜂 = 1 − 𝜙𝜂 and 𝜃𝜆 = 𝜙𝜂 − 𝜙𝜆.
The model can therefore be estimated by ols on transformed variables for which part of the

individual and the group mean (respectively 𝜃𝜂 and 𝜃𝜆 have been subtracted).

3.4.2 Estimation of the Variance of the Error Components

We proceed along the lines of section 3.1.3. Using residuals from a preliminary estimation V
denoted 𝜖V = MV 𝜖, we compute a quadratic form of 𝜖V with a matrix A q̂V

A .

E(q̂V
A ) = 𝜎2

𝜈 tr(MV⊤AMV ) + 𝜎2
𝜂 tr(MV⊤AMV S𝜂) + 𝜎2

𝜆
tr(MV⊤AMV S𝜆)

Replacing MV by its expression and denoting ΘA = X⊤AX, we obtain:

E(q̂V
A ) =
⎛⎜⎜⎜⎝

tr(ĪAĪ) − 2tr(Θ−1
V ΘĪAĪV ) + tr(Θ−1

V ΘĪAĪ)
tr(ĪAĪS𝜂) − 2tr(Θ−1

V ΘĪAĪS𝜂V ) + tr(Θ−1
V ΘĪAĪΘ−1

V ΘV S𝜂V )
tr(ĪAĪS𝜆) − 2tr(Θ−1

V ΘĪAĪS𝜆V ) + tr(Θ−1
V ΘĪAĪΘ−1

V ΘV S𝜆V )

⎞⎟⎟⎟⎠

⊤ ⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜆

⎞⎟⎟⎟⎠
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or, denoting ΥA = Z⊤AZ:

E(q̂V
A ) =

⎛⎜⎜⎜⎜⎝

tr(A) − 2tr(Υ−1
V ΥVA) + tr(Υ−1

V ΥA)

tr(AS𝜂) − 2tr(Υ−1
V ΥV S𝜂A) + tr(Υ−1

V ΥAΥ−1
V ΥV S𝜂V )

tr(AS𝜆) − 2tr(Υ−1
V ΥV S𝜆A) + tr(Υ−1

V ΥAΥ−1
V ΥV S𝜆V )

⎞⎟⎟⎟⎟⎠

⊤ ⎛⎜⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜆

⎞⎟⎟⎟⎟⎠
The most popular estimators are obtained by computing the three quadratic forms with the

within-individual, between-individual and between-group matrices. We then get the following
system of equations:

⎛⎜⎜⎜⎜⎝

q̂V
w

q̂V
b𝜂

q̂V
b𝜆

⎞⎟⎟⎟⎟⎠
= H

⎛⎜⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜆

⎞⎟⎟⎟⎟⎠
(3.15)

with:
⎛⎜⎜⎜⎜⎝

tr(MV⊤W MV ) tr(MV⊤W MV S𝜂) tr(MV⊤W MV S𝜆)

tr(MV⊤B𝜂MV ) tr(MV⊤B𝜂MV S𝜂) tr(MV⊤B𝜂MV S𝜆)

tr(MV⊤B𝜆MV ) tr(MV⊤B𝜆MV S𝜂) tr(MV⊤B𝜆MV S𝜆)

⎞⎟⎟⎟⎟⎠
(3.16)

Using the following results: ĪW = W , tr(W ) = O − N − T + 1, W S𝜂 = 0, W S𝜇 = 0,
B𝜂S𝜂 = S𝜂 , B𝜇S𝜇 = S𝜇 , tr(S𝜇) = tr(S𝜂) = O, tr(B𝜂) = N , tr(B𝜇) = T , ĪB𝜂 ĪS𝜂 = ĪS𝜂 , tr(ĪS𝜂) =
O −
∑

nTn∕O, ĪB𝜇 ĪS𝜇 = ĪS𝜇 , tr(ĪS𝜇) = O −
∑

tNt∕O, tr(ĪB𝜂) = N − 1, tr(ĪB𝜇) = T − 1,
tr(ĪB𝜇 ĪS𝜂) = T −

∑
nT2

n∕O, tr(ĪB𝜂 ĪS𝜇) = N −
∑

tN2
t ∕O, tr(B𝜇S𝜂) = T , tr(B𝜂S𝜇) = N .

We finally obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(q̂V
w) = 𝜎2

𝜈 [O − N − T + 1 − 2tr(Θ−1
V ΘĪVW ) + tr(Θ−1

V ΘW )]

+ 𝜎2
𝜂 [tr(Θ−1

V ΘWΘ−1
V ΘV S𝜂V )]

+ 𝜎2
𝜇[tr(Θ−1

V ΘWΘ−1
V ΘV S𝜇V )]

E(q̂V
B𝜂
) = 𝜎2

𝜈 [N − 1 − 2tr(Θ−1
V ΘĪV B𝜂 ) + tr(Θ−1

V ΘB̄𝜂 )]

+ 𝜎2
𝜂

[
O −
∑

nT2
n∕O + 2tr(Θ−1

V ΘĪS𝜂V ) + tr(Θ−1
V ΘB̄𝜂Θ

−1
V ΘV S𝜂V )

]

+ 𝜎2
𝜇

[
N −
∑

tN2
t ∕O − 2tr(Θ−1

V ΘĪS𝜇V ) + tr(Θ−1
V ΘB̄𝜂Θ

−1
V ΘV S𝜇V )

]

E(q̂V
B𝜇
) = 𝜎2

𝜈 [T − 1 − 2tr(Θ−1
V ΘĪV B𝜇 ) + tr(Θ−1

V ΘB̄𝜇 )]

+ 𝜎2
𝜂

[
T −
∑

nT2
n∕O − 2tr(Θ−1

V ΘĪS𝜂V ) + tr(Θ−1
V ΘB̄𝜇Θ

−1
V ΘV S𝜂V )

]

+ 𝜎2
𝜇

[
O −
∑

tN2
t ∕O − 2tr(Θ−1

V ΘĪS𝜇V ) + tr(Θ−1
V ΘB̄𝜇Θ

−1
V ΘV S𝜇V )

]
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or:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E(q̂V
w) = 𝜎2

𝜈 [O − N − T + 1 − tr(Υ−1
V ΥW )]

+ 𝜎2
𝜂 [tr(Υ−1

V ΥWΥ−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[tr(Υ−1

V ΥWΥ−1
V ΥV S𝜇V )]

E(q̂V
B𝜂
) = 𝜎2

𝜈 [N − 2tr(Υ−1
V ΥB𝜂V ) + tr(Υ−1

V ΥB𝜂 )]

+ 𝜎2
𝜂 [O − 2tr(Υ−1

V ΥS𝜂V ) + tr(Υ−1
V ΥB𝜂Υ

−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[N − 2tr(Υ−1

V ΥB𝜂S𝜇V ) + tr(Υ−1
V ΥB𝜂Υ

−1
V ΥV S𝜇V )]

E(q̂V
B𝜇
) = 𝜎2

𝜈 [T − 2tr(Υ−1
V ΥB𝜇V ) + tr(Υ−1

V ΥB𝜇 )]

+ 𝜎2
𝜂 [T − 2tr(Υ−1

V ΥB𝜇S𝜂V ) + tr(Υ−1
V ΥB𝜇Υ

−1
V ΥV S𝜂V )]

+ 𝜎2
𝜇[O − 2tr(Υ−1

V ΥS𝜇V ) + tr(Υ−1
V ΥB𝜇Υ

−1
V ΥV S𝜇V )]

Baltagi et al. (2001) have proposed a variant of the Amemiya (1971) estimator (where the
within estimator is used for the three quadratic forms), the Wallace and Hussain (1969) esti-
mator (the ols estimator is used for the three quadratic forms) and of the Swamy and Arora
(1972) estimator (the within, between-individual and between-group are used respectively for
the within, between-individual, and between-group quadratic forms). The detailed formulas are
presented in Figure 3.2.

Example 3.4 nested error component model – Produc data set
Baltagi et al. (2001) have estimated the nested error component model extending the work
of Baltagi and Pinnoi (1995). This article, inspired by Munnell (1990), aims at analyzing the
effect of public capital on production. The dataset consists on 48 American states for the period
1970–1986. The observations are nested, as the states can be grouped in 9 regions, which con-
tain between 3 and 8 states. The panel is therefore unbalanced, as the number of individuals
differs from one group to another, but the number of time series is the same for all the individ-
uals inside a group (and in fact here for every individual), which is a necessity in order to be
able to estimate the model.

A Cobb-Douglas production function is estimated; the state output gsp is explained by the
private capital stockpc and non-agricultural laboremp, but also by three measures of the public
capital stock:

• roads and highways hwy,
• water infrastructure water,
• other public buildings and infrastructure util.

The state unemployment rate is also used as a covariate in order to take into account the
business cycle of every state. All the covariates, except for the unemployment rate, are in loga-
rithms.

In order to estimate the model, one has to indicate which variable is the group index. This
can be done using several variants:

• if the first three columns of the data frame are the individual, time, and group indexes, the
structure of the panel is directly understood by plm,

• theindex argument ofplm or ofpdata.frame can also be used to indicate which variable
is the group index, naming this variable if the other indexes are not indicated.



⎛⎜⎜⎜⎜⎝

q̂V 1
w

q̂V 2
(b𝜂−b𝜆)

q̂V 3
b𝜆

⎞⎟⎟⎟⎟⎠
= H
⎛⎜⎜⎜⎝

𝜎2
𝜈

𝜎2
𝜂

𝜎2
𝜆

⎞⎟⎟⎟⎠
Amemiya (1971):

A =

⎛⎜⎜⎜⎜⎜⎝

O − N − K 0 0
N − G + tr(Θ−1

W ΘB𝜂−B𝜆) O −
∑
g

T g 0

G − 1 + tr(ΘWΘB𝜆−J̄ )
∑
g

Tg −
∑
g

NgT2
g ∕O O −

∑
g

N2
g T2

g ∕O

⎞⎟⎟⎟⎟⎟⎠
Wallace and Hussain (1969):

A =

⎛⎜⎜⎜⎜⎜⎝

O − N − tr(Υ−1
I ΥW ) tr(Υ−1

I ΥWΥ−1
I ΥS𝜂 ) tr(Υ−1

I ΥWΥ−1
I ΥS𝜆 )

N − G − tr(Υ−1Υ(B𝜂−B𝜆)) O −
∑
g

Tg − 2tr(Υ−1
I Υ(B𝜂−B𝜆)S𝜂 ) + tr(Υ−1

I Υ(B𝜂−B𝜆)Υ
−1
I ΥS𝜂 ) tr(Υ−1

I Υ(B𝜂−B𝜆)Υ
−1
I ΥS𝜆)

G − tr(Υ−1
I ΥB𝜆)

∑
g

Tg − 2tr(Υ−1
I ΥB𝜆S𝜂 ) + tr(Υ−1

I ΥB𝜆Υ
−1
I ΥS𝜂 ) O − 2tr(Υ−1

I ΥS𝜆 ) + tr(Υ−1
I ΥB𝜆Υ

−1
I ΥS𝜆)

⎞⎟⎟⎟⎟⎟⎠
Swamy and Arora (1972):

A =

⎛⎜⎜⎜⎜⎜⎝

O − N − K 0 0
N − G − K O −

∑
g

Tg − tr(Θ−1
(B𝜂−B𝜆)

ΘS𝜂 (B𝜂−B𝜆)) 0

G − K
∑
g

Tg − tr(Υ−1
B𝜆
ΥB𝜆S𝜂 ) O − tr(Υ−1

B𝜆
ΥS𝜆)

⎞⎟⎟⎟⎟⎟⎠
Figure 3.2 Error components estimators for the nested error component model.
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To illustrate these different possibilities, we use the RiceFarms data set from plm.

data("RiceFarms", package = "plm")

head(RiceFarms, 2)

id size status varieties bimas seed urea phosphate

1 101001 3 owner mixed mixed 90 900 80

2 101001 2 owner trad mixed 40 600 0

pesticide pseed purea pphosph hiredlabor famlabor

1 6000 80 75 75 2875 40

2 3000 70 75 75 2110 45

totlabor wage goutput noutput price region

1 2915 68.49 7980 6800 60 wargabinangun

2 2155 60.09 4083 3500 60 wargabinangun

The individual index is id (the fist column), we use region, the last column of the data
frame as the group index. The three lines below give the same results:

R1 <- pdata.frame(RiceFarms, index = c(id = "id", time = NULL, group = "region"))

R2 <- pdata.frame(RiceFarms, index = c(id = "id", group = "region"))

R3 <- pdata.frame(RiceFarms, index = c("id", group = "region"))

head(index(R1))

id time region

1 101001 1 wargabinangun

2 101001 2 wargabinangun

3 101001 3 wargabinangun

4 101001 4 wargabinangun

5 101001 5 wargabinangun

6 101001 6 wargabinangun

For the Produc data frame, it is easier to describe the structure of the sample as the first
three columns are the individual, time, and group indexes.

To estimate the nested error component model, the model must be set to ’nested’. We
first estimate the Swamy and Arora (1972) model:

data("Produc", package = "plm")

nswar <- plm(log(gsp) ̃ log(pc) + log(emp) + log(hwy) + log(water) +

log(util) + unemp, data = Produc,

model = "random", effect = "nested",

random.method = "swar", index = c(group = "region"))

summary(nswar)

Nested effects Random Effect Model

(Swamy-Arora's transformation)

Call:

plm(formula = log(gsp) ̃ log(pc) + log(emp) + log(hwy) + log(water) +

log(util) + unemp, data = Produc, effect = "nested", model = "random",

random.method = "swar", index = c(group = "region"))

Balanced Panel: n = 48, T = 17, N = 816
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Effects:

var std.dev share

idiosyncratic 0.00135 0.03676 0.19

individual 0.00428 0.06541 0.60

group 0.00146 0.03815 0.21

theta:

Min. 1st Qu. Median Mean 3rd Qu. Max.

id 0.86493 0.86493 0.86493 0.86493 0.86493 0.86493

group 0.03961 0.04669 0.05714 0.05578 0.06458 0.06458

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1062 -0.0248 -0.0018 -0.0001 0.0198 0.1828

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.089211 0.145702 14.34 < 2e-16 ***

log(pc) 0.274124 0.020544 13.34 < 2e-16 ***

log(emp) 0.739838 0.025750 28.73 < 2e-16 ***

log(hwy) 0.072736 0.022025 3.30 0.001 **

log(water) 0.076453 0.013858 5.52 4.6e-08 ***

log(util) -0.094374 0.016773 -5.63 2.5e-08 ***

unemp -0.006163 0.000903 -6.82 1.8e-11 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 43

Residual Sum of Squares: 1.12

R-Squared: 0.974

Adj. R-Squared: 0.974

F-statistic: 5025.33 on 6 and 809 DF, p-value: <2e-16

We then update the model in order to use the two other estimators of the variances of the
components of the error. The results are summarized using the screenreg function of the
texreg package.

library("texreg")

namem <- update(nswar, random.method = "amemiya")

nwalhus <- update(nswar, random.method = "walhus")

iswar <- update(nswar, effect = "individual")

iwith <- update(nswar, model = "within", effect = "individual")

screenreg(list("fe-id" = iwith, "re-id" = iswar,

"Swamy_Arora" = nswar, "Wallas-Hussein" = nwalhus,

"Amemiya" = namem), digits = 3)
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===============================================================================

fe-id re-id Swamy_Arora Wallas-Hussein Amemiya

-------------------------------------------------------------------------------

log(pc) 0.235 *** 0.273 *** 0.274 *** 0.273 *** 0.264 ***

(0.026) (0.020) (0.021) (0.021) (0.022)

log(emp) 0.801 *** 0.749 *** 0.740 *** 0.742 *** 0.758 ***

(0.030) (0.025) (0.026) (0.026) (0.027)

log(hwy) 0.077 * 0.062 ** 0.073 ** 0.075 *** 0.072 **

(0.031) (0.022) (0.022) (0.022) (0.024)

log(water) 0.079 *** 0.076 *** 0.076 *** 0.076 *** 0.076 ***

(0.015) (0.014) (0.014) (0.014) (0.014)

log(util) -0.115 *** -0.098 *** -0.094 *** -0.095 *** -0.102 ***

(0.018) (0.017) (0.017) (0.017) (0.017)

unemp -0.005 *** -0.006 *** -0.006 *** -0.006 *** -0.006 ***

(0.001) (0.001) (0.001) (0.001) (0.001)

(Intercept) 2.168 *** 2.089 *** 2.082 *** 2.131 ***

(0.143) (0.146) (0.150) (0.160)

-------------------------------------------------------------------------------

R ̂ 2 0.946 0.961 0.974 0.972 0.968

Adj. R ̂ 2 0.942 0.961 0.974 0.972 0.968

Num. obs. 816 816 816 816 816

s_idios 0.037 0.037 0.038 0.037

s_id 0.082 0.065 0.067 0.083

s_gp 0.038 0.052 0.047

===============================================================================

*** p < 0.001, ** p < 0.01, * p < 0.05
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4

Tests on Error Component Models

The double dimensionality of panel data allows for much richer specifications than simple cross
sections or time series. This is both a blessing and a curse, given how much more complicated
the specification may become. In fact, all possible features from either cross sections or time
series, like distance-decaying correlation in – respectively – space or time, can coexist with indi-
vidual (time), time-(individual-) invariant heterogeneity. Moreover, diagnostic tests will usually
have a hard time distinguishing between different forms of persistence along the same dimen-
sion unless explicitly designed to take the “other” effect into account.

The specification problem of panel models is typically associated with the presence or absence
of individual effects, i.e., with the need to account for unobserved heterogeneity. Given that in
the vast majority of cases it will be inappropriate to rule out individual heterogeneity altogether,
the related issue emerges of whether it is safe to assume that the latter is uncorrelated with the
explanatory variables (and therefore to proceed in a random effects framework) or rather to pro-
ceed estimating out (transforming out) the individual effects in a fixed effects fashion. Hence,
tests for individual effects under either of the two approaches and Hausman-type tests for deter-
mining which one is appropriate are among the most popular diagnostic procedures in this field.

Next to the fundamental specification issues with individual effects , the remainder errors
can in turn be correlated: either in time, in which case it will be crucial to distinguish
time-decaying persistence of idiosyncratic shocks from the time-invariant persistence deriving
from the presence of an individual effect; or in space, and then the issue becomes whether
correlation simply descends from participating in the same cross section or, provided the
data are referenced in some space (e.g., in geography), whether nearby observations are more
correlated than distant ones.

For these reasons, a rich toolbox of diagnostic and specification testing procedures has been
developed, which will be the subject of this chapter, presented roughly in the order given above
up to the issue of cross-sectional correlation. On the converse, spatial correlation proper will
be the subject of a separate chapter.

4.1 Tests on Individual and/or Time Effects

In order to test whether either individual or time effects are present, two approaches are pos-
sible:
• the first is to start from estimating said effects out (within model) and then perform a zero

restriction test,
• the second is to start from the ols model and to infer about the presence of the effects

drawing on the ols residuals.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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4.1.1 F Tests

The sum of squared residuals and the degrees of freedom for the within model are: 𝜖⊤w𝜖w and
N(T − 1) − K . Let the null hypothesis be the absence of individual effects so that the restricted
model is pooled ols where the sum of squared residuals and the degrees of freedom are, respec-
tively, 𝜖⊤ols𝜖ols and NT − K − 1. Under H0, the test statistic:

𝜖⊤olsW𝜖ols − 𝜖⊤W𝜖W

𝜖⊤WW𝜖W

NT − K − N + 1
N − 1

follows a Fisher-Snedecor F with N − 1 and NT − K − N + 1 degrees of freedom.
The test of the null hypothesis of no individual and time effects is obtained by using the

two-ways within model and the pooling model:
𝜖⊤ols𝜖ols − 𝜖⊤2WW 2𝜖2W

𝜖⊤2WW 2𝜖2W

NT − K − N − T + 1
N + T − 1

Finally, the test of the null hypothesis of, say, no time effects, but in the presence of individual
effects is:

𝜖⊤WW𝜖W − 𝜖⊤2WW 2𝜖2W

𝜖⊤2WW 2𝜖2W

NT − K − N − T + 1
T − 1

4.1.2 Breusch-Pagan Tests

The Breusch and Pagan (1980) test is a Lagrange multipliers test based on the ols residuals. It is
based on the score vector g(𝜃) = 𝜕 ln L

𝜕𝜃
, i.e., the vector of partial derivatives of the log-likelihood

function from the restricted model. The variance of the score vector is the information
matrix:

I(𝜃) = E
(
− 𝜕 ln L
𝜕𝜃𝜕𝜃⊤

)
(𝜃)

We estimate a restricted model characterized by a parameter vector �̂�; under H0, we have:

g(�̂�) ∼ N(0,V(�̂�))

or, denoting by ĝ and V̂ the score and its estimated variance in the restricted model:

ĝ⊤V̂−1ĝ

which is distributed as a 𝜒2 where the degrees of freedom are equal to the number of restric-
tions. We’ll first derive the test for the one-way individual error component model, for which
the log-likelihood function is:

ln L = −NT
2

ln 2𝜋 − N(T − 1)
2

ln 𝜎2
𝜈 −

N
2

ln(𝜎2
𝜈 + T𝜎2

𝜂 )

−
𝜖⊤W𝜂𝜖

2𝜎2
𝜈

−
𝜖⊤B𝜂𝜖

2(𝜎2
𝜈 + T𝜎2

𝜂 )
The gradient is then:

g(𝜃) =
⎛⎜⎜⎜⎝

𝜕 ln L
𝜕𝜎2

𝜈

𝜕 ln L
𝜕𝜎2

𝜂

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
−N(T−1)

2𝜎2
𝜈

− N
2(𝜎2

𝜈
+T𝜎2

𝜂
)
+ 𝜖⊤W𝜂𝜖

2𝜎4
𝜈

+ 𝜖⊤B𝜂𝜖
2(𝜎2

𝜈
+T𝜎2

𝜂
)2

− NT
2(𝜎2

𝜈
+T𝜎2

𝜂
)
+ T𝜖⊤B𝜂𝜖

2(𝜎2
𝜈
+T𝜎2

𝜂
)2

⎞⎟⎟⎟⎠
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To derive the variance, we start by calculating the matrix of second derivatives H(𝜃) = 𝜕 ln L
𝜕𝜃𝜕𝜃⊤

:

H(𝜃) =
⎛⎜⎜⎜⎝
−N(T−1)

2𝜎4
𝜈

+ N
2(𝜎2

𝜈
+T𝜎2

𝜂
)2 −

𝜖⊤W𝜂𝜖

𝜎6
𝜈

− 𝜖⊤B𝜂𝜖
(𝜎2
𝜈
+T𝜎2

𝜂
)3

NT
2(𝜎2

𝜈
+T𝜎2

𝜂
)2 −

T𝜖⊤B𝜂𝜖
(𝜎2
𝜈
+T𝜎2

𝜂
)3

NT
2(𝜎2

𝜈
+T𝜎2

𝜂
)2 −

T𝜖⊤B𝜂𝜖
(𝜎2
𝜈
+T𝜎2

𝜂
)3

NT2

2(𝜎2
𝜈
+T𝜎2

𝜂
)2 −

T2𝜖⊤B𝜂𝜖
(𝜎2
𝜈
+T𝜎2

𝜂
)3

⎞⎟⎟⎟⎠
To compute the expectation of this matrix, we note that E(𝜖⊤W𝜂𝜖) = N(T − 1)𝜎2

𝜈 and
E(𝜖⊤B𝜂𝜖) = N(𝜎2

𝜈 + T𝜎2
𝜂 ):

E(H(𝜃)) =
⎛⎜⎜⎜⎝
−N(T−1)

2𝜎4
𝜈

− N
2(𝜎2

𝜈
+T𝜎2

𝜂
)2 − NT

2(𝜎2
𝜈
+T𝜎2

𝜂
)2

− NT
2(𝜎2

𝜈
+T𝜎2

𝜂
)2 − NT2

2(𝜎2
𝜈
+T𝜎2

𝜂
)2

⎞⎟⎟⎟⎠
To compute the test statistic, we impose the null hypothesis: H0 ∶ 𝜎2

𝜂 = 0 (absence of individ-
ual effects). In this case, the estimator for the parameters is ols and that of �̂�2

𝜈 is 𝜖⊤𝜖∕NT . The
score and its estimated variance are then:

g(�̂�) =
⎛⎜⎜⎜⎝

0

−NT
2�̂�2

𝜈

(
𝜖⊤B𝜂𝜖
N𝜎2

𝜈

− 1
)

⎞⎟⎟⎟⎠
E(−H(�̂�)) = NT

2�̂�4
𝜈

(
1 1
1 T

)

whose inverse is:

I(𝜃) =
2�̂�4

𝜈

NT(T − 1)

(
T −1
−1 1

)

Finally, the test statistic is:

LM𝜂 =

(
−NT

2�̂�2
𝜈

(
𝜖⊤B𝜂𝜖

1 − N �̂�2
𝜈

))2

×
2�̂�4

𝜈

NT(T − 1)
= NT

2(T − 1)

(
1 −

𝜖⊤B𝜂𝜖
N �̂�2

𝜈

)2

Or, replacing �̂�2
𝜈 by 𝜖⊤𝜖∕NT :

LM𝜂 =
NT

2(T − 1)

(
T
𝜖⊤B𝜂𝜖
𝜖⊤𝜖

− 1

)2

which is asymptotically distributed as a 𝜒2 with 1 degree of freedom.
The test of the time effect is likewise computed:

LM𝜇 = NT
2(N − 1)

(
N
𝜖⊤B𝜇𝜖
𝜖⊤𝜖

− 1

)2

The Breusch-Pagan test extends easily to the two-ways error component model, as the statis-
tic can be written as the sum of the two previous statistics:

LM𝜂𝜇 = NT
2(T − 1)

(
T
𝜖⊤B𝜂𝜖
𝜖⊤𝜖

− 1

)2

+ NT
2(N − 1)

(
N
𝜖⊤B𝜇𝜖
𝜖⊤𝜖

− 1

)2

and follows a 𝜒2 with two degrees of freedom under the null hypothesis of no individual and
time effects.
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For unbalanced panels, the relevant statistics are:1

⎧⎪⎪⎨⎪⎪⎩

LM𝜂 = O2

2(∑nT2
n−O)

(
𝜖⊤S𝜂𝜖
𝜖⊤𝜖

− 1
)2

LM𝜇 = O2

2(∑t N2
t −O)

(
𝜖⊤S𝜇𝜖
𝜖⊤𝜖

− 1
)2

LM𝜂𝜇 = LM𝜂 + LM𝜇

These statistics present two problems. The first one is that the alternative hypothesis is that
the effects’ variance is non-zero, i.e., strictly positive or negative; when a variance must be
non-negative. For the one-way error component model, Honda (1985) and King and Wu (1997)
proposed a one-sided test based on the square root of the above statistic, which is then normally
distributed. The Honda statistic is then

√
LM𝜂 and its 5% critical value is 1.64 (and likewise for

the test of no time effects). For the two-ways error components model, Honda (1985) proposed
to use

√
LM𝜂+

√
LM𝜇√

2
as Baltagi et al. (1992) and King and Wu (1997) use:

√
T − 1√

N + T − 2

√
LM𝜂 +

√
N − 1√

N + T − 2

√
LM𝜇

The second problem is due to the fact that T 𝜖⊤B𝜂𝜖
𝜖⊤𝜖

or N 𝜖⊤B𝜇𝜖
𝜖⊤𝜖

may be lower than 1. In this case,
Baltagi et al. (1992), following Gourieroux et al. (1982), proposed to replace the statistic by 0.
The modified statistic is then defined by:

NT
2(N − 1)

(
max

(
0,T

𝜖⊤B𝜂𝜖
𝜖⊤𝜖

− 1

)
,max

(
0,N

𝜖⊤B𝜇𝜖
𝜖⊤𝜖

− 1

))2

which follows a mixed 𝜒2 distribution: 𝜒2
m ∼

(
1
4

)
𝜒2(0) +

(
1
2

)
𝜒2(1) +

(
1
4

)
𝜒2(2)

Example 4.1 F and LM tests – RiceFarms data set
A F test for the presence of individual effects is implemented in the function pFtest, which
compares the nested models ols and within. Under the null of no individual effects, the statistic
is distributed as an F with degrees of freedom equal to the number of individuals minus 1 on
the numerator and to the degrees of freedom of the within model on the denominator. We first
estimate the relevant models:

data("RiceFarms", package = "splm")

Rice <- pdata.frame(RiceFarms, index = "id")

rice.w <- plm(log(goutput) ̃ log(seed) + log(totlabor) + log(size), Rice)

rice.p <- update(rice.w, model = "pooling")

rice.wd <- plm(log(goutput) ̃ log(seed) + log(totlabor) + log(size), Rice,

effect = "twoways")

and we then supply the testing function with two fitted models:

pFtest(rice.w, rice.p)

F test for individual effects

1 See Baltagi and Li (1990).
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data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

F = 1.7, df1 = 170, df2 = 850, p-value = 3e-06

alternative hypothesis: significant effects

The formula-data syntax may also be used:

pFtest(log(goutput) ̃ log(seed) + log(totlabor) + log(size), Rice)

Unsurprisingly, the absence of individual effects is strongly rejected.
To test the absence of individual and time effects, one would use:

pFtest(rice.wd, rice.p)

F test for twoways effects

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

F = 4.3, df1 = 180, df2 = 850, p-value <2e-16

alternative hypothesis: significant effects

or

pFtest(log(goutput) ̃ log(seed) + log(totlabor) + log(size), Rice,

effect = "twoways")

To test the absence of time effects allowing for the presence of individual effects, we compare
the individual and the two-ways effect within models:

pFtest(rice.wd, rice.w)

F test for twoways effects

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

F = 70, df1 = 5, df2 = 850, p-value <2e-16

alternative hypothesis: significant effects

Once more, the null hypothesis is very strongly rejected.
The Breusch and Pagan (1980) test can be computed using the function plmtest. The argu-

ment is either an ols model or a formula-data pair. By default, the Honda (1985) version is
computed. The direction of the effects, as usual, is determined by the effect argument.

plmtest(rice.p)

Lagrange Multiplier Test - (Honda) for balanced

panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

normal = 4.8, p-value = 7e-07

alternative hypothesis: significant effects

plmtest(log(goutput)̃log(seed)+log(totlabor)+log(size), Rice)
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Lagrange Multiplier Test - (Honda) for balanced

panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

normal = 4.8, p-value = 7e-07

alternative hypothesis: significant effects

plmtest(rice.p, effect = "time")

Lagrange Multiplier Test - time effects (Honda) for

balanced panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

normal = 59, p-value <2e-16

alternative hypothesis: significant effects

plmtest(rice.p, effect = "twoways")

Lagrange Multiplier Test - two-ways effects (Honda)

for balanced panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

normal = 45, p-value <2e-16

alternative hypothesis: significant effects

The two useful extensions proposed by Baltagi et al. (1992) can be applied to test the existence
of individual and time effects, setting the argumenttype to’kw’ or’ghm’ to use respectively
the techniques proposed by King and Wu (1997) and Gourieroux et al. (1982).

plmtest(rice.p, effect = "twoways", type = "kw")

Lagrange Multiplier Test - two-ways effects (King

and Wu) for balanced panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

normal = 59, p-value <2e-16

alternative hypothesis: significant effects

plmtest(rice.p, effect = "twoways", type = "ghm")

Lagrange Multiplier Test - two-ways effects

(Gourieroux, Holly and Monfort) for balanced panels

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

chibarsq = 3500, df0 = 0.00, df1 = 1.00, df2 = 2.00,

w0 = 0.25, w1 = 0.50, w2 = 0.25, p-value <2e-16

alternative hypothesis: significant effects

4.2 Tests for Correlated Effects

We have seen that if the model errors are not correlated with the explanatory variables, then
both estimators, fixed as well as random effects, are consistent. To compare them, we keep
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assuming that the idiosyncratic component of the error term (E(X⊤𝜈) = 0) is uncorrelated to
the regressors. Two situations are then possible:

• E(X⊤𝜂) = 0: the individual effects are not correlated with the explanatory variables; in this
case, both estimators are consistent, but the random effects estimator is more efficient than
the fixed effects.

• E(X⊤𝜂) ≠ 0: the individual effects are correlated with the explanatory variables; in this case,
the fixed effects estimator, which estimates out the individual effects, is consistent. On the
contrary, the random effects estimator is inconsistent because one component of the com-
posite error, the individual effect, is correlated with the explanatory variables.

4.2.1 The Mundlak Approach

In order to clarify the relationship between the two estimators, Mundlak (1978) considered the
following model:

ynt = x⊤nt𝛽 + 𝜓n + 𝜈nt

with

𝜓n = x̄⊤n.𝜋 + 𝜂n

The individual effects are therefore correlated with the explanatory variables, being they equal
to the sum of a linear combination of the individual means of said variables and of an error term
𝜓n. The model to be estimated is then written, in matrix form, as:

y = X𝛽 + BX𝜋 + (IN ⊗ JT )𝜂 + 𝜈

The error term 𝜖 = (IN ⊗ JT )𝜂 + 𝜈 has the usual properties of the error components model,
i.e., zero mean and a variance equal to:

Ω = 𝜎2
𝜈 INT + 𝜎2

𝜂 (IN ⊗ JT ) = 𝜎2
𝜈W + 𝜎2

𝜄 B

The gls model is estimated by applying ols on the data transformed pre-multiplying each
variable by Σ−0.5 = W + 𝜙B, with 𝜙 = 𝜎𝜈

𝜎𝜄
.

We then have ỹ = Wy + 𝜙By, X̃ = WX + 𝜙BX and B̃X = 𝜙BX. The gls estimator is then writ-
ten as:(

𝛽

�̂�

)
=

[
X⊤WX + 𝜙2X⊤BX 𝜙2X⊤BX

𝜙2X⊤BX 𝜙2X⊤BX

]−1 (
X⊤Wy + 𝜙2X⊤By

𝜙2X⊤By

)

Using the formula of the inverse of a partitioned matrix (see equation 2.18), we get:
(
𝛽

�̂�

)
=

⎡⎢⎢⎣
(X⊤WX)−1 −(X⊤WX)−1

−(X⊤WX)−1 (X⊤WX)−1 + 1
𝜙2 (X⊤BX)−1

⎤⎥⎥⎦
(

X⊤Wy + 𝜙2X⊤By
𝜙2X⊤By

)

(
𝛽

�̂�

)
=

(
(X⊤WX)−1X⊤Wy

(X⊤BX)−1X⊤By − (X⊤WX)−1X⊤Wy

)
=

(
𝛽W

𝛽B − 𝛽W

)

and:

V

(
𝛽

�̂�

)
= 𝜎2

𝜈

⎛⎜⎜⎝
(X⊤WX)−1 −(X⊤WX)−1

−(X⊤WX)−1 (X⊤WX)−1 + 1
𝜙2 (X⊤BX)−1

⎞⎟⎟⎠
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The fundamental result of Mundlak (1978) is therefore that, if one correctly accounts for the
correlation between the error terms and the explanatory variables, the gls estimator is the
within estimator.

4.2.2 Hausman Test

This results also suggests a way to test for the presence of correlation; in fact, testing for no
correlation corresponds to testing for: H0 ∶ 𝜋 = 0. Under H0, we have:

�̂�⊤V̂(�̂�)−1�̂�

which is distributed as a 𝜒2 with K degrees of freedom. Well, we have �̂� = 𝛽B − 𝛽W and
V(�̂�) = V(𝛽W) + V(𝛽B).

This test statistic is one version of the test proposed by Hausman (1978). The general principle
consists in comparing two models A and B where:

• under H0: A and B are both consistent, but B is more efficient than A,
• under H1: only A is consistent.

The idea of the test is that if H0 is true, then the estimated coefficients from the two models
shall not diverge; under the alternative, they will. The test is therefore based on 𝛽A − 𝛽B and
Hausman showed that, under H0, the variance of this difference is simply: V(𝛽A − 𝛽B) = V(𝛽A) −
V(𝛽B).

The most common version of this test is based on comparing the within and the
gls estimators. The difference between the two is: q̂ = 𝛽W − 𝛽gls. Under the hypothesis
of no correlation between errors and explanatory variables, we have plim q̂ = 0. The variance
of q̂ is:

V(q̂) = V(𝛽W) + V(𝛽gls) − 2cov(𝛽W, 𝛽gls)

To determine these variances and covariances, we write the two estimators as functions of
the errors: 𝛽gls = (X⊤Ω−1X)−1X⊤Ω−1𝜖 and 𝛽W = (X⊤WX)−1X⊤W𝜖. We then have: V(𝛽gls) =
(X⊤Ω−1X)−1, V(𝛽W) = 𝜎2

𝜈 (X⊤WX)−1 and cov(𝛽W, 𝛽gls) = (X⊤Ω−1X)−1. The variance of q̂ is then
simply:

V(q̂) = 𝜎2
𝜈 (X⊤WX)−1 − (X⊤Ω−1X)−1

and the test statistic becomes:

q̂⊤V(q̂)−1q̂

which, under H0, is distributed as a 𝜒2 with K degrees of freedom.

4.2.3 Chamberlain’s Approach

Chamberlain (1982) proposed a more general model than that of Mundlak (1978). In his model,
the individual effects are not assumed to be a linear function of the means of the explanatory
variables anymore, but of their values over the whole time period.

Denote y⊤n = (yn1,… , ynT ) the vector of length T containing the values of the explanatory
variables for the n-th individual, and Xn the T × K matrix containing the values of K explanatory
variables for the T observation periods for the n-th individual. xn = vec(Xn) is a vector of length
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T × K obtained by stacking the columns of Xn. The model is then written as:

yn = IT ⊗ 𝛽⊤xn + 𝜓n + 𝜈nt (4.1)

with:

𝜓n = 𝛾⊤xn + 𝜂n (4.2)

Substituting (4.2) in (4.1), we get:

yn = (In ⊗ 𝛽⊤ + j𝛾⊤)xn + 𝜂n + 𝜈nt = Πxn + 𝜇n + 𝜈nt (4.3)

The parameter matrix Π, of dimension T × (T × K), contains two types of parameters:

• the vector of parameters 𝛽, which measure the marginal effect of the explanatory variables
on the response,

• the vector of parameters 𝛾 , measuring the marginal effect of the explanatory variables in each
period on the individual effect.

The 𝛾 vector is only marginally interesting per se, but its estimation allows to consistently
estimate 𝛽. If n = 3 and K = 2, the Π matrix takes the form:

⎛⎜⎜⎜⎝

𝛽1 𝛽2 0 0 0 0
0 0 𝛽1 𝛽2 0 0
0 0 0 0 𝛽1 𝛽2

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

𝛾11 𝛾12 𝛾21 𝛾22 𝛾31 𝛾32

𝛾11 𝛾12 𝛾21 𝛾22 𝛾31 𝛾32

𝛾11 𝛾12 𝛾21 𝛾22 𝛾31 𝛾32

⎞⎟⎟⎟⎠
We then have a system of T equations containing the same explanatory variables xn. In this

case, the generalized least squares estimator is the sur estimator. The explanatory variables
being the same across equations, this can be obtained simply by estimating each individual
equation separately by ols. If the assumptions of the fixed effects model hold, then the estima-
tion of each column of the Π matrix will yield just about equal coefficients, with the exception
of those situated on the diagonal.

4.2.3.1 Unconstrained Estimator
The coefficients of the tth row of Π are then:

𝜋t =

(∑
n

xnx⊤n

)−1 (∑
n

xnynt

)

More generally, we can write the estimator of Π in two different ways. The first consists in
defining:

X =

⎛⎜⎜⎜⎜⎜⎜⎝

x⊤1
x⊤2
⋮

x⊤N

⎞⎟⎟⎟⎟⎟⎟⎠

and y =

⎛⎜⎜⎜⎜⎜⎜⎝

y⊤1
y⊤2
⋮

y⊤N

⎞⎟⎟⎟⎟⎟⎟⎠
We have then:

Π̂⊤ = (X⊤X)−1X⊤y
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In order to analyze the properties of this estimator, it is easier to consider the vector of coef-
ficients 𝜋 = Vec Π⊤ obtained by stacking the rows of Π. Defining:

X =

⎛⎜⎜⎜⎜⎜⎝

IT ⊗ x⊤1
IT ⊗ x⊤2

⋮

IT ⊗ x⊤N

⎞⎟⎟⎟⎟⎟⎠
et y =

⎛⎜⎜⎜⎜⎜⎝

y1

y2

⋮

yN

⎞⎟⎟⎟⎟⎟⎠
�̂� =

⎛⎜⎜⎝
IT ⊗

(∑
n

xnx⊤n

)−1⎞⎟⎟⎠
∑

n
(IT ⊗ xn)yn

Denoting sxx =
∑N

n=1 xnx⊤n∕N and substituting, in the last expression, y by its expression in
the “true” model:

�̂� − 𝜋 = 1
N
(IT ⊗ s−1

xx )
∑

n
(IT ⊗ xn)𝜖n = 1

N
∑

n
(IT ⊗ s−1

xx xn)𝜖n

√
N(�̂� − 𝜋) = 1√

N

∑
n
(IT ⊗ s−1

xx xn)𝜖n

The limiting distribution of
√

N(�̂� − 𝜋) is the same as that of:
1√
N

∑
n(IT ⊗ 𝜎−1

xx xn)𝜖n

with 𝜎xx = E(xnx⊤n ) because
∑

nxnx⊤n∕N → E(xnx⊤n ).
As E([IT ⊗ xn]𝜖n) = 0, the central limit theorem implies that:√

N(�̂� − 𝜋) ∼ N(0,Ω)

Ω = V

(
1√
N

∑
n(IT ⊗ 𝜎−1

xx xn)𝜖n

)

= 1
N

E
(∑

n(IT ⊗ 𝜎xxxn)𝜖n

∑
n𝜖⊤n (IT ⊗ x⊤n𝜎xx)

)

= 1
N

E
(∑

n(IT ⊗ 𝜎xxxn)𝜖n𝜖
⊤
n (IT ⊗ x⊤n𝜎xx)

)

= 1
N

E
(∑

n𝜖n𝜖
⊤
n ⊗ (𝜎xxxnx⊤n𝜎xx)

)
= E(𝜖n𝜖

⊤
n ⊗ (𝜎xxxnx⊤n𝜎xx))

If the error variance of n is not correlated with xnx⊤n , this matrix simplifies to:

Ω1 = E(𝜖n𝜖
⊤
n ⊗ 𝜎xx)

Finally, if the errors are homoscedastic, we get an even simpler expression:

Ω2 = 𝜎 ⊗ 𝜎xx

with 𝜎 = E(𝜖𝜖⊤).
An estimator of Ω can be obtained considering the sample equivalent. Denoting by 𝜖n the

estimation residuals, we get:

Ω̂ = 1
N

∑
n(𝜖n𝜖

⊤
n ⊗ s−1

x xnx⊤n s−1
x )
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Ω̂1 = 1
N

∑
n(𝜖n𝜖

⊤
n ⊗ s−1

x )

Ω̂2 = 1
N

N∑
n=1

𝜖n𝜖
⊤
n ⊗ s−1

x

4.2.3.2 Constrained Estimator
In a second time, Chamberlain (1982) utilizes the asymptotic least squares estimator in order
to obtain an estimator of the structural coefficients of the model, denoted by 𝜃. These are
made of the K coefficients associated to the explanatory variables of equation (4.1) and of the
K × T coefficients from equation (4.2) concerning the individual effects. There are therefore
K × (T + 1) structural coefficients, while the number of coefficients in the matrix Π is K × T2.
The relation between the two coefficient vectors can be expressed as 𝜋 = F𝜃, F being a matrix
of dimensions (K × T2) × (K × (T + 1)).

The restricted model is obtained employing the method of asymptotic least squares, consist-
ing in minimizing a quadratic form in the deviations between �̂� and F �̂�:

(�̂� − F𝜃)⊤A(�̂� − F𝜃)

The first-order conditions for a minimum can be written as:

−2F⊤A(�̂� − F𝜃) = 0

which yields the following estimator:

�̂� = (F⊤AF)−1F⊤A�̂�

This estimator is consistent regardless of the weighting matrix employed. Just as with the
generalized method of moments, the estimator is efficient if A−1 is the covariance matrix of
the residuals’ vector. If the hypotheses are verified (𝜋 = F𝜃), the latter can be written as: A−1 =
V(�̂�) = Ω∕N .

4.2.3.3 Fixed Effects Models
If the hypotheses 𝜋 = F𝜃 hold, the minimum of the objective function from the asymptotic
least squares method is distributed as a 𝜒2 with degrees of freedom equal to the difference in
length between the two vectors 𝜋 and 𝜃, i.e., T2 × K − (T + 1) × K = (T2 − T − 1) × K . This
enables the computation of a test of the restrictions on the coefficients implied by the fixed
effects model.

Angrist and Newey (1991) have shown that these restrictions can more simply be tested using
the results of T artificial regressions of the fixed effect model’s residuals of a specific period on
the covariates for every period. Denoting R2

t the coefficient of determination of the artifactual
regression of residuals of period t, we have:

(NT − KT)
T∑

t=1
R2

t

which follows a 𝜒2 with (T2 − T − 1) × K if the underlying hypotheses of the within model are
relevant.

Example 4.2 Hausman test – RiceFarms data set
The Hausman test is performed with the phtest function, which can either take as arguments
two estimated models (here: the within and the gls) or use the formula – data interface:
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data("RiceFarms", package = "splm")

Rice <- pdata.frame(RiceFarms, index = "id")

rice.w <- plm(log(goutput) ̃ log(seed) + log(totlabor) + log(size), Rice)

rice.r <- update(rice.w, model = "random")

phtest(rice.w, rice.r)

Hausman Test

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

chisq = 3.8, df = 3, p-value = 0.3

alternative hypothesis: one model is inconsistent

Under the hypothesis of no correlation between the regressors and the individual effects,
the statistic is distributed as a 𝜒2 with three degrees of freedom. This hypothesis, with a
p-value of 29%, is not rejected at the 5% confidence level. One could get the same result
following the Mundlak (1978) approach, drawing on the difference between the within and
between estimators:

rice.b <- update(rice.w, model = "between")

cp <- intersect(names(coef(rice.b)), names(coef(rice.w)))

dcoef <- coef(rice.w)[cp] - coef(rice.b)[cp]

V <- vcov(rice.w)[cp, cp] + vcov(rice.b)[cp, cp]

as.numeric(t(dcoef) %*% solve(V) %*% dcoef)

[1] 3.773

This result is confirmed by the correlation coefficient between the individual effects (esti-
mated by the fixed effects of the within model) and the individual means of the explanatory
variable, which is obtained by applying the between function to the series.2

cor(fixef(rice.w), between(log(Rice$goutput)))

[1] 0.448

The correlation is positive but moderate.
The Chamberlain test is available in the function piest. It is computed using the usual

formula-data interface.

data("RiceFarms", package = "splm")

pdim(RiceFarms, index = "id")

Balanced Panel: n = 171, T = 6, N = 1026

piest(log(goutput) ̃ log(seed) + log(totlabor) + log(size),

RiceFarms, index = "id")

Chamberlain's pi test

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

chisq = 110, df = 87, p-value = 0.03

2 Note that we use between and not Between, the latter returning a vector of the same length as the series with
the individual means repeated Tn times.
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The variant of the Chamberlain test proposed by Angrist and Newey (1991) is available with
the aneweytest function which uses the same interface.

aneweytest(log(goutput) ̃ log(seed) + log(totlabor) + log(size),

RiceFarms, index = "id")

Angrist and Newey's test of within model

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size)

chisq = 140, df = 87, p-value = 2e-04

The restrictions implied by the within model are rejected by both tests at the 5% level,
although they are not rejected at the 1% level for Chamberlain’s version of the test.

4.3 Tests for Serial Correlation

A model with individual effects has composite errors that are serially correlated by definition.
The presence of the time-invariant error component gives rise to serial correlation that does
not die out over time; thus standard tests applied on pooled data usually end up rejecting the
null of spherical residuals. There may also be serial correlation of the time-decaying kind in the
idiosyncratic error terms, e.g., as an ar(1) process. By “testing for serial correlation” we mean
testing for this latter kind of dependence.

For these reasons, the subjects of testing for individual error components and for serially
correlated idiosyncratic errors are closely related. In particular, simple (marginal) tests for one
direction of departure from the hypothesis of spherical errors usually have power against the
other one: in case it is present, they are substantially biased toward rejection. Joint tests are
correctly sized and have power against both directions but usually do not give any informa-
tion about which one actually caused rejection. Conditional tests for serial correlation that
take into account the error components are correctly sized under presence of both departures
from sphericity and have power only against the alternative of interest. While most powerful
if correctly specified, the latter, based on the likelihood framework, are crucially dependent on
normality and homoscedasticity of the errors.

In plm a number of joint, marginal, and conditional ml-based tests are provided, plus some
semi-parametric alternatives that are robust versus heteroscedasticity and free from distribu-
tional assumptions.

More tests can be obtained by comparing nested models, in a likelihood ratio test framework,
or by restriction on a more general model, in the Wald test framework.

4.3.1 Unobserved Effects Test

The unobserved effects test à la Wooldridge (see Wooldridge, 2010, 10.4.4), is a semi-parametric
test for the null hypothesis that 𝜎2

𝜂 = 0, i.e., that there are no unobserved effects in the residuals.
Given that under the null, the covariance matrix of the residuals for each individual is diagonal,
the test statistic is based on the average of elements in the upper (or lower) triangle of its esti-
mate, diagonal excluded: N−1∕2 ∑N

n=1
∑T−1

t=1
∑T

s=t+1 𝜖nt𝜖ns (where 𝜖 are the pooled ols residuals),
which must be “statistically close” to zero under the null, scaled by its standard deviation:

W =
∑N

n=1
∑T−1

t=1
∑T

s=t+1 𝜖nt𝜖ns[∑N
n=1

(∑T−1
t=1

∑T
s=t+1 𝜖nt𝜖ns

)2
]1∕2
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This test is (N-) asymptotically distributed as a standard normal regardless of the distribution
of the errors. It does also not rely on homoscedasticity.

It has power both against the standard random effects specification, where the unobserved
effects are constant within every group, as well as against any kind of serial correlation. As such,
it “nests” both individual effects and serial correlation tests, trading some power against more
specific alternatives in exchange for robustness.

While not rejecting the null favors the use of pooled ols, rejection may follow from serial
correlation of different kinds, and in particular, quoting Wooldridge (2010, 10.4.4), “should not
be interpreted as implying that the random effects error structure must be true”.

Example 4.3 unobserved effects test – RiceFarms data set
Below, the test is applied to the rice farms data:

data("RiceFarms", package="plm")

Rice <- pdata.frame(RiceFarms, index = "id")

fm <- log(goutput) ̃ log(seed) + log(totlabor) + log(size)

pwtest(fm, Rice)

Wooldridge's test for unobserved individual effects

data: formula

z = 2.9, p-value = 0.003

alternative hypothesis: unobserved effect

The null hypothesis of no unobserved effects is rejected.

4.3.2 Score Test of Serial Correlation and/or Individual Effects

The Wooldridge testing procedure will detect very general forms of persistence in the errors but
give few directions toward a finer specification. If one is willing to make more specific paramet-
ric hypotheses, a maximum likelihood approach will allow to detect the features of persistence
in a finer way.

The random effects model can be extended to having idiosyncratic errors that follow an
autoregressive process of order 1 (ar(1)):

y = 𝛼 + X𝛽 + 𝜖
𝜖 = (IN ⊗ jT )𝜂 + 𝜈
𝜈t = 𝜓𝜈t−1 + 𝜁t

where the now familiar hypotheses of the random effects model apply, i.e., individual effects 𝜂
are independent of both the regressors and the idiosyncratic errors 𝜈. Moreover, normality is
assumed for both error components.

The specification analysis of the above model requires telling apart the time-invariant indi-
vidual effects from the time-decaying persistence due to the ar(1) component. As observed,
the presence of individual effects may affect tests for serial correlation and vice versa. Several
alternative strategies can be used, based on the following tools:

• a joint test, which has power against both alternatives,
• marginal tests, testing the null hypothesis of no serial correlation while maintaining the

hypothesis of no individual effects under both the null and the alternative hypothesis,



Tests on Error Component Models 97

• locally robust tests, i.e., marginal tests with a correction that makes them robust to local
deviations from the maintained hypothesis,

• conditional test, i.e., testing the null hypothesis of no serial correlation, the hypothesis of
the presence of individual effects being maintained under both the null and the alternative
hypothesis.
The advantage of the robust tests is that the unconstrained model (re-ar(1) for random effect

model with first-order auto-regressive errors) need not be estimated.
Baltagi and Li (1991) and Baltagi and Li (1995) proposed a joint test of no serial correlation

and no individual effects. The test statistic is:

LM𝜂𝜓 = NT2

2(T − 1)(T − 2)
[A2 − 4AB + 2TB2]

with A = 𝜖⊤S𝜂𝜖∕𝜖⊤𝜖 and B = 𝜖⊤𝜖1∕𝜖⊤𝜖, 𝜖 being the ols residuals.
Baltagi and Li (1995) also proposed a marginal test of serial correlation, the maintained

hypothesis being the absence of individual effects:

LM𝜓 = NT2

2(T − 1)
B

Symmetrically, the marginal test of individual effects, with the maintained hypothesis of no
serial correlation is simply the Breusch-Pagan test:

LM𝜂 =
NT2

2(T − 1)
A

They also proposed a conditional test of serial correlation, the maintained hypothesis being
the presence of individual effects. This latter test (LM4 in the original paper) is based on the
residuals of the random effect model estimated by the maximum likelihood method. Under the
null of serially uncorrelated errors, the test turns out to be identical for both the alternative of
ar(1) and ma(1) processes.

Bera et al. (2001) derive locally robust tests both for individual random effects and for
first-order serial correlation in residuals as “corrected” versions of the standard LM test LM𝜓

and LM𝜂 . They write respectively:

LM∗
𝜓 = NT2

(T − 1)(1 − 2∕T)
(B + A∕T)2

and

LM𝜂 =
NT

2(T − 1)(1 − 2∕T)
(A + 2B)2

While still dependent on normality and homoscedasticity, these are robust to local departures
from the hypotheses of, respectively, no serial correlation or no individual effects. Although
suboptimal, these tests may help detecting the right direction of the departure from the null,
thus complementing the use of joint tests. Moreover, being based on pooled ols residuals,
the bsy tests are computationally far less demanding than the conditional test of Baltagi and
Li (1995).

On the other hand, the statistical properties of these locally corrected tests are inferior to
those of the non-corrected counterparts when the latter are correctly specified. If there is no
serial correlation, then the optimal test for random effects is the likelihood-based lm test of
Breusch and Pagan (with refinements by Honda, see plmtest), while if there are no indi-
vidual effects, the optimal test for serial correlation is the Breusch-Godfrey test. If the pres-
ence of a random effect is taken for granted, then the optimal test for serial correlation is the
likelihood-based conditional lm test of Baltagi and Li (1995) (see pbltest).
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Example 4.4 lm tests for random effects and/or serial correlation – RiceFarms
data set
From the LM test in a previous example, the Rice Farming data show evidence of individual
effects; and from the Hausman test, the latter seem to comply with the hypothesis that they are
uncorrelated with the covariates. We now investigate the presence of serial correlation in the
context of the re-ar(1) model outlined above.

The joint lm test for random effects and serial correlation under normality and homoscedas-
ticity of the idiosyncratic errors has been derived by Baltagi and Li (1991) and Baltagi and Li
(1995) and is implemented as an option in pbsytest, by setting the test to ’J’. In the case
of the rice farming model, the test strongly rejects. Rejection of the joint test, though, gives no
information on the direction of the departure from the null hypothesis, i.e., is rejection due to
the presence of serial correlation, of random effects, or of both?

Bera et al. (2001)’s locally robust tests can provide statistical evidence about the direction
of misspecification in the (doubly) restricted model. In fact, the presence of the “other” effect
(individual effects when testing for serial correlation and vice versa) will not influence the test
statistic as long as the magnitude is moderate. How much of the “other” effect is tolerated before
the test statistic becomes biased, however, is an empirical question and will be case-specific,
although the simulations in the original paper can provide a rough assessment.

The locally robust bsy tests for, respectively, serial correlation or individual effects are imple-
mented in the function pbsytest, by setting the test argument to ’AR’ (default) or ’RE’.
The test for random effects is implemented in the one-sided version, which takes into account
that the variance of the random effect must be non-negative.

bsy.LM <- matrix(ncol=3, nrow = 2)

tests <- c("J", "RE", "AR")

dimnames(bsy.LM) <- list(c("LM test", "p-value"), tests)

for(i in tests) {

mytest <- pbsytest(fm, data = Rice, test = i)

bsy.LM[1:2, i] <- c(mytest$statistic, mytest$p. value)

}

round(bsy.LM, 6)

J RE AR

LM test 62.65 0.3351 39.23

p-value 0.00 0.3688 0.00

The robust tests allow us to discriminate between time-invariant error persistence (random
effects) and time-decaying persistence (autoregressive errors), concluding in favor of the
second.

Finally, the optimal conditional test of Baltagi and Li for serial correlation, allowing for
random effects of any magnitude, is computed using thepbltest function, using the residuals
of the random effects maximum likelihood estimator:

pbltest(fm, Rice, alternative = "onesided")

Baltagi and Li one-sided LM test

data: fm

z = 6.1, p-value = 6e-10

alternative hypothesis: AR(1)/MA(1) errors in RE panel model

Serial correlation is detected, i.e., we conclude that 𝜓 ≠ 0 in the encompassing model.
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4.3.3 Likelihood Ratio Tests for AR(1) and Individual Effects

Likelihood ratio (lr) tests for restrictions are based on the likelihoods from the general
and the restricted model. The test statistic is simply twice the difference of the values of the
log-likelihood function:

2[ln L(�̂�) − ln L(𝜃)] ∼ 𝜒2
m

where �̂� is the full vector of parameter estimates from the unrestricted model and 𝜃 from the
restricted one, and m is the number of restrictions.

A likelihood ratio test for serial correlation in the idiosyncratic residuals can be done, in gen-
eral, as a nested models test comparing the model with spherical idiosyncratic residuals with the
more general alternative featuring ar(1) residuals. If both estimated models allow for random
effects, then the test will become conditional on the latter feature.

Thus,
LR𝜓|𝜂 = 2[ln L(�̂� , �̂�, 𝛽) − ln L(�̃�, 𝛽)] ∼ 𝜒2

1

and symmetrically for LR𝜂|𝜓 .

Example 4.5 Likelihood ratio tests – Grunfeld data set
Maximum likelihood estimation of linear models with or without either random individual
effects or serially correlated errors can be estimated, e.g., with functionality from the nlme
package. In its notation, the re specification is a model with only one random effects regressor:
the intercept. Below we report coefficients of Grunfeld’s model estimated by gls and then
by ml.

library("nlme")

data(Grunfeld, package = "plm")

reGLS <- plm(inv ̃ value + capital, data = Grunfeld, model = "random")

reML <- lme(inv ̃ value + capital, data = Grunfeld, random = ̃1 | firm)

rbind(coef(reGLS), fixef(reML))

(Intercept) value capital

[1,] -57.83 0.1098 0.3081

[2,] -57.86 0.1098 0.3082

Linear models with groupwise structures of time dependence may be fitted bygls, specifying
the correlation structure in the correlation option:

lmAR1ML <- gls(inv ̃ value + capital, data = Grunfeld,

correlation = corAR1(0, form = ̃ year | firm))

and analogously the random effects panel with, e.g., ar(1) errors (see Baltagi, 2013, Ch. 5) may
be fit by lme specifying an additional random intercept:

reAR1ML <- lme(inv ̃ value + capital, data = Grunfeld,

random = ̃ 1 | firm, correlation = corAR1(0, form = ̃ year | firm))

summary(reAR1ML)

Linear mixed-effects model fit by REML

Data: Grunfeld

AIC BIC logLik

2095 2115 -1041
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Random effects:

Formula: ̃1 | firm

(Intercept) Residual

StdDev: 78.04 72.8

Correlation Structure: AR(1)

Formula: ̃year | firm

Parameter estimate(s):

Phi

0.8238

Fixed effects: inv ̃ value + capital

Value Std.Error DF t-value p-value

(Intercept) -40.28 30.694 188 -1.312 0.1911

value 0.09 0.008 188 11.770 0.0000

capital 0.31 0.032 188 9.737 0.0000

Correlation:

(Intr) value

value -0.239

capital -0.280 -0.125

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.40759 -0.31847 0.04847 0.19863 3.30040

Number of Observations: 200

Number of Groups: 10

Let us compare either with the restricted alternative. The gls model without correlation in
the residuals is the same as ols, and one could well use lm for the restricted model. Here we
estimate it by gls.

lmML <- gls(inv ̃ value + capital, data = Grunfeld)

anova(lmML, lmAR1ML)

Model df AIC BIC logLik Test L.Ratio p-value

lmML 1 4 2400 2413 -1196

lmAR1ML 2 5 2095 2111 -1042 1 vs 2 307.3 <.0001

The ar(1) test on the random effects model is to be done in much the same way, using the
random effects model objects estimated above:

anova(reML, reAR1ML)

Model df AIC BIC logLik Test L.Ratio p-value

reML 1 5 2206 2222 -1098

reAR1ML 2 6 2095 2114 -1041 1 vs 2 113 <.0001

A likelihood ratio test for random effects compares the specifications with and without ran-
dom effects and spherical idiosyncratic errors:

anova(lmML, reML)

Model df AIC BIC logLik Test L.Ratio p-value

lmML 1 4 2400 2413 -1196

reML 2 5 2206 2222 -1098 1 vs 2 196.4 <.0001
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The random effects, ar(1) errors model in turn nests the ar(1) pooling model; therefore, a
likelihood ratio test for random effects sub ar(1) errors may be carried out, again, by comparing
the two autoregressive specifications:

anova(lmAR1ML, reAR1ML)

Model df AIC BIC logLik Test L.Ratio p-value

lmAR1ML 1 5 2095 2111 -1042

reAR1ML 2 6 2095 2114 -1041 1 vs 2 2.134 0.144

whence we see that the Grunfeld model specification doesn’t seem to need any random effects
once we control for serial correlation in the data.

4.3.4 Applying Traditional Serial Correlation Tests to Panel Data

A general testing procedure for serial correlation in fixed effects (fe), random effects (re),
and pooled-ols panel models alike can be based on considerations in (Wooldridge, 2010,
10.7.2). For the random effects model, Wooldridge (2010) observes that under the null of
homoscedasticity and no serial correlation in the idiosyncratic errors, the residuals from
the quasi-demeaned regression must be spherical as well. Else, as the individual effects are
wiped out in the demeaning, any remaining serial correlation must be due to the idiosyncratic
component. Hence, a simple way of testing for serial correlation is to apply a standard serial
correlation test to the quasi-demeaned model. The same applies in a pooled model, w.r.t.the
original data.

The fe case is different. It is well known that if the original model’s errors are uncorrelated,
then fe residuals are negatively serially correlated, with cor(𝜖nt, 𝜖ns) = −1∕(T − 1) for each t, s
(see Wooldridge, 2010, 10.5.4). This correlation clearly dies out as T increases, so this kind of
ar test is applicable to within model objects only for T “sufficiently large”. Baltagi and Li (1995)
derive a basically analogous T-asymptotic test for first-order serial correlation in a fe panel
model as a Breusch-Godfrey lm test on within residuals (see Baltagi and Li, 1995, par. 2.3 and
formula 12). They also observe that the test on within residuals can be used for testing on the re
model, as “the within transformation wipes out the individual effects, whether fixed or random.”
Generalizing the Durbin-Watson test to fe models by applying it to fixed effects residuals is
documented in Bhargava et al. (1982). On the converse, in short panels the test gets severely
biased toward rejection (or, as the induced correlation is negative, toward acceptance in the
case of the one-sided Durbin-Watson test with alternative set to ’greater’). See below
for a serial correlation test applicable to “short” fe panel models.

Example 4.6 Breusch-Godfrey and Durbin Watson tests – RiceFarms data set
The functions pbgtest and pdwtest re-estimate the relevant quasi-demeaned model by
ols and apply, respectively, standard Breusch-Godfrey and Durbin-Watson tests from package
lmtest to the residuals:

rice.re <- plm(fm, Rice, model='random')

pbgtest(rice.re, order = 2)

Breusch-Godfrey/Wooldridge test for serial

correlation in panel models

data: fm

chisq = 36, df = 2, p-value = 2e-08

alternative hypothesis: serial correlation in idiosyncratic errors

pdwtest(rice.re, order = 2)
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Durbin-Watson test for serial correlation in panel

models

data: fm

DW = 1.7, p-value = 5e-07

alternative hypothesis: serial correlation in idiosyncratic errors

The tests share the features of their ols counterparts, in particular the pbgtest allows test-
ing for higher-order serial correlation, which can be of particular interest for quarterly data. As
the functions are simple wrappers toward bgtest and dwtest, all arguments from the latter
two apply and may be passed on through the ‘…’ operator.

As observed above, applying the pbgtest and pdwtest functions to an fe model is appro-
priate only if the time dimension is long enough. In the frequent case of ”short” panels, one of
the two testing procedures due to Wooldridge (2010) and described in the next section should
be used instead.

4.3.5 Wald Tests for Serial Correlation using within and First-differenced Estimators

4.3.5.1 Wooldridge’s within-based Test
Due to the demeaning procedure, under the null of no serial correlation in the errors, the resid-
uals of an fe model must be negatively serially correlated, with cor(𝜖nt, 𝜖ns) = −1∕(T − 1) for
each t, s. Wooldridge suggests basing a test for this null hypothesis on a pooled regression of
fe residuals on their first lag:

𝜖nt = 𝛼 + 𝜓𝜖nt−1 + 𝜁nt

Rejecting the restriction 𝛿 = −1∕(T − 1)makes us conclude against the original null of no serial
correlation.

The function carrying out this procedure estimates the fe model, retrieves residuals, then
estimates an auxiliary (pooled) ar(1) model, and tests the above-mentioned restriction on 𝜓 .
Internally, a heteroscedasticity- and autocorrelation-consistent covariance matrix (vcovHC,
see next chapter) is used, as originally prescribed. The test is applicable to any fe panel model
and in particular to “short” panels with small T and large N .

Example 4.7 serial correlation tests for fixed effects models – EmplUK data set
In the following example, Wooldridge’s within-based serial correlation test is applied to the
EmplUK data:

data("EmplUK", package = "plm")

pwartest(log(emp) ̃ log(wage) + log(capital), data = EmplUK)

Wooldridge's test for serial correlation in FE

panels

data: plm.model

F = 310, df1 = 1, df2 = 890, p-value <2e-16

alternative hypothesis: serial correlation
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We strongly reject the null of no serial correlation. If the evidence of persistence is too strong,
one should wonder whether the residuals are stationary at all, and whether a specification in
differences might be preferable. In the next section we will see a similar test that can be seen as
a specification device in this sense.

4.3.5.2 Wooldridge’s First-difference-based Test
In the context of the first difference model, Wooldridge (2010, 10.6.3) proposes a serial corre-
lation test that can also be seen as a specification test to choose the most efficient estimator
between fixed effects (within) and first difference (fd).

The starting point is the observation that if the idiosyncratic errors of the original model 𝜖nt
are uncorrelated, the errors of the (first) differenced model 𝜖fd

nt ≡ 𝜖nt − 𝜖nt−1 will be correlated,
with cor(𝜖nt, 𝜖nt−1) = −0.5, while any time-invariant effect is wiped out in the differencing. So a
serial correlation test for models with individual effects of any kind can be based on estimating
the auxiliary model

𝜖fd
nt = 𝜓𝜖fd

nt−1 + 𝜁nt

and testing the restriction 𝜓 = −0.5, corresponding to the null of no serial correlation in the
original model. Drukker (2003) provides Monte Carlo evidence of the good empirical properties
of the test.

On the other extreme (see Wooldridge, 2010, 10.6.1), if the differenced errors are uncor-
related, then 𝜖nt is a random walk. In this latter case, the most efficient estimator is the first
difference (fd) one; in the former case, it is the fixed effects one (within).

Example 4.8 Wooldridge’s first difference test – EmplUK data set
We apply the test in the context of the EmplUK data, a large and short panel with strong indi-
vidual heterogeneity. We want to test for serial correlation in both within and first-differenced
errors. The function pwfdtest allows testing either hypothesis: the default behavior
h0=’fd’ is to test for serial correlation in first-differenced errors:

pwfdtest(log(emp) ̃ log(wage) + log(capital), data = EmplUK)

Wooldridge's first-difference test for serial

correlation in panels

data: plm.model

F = 0.93, df1 = 1, df2 = 750, p-value = 0.3

alternative hypothesis: serial correlation in differenced errors

while specifying h0= ’fe’ the null hypothesis becomes no serial correlation in original errors,
which is similar to the pwartest.

pwfdtest(log(emp) ̃ log(wage) + log(capital), data = EmplUK,

h0 = "fe")

Wooldridge's first-difference test for serial

correlation in panels

data: plm.model

F = 130, df1 = 1, df2 = 750, p-value <2e-16

alternative hypothesis: serial correlation in original errors
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Not rejecting one of the two is evidence in favor of using the estimator corresponding to h0.
In this case, the original residuals show evidence of serial correlation, which disappears after
first differencing. The results point at a unit root in the errors.

Example 4.9 Wooldridge’s first difference test – RiceFarms data set
Results will not always be so clear-cut. For the RiceFarms example,

W.fd <- matrix(ncol = 2, nrow =2)

H0 <- c("fd", "fe")

dimnames(W.fd) <- list(c("test", "p-value"), H0)

for(i in H0) {

mytest <- pwfdtest(fm, Rice, h0 = i)

W.fd[1, i] <- mytest$statistic

W.fd[2, i] <- mytest$p. value

}

round(W.fd, 6)

fd fe

test 176.4 19.492371

p-value 0.0 0.000012

The truth clearly lies in the middle (both rejected, although one more strongly than the other);
in this case, whichever estimator is chosen will have serially correlated errors: therefore it will
be advisable to use an autocorrelation-robust covariance matrix.

4.4 Tests for Cross-sectional Dependence

Next to the more familiar issue of serial correlation, a growing body of literature has been deal-
ing with cross-sectional dependence in panels, which can arise, e.g., if individuals respond to
common shocks (as in common factor models) or if spatial diffusion processes are present,
relating individuals in a way depending on a measure of distance (as in spatial models).

If cross-sectional dependence is present, the consequence is, at a minimum, inefficiency of
the usual estimators and invalid inference when using the standard covariance matrix. This is
the case, for example, in unobserved effects models when cross-sectional dependence is due to
an unobservable factor structure but with factors uncorrelated with the regressors. In this case
the within or re are still consistent, although inefficient (see De Hoyos and Sarafidis, 2006).
If the unobserved factors are correlated with the regressors, which can seldom be ruled out,
consequences are more serious: the estimators will be inconsistent.

4.4.1 Pairwise Correlation Coefficients

Correlation in the cross-section can take very diverse shapes. The most common testing pro-
cedures are based on considering the population of all possible pairwise correlations between
pairs of distinct individual units, estimating each one independently, by exploiting the time
dimension of the data, and then calculating some synthetic measure or test statistic. The basic
tool for assessing pairwise correlation between individual units n and m for a double-indexed
vector znm is the product-moment correlation coefficient, defined as

�̂�nm =
∑T

t=1 ẑnt ẑmt(∑T
t=1 ẑ2

nt

)1∕2(∑T
t=1 ẑ2

mt

)1∕2
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A descriptive assessment of the degree of cross-sectional correlation in the given sample
can then be based on the average of individual correlation coefficients: �̂� = 1∕(N(N − 1))∑N

n=1
∑n−1

m=1 �̂�nm. If individual correlations are some positive and some negative, this solution has
the problem that coefficients with different signs compensate, yielding a statistic that underes-
timates the true level of dependence in the data. Therefore, another common procedure is to
average the absolute values of individual coefficients: �̂�abs = 1∕(N(N − 1))

∑N
n=1

∑n−1
m=1 |�̂�nm|.

4.4.2 CD-type Tests for Cross-sectional Dependence

A number of statistics for testing the null hypothesis of no cross-sectional dependence in model
errors can be based on �̂�. The function pcdtest implements both the calculation of �̂� and
�̂�abs, and a family of cross-sectional dependence tests that can be applied in different settings,
ranging from those where T grows large with N fixed to “short” panels with a big N dimension
and a few time periods. All are based on (transformations of ) the product-moment correlation
coefficient of a model’s residuals, defined as above. The Breusch-Pagan lm test, based on the
squares of 𝜌nm, is valid for T → ∞ with N fixed:

LM𝜌 =
N−1∑
n=1

N∑
m=n+1

Tnm�̂�
2
nm

where in the case of an unbalanced panel only pairwise complete observations are considered,
and Tnm = min(Tn,Tm) with Tn being the number of observations for individual n; else, if the
panel is balanced, Tnm = T for each n,m. The test is distributed as 𝜒2

N(N−1)∕2. It is inappropriate
whenever the N dimension is “large.” A scaled version, applicable also if T → ∞ and then N →
∞ (as in some pooled time series contexts), is defined as:

sclm =
√

1
N(N − 1)

(N−1∑
n=1

N∑
m=n+1

√
Tnm�̂�

2
nm

)

and distributed as a standard normal.
Pesaran’s (2004) cd test

cd =
√

2
N(N − 1)

(N−1∑
n=1

N∑
m=n+1

√
Tnm�̂�nm

)

based on �̂�nm without squaring (also distributed as a standard Normal) is appropriate both for
N- and T-asymptotics. It has good properties in samples of any practically relevant size and
is robust to a variety of settings. The only big drawback is that the test loses power against
the alternative of cross-sectional dependence if the average correlation is zero, even if indi-
vidual coefficients are non-zero. Such a situation is not uncommon and can arise for example
in the presence of an unobserved factor structure with factor loadings averaging zero, that is,
where some units react positively to common shocks, others negatively. Another case where
the test will lose power is if the data are cross-sectionally demeaned, or when the model con-
tains time-specific dummies (see Sarafidis and Wansbeek, 2012, p. 27). In these instances, the
absolute correlation coefficient �̂�abs is likely to turn out much bigger than �̂�.

Example 4.10 tests for cross-sectional dependence – RDSpillovers data set
Eberhardt et al. (2013) consider the returns of own research and development (R&D) in
the production function of European firms. They account for common factors and spillover
effects; they find evidence that when controlling for such features, the effect of own R&D is not
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significant any more and conclude that the value of R&D derives from a complex mix of own
sources and spillovers from other firms. They estimate various specifications of a standard
production function (where output is a function of labor and capital) augmented with R&D
expenditure.

data("RDSpillovers", package = "pder")

fm.rds <- lny ̃ lnl + lnk + lnrd

Pairwise-correlations-based tests are originally meant to use the residuals of separate esti-
mation of one time-series regression for each cross-sectional unit. In the original example of
Eberhardt et al. (2013), this is done in the first of the heterogeneous static specifications of
Table 7, the mean groups model. This is also the default behavior of pcdtest.3 The default
version of the test is ’cd’, which is appropriate in a large panel setting like this.

pcdtest(fm.rds, RDSpillovers)

Pesaran CD test for cross-sectional dependence in

panels

data: lny ̃ lnl + lnk + lnrd

z = 29, p-value <2e-16

alternative hypothesis: cross-sectional dependence

The residuals from separate time series regressions show strong evidence of error cross-
sectional dependence.

If a different model specification (within, re, ...) is assumed consistent, one can resort to its
residuals for testing4 by specifying the relevantmodel type. The main argument of this function
may be either plm or a formula and a data.frame; in the second case, unless model is set
to NULL, all usual parameters relative to the estimation of a plm model may be passed on. The
test is compatible with any consistent plm model for the data at hand, with any specification
of effect; e.g., specifying effect = ’time’ or effect = ’twoways’ allows to test for
residual cross-sectional dependence after the introduction of time fixed effects to account for
common shocks. Let us consider the static two-way fixed effects specification in Eberhardt et al.
(2013, Table 5):

rds.2fe <- plm(fm.rds, RDSpillovers, model = "within", effect = "twoways")

pcdtest(rds.2fe)

Pesaran CD test for cross-sectional dependence in

panels

data: lny ̃ lnl + lnk + lnrd

z = -1.5, p-value = 0.1

alternative hypothesis: cross-sectional dependence

3 If the time dimension is insufficient and model=NULL, the function defaults to estimation of a within model and
issues a warning.
4 This is also the only solution when the time dimension’s length is insufficient for estimating the heterogeneous
model.
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As observed, the test loses its power if time fixed effects are included in the model specifica-
tion. Now the test does not reject the hypothesis of no cross-sectional correlation. One can get
an idea of what is happening by comparing �̂� and �̂�abs:

cbind("rho" = pcdtest(rds.2fe, test = "rho")$statistic,

"|rho|"= pcdtest(rds.2fe, test = "absrho")$statistic)

rho |rho|

rho -0.004879 0.5021

whence it can be seen how substantial cross-sectional dependence is present, but the addition
of time effects has centered the mean of correlation coefficients on zero so that positive and
negative �̂�nms compensate.

4.4.3 Testing Cross-sectional Dependence in a pseries

Next to testing for cross-sectional correlation in model residuals, tests in the cd family can
be employed in preliminary statistical assessments as well, in order to determine whether
the dependent and explanatory variables show any correlation to begin with. To this end, the
pcdtest function has a pseries method, meaning that it can be fed a pseries object as
well. One can either calculate the descriptive statistics �̂� and �̂�abs or resort to a formal test.

Example 4.11 cross-sectional dependence test for a pseries – HousePricesUS
data set
Holly et al. (2010) analyze changes in real house prices in 49 US states between 1975 and 2003
to assess to which extent they are driven by fundamentals like disposable per capita income,
net borrowing costs, and population growth (see also the full replication in Millo, 2015). The
empirical analysis proceeds from the initial assessment of spatial dependence of the variables;
here we reproduce the cross-sectional correlation assessment for the dependent variable, the
house price index (1980=100), taken in first differences of logs.

data("HousePricesUS", package = "pder")

php <- pdata.frame(HousePricesUS)

cbind("rho" = pcdtest(diff(log(php$price)), test = "rho")$statistic,

"|rho|" = pcdtest(diff(log(php$price)), test = "absrho")$statistic)

rho |rho|

rho 0.3942 0.4247

The overall averages of �̂� and �̂�abs are quite large in magnitude and very close to each other,
indicating substantial positive correlation.

To investigate whether this behavior is geographically uniform or not, one can drill down
to the regional level. within and between regions correlation tables can be constructed
by means of the pcdtest function, setting test = ’rho’ for the average correlation
coefficient. A function cortab is provided that automates this procedure, construct-
ing suitable W matrices from the provided grouping index and calculating �̂� (default) or
�̂�abs (if test = ’absrho’) for each region (main diagonal) and each pair of regions
(off-diagonal).
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regions.names <- c("New Engl", "Mideast", "Southeast", "Great Lks",

"Plains", "Southwest", "Rocky Mnt", "Far West")

corr.table.hp <- cortab(diff(log(php$price)), grouping = php$region,

groupnames = regions.names)

colnames(corr.table.hp) <- substr(rownames(corr.table.hp), 1, 5)

round(corr.table.hp, 2)

New E Midea South Great Plain South Rocky Far W

New Engl 0.80 NA NA NA NA NA NA NA

Mideast 0.68 0.66 NA NA NA NA NA NA

Southeast 0.40 0.35 0.81 NA NA NA NA NA

Great Lks 0.27 0.20 0.62 0.61 NA NA NA NA

Plains 0.40 0.32 0.57 0.53 0.52 NA NA NA

Southwest 0.07 -0.05 0.28 0.39 0.35 0.52 NA NA

Rocky Mnt -0.03 -0.11 0.52 0.53 0.40 0.57 0.70 NA

Far West 0.13 0.17 0.52 0.42 0.29 0.31 0.46 0.57

The preliminary spatial dependence analysis highlights the correlation between neighbor-
ing regions and also some cases of correlation with distant ones, as is the case for California
and some more developed states on the East Coast. According to the authors, this is evidence
of factor-related dependence: common shocks to technology stimulate growth in the most
advanced states irrespective of geographic proximity.

The significance of cross-sectional correlation in a pseries can also be assessed through a
formal test, exactly as done above for model residuals. Given that, beside stationarity (which in
our example was ensured by first differencing the data), the properties of the CD test rest on
the hypothesis of no serial correlation, we follow Pesaran (2004)’s suggestion to remove any by
specifying a univariate ar(2) model of the variable of interest and proceed testing the residuals
of the latter for cross-sectional dependence. This is made easy by the lagging functionalities of
plm. In the following, we test cross-sectional correlation in log house prices drawing on the
residuals of an ar(2) model in order to control for any persistence in the data:

pcdtest(diff(log(price)) ̃ diff(lag(log(price))) + diff(lag(log(price), 2)),

data = php)

Pesaran CD test for cross-sectional dependence in

panels

data: diff(log(price)) ̃ diff(lag(log(price))) + diff(lag(log(price), 2))

z = 59, p-value <2e-16

alternative hypothesis: cross-sectional dependence

The test strongly rejects the null hypothesis, confirming substantial cross-sectional comove-
ment in house prices.



109

5

Robust Inference and Estimation for Non-spherical Errors

5.1 Robust Inference

In this chapter we focus on relaxing the hypothesis of independence and homoscedasticity of
the remainder errors. Independent and identically distributed (i.i.d.) errors can seldom be taken
for granted in the mostly non-experimental contexts of econometrics. In the so-called robust
approach to model diagnostics, one relaxes the hypothesis of homoscedastic and independent
errors from the beginning, and consequently uses an appropriate estimator for the parame-
ters’ covariance matrix, instead of testing for departures from sphericity after estimation, as is
customary in the classical approach.

In panel data, error correlation often descends from clustering issues: the group (firm, individ-
ual, country) and the time dimension define natural clusters; observations sharing a common
individual unit, or time period, are likely to share common characters, violating the indepen-
dence assumption and potentially biasing inference. In particular, variance estimates derived
under the random sampling assumption are typically biased downward, possibly leading to false
significance of model parameters. Although clustering can often be an issue in cross-sectional
data too, especially when employing data at different levels of aggregation (Moulton, 1986,
1990), it is such an obvious feature in panels that a number of robust covariance estimators have
been devised for the most common situations: within-individual and/or -time period correla-
tion, the former of either time-constant or time-decaying type, and cross correlation between
different individuals over time.

Next to the panel-specific implementation of the well-known heteroscedasticity-consistent
covariance, there are a number of other robust covariance estimators specifically devised for
panel data. We will now review the general idea of sandwich estimation, its application in a
panel setting, and lastly the best known covariance estimators for the most common cases of
nonsphericity in the errors and their implementations in plm.

5.1.1 Robust Covariance Estimators

Consider a linear model y = Z𝛾 + 𝜖 and the ols estimator �̂�ols = (Z⊤Z)−1Z⊤y. If the error terms
𝜖 are independent and identically distributed, then the estimated covariance matrix of estima-
tors takes the familiar textbook form: V̂(�̂�) = �̂�2(Z⊤Z)−1, where �̂�2 is an estimate of the error
variance. This is the classical case, also known as spherical errors, and the relative formulation
of V̂(�̂�ols) is often referred to as “ols covariance”.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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Let us consider robust estimation in the context of the simple linear model outlined above.
The problem at hand is to estimate the covariance matrix of the ols estimator relaxing the
assumptions of serial correlation and/or homoscedasticity without imposing any particular
structure to the errors’ variance or interdependence. The ols parameters’ covariance matrix
with a general error covariance Ω is:

V(�̂�) = (Z⊤Z)−1(Z⊤[𝜎2Ω]Z)(Z⊤Z)−1

According to the seminal work of White (1980), in order to consistently estimate V(�̂�), it is
not necessary to estimate all the N(N + 1)∕2 unknown elements in the Ω matrix but only the
K(K + 1)∕2 ones in

N∑
n=1

N∑
m=1

𝜎nmznz⊤m

which may be called the meat of the sandwich, the two (Z⊤Z)−1 being the bread. All that is
required are pointwise consistent estimates of the errors, which is satisfied by consistency of the
estimator for 𝛾 (see Greene, 2003). In the heteroscedasticity case, correlation between different
observations is ruled out, and the meat reduces to

S0 =
N∑

n=1
𝜎2

nznz⊤n

where the N unknown 𝜎2
ns can be substituted by 𝜖2

n (see White, 1980). In the serial cor-
relation case, the natural estimation counterpart would be

∑N
n=1

∑N
m=1 𝜖n𝜖mznz⊤m but this

structure proves too general to achieve convergence. Newey and West (1987) devise a het-
eroscedasticity and-autocorrelation consistent estimator that works based on the assumption
of correlation dying out as the distance between observations increases. The Newey-West
hac estimator for the meat takes that of White and adds a sum of covariances between
the different residuals, smoothed out by a kernel function giving weights decreasing with
distance:

S0 +
N∑

n=1

N∑
m=1

𝜔l𝜖t𝜖t−l(ztz⊤t−l + zt−lz⊤t )

with 𝜔l the weight from the kernel smoother. For the latter, Newey and West (1987) chose
the well-known Bartlett kernel function: 𝜔l = 1 − l

L+1
. The lag l is usually truncated well below

sample size: one popular rule of thumb is L = N1∕4 (see Greene, 2003; Driscoll and Kraay, 1998).
In the following we will consider the extensions of this framework for a panel data setting

where, thanks to added dimensionality, various combinations of the two above structures will
turn out to be able to accommodate very general types of dependence.

5.1.1.1 Cluster-robust Estimation in a Panel Setting
Clustering estimators extend the sandwich principle to panel data. Besides heteroscedas-
ticity, the added dimensionality allows to obtain robustness against totally unrestricted
time-wise or cross-sectional correlation, provided this is along the “smaller” dimension.
In the case of “large-N” (wide) panels, the big cross-sectional dimension allows robust-
ness against serial correlation (Arellano, 1987); in “large-T” (long) panels, on the converse,
robustness to cross-sectional correlation can be attained drawing on the large number of
time periods observed. As a general rule, the estimator is asymptotic in the number of
clusters.
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Imposing cross-sectional (serial) independence in fact restricts all covariances between
observations belonging to different individuals (time periods) to zero, yielding an error
covariance matrix that is block-diagonal, with blocks Σn of the form:

Σn =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎2
n1 𝜎n1,n2 … … 𝜎n1,nT

𝜎n2,n1 𝜎2
n2 ⋮

⋮ ⋱ ⋮

⋮ 𝜎2
nT−1 𝜎nT−1,nT

𝜎nT ,n1 … … 𝜎nT ,nT−1 𝜎2
nT

⎤⎥⎥⎥⎥⎥⎥⎦

(5.1)

and the consistency relies on the cross-sectional dimension being “large enough” with respect to
the number of free covariance parameters in the diagonal blocks. The other case is symmetric.

White’s heteroscedasticity-consistent covariance matrix has been extended to clustered data
by Liang and Zeger (1986) and to econometric panel data by Arellano (1987). Observations
can be clustered by the individual index, which is the most popular use of this estimator and is
appropriate in large, short panels because it is based on N-asymptotics, or by the time index,
which is based on T-asymptotics and therefore appropriate for long panels. In the first case,
the covariance estimator is robust against cross-sectional heteroscedasticity and also against
serial correlation of arbitrary form; in the second case, symmetrically, against time-wise het-
eroscedasticity and cross-sectional correlation. Arellano’s original estimator, an instance of the
first case, has the form:

Vcx = (Z⊤Z)−1
N∑

n=1
Z⊤

n 𝜖n𝜖
⊤
n Zn(Z⊤Z)−1 (5.2)

It is of course still feasible to rule out serial correlation and compute an estimator that is
robust to heteroscedasticity only, based on the following error structure:

Σn =

⎡⎢⎢⎢⎢⎣

𝜎2
n1 … … 0
0 𝜎2

n2 ⋮

⋮ ⋱ 0
0 … … 𝜎2

nT

⎤⎥⎥⎥⎥⎦
(5.3)

in which case the original White estimator applies:

Vwh = (Z⊤Z)−1
N∑

n=1

T∑
t=1

𝜖2
ntzntz⊤nt(Z⊤Z)−1 (5.4)

The case of clustering by time period is symmetric to that along the other dimension: data
are assumed to be serially independent and allowed to have arbitrary heteroscedasticity and an
unrestricted cross-sectional dependence structure.

Vct = (Z⊤Z)−1
T∑

t=1
Z⊤

t 𝜖t𝜖
⊤
t Zt(Z⊤Z)−1 (5.5)

Example 5.1 clustered standard errors for pooled models – Produc data set
Munnell (1990) analyzes the impact of public infrastructure on economic activity by draw-
ing on a sample of 48 US states (all continental states minus the District of Columbia) over
17 years, 1970–1986. She specifies a Cobb-Douglas production function that relates the gross
social product (gsp) of a given state to the input of public capital (pcap), private capital (pc)
and labor (emp); she also includes the state unemployment rate (unemp) to capture business
cycle effects:
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library("plm")

data("Produc", package = "plm")

fm <- log(gsp) ̃ log(pcap) + log(pc) + log(emp) + unemp

The functioncoeftest from package lmtest produces a compact coefficients table allowing
for a flexible choice of the covariance matrix. We calculate a heteroscedasticity-robust diagnos-
tic table for two statistically equivalent models. First, pooled ols by lm:

lmmod <- lm(fm, Produc)

library("lmtest")

library("sandwich")

coeftest(lmmod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.64330 0.07161 22.95 < 2e-16 ***

log(pcap) 0.15501 0.01870 8.29 4.7e-16 ***

log(pc) 0.30919 0.01263 24.48 < 2e-16 ***

log(emp) 0.59393 0.01979 30.01 < 2e-16 ***

unemp -0.00673 0.00135 -4.99 7.5e-07 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Next, we compute pooled ols by plm. The coeftest function complies with plm objects,
so the same syntax as above can be employed. In turn, the summary.plm method is itself
compliant with providing a custom covariance (a note about using a nonstandard covariance
will be issued):

plmmod <- plm(fm, Produc, model = "pooling")

summary(plmmod, vcov = vcovHC)

Pooling Model

Note: Coefficient variance-covariance matrix supplied: vcovHC

Call:

plm(formula = fm, data = Produc, model = "pooling")

Balanced Panel: n = 48, T = 17, N = 816

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.231762 -0.061037 -0.000102 0.050852 0.351113

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 1.64330 0.24418 6.73 3.2e-11 ***

log(pcap) 0.15501 0.06012 2.58 0.01 *

log(pc) 0.30919 0.04623 6.69 4.2e-11 ***
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log(emp) 0.59393 0.06861 8.66 < 2e-16 ***

unemp -0.00673 0.00309 -2.18 0.03 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 850

Residual Sum of Squares: 6.29

R-Squared: 0.993

Adj. R-Squared: 0.993

F-statistic: 2778.06 on 4 and 47 DF, p-value: <2e-16

Coefficients are obviously the same, but the estimated standard errors will turn out differ-
ent. In particular, the standard error of the coefficient on pcap is much larger, and while still
significant at the 5% level, it is not any more at the 1% level. This is because the classes of the
model objects to be tested are different, and so are the default settings of the vcovHC.lm
and vcovHC.plm methods. Only if one overrides the defaults, here, specifying the method
as ’white1’ and the small sample correction as ’HC3’, the lm results will be replicated.
Therefore, thanks to object orientation, if applying the generic robust method vcovHC to a
panelmodel object, one will get a result that is likely to be “sensible” for the most common
applications.

Clustering in Non-Panels Clustering can occur in non-panel settings too. Whenever a grouping
index of some sort is provided and there is reason to believe that errors are dependent within
groups defined by that index, the clustered standard errors can be employed to account for
heteroscedasticity across groups and for within group correlation of any kind, not limited to
proper serial correlation in time. One example is when a regression is augmented with variables
at a higher level of aggregation.

The seminal example is in Moulton (1986, 1990): if some regressors are observed at group
level, as is the case, e.g., when adding local GDP to individual data drawn from different geo-
graphical units, then standard errors have to be adjusted for intra-group correlation.

Froot (1989), in the context of financial data, discusses sampling firms from different indus-
tries, assumed mutually independent. In his application, clustering is employed to account for
within-industry dependence, while it would be meaningless across the “other” dimension.

Any dataset mixing different levels of detail is prone to this issue. In such cases, panel data
methods can seamlessly be employed on cross-sectional datasets by specifying the relevant
grouping variable as the first element of the index. The second one will obviously be left blank
as there would be no meaningful second dimension.

Example 5.2 Clustered standard errors for non-panel data – Hedonic data set
Harrison and Rubinfeld (1978) consider the median values of owner-occupied homes in a cross
section of 506 census tracts from 92 towns in the Boston area. Values are explained by a combi-
nation of tract- and town-level variables. Crime rate (crim), pollution (nox), average number
of rooms (rm) and age, distance to employment centers (dis), and proportion of blacks in the
population are observed at tract level. Other variables such as proportion of industrial dwellings
(indus), distance to radial highways (rad), property tax rate, and pupil-to-teacher ratio in
local schools (ptratio) are observed at town level, thus leading to the Moulton problem.
The town identifier for each tract (townid) allows to account for clustering within each town,
which may comprise from 1 to 30 tracts. We estimate ols with HC SEs by lm:
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data("Hedonic", package = "plm")

hfm <- mv ̃ crim + zn + indus + chas + nox + rm + age + dis +

rad + tax + ptratio + blacks + lstat

hlmmod <- lm(hfm, Hedonic)

coeftest(hlmmod, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.76e+00 1.74e-01 56.21 < 2e-16 ***

crim -1.19e-02 2.85e-03 -4.16 3.8e-05 ***

zn 8.03e-05 3.89e-04 0.21 0.83670

indus 2.41e-04 1.84e-03 0.13 0.89589

chasyes 9.14e-02 3.71e-02 2.46 0.01413 *

nox -6.38e-03 1.26e-03 -5.08 5.4e-07 ***

rm 6.33e-03 2.11e-03 3.00 0.00282 **

age 8.98e-05 6.07e-04 0.15 0.88252

dis -1.91e-01 4.08e-02 -4.69 3.5e-06 ***

rad 9.57e-02 2.03e-02 4.71 3.2e-06 ***

tax -4.20e-04 1.17e-04 -3.59 0.00036 ***

ptratio -3.11e-02 4.17e-03 -7.47 3.7e-13 ***

blacks 3.64e-01 1.54e-01 2.36 0.01884 *

lstat -3.71e-01 3.94e-02 -9.43 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and pooled ols by plm; then we compare White and clustered standard errors:.

hplmmod <- plm(hfm, Hedonic, model = "pooling", index = "townid")

sign.tab <- cbind(coef(hlmmod), coeftest(hlmmod, vcov = vcovHC)[,4],

coeftest(hplmmod, vcov = vcovHC)[, 4])

dimnames(sign.tab)[[2]] <- c("Coefficient", "p-values, HC", "p-val., cluster")

round(sign.tab, 3)

Coefficient p-values, HC p-val., cluster

(Intercept) 9.756 0.000 0.000

crim -0.012 0.000 0.000

zn 0.000 0.837 0.882

indus 0.000 0.896 0.933

chasyes 0.091 0.014 0.064

nox -0.006 0.000 0.003

rm 0.006 0.003 0.090

age 0.000 0.883 0.914

dis -0.191 0.000 0.004

rad 0.096 0.000 0.000

tax 0.000 0.000 0.005

ptratio -0.031 0.000 0.000

blacks 0.364 0.019 0.235

lstat -0.371 0.000 0.000
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Proximity to the Charles River, average number of rooms, and the proportion of blacks in the
population are not significant any more after clustering by town.

5.1.1.2 Double Clustering
Double clustering methods have originated in the financial literature (Petersen, 2009; Cameron
et al., 2011; Thompson, 2011) and are motivated by the need to account for persistent shocks
(another name for individual, time-invariant error components) and at the same time for
cross-sectional or spatial correlation. The former feature, persistent shocks, is usually dealt
with in the econometric literature by parametric estimation of random effects models; the
latter through spatial panels, where again it is estimated parametrically imposing a structure
to the dependence, or common factor models. As Cameron et al. (2011) observe, though,
double clustering, as all robustified inference of this kind, relies on much weaker assumptions
as regards the data-generating process than parametric modeling of dependence does. In
fact, this estimator combining both individual and time clustering relies on a combination
of the asymptotics of each: the minimum number of clusters along the two dimensions must
go to infinity (which will be especially appropriate for data-rich financial applications, less
so in the smaller samples that are frequently encountered in economics). Apart from this,
any dependence structure is allowed within each group or within each time period, while
cross-serial correlations between observations belonging to different groups and time periods
are ruled out.

Cameron et al. (2011) have shown how the double-clustered estimator is simply calcu-
lated by summing up the group-clustering and the time-clustering ones, then subtracting
the standard White estimator in order to avoid double counting the error variances along the
diagonal:

Vcxt = Vcx + Vct − Vwh (5.6)

In order to control for the effect of common shocks, Thompson (2011) proposes to add to the
sum of covariances one more term, related to the covariances between observations from any
group at different points in time. Given a maximum lag L, this will be the sum over l = 1,… L
of the following generic term:

Vct,l =
T∑

t=1
Z⊤

t 𝜖t𝜖
⊤

t−lZt−l (5.7)

representing the covariance between pairs of observations from any group distanced l periods
in time. As the correlation between observations belonging to the same group at different points
in time has already been captured by the group-clustering term, to avoid double counting one
must subtract the within-groups part:

Vwh,l =
T∑

t=1

N∑
n=1

[znt𝜖nt𝜖
⊤

n,t−lz
⊤

n,t−l] (5.8)

for each l. The resulting estimator

Vcxt,L = Vcx + Vct − Vwh +
L∑

l=1
[Vct,l + V⊤

ct,l] −
L∑

l=1
[Vwh,l + V⊤

wh,l] (5.9)

is robust to cross-sectional and time-wise correlation inside, respectively, time periods and
groups and to the cross-serial correlation between observations belonging to different groups,
up to the L-th lag.
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5.1.1.3 Panel Newey-west and SCC

As mentioned above, in a time series context Newey and West (1987) have proposed an
estimator that is robust to serial correlation as well as to heteroscedasticity. This estima-
tor, based on the hypothesis of the serial correlation dying out “quickly enough,” takes
into account the covariance between units by weighting it through a kernel-smoothing
function giving less weight as they get more distant and adding it to the standard White
estimator.

A panel version of the original Newey-West estimator can be obtained as:

Vnw,L = Vwh +
L∑

l=1
𝜔l

[ T∑
t=1

N∑
n=1

[znt𝜖nt𝜖
⊤

n,t−lz
⊤

n,t−l

]

+
T∑

t=1

[ N∑
n=1

[znt𝜖nt𝜖
⊤

n,t−lz
⊤

n,t−l]
⊤

]
(5.10)

= Vwh +
L∑

l=1
𝜔l[Vwh,l + V⊤

wl]

As can readily be seen, the Newey-West non-parametric estimator closely resembles the double
clustering plus lags, the difference being that instead of adding a (possibly truncated) sum of
unweighted lag terms, the latter downweighs the correlation between “distant” terms through
a kernel-smoothing function.

Driscoll and Kraay (1998) have adapted the Newey-West estimator to a panel time series
context where not only serial correlation between residuals from the same individual in different
time periods is taken into account but also cross-serial correlation between different individuals
in different times and, within the same period, cross-sectional correlation (see also Arellano,
2003).

The Driscoll and Kraay estimator, labeled scc (as in “spatial correlation consistent”), is
defined as the time-clustering version of Arellano plus a sum of lagged covariance terms,
weighted by a distance-decreasing kernel function 𝜔l:

Vscc,L = Vct +
L∑

l=1
𝜔l

[ T∑
t=1

Z⊤
t 𝜖t𝜖

⊤

t−lZt−l +
T∑

t=1
[Z⊤

t 𝜖t𝜖
⊤

t−lZt−l]⊤
]

= Vct +
L∑

l=1
𝜔l[Vct,l + V⊤

ct,l] (5.11)

The “scc” covariance estimator requires the data to be a mixing sequence, i.e., roughly speaking,
to have serial and cross-serial dependence dying out quickly enough with the T dimension,
which is therefore supposed to be fairly large: Driscoll and Kraay (1998), based on Monte Carlo
simulation, put the practical minimum at T > 20 − 25; the N dimension is irrelevant in this
respect and is allowed to grow at any rate relative to T .

As is apparent from Equation 5.1.1.3, if the maximum lag order is set to 0 (no serial or
cross-serial dependence is allowed) the scc estimator becomes the cross-section version
(time-clustering) of the Arellano estimator Vct. On the other hand, if the cross-serial terms
are all unweighted (i.e., if 𝜔l = 1∀l), then Vscc,L|𝑤=1 = Vct,L.

A Comprehensive Definition Let us now look systematically at the similarities between the above
formulas, embedding them into an encompassing one (see Millo, 2017b). A comprehensive
formulation can be written in terms of White’s heteroscedasticity-consistent covariance
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Table 5.1 Covariance structures as combinations of the basic building blocks.

double-clustering Vcxt = Vcx + Vct − Vwh

time-clustering + shocks Vct,L = Vct +
∑L

l=1[Vct,l + V⊤

ct,l]

panel Newey-West Vnw,L = Vwh +
∑L

l=1 𝜔l[Vwh,l + V⊤

wh,l]

Driscoll and Kraay’s scc Vscc,L = Vct +
∑L

l=1 𝜔l[Vct,l + V⊤

ct,l]

double-clustering + shocks Vcxt,L = Vct +
∑L

l=1[Vct,l + V⊤

ct,l] + Vcx

− Vwh −
∑L

l=1[Vwh,l + V⊤

wh,l]

= Vct,L + Vcx − Vnw,L|𝑤=1

matrix Vwh, the group-clustering and time-clustering ones Vcx and Vct, and an appropriate
kernel-weighted sum of their lags:

Vcxt,L|𝑤 = Vct +
L∑

l=1
𝜔l[Vct,l + V⊤

ct,l] + Vcx − Vwh −
L∑

l=1
𝜔l[Vwh,l + V⊤

wh,l] (5.12)

The different estimators are in turn particularizations of the above and can be expressed in
terms of the same basic common components, as shown in Table 5.1. A functionvcovGmaking
either VW , Vcx, or Vctis provided at user level, mainly for educational purposes, and is used
internally to construct all other estimators.1

Higher-level functions are provided to produce the double-clustering and kernel-smoothing
estimators by (possibly weighted) sums of the former terms. The general tool in this
respect, in turn based on vcovG, is vcovSCC, which computes weighted sums of V.,l
according to a weighting function that is by default the Bartlett kernel. The default values
will yield the Driscoll and Kraay estimator, Vscc,L. As the scc estimator differs from the
(one-way) time-shocks-robust version of the double-clustering a la Cameron et al. (2011)
only by the distance-decaying weighting of the covariances between different periods so that
Vct,L = Vscc,L|𝜔=1, no weighting (equivalent to passing the constant 1 as the weighting function:
wj=1) will produce the building blocks for double clustering, according to formula 5.9.

Convenient wrappers are provided as the tool of choice for the end user: vcovNW computes
the panel Newey-West estimator Vnw,L; vcovDC the double-clustering one Vcxt.

Example 5.3 Newey-West and double-clustering estimators – Produc data set
Reconsidering the Munnell (1990) example, one might want to account for both the spatial
correlation between states observed in the same time period and for the serial correlation within
the same state and across different ones. To this end, one may supply the vcovSCC function to
the vcov argument in coeftest:

coeftest(plmmod, vcov=vcovSCC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.64330 0.15035 10.93 < 2e-16 ***

1 vcovG can be used for calculating Vwh,l , Vct,l , or Vcx,l or, leaving the default lag at 0, to calculate Vwh, Vct, or Vcx.
It takes as arguments a clustering dimension (cluster), a function of the errors corresponding to E(𝜖) (inner), and
a lag order. The inner argument can accept either one of two strings ’cluster’ or ’white’, specifying
respectively E(𝜖) = 𝜖𝜖⊤ and E(𝜖) = diag(𝜖⊤𝜖), or a user-supplied function. For example, specifying vcovG(plmmod,
cluster = "group", inner = "cluster", l = 0) is equivalent to set vcovHC(plmmod) and will
produce the Arellano estimator.
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log(pcap) 0.15501 0.03697 4.19 3.1e-05 ***

log(pc) 0.30919 0.00764 40.45 < 2e-16 ***

log(emp) 0.59393 0.03870 15.35 < 2e-16 ***

unemp -0.00673 0.00254 -2.65 0.0082 **

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or possibly, if allowing for double clustering,

coeftest(plmmod, vcov=vcovDC)

(results omitted, see the next example). More complicated structures allowing for two-way
clustering and error persistence in the sense of Thompson (2011) can be obtained by combi-
nation, as illustrated above. Below, the case of double clustering plus four periods of persistent
(unweighted) shocks a la Thompson (2011) (notice that the weighting function wj has been
defined as the constant 1 but must still be a function of two arguments):

myvcovDCS <- function(x, maxlag = NULL, ...) {

w1 <- function(j, maxlag) 1

VsccL.1 <- vcovSCC(x, maxlag = maxlag, wj = w1, ...)

Vcx <- vcovHC(x, cluster = "group", method = "arellano", ...)

VnwL.1 <- vcovSCC(x, maxlag = maxlag, inner = "white", wj = w1, ...)

return(VsccL.1 + Vcx - VnwL.1)

}

coeftest(plmmod, vcov=function(x) myvcovDCS(x, maxlag = 4))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.64330 0.27694 5.93 4.4e-09 ***

log(pcap) 0.15501 0.06612 2.34 0.019 *

log(pc) 0.30919 0.03265 9.47 < 2e-16 ***

log(emp) 0.59393 0.07244 8.20 9.5e-16 ***

unemp -0.00673 0.00375 -1.80 0.073 .

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 5.4 computing an array of standard errors – Produc data set
In the following applied example, still considering the Munnell (1990) model, we take advantage
of the capabilities of the R language for compactly presenting the complete array of standard
error estimates for each estimator in Table 5.1 by defining a vector of covariance functions and
then looping on it.2

Looping on a vector of functions is a useful consequence of R treating functions as a data type.
For the sake of clarity, let us predefine some functions for calculating the different covariance

2 One must nevertheless keep in mind that the sample size and the number of clusters in either cross section or time
might prove inadequate for some estimators, as reported in the reference papers (see in particular Thompson, 2011).
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estimators with the appropriate parameters (leaving the maximum lag calculation at its default
value of L = T

1
4 ):

Vw <- function(x) vcovHC(x, method = "white1")

Vcx <- function(x) vcovHC(x, cluster = "group", method = "arellano")

Vct <- function(x) vcovHC(x, cluster = "time", method = "arellano")

Vcxt <- function(x) Vcx(x) + Vct(x) - Vw(x)

Vct.L <- function(x) vcovSCC(x, wj = function(j, maxlag) 1)

Vnw.L <- function(x) vcovNW(x)

Vscc.L <- function(x) vcovSCC(x)

Vcxt.L <- function(x) Vct.L(x) + Vcx(x) - vcovNW(x, wj = function(j, maxlag) 1)

then build up a vector of functions on which to loop:

vcovs <- c(vcov, Vw, Vcx, Vct, Vcxt, Vct.L, Vnw.L, Vscc.L, Vcxt.L)

names(vcovs) <- c("OLS", "Vw", "Vcx", "Vct", "Vcxt", "Vct.L", "Vnw.L",

"Vscc.L", "Vcxt.L")

in order to calculate a comprehensive table of p-values from robust estimators. To this end we
define a convenience function:

cfrtab <- function(mod, vcovs, ...) {

cfrtab <- matrix(nrow = length(coef(mod)), ncol = 1 + length(vcovs))

dimnames(cfrtab) <- list(names(coef(mod)),

c("Coefficient", paste("s.e.", names(vcovs))))

cfrtab[,1] <- coef(mod)

for(i in 1:length(vcovs)) {

myvcov = vcovs[[i]]

cfrtab[ , 1 + i] <- sqrt(diag(myvcov(mod)))

}

return(t(round(cfrtab, 4)))

}

The additive nature of the three basic components Vwh, Vcx, and Vct allows the researcher
to infer on the relative importance of each clustering dimension by looking at the contribution
of each to the standard error estimate, so that if, e.g., Vcx ≪ Vct ∼ Vcxt, then this is evidence
of important cross-sectional correlation (Petersen, 2009).

cfrtab(plmmod, vcovs)

(Intercept) log(pcap) log(pc) log(emp) unemp

Coefficient 1.6433 0.1550 0.3092 0.5939 -0.0067

s.e. OLS 0.0576 0.0172 0.0103 0.0137 0.0014

s.e. Vw 0.0708 0.0185 0.0125 0.0195 0.0013

s.e. Vcx 0.2442 0.0601 0.0462 0.0686 0.0031

s.e. Vct 0.0944 0.0232 0.0063 0.0246 0.0018

s.e. Vcxt 0.2520 0.0617 0.0450 0.0702 0.0033

s.e. Vct.L 0.1875 0.0461 0.0079 0.0480 0.0031

s.e. Vnw.L 0.1144 0.0299 0.0206 0.0316 0.0020

s.e. Vscc.L 0.1503 0.0370 0.0076 0.0387 0.0025

s.e. Vcxt.L 0.2722 0.0657 0.0389 0.0736 0.0036
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For this pooled ols model, standard errors estimates assuming group clustering are consis-
tently larger that the rest, including Newey-West and scc, pointing at non-decaying serial error
dependence.

5.1.2 Generic Sandwich Estimators and Panel Models

plm provides a comprehensive set of modular tools: lower-level components, conceptually cor-
responding to the statistical “objects” involved, (see Zeileis, 2006a,b), and a higher-level set of
“wrapper functions” corresponding to standard parameter covariance estimators as they would
be used in statistical packages, which work by combining the same, few lower-level components
in multiple ways in the spirit of the Lego principle of Hothorn et al. (2006).

When estimating regression models, R creates a model object that, together with estimation
results, carries on a wealth of useful information, including the original data. Robust testing
in R is done retrieving the necessary elements from the model object, using them to calculate
a robust covariance matrix for coefficient estimates and then feeding the latter to the actual
test function, for example a t-test for significance or a Wald restriction test. This approach
to diagnostic testing is more flexible than with standard econometric software packages, where
diagnostics usually come with standard output. In our case, for example, one can obtain differ-
ent estimates of the standard errors under various kinds of dependence without re-estimating
the model and present them compactly.

Robust covariance estimators a la White or a la Newey and West for different kinds of regres-
sion models are available in package sandwich (Lumley and Zeileis, 2007) under form of appro-
priate methods for the generic functions vcovHC and vcovHAC (Zeileis, 2004, 2006a). These
are designed for data sampled along one dimension; therefore, they cannot generally be used
for panel data, yet they provide a uniform and flexible software approach, which has become
standard in the R environment. The corresponding plmmethods described in this chapter have
therefore been designed to be sintactically compliant with them.

For example, a vcovHC.plm method for the generic vcovHC is available, allowing to apply
sandwich estimators to panel models in a way that is natural for users of the sandwich pack-
age. In fact, despite the different structure “under the hood,” the user will, e.g., specify a robust
covariance for the diagnostics table of a panel model the same way she would for a linear or
a generalized linear model, the object-orientation features of R taking care that the right sta-
tistical procedure be applied to the model object at hand. What will change, though, are the
defaults: thevcovHC.lmmethod defaults to the original White estimator, whilevcovHC.plm
to clustering by groups, both the most obvious choices for the object at hand.

Next to the hc estimator of White (1980), all variants of the panel-specific estimators used
in applied practice (Arellano, 1987; Newey and West, 1987; Driscoll and Kraay, 1998; Cameron
et al., 2011) are provided; all can be applied to objects representing panel models of different
kinds: fe, re, fd, and, obviously, pooled ols. The estimate of the parameters’ covariance thus
obtained can in turn be plugged into diagnostic testing functions, producing either significance
tables or hypothesis tests. A function is a regular object type in R, hence compact comparisons
of standard errors from different (statistical) methods can be produced by looping on covari-
ance types, as shown in the examples.

Application to Models on Transformed Data
The application of the above estimators to pooled data is always warranted, subject to the rel-
evant assumptions mentioned before. In some, but not all cases, these can also be applied to
random or fixed effects panel models, or models estimated on first-differenced data. In all of
these cases the estimator is computed as ols on transformed (partially or totally demeaned,
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first differenced) data. In general, the same transformation used in estimation is employed.
Sandwich estimators can then be computed by applying the usual formula to the transformed
data and residuals: ̂̃𝜖 = ỹ − Z̃�̂� (see Arellano (1987) and Wooldridge (2010, Eq. 10.59) for the
fixed effects case, Wooldridge (2010, Ch.10) in general).

Under the fixed effects hypothesis, the ols estimator is biased and fe is required for consis-
tency of parameter estimates in the first place. Similarly, under the hypothesis of a unit root in
the errors, first differencing the data is warranted in order to revert to a stationary error term.
On the contrary, under the random effects hypothesis, ols is still consistent, and asymptoti-
cally, using re instead makes no difference. Yet for the sake of parameter covariance estimation,
it may be advisable to eliminate time-invariant heterogeneity first, by using one of the above.

One compelling reason for combining a demeaning or a differencing estimator with robust
standard errors may be to get rid of persistent individual effects before applying a more parsi-
monious and efficient kernel-based covariance estimator if cross-serial correlation is suspected
or if the sample is simply not big enough to allow double clustering. In fact, as Petersen (2009)
shows, the Newey-West- type estimators are biased if effects are persistent, because the kernel
smoother unduly downweighs the covariance between faraway observations.

In the following we discuss when it is appropriate to apply clustering estimators to the resid-
uals of demeaned or first-differenced models.

Fixed Effects
The fixed effects estimator requires particular caution. In fact, under the hypothesis of
spherical errors in the original model, the time-demeaning of data induces a serial correlation
cor(𝜖nt, 𝜖nt−1) = −1∕(T − 1) in the demeaned residuals (see Wooldridge, 2010, p. 310).

The White-Arellano estimator has originally been devised for this case. By way of symmetry, it
can be used for time-clustered data with time fixed effects. The combination of group clustering
with time fixed effects and the reverse is inappropriate because of the serial (cross-sectional)
correlation induced by the time- (cross-sectional-) demeaning.

By analogy, the Newey-West-type estimators can be safely applied to models with individual
fixed effects, while the time and two-way cases require caution. The best policy in both cases,
if the degrees of freedom allow, is perhaps to explicitly add dummy variables to account for the
fixed effects along the “short” dimension.

Random Effects
In the random effects case, as Wooldridge (2010) notes, the quasi-time demeaning procedure
removes the random effects reducing the model on transformed data to a pooled regression,
thus preserving the properties of the White-type estimators. By extension of this line of rea-
soning, all above estimators are applicable to the demeaned data of a random effects model,
provided the transformed errors meet the relevant assumptions.

First-Differences
First-differencing, like fixed effects estimation, removes time-invariant effects. Roughly speak-
ing, the choice between the two rests on the properties of the error term: if it is assumed to
be well behaved in the original data, then fe is the most efficient estimator and is to be pre-
ferred; if on the contrary the original errors are believed to behave as a random walk, then
first-differencing the data will yield stationary and uncorrelated errors and is therefore advisable
(see Wooldridge, 2010, p. 317). Given this, fd estimation is nothing else than ols on differ-
enced data, and the usual clustering formula applies (see Wooldridge, 2010, p. 318 and Chapter
4 here). As in the re case, the statistical properties of the different covariance estimators will
depend on whether the transformed errors meet the relevant assumptions.
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Example 5.5 random effects and robust covariances – Produc data set
Consider again the comprehensive table of estimators for the Munnell (1990) model in the pre-
vious example. The relative magnitude of standard errors under group clustering with respect
to the others was hinting at error correlation in time. In the following, the previous table is
replicated on a random effects specification:

replmmod <- plm(fm, Produc)

cfrtab(replmmod, vcovs)

log(pcap) log(pc) log(emp) unemp

Coefficient -0.0261 0.2920 0.7682 -0.0053

s.e. OLS 0.0290 0.0251 0.0301 0.0010

s.e. Vw 0.0312 0.0305 0.0398 0.0011

s.e. Vcx 0.0603 0.0617 0.0817 0.0025

s.e. Vct 0.0454 0.0480 0.0627 0.0015

s.e. Vcxt 0.0688 0.0720 0.0949 0.0027

s.e. Vct.L 0.0640 0.0644 0.0941 0.0015

s.e. Vnw.L 0.0434 0.0417 0.0562 0.0015

s.e. Vscc.L 0.0575 0.0588 0.0828 0.0015

s.e. Vcxt.L 0.0717 0.0747 0.1054 0.0023

The cross-sectional dependence component becomes relatively more important when
accounting for time persistence in the model through random individual (country) effects.

5.1.2.1 Panel Corrected Standard Errors
Unconditional covariance estimators are based on the assumption of no error correlation in
time (cross-section) and of an unrestricted but invariant correlation structure inside every cross
section (time period). 3 They are popular in contexts characterized by relatively small samples,
with prevalence of the time dimension. The most common use is on pooled time series, where
the assumption of no serial correlation can be accommodated, for example, by adding lagged
values of the dependent variable.

Beck and Katz (1995), in the context of political science models with moderate time and
cross-sectional dimensions, introduced the so-called panel corrected standard errors (pcse),
which, in the original time-clustering setting, are robust against cross-sectional heteroscedas-
ticity and correlation. The “pcse” covariance is based on the hypothesis that the covariance
matrix of the errors in every group be the same: Ω = ΣN ⊗ IT , with

ΣN =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎2
1 𝜎1,2 … 𝜎1,N−1 𝜎1,N

𝜎2,1 𝜎2
2 … 𝜎2,N−1 𝜎2,N

⋮ ⋮ ⋱ ⋮ ⋮

𝜎N−1,1 𝜎N−1,2 … 𝜎2
N−1 𝜎N−1,N

𝜎N ,1 𝜎N ,2 … 𝜎N ,N−1 𝜎2
N

⎤⎥⎥⎥⎥⎥⎥⎦

(5.13)

so that ΣN can be estimated by:

Σ̂N =
∑T

t=1 ϵ̂t ϵ̂⊤t
T

from which Ω̂ can be constructed and inserted in the usual “sandwich” formula.

3 A further step in this direction is to use the unconditional estimate of the error covariance in a feasible
gls analysis: see the next section of this chapter.
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Example 5.6 time fixed effects model – agl data set
Alvarez et al. (1991) estimate a model where economic performance in a panel of 16 countries
over 15 years is related to political and labor organization variables: union strength (central)
and the prevalence of a leftist cabinet (leftc). They control for trade openness of countries
toward other oecd and for lagged growth, instrumented through an auxiliary regression. They
originally use the fgls estimator of Parks (1967), finding out that economic performance
is enhanced where strong unions coexist with an important presence of leftist movements
in government or in the opposite situation (rightist governments with weak unions), being
less satisfactory for in-between cases. Their original results (see the example in the next
section) are very sharp, with narrow standard errors. Beck et al. (1993) attribute the narrow
confidence bands to the estimator employed being inappropriate for the sample size at
hand; they re-examine the data using ols estimation of a dynamic model with time fixed
effects and time-clustered errors, upholding previous conclusions as regards the effects on
growth (although with lower significance) but rendering mixed evidence for inflation and
unemployment. The dataset is included in package pcse (Bailey and Katz, 2011):

library("pcse")

data("agl", package = "pcse")

In the following we estimate the model with time fixed effects4 and produce the diagnostics
table with pcse standard errors:

fm <- growth ̃ lagg1 + opengdp + openex + openimp + central * leftc

aglmod <- plm(fm, agl, model = "w", effect = "time")

coeftest(aglmod, vcov=vcovBK)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

lagg1 0.095085 0.117523 0.81 0.41935

opengdp 0.007256 0.001735 4.18 4.2e-05 ***

openex 0.002373 0.000882 2.69 0.00768 **

openimp -0.006475 0.002301 -2.81 0.00534 **

leftc -0.023378 0.008009 -2.92 0.00388 **

central:leftc 0.013172 0.003497 3.77 0.00021 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.1.3 Robust Testing of Linear Hypotheses

The main use of robust covariance estimators is together with testing functions from the lmtest
(Zeileis and Hothorn, 2002) and car (Fox and Weisberg, 2011) packages. We have seen the
special case of testing single exclusion restrictions through coeftest: in order of increasing
generality, joint restrictions can be tested through waldtest, while linearHypothesis
from package car enables testing a general linear hypothesis on model parameters.

4 Notice that time effects, while present in the original Beck et al. (1993), are omitted in the Bailey and Katz (2011)
example.
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Example 5.7 testing with robust covariance matrices – Produc data set
All these functions typically allow passing the vcov parameter either as a matrix or as a func-
tion (see Zeileis, 2004). If one is happy with the defaults, it is easiest to pass the function itself,
as seen in the previous examples; else, one may do the covariance computation inside the call
to coeftest, thus passing on a matrix:

coeftest(plmmod, vcov = vcovHC(plmmod, type = "HC3"))

or, rather, define an appropriate function inside the call: in this case, optional parameters are
provided as shown below (see also Zeileis, 2004, p. 12):

coeftest(plmmod, vcov = function(x) vcovHC(x, type = "HC3"))

For some tests, e.g., for multiple model comparisons by waldtest, one should always pro-
vide a function.

Example 5.8 testing with robust covariance matrices – Parity data set
The next example shows how to extend the comparison across models with different kinds of
fixed effects, using linearHypothesis from package car.

Coakley et al. (2006) present a purchasing power parity (ppp) regression on a “long” panel
of quarterly data 1973-Q1 to 1998-Q4 for 17 developed countries so that N = 17 and T = 104.
The estimated model is

Δsnt = 𝛼 + 𝛽(Δp − Δp∗)nt + 𝜈nt

where snt is the relative exchange rate against USD and (Δp − Δp∗)nt is the inflation differential
between each country and the US.

data("Parity", package = "plm")

fm <- ls ̃ ld

pppmod <- plm(fm, data = Parity, effect = "twoways")

The hypothesis of interest is 𝛽 = 1, meaning that inflation differentials are fully reflected in
the exchange rate. We report the corresponding robust Wald test from linearHypothesis
in package car (Fox and Weisberg, 2011), which would be done interactively as follows:

library("car")

linearHypothesis(pppmod, "ld = 1", vcov = vcov)

(output suppressed), in a compact table supplying different covariance estimators to each of
four models: ols, one-way time or country fixed effects, and two-way fixed effects.

vcovs <- c(vcov, Vw, Vcx, Vct, Vcxt, Vct.L, Vnw.L, Vscc.L, Vcxt.L)

names(vcovs) <- c("OLS", "Vw", "Vcx", "Vct", "Vcxt", "Vct.L", "Vnw.L",

"Vscc.L", "Vcxt.L")

tttab <- matrix(nrow = 4, ncol = length(vcovs))

dimnames(tttab) <- list(c("Pooled OLS","Time FE","Country FE","Two-way FE"),

names(vcovs))



Robust Inference and Estimation for Non-spherical Errors 125

pppmod.ols <- plm(fm, data = Parity, model = "pooling")

for(i in 1:length(vcovs)) {

tttab[1, i] <- linearHypothesis(pppmod.ols, "ld = 1",

vcov = vcovs[[i]])[2, 4]

}

pppmod.tfe <- plm(fm, data = Parity, effect = "time")

for(i in 1:length(vcovs)) {

tttab[2, i] <- linearHypothesis(pppmod.tfe, "ld = 1",

vcov = vcovs[[i]])[2, 4]

}

pppmod.cfe <- plm(fm, data = Parity, effect = "individual")

for(i in 1:length(vcovs)) {

tttab[3, i] <- linearHypothesis(pppmod.cfe, "ld = 1",

vcov = vcovs[[i]])[2, 4]

}

pppmod.2fe <- plm(fm, data = Parity, effect = "twoways")

for(i in 1:length(vcovs)) {

tttab[4, i] <- linearHypothesis(pppmod.2fe, "ld = 1",

vcov = vcovs[[i]])[2, 4]

}

print(t(round(tttab, 6)))

Pooled OLS Time FE Country FE Two-way FE

OLS 0.000000 0.000000 0.000000 0.000000

Vw 0.000000 0.000000 0.000000 0.000000

Vcx 0.001032 0.000869 0.070773 0.119787

Vct 0.000000 0.000000 0.000000 0.000000

Vcxt 0.000966 0.000842 0.071866 0.121614

Vct.L 0.000000 0.000000 0.001861 0.000748

Vnw.L 0.000000 0.000000 0.000030 0.000000

Vscc.L 0.000000 0.000000 0.000076 0.000013

Vcxt.L 0.000648 0.000672 0.075022 0.129857

As is apparent from the results’ table, the ppp hypothesis is not rejected any more once one
controls for, at a minimum, country fixed effects and by-group clustering.

5.1.3.1 An Application: Robust Hausman Testing
Beside the usual quadratic form, Hausman’s specification test can be performed in an equiv-
alent form based on testing a linear restriction in an auxiliary linear model. In particular, it
can be computed through an artificial regression of the quasi-demeaned response over the
quasi-demeaned regressors from the random effects augmented with the fully demeaned
regressors from the within model:

ỹ = Z̃𝛾 + WX𝛿.

The Hausman test is then the redundancy test on WX, i.e., the restriction test 𝛿 = 0. This arti-
ficial regression version of the test can easily be robustified (see Wooldridge, 2010) by using a
robust covariance matrix.
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Example 5.9 regression-based Hausman test – Grunfeld data set
We compare the Hausman test in original and regression-based form for the Grunfeld
data. The function phtest allows for an optional argument method, defaulting to ’chisq’
(original form); if method is specified as ’aux’, the test is performed through the auxiliary
regression. Below we compare the two versions, using the default estimated covariance matrix
in the auxiliary regression.

data("Grunfeld", package = "plm")

phtest(inv ̃ value + capital, data = Grunfeld)

Hausman Test

data: inv ̃ value + capital

chisq = 2.3, df = 2, p-value = 0.3

alternative hypothesis: one model is inconsistent

phtest(inv ̃ value + capital, data = Grunfeld, method = "aux")

Regression-based Hausman test

data: inv ̃ value + capital

chisq = 2.1, df = 2, p-value = 0.3

alternative hypothesis: one model is inconsistent

Unsurprisingly, the results from the regression-based and the original Hausman test are con-
sistent: both support the random effects hypothesis.

Example 5.10 robust Hausman test – RDSpillovers data set
The RDSpillovers data are highly heteroscedastic. In this situation, the original Hausman
test is biased toward rejection, as is the alternative regression-based version if not robustified.
The latter can nevertheless be computed in robust form, by employing a robust covariance
matrix in the restriction test on the auxiliary regression. If method is ’aux’, the pht-
est function admits a further vcov argument, possibly allowing to specify the use of a
robust estimator for the covariance. As can be seen from the table below, the results change
substantially:

data("RDSpillovers", package = "pder")

pehs <- pdata.frame(RDSpillovers, index = c("id", "year"))

ehsfm <- lny ̃ lnl + lnk + lnrd

phtest(ehsfm, pehs, method = "aux")

Regression-based Hausman test

data: ehsfm

chisq = 53, df = 3, p-value = 2e-11

alternative hypothesis: one model is inconsistent
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phtest(ehsfm, pehs, method = "aux", vcov = vcovHC)

Regression-based Hausman test, vcov: vcovHC

data: ehsfm

chisq = 2.3, df = 3, p-value = 0.5

alternative hypothesis: one model is inconsistent

The robust version of the Hausman test does not reject the random effects hypothesis
any more.

5.2 Unrestricted Generalized Least Squares

If the data-generating process is:

y = Z𝛾 + 𝜖

and 𝜖 ∼ (0,Ω) has a general structure, ordinary least squares estimates for 𝛽 are inefficient,
though consistent. By Aitken’s theorem (see, e.g., Greene (2003), 10.5), generalized least squares
(gls) are the efficient estimator for the model parameters if Ω is known. The estimator is then

�̂�gls = (Z⊤Ω−1Z)−1(Z⊤Ω−1y)

Various feasible gls procedures exist drawing on consistent estimators of Ω, which are then
plugged into the gls estimator. The key to obtaining a consistent estimate of Ω is, in general,
to specify enough structure to faithfully represent its characteristics while keeping the number
of parameters to be estimated at a manageable level.

In the standard one-way error components model, as already seen, the disturbance term
may be written as 𝜖nt = 𝜂n + 𝜈nt where 𝜂n denotes the (time-invariant) individual-specific effect
and 𝜈nt the idiosyncratic error. Observations regarding the same individual n share the same
𝜂n effect, thus the relative errors are autocorrelated. The random effects structure is a very
parsimonious way to account for individual heterogeneity, which can be extended in various
dimensions, e.g., by specifying an autoregressive process in space and/or time for the idiosyn-
cratic component 𝜈nt .

Under the random effects specification, the variance-covariance matrix of the errors Ω =
𝜎𝜂

2(IN ⊗ JT ) + 𝜎𝜈2(IN ⊗ IT ) is block-diagonal with Ω = IN ⊗ ΣT where

ΣT = 𝜎2
𝜂 JT + 𝜎𝜈2IT =

⎡⎢⎢⎢⎢⎣

𝜎2
𝜈 + 𝜎2

𝜂 𝜎2
𝜂 … 𝜎2

𝜂

𝜎2
𝜂 𝜎2

𝜈 + 𝜎2
𝜂 … ⋮

… ⋱ 𝜎2
𝜂

𝜎2
𝜂 𝜎2

𝜈 + 𝜎2
𝜂

⎤⎥⎥⎥⎥⎦
The above is the standard specification of random effects panels, described in the previous
chapters. It parsimoniously describes the error covariance by means of just two parameters and
is, therefore, of very general applicability as far as sample sizes are concerned. In panels with
one dimension much larger than the other (typically, large and short panels) a less restrictive
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approach is possible, termed general gls (Wooldridge, 2010, 10.4.3), which allows for arbitrary
within-individual heteroscedasticity and serial correlation of errors, i.e., inside theΣ covariance
submatrices, provided that these remain the same for every individual.

5.2.1 General Feasible Generalized Least Squares

If one assumes Ω = IN ⊗ ΣT but leaves the structure of ΣT completely free except for the obvi-
ous requisites of being symmetric and positive definite:

ΣT =

⎡⎢⎢⎢⎢⎣

𝜎2
1 𝜎12 … 𝜎1T

𝜎12 𝜎2
2 … ⋮

… ⋱ 𝜎T−1,T

𝜎1T 𝜎2
T

⎤⎥⎥⎥⎥⎦
individual errors can evolve through time with an unlimited amount of heteroscedasticity and
autocorrelation, but they are assumed to be uncorrelated between them in the cross section,
and this structure is assumed constant over the different individuals. By this assumption,
the components 𝜎st of ΣT can be estimated drawing on the cross-sectional dimension,
using the average over individuals of the outer products of the residuals from a consistent
estimator:

Σ̂T =
N∑

n=1

𝜖n𝜖
⊤
n

N

where 𝜖n = (𝜖n1,… 𝜖nT ) is the subvector of ols residuals for individual n.
This estimator is called general feasible gls, or ggls and is also sometimes referred to as

the Parks (1967) estimator and is, as observed by Driscoll and Kraay (1998), a variant of the
sur estimator by Zellner (1962). Greene (2003) presents the same estimator in the context of
pooled time series, with fixed N and “large” T .

Leaving the intra-group error covariance parameters completely free to vary is an attractive
strategy, provided that N ≫ T because the number of variance parameters to be estimated with
NT data points is T(T + 1)∕2 (Wooldridge, 2010). This is a typical situation in micro-panels
such as, e.g., household income surveys, where N is in the thousands but T is typically quite
short so that even if estimating an unrestricted covariance, many degrees of freedom are still
available.

The original applications have instead been in the field of pooled time series, aimed at
accounting for cross-sectional correlation and heteroscedasticity. In this context, Driscoll and
Kraay (1998) observe how the lack of degrees of freedom in estimating the error covariance
leads to near-singular estimates and hence to downward-biased standard errors, thus over-
estimating parameter significance. Beck and Katz (1995) also discuss some severe biases of
this estimator in small samples. Both start from a pooled time series, T-asymptotic approach,
and both are interested in robustness over the cross-sectional dimension. In this light, most of
the criticism this estimator has been subject to depends on the peculiar field of application,
especially in Beck and Katz (1995) and references therein (Alvarez et al., 1991) where it is
applied to political science data with very modest sample sizes; but recent simulations by Chen
et al. (2009) show that even in such situations fgls can be more efficient than the proposed
alternatives (ols with pcse standard errors).
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The ggls principle can be applied to various situations, consistent with different views
on heterogeneity (random vs fixed effects hypothesis) or stationarity (e.g., to a model in first
differences). That translates into either applying the unrestricted gls estimator directly to the
observed data or to a transformation thereof.

This framework allows the error covariance structure inside every group (if effect is set
to ’individual’) of observations to be fully unrestricted and is therefore robust against
any type of intra-group heteroscedasticity and serial correlation. This structure, by converse,
is assumed identical across groups and thus general fgls is inefficient under group-wise het-
eroscedasticity. Cross-sectional correlation is excluded a priori.

In a pooled time series context (effect is set to ’time’), symmetrically, this estimator
is able to account for arbitrary cross-sectional correlation, provided that the latter is time
invariant (see Greene, 2003, 13.9.1–2, p. 321–322). In this case, serial correlation has to be
assumed away and the estimator is consistent with respect to the time dimension, keeping
N fixed.

5.2.1.1 Pooled GGLS

Under the specification described at the beginning of this section, residuals can be consistently
estimated by ols and then used to estimate ΣT as above. Using Ω̂ = IN ⊗ Σ̂T , the fgls estima-
tor is:

�̂�ggls = (Z⊤Ω̂−1Z)−1(Z⊤Ω̂−1y)

The estimated individual submatrix Σ̂T will give an assessment of the structure, if any, of the
errors’ covariance, which may guide towards more parsimonious specifications like the re one
(if all diagonal and, respectively, all off-diagonal elements are of similar magnitude) or possibly
an ar(1) specification, if covariances between pairs of off-diagonal elements become smaller
with distance.

In this small-T , large-N context, one will often want to include time fixed effects to mitigate
cross-sectional correlation, which is assumed out of the residuals.

The function pggls estimates general fgls models, either with or without fixed effects, or
on first-differenced data. In the following we illustrate it on the EmplUK data.

Example 5.11 generalized gls estimator – EmplUK data set
The EmplUK dataset is a good candidate for ggls estimation as being a relatively big random
sample of firms observed over a limited number of years.

The “random effect” equivalent, general gls, is estimated by specifying the model argument
as ’pooling’:

data("EmplUK", package = "plm")

gglsmod <- pggls(log(emp) ̃ log(wage) + log(capital),

data = EmplUK, model = "pooling")

summary(gglsmod)

Call:

pggls(formula = log(emp) ̃ log(wage) + log(capital), data = EmplUK,

model = "pooling")
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Unbalanced Panel: n = 140, T = 7-9, N = 1031

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.8070 -0.3655 0.0618 0.0323 0.4428 1.5872

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 2.0235 0.1585 12.77 < 2e-16 ***

log(wage) -0.2323 0.0480 -4.84 1.3e-06 ***

log(capital) 0.6105 0.0174 35.02 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 1850

Residual Sum of Squares: 403

Multiple R-squared: 0.783

The pggls function is similar to plm in many respects. An exception is that the estimate
of the group covariance matrix of errors (sigma, a matrix) is reported in the model objects
instead of the usual estimated variances of the two error components. It can be displayed as
follows:

round(gglsmod$sigma, 3)

1976 1977 1978 1979 1980 1981 1982 1983 1984

1976 0.307 0.291 0.277 0.269 0.252 0.254 0.247 0.303 0.362

1977 0.291 0.303 0.296 0.294 0.275 0.259 0.251 0.272 0.428

1978 0.277 0.296 0.299 0.301 0.280 0.264 0.256 0.280 0.433

1979 0.269 0.294 0.301 0.314 0.291 0.273 0.263 0.287 0.452

1980 0.252 0.275 0.280 0.291 0.282 0.265 0.254 0.279 0.426

1981 0.254 0.259 0.264 0.273 0.265 0.266 0.254 0.279 0.447

1982 0.247 0.251 0.256 0.263 0.254 0.254 0.262 0.291 0.473

1983 0.303 0.272 0.280 0.287 0.279 0.279 0.291 0.300 0.486

1984 0.362 0.428 0.433 0.452 0.426 0.447 0.473 0.486 0.505

As can be seen, the correlations between pairs of residuals (in time) for the same individual
do not die out with the distance in time. The estimated error covariance very much resembles
the random effects structure, with a strong prevalence of the individual variance component 𝜎2

𝜂

over 𝜎2
𝜈 (witness the small difference between values on and outside the diagonal).

5.2.1.2 Fixed Effects GLS

If individual heterogeneity is present but we do not trust the random effects assumption, and
moreover the remainder errors are expected to show heteroscedasticity and serial correla-
tion, the fe estimator can be employed together with a robust covariance matrix; but if the
cross-sectional dimension is sufficient and the assumption of constant covariance matrix across
individuals is realistic, then applying the ggls method to time-demeaned data can provide a
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more efficient alternative, called the fixed effects gls (fegls) estimator (Wooldridge, 2010,
10.5.5).5

The errors covariance submatrix for each individual is now:

Σ̂fegls
T =

N∑
n=1

𝜖wn𝜖
⊤
wn

N

where 𝜖wn = (𝜖wn1,… 𝜖wnT ) is the subvector of fe (within) residuals for individual n. Using
Ω̂(fegls) = IN ⊗ Σ̂(fegls)

T and the within transformed data, the fegls estimator is:

𝛽fegls = (X⊤W Ω̂(fegls)−1WX)−1(X⊤W Ω̂(fegls)−1Wy)

This estimator, originally due to Kiefer (1980), takes care of both the serial correlation present
in the original errors 𝜖nt and, implicitly, of that induced by the demeaning. For this reason, being
a combination of both, the estimated Σ̂ does not give a direct assessment of the original error
structure anymore.

Example 5.12 fegls estimator – EmplUK data set
The fixed effects pggls is based on the estimation of a within model in the first step,
but this is transparent to the user; estimation follows as above but for the need to specify
model=’within’. For reasons of robustness, as happens with plm, this is the default
method. It is estimated by:

feglsmod <- pggls(log(emp) ̃ log(wage) + log(capital), data = EmplUK,

model = "within")

summary(feglsmod)

Within model

Call:

pggls(formula = log(emp) ̃ log(wage) + log(capital), data = EmplUK,

model = "within")

Unbalanced Panel: n = 140, T = 7-9, N = 1031

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.5084 -0.0743 -0.0024 0.0000 0.0761 0.6014

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

log(wage) -0.6176 0.0308 -20.1 <2e-16 ***

log(capital) 0.5610 0.0172 32.6 <2e-16 ***

---

5 Notice that one time period has to be dropped from the data because the empirical covariance matrix of
transformed errors has rank T − 1: see again Wooldrodge (2010, p. 312) and references therein.
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Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 1850

Residual Sum of Squares: 17.4

Multiple R-squared: 0.991

The phtest function can be used to assess the need for fixed effects through a Hausman
test:

phtest(feglsmod, gglsmod)

Hausman Test

data: log(emp) ̃ log(wage) + log(capital)

chisq = 1100, df = 2, p-value <2e-16

alternative hypothesis: one model is inconsistent

The Hausman test strongly favours the fixed effects model.

5.2.1.3 First Difference GLS

Analogously, the ggls principle can be applied to data in first differences, in the very same
way as for fegls, giving rise to the first difference gls (fdgls) estimator (Wooldridge, 2010,
p. 320).

In this case, the errors covariance submatrix for an individual is:

Σ̂(fdgls)
T−1 =

N∑
n=1

Δ𝜖nΔ𝜖⊤n
N − 1

where Δ𝜖n = (Δ𝜖n1,…Δ𝜖nT ) is the subvector of fd residuals for individual n. Using Ω̂(fdgls) =
IN ⊗ Σ̂(fdgls)

T−1 and the differenced data, the fdgls estimator is:

�̂�fdgls = (ΔZ⊤Ω̂(fdgls)−1ΔZ)−1(ΔZ⊤Ω̂(fdgls)−1Δy)

First differencing eliminates time-invariant unobserved heterogeneity, as does the
within transformation; one difference is that now one time period is lost for each indi-
vidual. fd has to be preferred to fe when the original data are likely to be nonstationary,
because then the fd-transformed residuals will be. Again, elements of Σ̂(fdgls)do not directly
represent the correlation structure of residuals because of the induced correlation from first
differencing.

To choose which method to use, one can look at the stationarity properties of the residuals. If
the residuals of the fegls estimator are not stationary, then fdgls will be a more appropriate
estimator.

Example 5.13 fdgls estimator – EmplUK data set
Specifying model=’fd’, we obtain the fdgls estimator.

fdglsmod <- pggls(log(emp) ̃ log(wage) + log(capital), data = EmplUK,

model = "fd")

summary(fdglsmod)

NA
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Call:

pggls(formula = log(emp) ̃ log(wage) + log(capital), data = EmplUK,

model = "fd")

Unbalanced Panel: n = 140, T = 7-9, N = 1031

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7578 -0.0751 -0.0189 -0.0283 0.0260 0.6506

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

log(wage) -0.3343 0.0385 -8.67 <2e-16 ***

log(capital) 0.3786 0.0203 18.68 <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 1850

Residual Sum of Squares: 11.6

Multiple R-squared: 0.994

5.2.2 Applied Examples

Example 5.14 generalized gls estimator – RiceFarms data set
The Rice Farming dataset contains observations on 171 farms over 6 years; therefore, the
number of covariance parameters to estimate on 1026 data points is a still manageable 21.
Farms come from 6 different regions, each with peculiar characteristics. The random sampling
assumption seems to be reasonable within regions, but one might suspect observations from
the same region to share some common characteristics, and such characteristics to be possibly
related to the regressors: therefore it is advisable to include 5 regional fixed effects, to control
for region-related, correlated heterogeneity along the lines of Wooldridge (2010, p. 328). For
the reasons given above, we include time effects to control for contemporaneous correlation
in the cross section; instead of following the original application of Druska and Horrace (2004)
adding one dummy for wet seasons as opposed to dry ones, we simply introduce 5 separate
time effects.

data("RiceFarms", package = "splm")

RiceFarms <- transform(RiceFarms,

phosphate = phosphate / 1000,

pesticide = as.numeric(pesticide > 0))

fm <- log(goutput) ̃ log(seed) + log(urea) + phosphate +

log(totlabor) + log(size) + pesticide + varieties +

+ region + time

gglsmodrice <- pggls(fm, RiceFarms, model = "pooling", index = "id")

summary(gglsmodrice)

NA
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Call:

pggls(formula = fm, data = RiceFarms, model = "pooling", index = "id")

Balanced Panel: n = 171, T = 6, N = 1026

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.9315 -0.2285 0.0151 0.0000 0.2147 1.3740

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 5.3334 0.1788 29.83 < 2e-16 ***

log(seed) 0.1285 0.0241 5.34 9.1e-08 ***

log(urea) 0.1351 0.0151 8.94 < 2e-16 ***

phosphate 0.7040 0.2526 2.79 0.0053 **

log(totlabor) 0.2099 0.0265 7.93 2.1e-15 ***

log(size) 0.5000 0.0281 17.77 < 2e-16 ***

pesticide 0.0355 0.0245 1.45 0.1473

varietieshigh 0.1351 0.0345 3.92 8.9e-05 ***

varietiesmixed 0.1031 0.0446 2.31 0.0209 *

regionlangan -0.0451 0.0472 -0.96 0.3393

regiongunungwangi 0.0140 0.0532 0.26 0.7926

regionmalausma 0.0200 0.0541 0.37 0.7121

regionsukaambit 0.0671 0.0529 1.27 0.2049

regionciwangi 0.1633 0.0530 3.08 0.0021 **

time2 -0.0328 0.0262 -1.25 0.2102

time3 -0.2049 0.0316 -6.49 8.4e-11 ***

time4 -0.3440 0.0285 -12.08 < 2e-16 ***

time5 0.0576 0.0287 2.01 0.0448 *

time6 0.0441 0.0313 1.41 0.1581

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 1010

Residual Sum of Squares: 101

Multiple R-squared: 0.901

Regions do not seem to be so important after all, only Ciwangi being significantly different
from the baseline; although a joint restriction test still rejects:

library("lmtest")

waldtest(gglsmodrice, "region")

Wald test

Model 1: log(goutput) ̃ log(seed) + log(urea) + phosphate + log(totlabor) +

log(size) + pesticide + varieties + +region + time

Model 2: log(goutput) ̃ log(seed) + log(urea) + phosphate + log(totlabor) +

log(size) + pesticide + varieties + time

Res.Df Df Chisq Pr(>Chisq)

1 1007

2 1012 -5 28.9 2.5e-05 ***
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---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

feglsmodrice <- pggls(update(fm, . ̃ . - region), RiceFarms, index = "id")

Qualitatively, the results do not seem to change much when adding individual fixed effects.
The hypothesis that after controlling for the region, all remaining individual heterogeneity be
of the random effects type can be tested formally by means of a Hausman test:

phtest(gglsmodrice, feglsmodrice)

Hausman Test

data: fm

chisq = 18, df = 13, p-value = 0.1

alternative hypothesis: one model is inconsistent

The Hausman test does in fact not reject. Given the low significance of the regional effects,
one might wonder whether a full “random effects” specification can be justified. An updated
ggls specification can readily be compared to the already estimated fegls model:

phtest(pggls(update(fm, . ̃ . - region), RiceFarms,

model = "pooling", index = "id"),

feglsmodrice)

Hausman Test

data: update(fm, . ̃ . - region)

chisq = 19, df = 13, p-value = 0.1

alternative hypothesis: one model is inconsistent

In fact, even omitting the regional fixed effects, the ggls specification still passes the Haus-
man test. The 171 rice farms can actually be seen as random draws from the same population,
without the need for either individual or regional fixed effects.

Example 5.15 generalized gls estimator – RDSpillovers data set
The static production function estimation in Eberhardt et al. (2013) is a problematic candidate
for ggls techniques; although it is desirable to allow for a free heteroscedasticity and serial
correlation structure across this sample of manufacturing firms observed over a relatively long
period of time, care shall be taken with the results exactly because of the relatively big time
dimension. As too many covariance parameters, as discussed above, would result in underesti-
mation of standard errors and hence false significance, sharp results should be looked at with
suspicion. The example is nevertheless useful for illustration purposes, especially as it can be
benchmarked against the thorough specification analysis in the original paper. As it will turn
out, the ggls approach ultimately seems to have satisfactory properties in this setting too.

fm <- lny ̃ lnl + lnk + lnrd
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gglsmodehs <- pggls(fm, RDSpillovers, model = "pooling")

coeftest(gglsmodehs)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.04589 0.06416 16.3 <2e-16 ***

lnl 0.54825 0.01118 49.0 <2e-16 ***

lnk 0.43762 0.01384 31.6 <2e-16 ***

lnrd 0.08548 0.00548 15.6 <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

feglsmodehs <- pggls(fm, RDSpillovers, model = "within")

coeftest(feglsmodehs)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

lnl 0.4942 0.0204 24.18 < 2e-16 ***

lnk 0.4922 0.0307 16.01 < 2e-16 ***

lnrd 0.0490 0.0147 3.34 0.00086 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

phtest(gglsmodehs, feglsmodehs)

Hausman Test

data: fm

chisq = 18, df = 3, p-value = 5e-04

alternative hypothesis: one model is inconsistent

The Hausman test rejects the “random effects” ggls specification. Given that correlated
heterogeneity seems to be present, an alternative to eliminate it is the first difference trans-
formation:

fdglsmodehs <- pggls(fm, RDSpillovers, model = "fd")

Which one to choose between fegls and fdgls depends on the properties of transformed
residuals. fegls residuals show a high level of persistence, as a simple serial correlation test
(Wooldridge, 2010, 10.6.3) shows. We make a data.frame of the residuals, then estimate a
(pooled) autoregressive model:

fee <- resid(feglsmodehs)

dbfee <- data.frame(fee=fee, id=attr(fee, "index")[[1]])

coeftest(plm(feẽlag(fee)+lag(fee,2), dbfee, model = "p", index="id"))
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01096 0.00123 8.89 < 2e-16 ***

lag(fee) 1.07741 0.01926 55.95 < 2e-16 ***

lag(fee, 2) -0.14512 0.01886 -7.69 2.1e-14 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fegls residuals seem close to being nonstationary. The estimated autocorrelation in
fdgls residuals is instead much lower:

fde <- resid(fdglsmodehs)

dbfde <- data.frame(fde=fde, id=attr(fde, "index")[[1]])

coeftest(plm(fdẽlag(fde)+lag(fde,2), dbfde, model = "p", index="id"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01392 0.00132 10.50 < 2e-16 ***

lag(fde) 0.10548 0.02085 5.06 4.6e-07 ***

lag(fde, 2) 0.02317 0.01969 1.18 0.24

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

hence it is advisable to resort to the fdgls estimator:

coeftest(fdglsmodehs)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

lnl 0.5569 0.0217 25.61 <2e-16 ***

lnk 0.3514 0.0326 10.78 <2e-16 ***

lnrd 0.0611 0.0157 3.89 1e-04 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result, despite the limited number of degrees of freedom in estimating ΣT , is in line
with the more sophisticated analyses in the original paper by Eberhardt et al. (2013, Table 7) and
with the preferred fd specification in Table 5, ibid. Moreover, despite the expected downward
bias, standard errors are not too far from those of the above-mentioned fd model.
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6

Endogeneity

6.1 Introduction

There is an endogeneity problem when the error is correlated with at least one explanatory
variable. This phenomenon is very common in econometrics because, compared to experimen-
tal sciences, it is not possible (or it is at least difficult) to control the data-generating process.
Among the possible causes of endogeneity, the three most important are:

simultaneity. In this case, there is an explanatory variable that is set simultaneously with the
response: this is, for example, the case when one seeks to estimate a demand equation for a
good, which contains the price of the good itself. The demand and the price are simultane-
ously set by the condition of equality of supply and demand and, therefore, a variation of the
error term of the demand equation will shift the demand curve and therefore induce a vari-
ation of the quantity and the equilibrium price. The price variable is therefore endogenous.

covariate measured with error. If the “true” model is y = 𝛼 + 𝛽x + 𝜈 and what is observed
is x∗ = x + 𝜂, the estimated model writes: y = 𝛼 + 𝛽(x∗ − 𝜂) + 𝜈, or y = 𝛼 + 𝛽x∗ + 𝜖 with
𝜖 = 𝜈 − 𝛽𝜂. Hence, 𝜖 is correlated with x∗, which is therefore endogenous.

omitted variable. If the “true” model is y = 𝛼 + 𝛽xx + 𝛽zz + 𝜈 and z is unobserved, the estimated
model is y = 𝛼 + 𝛽xx + 𝜖, with 𝜖 = 𝛽zz + 𝜈. The error of the estimated model then contains the
influence of the omitted variable, and this error is correlated with x if x and z are correlated.
Once again, the covariate x is then endogenous.

The ols estimator is:

�̂� = (Z⊤Z)−1Z⊤y

Replacing y by its expression: Z𝛾 + 𝜖, we obtain �̂� as a function of the errors of the model:

�̂� = 𝛾 + (Z⊤Z)−1Z⊤𝜖

We then have, denoting N the sample size:

�̂� = 𝛾 +
( 1

N
Z⊤Z

)−1 Z⊤𝜖

N
The estimator is consistent (plim �̂� = 𝛾) if limN→+∞

Z⊤𝜖

N
= 0, this expression being the vector of

covariances for the population between the covariates and the error. The ordinary least squares
model is therefore consistent if the covariates and the error are uncorrelated. When this condi-
tion is not met, the method of instrumental variables, which will be presented in detail in this
chapter, can be used.
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Concerning simultaneity, there is an additional problem as the model is not defined by one
equation but by a system of equations. In this case, two strategies can be followed:

• estimating only the equation of interest (limited information estimator),
• estimating simultaneously all the equations (full information estimator).

The latter approach leads to a more efficient estimator, as the correlation of the errors of all the
equations is taken into account. But if an equation is wrongly specified, it can contaminate
the estimation of the parameters of the other equations of the model.

6.2 The Instrumental Variables Estimator

6.2.1 Generalities about the Instrumental Variables Estimator

Let us consider the following model: y = Z𝛾 + 𝜖 with V(𝜖) = 𝜎2I. if at least one of the covariates
is correlated with the errors, the ols estimator is not consistent. In order to obtain consis-
tency, we use the instrumental variables estimator. The instrumental variables are denoted by
L.1 Denoting by K the number of the covariates and by M ≥ K the number of instruments (not
including the column of ones), the instrumental variables must verify: limN→+∞

L⊤𝜖
N

= 0. Stated
differently, they must not be correlated with the errors.2 In the simplest case where the number
of instruments equals the number of covariates, the instrumental variable estimator is simply
obtained by solving the system of equations: L⊤𝜖 = 0, which is just identified. Developing this
expression, we obtain: L⊤(y − Z𝛾) = 0, which can also be written:

�̂� = (L⊤Z)−1L⊤y (6.1)

If there are more instruments than covariates (M ≥ K ), L⊤𝜖 is an over-determined system of
linear equations, which, except for very special cases, doesn’t have a solution. In this case, two
equivalent approaches can be used to obtain the optimal estimator. The first one consists in
pre-multiplying the model by L⊤:

L⊤y = L⊤Z𝛾 + L⊤𝜖 (6.2)

It is a model that contains M + 1 rows and K + 1 parameters to estimate 𝛾 . If one considers
it as a standard regression model, the variance of the errors being V(L⊤𝜖) = 𝜎2L⊤L, the best
linear estimator is the gls estimator, and we then obtain the following instrumental variables
estimator:

�̂�iv = (Z⊤L(L⊤L)−1L⊤Z)−1(Z⊤L(L⊤L)−1L⊤y)
= (Z⊤PLZ)−1(Z⊤PLy)

(6.3)

with PL = L(L⊤L)−1L⊤.
The second approach is the generalized method of moments. We consider here a vector of

M + 1 moments: E(L⊤𝜖) = E(L⊤(y − Z𝛾)) = 0 for which the variance is V(L⊤𝜖) = 𝜎2L⊤L. Using
the generalized method of moments, we seek to minimize the quadratic form of the vector of
moments, using the inverse of the variance matrix of these moments:

1
𝜎2 (y

⊤ − 𝛾⊤Z⊤)L(L⊤L)−1L⊤(y − Z𝛾) = 1
𝜎2 (y

⊤ − 𝛾⊤Z⊤)PL(y − Z𝛾)

The first-order conditions for a minimum are: −2Z⊤PL(y − Z𝛾)∕𝜎2 = 0, and solving this sys-
tem of linear equations, we obtain the same estimator as before.

1 As for the Z matrix, the first column of L is a column of ones.
2 It is often the case that some covariates are uncorrelated with the errors and are therefore also used as instruments.
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The instrumental variables estimator is also called the two-stage least squares estimator
(2sls), as it can be obtained by applying twice the method of ordinary least squares. When
we consider the regression of z on L, we obtain the estimator �̂� = (L⊤L)−1L⊤z and the fitted
values ẑL = L�̂� = L(L⊤L)−1L⊤z = PLz. The matrix PL is therefore the projection matrix on the
subspace defined by the columns of L. This matrix is symmetric and idempotent, which means
that PLPL = PL. The instrumental variables estimator (6.3) can also be written, denoting by
ẐL = PLZ the fitted values of the covariates regressed on the instrumental variables:

�̂�𝟐sls = (Ẑ⊤
L ẐL)−1Ẑ⊤

L y = (Ẑ⊤
L ẐL)−1Ẑ⊤

L ŷL (6.4)

and can therefore be obtained by applying ols twice:

• the first time by regressing every covariate on the instruments,
• the second time by regressing the response on the fitted values of the first-stage estimation.

The variance of the instrumental variables estimator is:

V(�̂�) = 𝜎2(Ẑ⊤
L ẐL)−1

The estimator is therefore the more efficient the larger the variance of ẐL, which means that
Z and L are highly correlated.

6.2.2 The within Instrumental Variables Estimator

The specificity of panel data methods is that the error term is modeled as having two com-
ponents, an individual effect and an idiosyncratic term. Therefore, the correlation between
covariates and instrumental variables, on the one hand, and the errors of the model, on the
other hand, must be analyzed separately for each component of the error. In this section, we
consider the estimation of the model transformed in deviations from individual means. This
transformation wipes out the individual effect; therefore, there is no reason to take care of
the correlation between the covariates and the individual effects. The w𝟐sls is obtained by
pre-multiplying the model first by W : Wy = WZ𝛾 + W𝜖 and then by L⊤,

L⊤Wy = L⊤WZ𝛾 + L⊤W𝜖 (6.5)

and applying gls to this transformed data, the variance matrix of the errors of this model being
𝜎2L⊤WL:

�̂�w𝟐sls = (Z⊤WL(L⊤WL)−1L⊤WZ)−1(Z⊤WL(L⊤WL)−1L⊤Wy)

or, denoting by: Pw
L = WL(L⊤WL)−1L⊤W the projection matrix defined by the within transfor-

mation of the instruments:

�̂�w𝟐sls = (Z⊤Pw
L Z)−1(Z⊤Pw

L y) (6.6)

A similar reasoning can be followed for the between model. We consider the between transfor-
mation of the model By = BZ𝛾 + B𝜖, with the same transformation applied to the instruments
(BL). The instrumental variables estimator is obtained by pre-multiplying the model by L⊤B:

L⊤By = L⊤BZ𝛾 + L⊤B𝜖 (6.7)

and applying to this transformed model the gls estimator:

�̂�b𝟐sls = (Z⊤Pb
LZ)−1(Z⊤Pb

Ly) (6.8)

with PB
L = BL(L⊤BL)−1L⊤B.
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The w𝟐sls is consistent, even if the individual effects are correlated with the covariates.
On the contrary, the b𝟐sls is consistent only if there is no correlation. If this hypothesis is
verified, none of them is efficient, as each of them take into account only one component of
variability.

Example 6.1 within 2sls estimator – SeatBelt data set
Cohen and Einav (2003) study the influence of using seat belts on the number of deaths on
American roads; they consider occupants of the vehicles involved in accidents (about 35,000
killed a year) and non-occupants (e.g., pedestrians; about 5,000 killed a year). They use panel
data for the 50 American states for the 1983-1997 period. This dataset, called SeatBelt, is
available in the pder package. The main covariate is the rate of seat belt usage. Two main
questions are analyzed:

• the first one concerns the behavior compensation theory developed by Peltzman (1975).
According to this theory, using the seat belt makes the driver more confident and leads him
to adopt a less prudent driving behavior. Combined with the expected negative effect from
seat belts on occupants’ deaths, the global effect on mortality may then be insignificant, or
even positive if the mortality of non-occupants increases with the use of seat belts,

• the second deals with the problem of endogeneity: if driving conditions get worse, for
example for meteorological reasons, other things being equal, road mortality will increase,
but seat belt use will also increase, as the drivers are conscious that the probability of having
an accident increases. There is therefore in this case a correlation between the error term of
the mortality equation and the seat belt use variable. In this case, not taking this endogeneity
into account will induce a downward bias on the estimation of the seat belt-use coefficient.

Cohen and Einav (2003) use three estimators. First, the model is estimated using ols and
therefore the endogeneity is not taken into account. The second is the within estimator; in this
case, the problem of the correlation between the individual effect and the covariate is taken
into account as the within transformation wipes out the individual effects. On the contrary, the
problem of correlation between the idiosyncratic part of the error and the covariate remains.
This last problem is solved using the w𝟐sls estimator. The instruments used are variables that
indicate the laws concerning the use of seat belts. These variables (ds, dp and dsp) are corre-
lated with the use of seat belts but not with the errors. Other variables are also used as controls
(and are described in the help page of the dataset).

The instrumental variables estimator is computed using the plm function. The instruments
are specified with a two-part formula, using the Formula package (Zeileis and Croissant,
2010). The first part indicates the covariates of the model, while the second part indicates the
instruments. Often, a large subset of covariates are used as instruments. In order to avoid
repeating almost the same list of variables twice, it is possible to use a more efficient syntax
using the . operator, constructing the second part of the formula by updating the first part.
For example, if the covariates are x1, x2 and x3, only x2 is endogenous, and there is only
one external instrument z, the model to be estimated can be described by either of the two
equivalent following formulas:

y ̃ x1 + x2 + x3 | x1 + x3 + z

y ̃ x1 + x2 + x3 | . - x2 + z

The three models estimated by Cohen and Einav (2003), which are reproduced below, include
time fixed effects. The response (occfat) is the number of vehicle occupants killed on the road.
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data("SeatBelt", package = "pder")

SeatBelt$occfat <- with(SeatBelt, log(farsocc / (vmtrural + vmturban)))

ols <- plm(occfat ̃ log(usage) + log(percapin) + log(unemp) + log(meanage) +

log(precentb) + log(precenth)+ log(densrur) +

log(densurb) + log(viopcap) + log(proppcap) +

log(vmtrural) + log(vmturban) + log(fueltax) +

lim65 + lim70p + mlda21 + bac08, SeatBelt,

effect = "time")

fe <- update(ols, effect = "twoways")

ivfe <- update(fe, . ̃ . | . - log(usage) + ds + dp +dsp)

rbind(ols = coef(summary(ols))[1,],

fe = coef(summary(fe))[1, ],

w2sls = coef(summary(ivfe))[1, ])

Estimate Std. Error t-value Pr(>|t|)

ols 0.1140 0.02547 4.478 9.252e-06

fe -0.0535 0.02252 -2.376 1.790e-02

w2sls -0.1334 0.04482 -2.975 3.079e-03

The results confirm that the endogeneity problem is very important. For the first fitted model,
the seat belt-use coefficient is significantly positive. It becomes significantly negative for the
fixed effects model, which means that usage is strongly correlated with the individual effects.
Finally, this coefficient increases importantly (in absolute value) if instrumental variables are
used, which indicates that the idiosyncratic error is also correlated with usage.

In order to test the behavior compensation theory, the authors estimate the same models, this
time using the number of non-occupants killed (noccfat) as response.

SeatBelt$noccfat <- with(SeatBelt, log(farsnocc / (vmtrural + vmturban)))

nivfe <- update(ivfe, noccfat ̃ . | .)

coef(summary(nivfe))[1, ]

Estimate Std. Error t-value Pr(>|t|)

-0.04237 0.10312 -0.41091 0.68133

The results indicate that seat belt use has no influence on out-of -vehicle mortality, in con-
tradiction with Peltzman (1975)’s theory of behavior compensation.

6.3 Error Components Instrumental Variables Estimator

In the previous section, the potential correlation between some covariates and the individual
effects has been treated drastically by using the within transformation, which wipes out the
individual effects. In this section, we present the error component instrumental variables esti-
mator. The two components of the error being present in this model, it is in this case essential
to tackle the issue of a potential correlation of some covariates with the two components of the
error.

6.3.1 The General Model

Suppose in a first step that the idiosyncratic component of the error is not correlated with
the covariates. In this case, if all the covariates are uncorrelated with the individual effects,
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the unbiased efficient estimator is the gls estimator. This estimator enables, on the one hand,
to take into account part of the inter-individual variation in the sample and, on the other
hand, to estimate parameters associated with covariates that don’t exhibit temporal variations.

If, on the contrary, all the covariates are correlated with the individual effects, Mundlak (1978)
(see subsection 4.2) has shown that the efficient estimator, which is the gls estimator, is the
same as the within estimator if the correlation between the individual effects and the covariates
(more precisely the individual means of the covariates) is taken into account.

When only some covariates are correlated with the individual effects, none of the two previ-
ous estimators is appropriate any more:

• the gls estimator is not consistent anymore because of the correlation of some covariates
with the individual effects,

• the within estimator is still consistent but not efficient any more, as it doesn’t take into
account the fact that some covariates are uncorrelated with the individual effects but wipes
out all the inter-individual variation in the sample, especially the covariates that don’t exhibit
any temporal variation.

The best solution in this case consists then in using an estimator that, on the one hand, uses
instrumental variables and, on the other hand, exploits the two sources of variability of the panel
in an optimal way. The essential question is then to find good instruments, which is often a diffi-
cult task. The richness of panel data allows to overcome this problem. Actually, every covariate
can generate two instrumental variables, using the between and the within transformations.
If a rank condition that will be detailed later on is checked, the model can then be estimated
without any external instrument. This approach has been used by Hausman and Taylor (1981),
Amemiya and MaCurdy (1986), and Breusch et al. (1989).

If, from now, we suspect that some covariates are also correlated with the idiosyncratic part
of the error, then none of the estimators we have listed above is consistent. We then use an
instrumental variables estimator (within or gls) using external instruments. This strategy has
been developed by Baltagi (1981) with his “error component two-stage least squares” ec𝟐sls
estimator and by Balestra and Varadharajan-Krishnakumar (1987) with their “generalized two-
stage least squares” g𝟐sls estimator, which differ by the way the instruments are introduced in
the model.

This two branches of the literature have been developed separately, and this dichotomy exists
also in most software packages, which usually provide two different functions to estimate these
models. We’ll follow the approach of Cornwell et al. (1992), who provide a unified view of panel
models with instrumental variables. These authors consider three kinds of variables:

• the endogenous variables, which are correlated with the two components of the error,
• the simply exogenous variables, which are correlated with the individual effects but not with

the idiosyncratic part of the error,
• the doubly exogenous variables, which are uncorrelated with both components of the error.

Variables from the first category don’t provide any usable instrument. For the second one, the
within transformation is a valid instrument, as it is by construction orthogonal to the individual
effects and by hypothesis uncorrelated with the idiosyncratic part. Finally, each covariate of the
third category provides two instruments by using the within and the between transformation.

Consider now the specific case of time-invariant covariates. For these variables, WX = 0 and
BX = X. Therefore, such a variable provides either one instrument, if it is uncorrelated with the
individual effects (the covariate itself ), or no instrument.

We start with the model to be estimated written in matrix form:

y = Z𝛾 + 𝜖



Endogeneity 145

With the usual hypotheses concerning the error component model, the variance matrix of
the error is: Ω = 𝜎2

𝜈W + 𝜎2
𝜂B. We first pre-multiply the model by: Ω−0.5 = 𝜎−0.5

𝜈 W + 𝜎−0.5
𝜂 B and

then obtain a transformed model for which the errors are iid.

Ω−0.5y = Ω−0.5Z𝛾 + Ω−0.5𝜖

We then apply to this model the instrumental variables method, using a set of instruments,
which, denoting by L(1) the doubly exogenous variables, by L(2) the simply exogenous variables,
and by L = (L(1), L(2)) the whole set of instruments, can be written:

A = (WL,BL̃)

where L̃ is a set of variables that will be defined later. For now, just consider that these variables
must provide valid instruments when the between transformation is applied.

The instrumental variables estimator is, denoting by PA = A(A⊤A)−1A⊤ the projection matrix
defined by the instruments:

�̂� = (Z⊤Ω−0.5PAΩ−0.5Z)−1Z⊤Ω−0.5PAΩ−0.5y

The two matrices W and B being orthogonal, the projection matrix may also be written
as the sum of two projection matrices defined by the instruments transformed by the within
and the between matrices:

PA = WL(L⊤WL)−1L⊤W + BL̃(L̃⊤BL̃)−1L̃⊤B = PWL + PBL̃

The estimator is then:

�̂� =
(

1
𝜎2
𝜈

Z⊤PwLZ + 1
𝜎2
𝜄

Z⊤PbL̃Z
)−1 ( 1

𝜎2
𝜈

Z⊤PwLy + 1
𝜎2
𝜄

Z⊤PbL̃y
)

or also, denoting 𝜙2 = 𝜎2
𝜈∕𝜎2

𝜄 :

�̂� = (Z⊤Pw
L Z + 𝜙2Z⊤PbL̃Z)−1(Z⊤PwLy + 𝜙2Z⊤PbL̃y) (6.9)

One can check that, as in the simple error component model, this estimator is a weighted
average of the within and the between estimators: �̂�ec𝟐sls = Dw�̂�w𝟐sls + Db�̂�b𝟐sls, with:{

Dw = [Z⊤PwLZ + 𝜙2Z⊤PbL̃Z]−1Z⊤PwL

Db = 𝜙2[Z⊤PwLZ + 𝜙2Z⊤PbL̃Z]−1Z⊤PbL̃

Several models proposed in the literature are special cases of this general model.

6.3.2 Special Cases of the General Model

6.3.2.1 The within Model
Firstly, if there are no external instruments and if all the covariates are simply exogenous, we
have L = Z and L̃ = 0, and the within estimator results.

Then, if all the covariates are either simply exogenous or endogenous and if the external
instruments are simply exogenous, we also have L̃ = 0, and L is constituted only by simply
exogenous covariates and external instruments. The condition for identification is then that the
number of external instruments must be at least equal to the number of endogenous covariates.
We then have the within instrumental variables estimator:

�̂� = (Z⊤PwLZ)−1Z⊤PwLy
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6.3.2.2 Error Components Two Stage Least Squares
Baltagi (1981)’s estimator is the special case where L = L̃, which means that all the instruments
(and potentially some of the covariates) are assumed to be doubly exogenous and are therefore
used twice. We start from equations (6.5) and (6.7), which leads respectively to the within and
between estimators. Stacking these two equations, we obtain:

(
L⊤Wy
L⊤By

)
=

(
L⊤WZ
L⊤BZ

)
𝛾 +

(
L⊤W𝜖

L⊤B𝜖

)

which is justified by the fact that the vector of parameters to be estimated 𝛾 is the same in the
two equations. In order to apply gls, we compute the variance of the errors of the stacked
model:

V

(
L⊤W𝜖

L⊤B𝜖

)
= E

(
L⊤W𝜖𝜖⊤WL L⊤W𝜖𝜖⊤BL
L⊤B𝜖𝜖⊤WL L⊤B𝜖𝜖⊤BL

)
= 𝜎2

𝜈

(
L⊤WL 0

0 1
𝜙2 L⊤BL

)

We then apply the formula of the gls estimator:

�̂� =
⎡⎢⎢⎣
(

Z⊤WL Z⊤BL
)( L⊤WL 0

0 1
𝜙2 L⊤BL

)−1 (
L⊤WZ
L⊤BZ

)⎤⎥⎥⎦

−1

×
(

Z⊤WL Z⊤BL
)( L⊤WL 0

0 1
𝜙2 L⊤BL

)−1 (
L⊤Wy
L⊤By

)

�̂� = [Z⊤WL(L⊤WL)−1L⊤WZ + 𝜙2Z⊤BL(L⊤BL)−1L⊤BZ]−1

× [Z⊤WL(L⊤WL)−1L⊤Wy + 𝜙2Z⊤BL(L⊤BL)−1L⊤By]

and we finally obtain:

�̂�ec𝟐sls = [Z⊤Pw
L Z + 𝜙2Z⊤Pb

LZ]−1[Z⊤Pb
Ly + 𝜙2Z⊤Pb

Ly] (6.10)

which is the special case of the general model defined by equation (6.9) for which L̃ = L.

6.3.2.3 The Hausman and Taylor Model
In the Hausman and Taylor (1981) model, there are no endogenous variables, only simply or
doubly exogenous variables. We then have L(1) = X(1), L(2) = X(2) and L = L(1) + L(2) = X(1) +
X(2). Moreover, the authors stress the presence of variables with (X𝑣) or without (Xc) time vari-
ation. The set of instruments they use is:

(W (X(1),X(2)),BX(1)) = (W (X𝑣

(1),X
𝑣

(2)),X
c
(1),BX𝑣

(1))

Only covariates that exhibit time variation may be used with their within transformation
(WXc

(1) = WXc
(2) = 0) and doubly exogenous time-invariant variables are used without

transformation as instruments (BXc
(1) = Xc

(1)). Without external instruments, denoting by
Kc
(1),K

c
(2),K

𝑣

(1),K
𝑣

(2) the number of covariates of the 4 categories, the number of instruments is
2K𝑣

(1) + Kc
(1) + K𝑣

(2) as the number of covariates is: Kc
(1) + Kc

(2) + K𝑣

(1) + K𝑣

(2). The model is then
identified if K𝑣

(1) ≥ K𝑣

(2), i.e., if the number of doubly exogenous time-varying variables (which
provide two instruments) is greater than the number of time-invariant simply exogenous
variables, which provide no instrument.
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6.3.2.4 The Amemiya-Macurdy Estimator
Hausman and Taylor (1981)’s estimator is consistent if the individual means of the doubly
exogenous variables are uncorrelated with the individual effects. Amemiya and MaCurdy (1986)
use the stronger hypothesis that the doubly exogenous variables are uncorrelated with the
individual effects for each period. We then have: E(xnt𝜂n) = 0 ∀t for every doubly exogenous
covariate. The corresponding instrument matrix is constructed the following way. Let X𝑣

n(1)
be the matrix of doubly exogenous instruments of dimension T × K𝑣

(1) for individual n. x𝑣n(1) =
vec(X𝑣

n(1)) is a vector of length T × K𝑣

n(1) obtained by stacking the columns of X𝑣

n(1). The instru-
ment matrix for individual n is then jT ⊗ x𝑣n(1)

⊤, and for the whole sample, we obtain a matrix
of dimension NT × TK𝑣

(1):

X𝑣∗
(1) =

⎛⎜⎜⎜⎜⎜⎝

jT ⊗ x𝑣1(1)
jT ⊗ x𝑣2(1)

⋮

jT ⊗ x𝑣N(1)

⎞⎟⎟⎟⎟⎟⎠
(6.11)

6.3.2.5 The Breusch, Mizon and Schmidt’s Estimator
Breusch et al. (1989) expand the instruments used by Amemiya and MaCurdy (1986) by
assuming that the within transformations of simply exogenous covariates are valid instruments
at every period. Stated differently: E((xnt(2) − x̄n(2))𝜂n) = 0. We then obtain the further matrix
of instruments (WX𝑣

(2))
∗ by applying to WX𝑣

(2) the same transformation than the one used in
equation 6.11. The other contribution of Breusch et al. (1989) is to show how the different
estimators can be presented in a consistent and nested way. They use the fact that the projection
subspace defined by X∗ is the same as the one defined by BX, (WX)∗:

• Hausman and Taylor (1981): WX𝑣

(1),WX𝑣
2 ,X

c
(1),BX𝑣

(1),

• Amemiya and MaCurdy (1986): WX𝑣

(1),WX𝑣
2 ,X

c
(1),BX𝑣

(1), (WX𝑣

(1))
∗,

• Breusch et al. (1989): WX𝑣

(1),WX𝑣
2 ,X

c
(1),BX𝑣

(1), (WX𝑣

(1))
∗, (WX𝑣

(2))
∗,

As each estimator adds instruments to the previous one, if these instruments are valid, it is
necessarily more efficient. Moreover, the validity of extra instruments may be tested by com-
paring the two models with a Hausman test.

6.3.2.6 Balestra and Varadharajan-Krishnakumar Estimator
This last estimator, proposed by Balestra and Varadharajan-Krishnakumar (1987), is not, con-
trary to the others, a special case of the general model previously presented. For this model,
called the g𝟐sls estimator (for “generalized two-stage least squares”), the same transformation
is applied to the instruments that is applied also to the covariates and to the response. Therefore,
the matrix of instruments is:

WL + 𝜙BL = L − (1 − 𝜙)BL

Baltagi and Li (1992) have shown that the instruments used by Baltagi (1981), Lb = (WX,BX),
perform the same projection as Lb = (WX,WX + 𝜙BX) and (WX + 𝜙BX,BX). The instruments
used by Balestra and Varadharajan-Krishnakumar (1987) are therefore a subset of those used by
Baltagi (1981), the supplementary instruments used by Baltagi (1981) being either WX or BX.
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Therefore, the estimator of Baltagi (1981) is necessarily not less efficient than the one of Balestra
and Varadharajan-Krishnakumar (1987). Baltagi and Li (1992) show, using White (1986), that
the supplementary instruments used by Baltagi (1981) are redundant, which means that they
don’t add any gain in terms of asymptotic efficiency. Consequently, both estimators have the
same asymptotic variance.

However, the estimator of Balestra and Varadharajan-Krishnakumar (1987) has an impor-
tant drawback. A part of the between component of every instrumental variable is included in
the instruments, and consequently, the estimator of Balestra and Varadharajan-Krishnakumar
(1987) is unable to take into account simply exogenous instruments.

With plm, the way instruments are introduced is indicated by the inst.method argu-
ment: ’baltagi’ indicates that instruments are introduced with the within and the
between transformations, ’amc’ uses the set of instruments used by Amemiya and MaCurdy
(1986), ’bmsc’ the one used by Breusch et al. (1989), and ’bvk’ indicates that the instru-
mental variables are transformed the same way as the covariates and the response, as proposed
by Balestra and Varadharajan-Krishnakumar (1987).

Example 6.2 ec2sls estimator – ForeignTrade data set
Kinal and Lahiri (1993) studied the determinants of international trade for developing countries
and especially the measure of the price and income elasticities. This question is very important
because it crucially determines the growth and debt of these countries. The panel dataset used
concerns 31 developing countries, for the period 1964-1986. It is available as ForeignTrade
in the pder package.

More precisely, Kinal and Lahiri (1993) estimate three equations: the first one defines the
demand for imports, the second one the demand for exports, and the last one the exports supply.
The authors suppose that:

• the demand for imports imports increases with the domestic income gnp, decreases with
the price of imports in local currency divided by domestic prices pmpci, and rises with the
one-period lag of the ratio of reserves to imports resimp.

• exports demand exports rises with the world income gnpw and decreases with the relative
price of exports with respect to their foreign substitutes pxpw,

• exports supply exports increases with the world price in domestic currency divided by the
domestic consumer price index pwpci, with the potential domestic product pgnp (used as
a proxy for the capital stock) and also depends positively on a variable that represents the
influence of the imports in the supply of exports importspmpx (measured by imports in
local currency divided by export price).3

All the variables are per capita and in logs, in order to avoid heteroscedasticity problems.
In order to take the dynamics of adjustment into account, a one-period lag of the response is

introduced as a covariate in every equation.
gnp, exports, imports, and their lags (and therefore resimp and importspmpx) are

assumed to be endogenous, as are the exports price (which induces that pxpw is endogenous)
and the domestic consumer price index is endogenous (which induces that pmcpi and pwcpi
are also endogenous). Among the covariates, onlygnpw andpgnp are assumed to be exogenous
and can therefore be used as instruments. Numerous external instruments are also introduced:
a linear trend trend, the population pop, the exchange rate exrate, the consumption con-
sump, the disposable income income, the reserves reserves, money supply money, the

3 The authors justify the use of this variable by the fact that, in most developing countries, imports of intermediate
and investment goods are very important to be able to produce export goods.
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consumer price index cpi, import prices pm, export prices px, and world prices pw, most of
the time with a one-period lag.

Kinal and Lahiri (1993) is an extension of the article of Khan and Knight (1988), who esti-
mated a system of equations explaining the determinants of international trade for developing
countries using the within transformation. They looked for a more efficient estimator, and for
this purpose they employed the ec𝟐sls estimator. However, the latter is consistent only if the
instruments are uncorrelated with the individual effects. Their strategy is to use the same spec-
ification for the within and the ec𝟐sls estimators and to test the hypothesis of exogeneity of
the instruments through a Hausman test.

We present below the results obtained for the imports demand equation. The within and the
ec𝟐sls models are estimated. Kinal and Lahiri (1993) use a nonstandard method to estimate
the variance of the error components. It is similar to Nerlove (1971), but with a degrees of
freedom correction. It is reproduced here by using the random.dfcor argument.

data("ForeignTrade", package = "pder")

w1 <- plm(imports̃pmcpi + gnp + lag(imports) + lag(resimp) |

lag(consump) + lag(cpi) + lag(income) + lag(gnp) + pm +

lag(invest) + lag(money) + gnpw + pw + lag(reserves) +

lag(exports) + trend + pgnp + lag(px),

ForeignTrade, model = "within")

r1 <- update(w1, model = "random", random.method = "nerlove",

random.dfcor = c(1, 1), inst.method = "baltagi")

The hypothesis of no correlation between the instruments and the individual effects implies
that the within and the gls models are consistent, the latter being more efficient. On the con-
trary, if this hypothesis is rejected, only the within model is consistent. In order to test this
hypothesis the authors used the Hausman (1978) test:

phtest(r1, w1)

Hausman Test

data: imports ̃ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) + ...

chisq = 11, df = 4, p-value = 0.03

alternative hypothesis: one model is inconsistent

The hypothesis of no correlation between the instruments and the individual effects is
rejected at the 5% threshold.4 One solution would be to maintain the within estimator, but
Kinal and Lahiri (1993), following Cornwell et al. (1992), considered two kinds of instruments:

• those that are not correlated with the individual effects and that therefore can be used twice
using the within and the between transformations,

• those that are correlated with the individual effects and that can therefore only be used in
their within transformation.

Such a model is defined using a three-part formula:

• the second part indicates the doubly exogenous instruments,
• the third part indicates the simply exogenous instruments.

4 This is also the case for the two other equations: exports supply and exports demand.
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Kinal and Lahiri (1993) finally got the following specification:

r1b <- plm(imports ̃ pmcpi + gnp + lag(imports) + lag(resimp) |

lag(consump) + lag(cpi) + lag(income) + lag(px) +

lag(reserves) + lag(exports) | lag(gnp) + pm +

lag(invest) + lag(money) + gnpw + pw + trend + pgnp,

ForeignTrade, model = "random", inst.method = "baltagi",

random.method = "nerlove", random.dfcor = c(1, 1))

phtest(w1, r1b)

Hausman Test

data: imports ̃ pmcpi + gnp + lag(imports) + lag(resimp) | lag(consump) + ...

chisq = 7.1, df = 4, p-value = 0.1

alternative hypothesis: one model is inconsistent

Based on the Hausman (1978) test, the hypothesis of consistency of the gls estimator is no
longer rejected. Results are presented below; the within and gls estimators give very similar
results.

rbind(within = coef(w1), ec2sls = coef(r1b)[-1])

pmcpi gnp lag(imports) lag(resimp)

within -0.05873 0.02890 0.9512 0.05215

ec2sls -0.05420 0.01361 0.9482 0.04195

The short-term elasticity of imports demand is directly given by the price coefficient. The
long-term elasticity is obtained by dividing this coefficient by one minus the coefficient of the
lagged response. We then have:

elast <- sapply(list(w1, r1, r1b),

function(x) c(coef(x)["pmcpi"],

coef(x)["pmcpi"] / (1 - coef(x)["lag(imports)"])))

dimnames(elast) <- list(c("ST", "LT"), c("w1", "r1", "r1b"))

elast

w1 r1 r1b

ST -0.05873 -0.0552 -0.0542

LT -1.20393 -1.1953 -1.0465

The use of this gls estimator, which efficiently exploits part of the inter-individual variation,
has dramatically reduced the standard deviations of the coefficients.

rbind(within = coef(summary(w1))[, 2],

ec2sls = coef(summary(r1b))[-1, 2])

pmcpi gnp lag(imports) lag(resimp)

within 0.02915 0.041235 0.03067 0.008257

ec2sls 0.02180 0.006999 0.01289 0.006709
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Example 6.3 Hausman-Taylor estimator – TradeEU data set
The analysis of international trade is often based on the gravity model, inspired by the law
of universal gravitation in physics, which indicates that a particle attracts every other parti-
cle in the universe using a force that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between their centers. By similarity, in inter-
national trade the volume of exchange between two countries (imports and exports) is linked to
the “masses” of both countries (which can be measured by the population or by their national
product) and by the distance between them. Many econometric analyses of the gravity model
have drawn on cross sections of countries. The problem of these studies is that they are unable
to take into account unobservable heterogeneity at the country level, which leads to biased esti-
mators. In this respect, the use of panel data seems very useful, but the fact that some covariates
are correlated with individual effects often leads to employing the within estimator. The prob-
lem in this case is that that the time-invariant covariates disappear: yet some of these can be of
major interest, especially the distance between two countries. The estimator of Hausman and
Taylor (1981), which enables, on the one hand, to tackle the problem of correlation between
some covariates and the individual effects and on the other hand to estimate the coefficients
associated to time-invariant covariates, is very useful in this respect.

Serlenga and Shin (2007) estimate a gravity model for 14 countries of the European Union5

observed over 42 years (1960-2001). In this panel, the individual unit of observation is not a
country but a pair of countries for which the volume of trade is given by the sum of bilateral
exports and imports. There are, therefore, (14 × 13)∕2 = 91 “individuals”.

The response trade is the logarithm of the sum of bilateral imports and exports. The covari-
ates are: gdp, the sum of the logarithms of the two national products; dist, the distance
between the capitals of the two countries; sim, a measure of the similarity between the pair
of countries; rlf, the relative factor endowment; and rer, the logarithm of the real exchange
rate. To this quantitative variables, several qualitative variables are added: mutual adhesion to
the European Community, cee and to the Euro Zone emu; common border; bor; and common
language, lan.

The dataset, called TradeEU, is available in the pder package.

data("TradeEU", package = "pder")

Following the authors, we first estimate the ols and the within model:

ols <- plm(trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan, TradeEU,

model = "pooling", index = c("pair", "year"))

fe <- update(ols, model = "within")

fe

Model Formula: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan

Coefficients:

gdp rer rlf sim cee emu

1.8125 0.0610 0.0325 1.1723 0.3093 0.0852

5 Austria, Belgium and Luxemburg (taken as a unique entity), Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Netherlands, Portugal, Spain, and the United Kingdom.
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As expected, coefficients associated to dist, bor, and lan are not estimated in the within
model, as these covariates disappear with the within transformation. On the contrary, the ran-
dom effects estimator produces estimates for their coefficients.

re <- update(fe, model = "random")

re

Model Formula: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan

Coefficients:

(Intercept) gdp dist rer rlf

-13.9303 1.7949 -0.5909 0.0690 0.0334

sim cee emu bor lan

1.1427 0.3182 0.0927 0.4414 0.4172

The results of the random effects model indicate a distance elasticity of bilateral trade of about
−0.6 and that having a common border or a common language have a similar effect (an increase
of about 40%).

phtest(re, fe)

Hausman Test

data: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan

chisq = 13, df = 6, p-value = 0.04

alternative hypothesis: one model is inconsistent

With the Hausman test, we reject the hypothesis of no correlation at the 5% threshold.
Serlenga and Shin (2007) consider that, among the time-invariant variables, only lan

is correlated with the individual effects. Two Hausman and Taylor (1981) models are then
estimated. In the first one, the only doubly exogenous variable is the real exchange rate
rer. In this case, the instrumental variables estimator is just identified, as there is only one
instrument (the between transformation of rer) and only one endogenous variable lan. In
the second one, domestic product gdp and relative factor endowment rlf are also used as
instruments.

ht1 <- plm(trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |

rer + dist + bor | gdp + rlf + sim + cee + emu + lan ,

data = TradeEU, model = "random", index = c("pair", "year"),

inst.method = "baltagi", random.method = "ht")

ht2 <- update(ht1, trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan |

rer + gdp + rlf + dist + bor| sim + cee + emu + lan)

Note than random.method is set to ’ht’ so that the within residuals used to compute
the variance of the components of the error are purged of the influence of the time-invariant
covariates.6 The consistency of either specification is not rejected by the Hausman test.

6 See subsection 2.3.2.
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phtest(ht1, fe)

Hausman Test

data: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan | ...

chisq = 5e-25, df = 6, p-value = 1

alternative hypothesis: one model is inconsistent

phtest(ht2, fe)

Hausman Test

data: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan | ...

chisq = 2.2, df = 6, p-value = 0.9

alternative hypothesis: one model is inconsistent

The last estimated model is suggested by Baltagi (2012). It is similar to the second specification
but uses the instruments suggested by Amemiya and MaCurdy (1986) instead. The results are
presented in table 6.1 by using the texreg package (see Leifeld, 2013).

ht2am <- update(ht2, inst.method = "am")

library("texreg")

texreg(list(ols, fe, re, ht1, ht2, ht2am),

custom.model.names = c("OLS", "FE", "RE", "HT1", "HT2", "AM2"),

caption = "Estimations of the gravity model.", label = "table:gravity",

custom.gof.names = c("R$ ̂ 2$", "Adj. R$ ̂ 2$", "Num. obs.", "s\\_idios",

"s\\_id"),

scriptsize = FALSE)

The results of table 6.1 show first that the coefficients of the time-varying covariates are iden-
tical for the within and the just identified Hausman and Taylor (1981) estimator. This is not
the case with the ht2 model, which is overidentified, as noted by Baltagi (2012). Serlenga and
Shin (2007) insist on the fact that the Hausman and Taylor (1981) estimations lead to a great
reduction of the influence of the distance and an important increase of the influence of com-
mon language and common border. This last conclusion is qualified by Baltagi (2012), which
uses the more efficient Amemiya and MaCurdy (1986) estimator. The latter introduces further
orthogonality conditions by imposing that doubly exogenous variables be uncorrelated with
individual effects at any time, while the Hausman and Taylor (1981) estimator simply requires
no correlation between individual effects and the averages of said variables. If these conditions
are valid (which can be tested through the Hausman procedure), this estimator is necessarily
not less efficient than that of Hausman and Taylor (1981).

phtest(ht2am, fe)

Hausman Test

data: trade ̃ gdp + dist + rer + rlf + sim + cee + emu + bor + lan | ...

chisq = 10, df = 6, p-value = 0.1

alternative hypothesis: one model is inconsistent
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Table 6.1 Estimations of the gravity model.

OLS FE RE HT1 HT2 AM2

(Intercept) −10.95∗∗∗ −13.93∗∗∗ −15.76∗∗∗ −15.66∗∗∗ −14.00∗∗∗

(0.25) (0.89) (1.50) (1.50) (1.13)
gdp 1.58∗∗∗ 1.81∗∗∗ 1.79∗∗∗ 1.81∗∗∗ 1.81∗∗∗ 1.80∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)
dist −0.65∗∗∗ −0.59∗∗∗ −0.38∗ −0.38∗ −0.59∗∗∗

(0.02) (0.12) (0.19) (0.19) (0.15)
rer 0.10∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.07∗∗∗

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)
rlf 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
sim 0.88∗∗∗ 1.17∗∗∗ 1.14∗∗∗ 1.17∗∗∗ 1.20∗∗∗ 1.15∗∗∗

(0.02) (0.06) (0.05) (0.06) (0.05) (0.05)
cee 0.32∗∗∗ 0.31∗∗∗ 0.32∗∗∗ 0.31∗∗∗ 0.31∗∗∗ 0.31∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
emu 0.20∗∗∗ 0.09∗∗ 0.09∗∗∗ 0.09∗∗ 0.09∗∗ 0.09∗∗∗

(0.05) (0.03) (0.03) (0.03) (0.03) (0.03)
bor 0.52∗∗∗ 0.44∗ 0.60∗ 0.61∗ 0.44

(0.03) (0.19) (0.26) (0.26) (0.25)
lan 0.23∗∗∗ 0.42∗ 1.56∗ 1.56∗ 0.43

(0.03) (0.18) (0.71) (0.68) (0.24)

R2 0.90 0.90 0.90 0.90 0.90 0.90
Adj. R2 0.90 0.90 0.90 0.90 0.90 0.90
Num. obs. 3822 3822 3822 3822 3822 3822
s_idios 0.29 0.29 0.29 0.29
s_id 0.52 0.65 0.67 0.67

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The validity of the supplementary instruments used for the Amemiya and MaCurdy (1986)
estimator is not rejected by the Hausman test. The standard deviation of the endogenous vari-
able (lan) is much lower than in the Hausman and Taylor (1981) estimator (0.24 vs 0.68). The
coefficients of the three time-invariant covariates are closer to the ols coefficients than to the
Hausman and Taylor (1981) coefficients.

6.4 Estimation of a System of Equations

Instead of estimating only one equation, we can consider a whole system of simultaneous
equations, in order to take into account the correlation between the errors of different
equations. The estimator obtained is a mix of the 2sls estimator described in the previous
chapter and the sur estimator (see 3.2.4).
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6.4.1 The Three Stage Least Squares Estimator

When there is no correlation between the covariates and the error, the relevant model for the
system of equations is the sur model, which is a gls estimator and is described in section 3.2.
Denoting by Σ the matrix of covariance of the errors of the L equations, the variance of the
errors of the system is Ω = Σ⊗ I, and the sur estimator is:

�̂� = (Z⊤(Σ⊗ I)−1Z)Z⊤(Σ⊗ I)−1y

This expression involves square matrices of dimensions equal to the sample size. It is therefore
not operational for large samples, and it is numerically inefficient anyway. It is therefore pre-
ferred, as often happens for gls estimators, to apply ols on transformed data. Denoting by 𝜐lm
the elements of the matrix Σ−0.5, each variable z⊤ = (z⊤1 , z

⊤
2 ,… , z⊤L ) of the model is transformed

by pre-multiplying it by: Ψ = Ω−0.5 = Σ−0.5 ⊗ I. We then have:

z∗ = (Σ−0.5 ⊗ I)

⎛⎜⎜⎜⎜⎝

z1

z2

⋮

zL

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

𝜐11z1 + 𝜐12z2 +… 𝜐1LzL

𝜐21z1 + 𝜐22z2 +… 𝜐2LzL

⋮

𝜐L1z1 + 𝜐L2z2 +… 𝜐LLzL

⎞⎟⎟⎟⎟⎠
The three-stage least squares estimator is obtained by using the moment conditions:

E(L⊤𝜖) = E(L⊤(y − Z𝛾)) = 0, for which the variance is: V(L⊤𝜖) = 𝜎2L⊤ΩL. Consistently with
the method of moments approach, the estimator is obtained by minimizing a quadratic form
of the vector of moments, using the inverse of the variance matrix of these moments:

1
𝜎2 (y

⊤ − 𝛾⊤Z⊤)L(L⊤ΩL)−1L⊤(y − Z𝛾)

First order conditions for a minimum are:

−2Z⊤L(L⊤ΩL)−1L⊤(y − Z𝛾)∕𝜎2 = 0

Solving this linear system of equations, we obtain the 3sls estimator:

�̂�iv = (Z⊤L(L⊤(Σ⊗ I)L)−1L⊤Z)−1(Z⊤L(L⊤(Σ⊗ I)L)−1L⊤y) (6.12)

The 3sls estimator may be obtained by employing the instrumental variables estima-
tor, pre-multiplying the covariates and the response by Ψ = Σ−0.5 ⊗ I and the instruments by
(Ψ−1)⊤ = (Σ0.5)⊤ ⊗ I. The instruments are then L̃ = (Ψ−1)⊤L and define the following projection
matrix:

PL̃ = (Ψ−1)⊤L(L⊤Ψ−1(Ψ−1)⊤L)−1L⊤Ψ−1

But:

Ψ−1(Ψ−1)⊤ = Ψ−1(Ψ⊤)−1 = (Ψ⊤Ψ)−1 = Ω

We then have

PL̃ = (Ψ−1)⊤L(L⊤ΩL)−1L⊤Ψ−1

Using this projection matrix in the formula of the instrumental variables estimator (6.3) we
finally get:

�̂� = (Z⊤Ψ⊤(Ψ−1)⊤L(L⊤ΩL)−1L⊤Ψ−1ΨZ)−1

× (Z⊤Ψ⊤(Ψ−1)⊤L(L⊤ΩL)−1L⊤Ψ−1Ψy) (6.13)
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or

�̂� = (Z⊤L(L⊤ΩL)−1L⊤Z)−1(Z⊤L(L⊤ΩL)−1L⊤y)

which is the formula (6.12) of the 3sls estimator. Of course, as in the gls estimator, Ω is in
practice unknown and shall be estimated based on the results from a consistent preliminary
estimation.

The practical computation of the 3sls estimator consists then of the following steps:

• each equation is first estimated independently using the instrumental variables estimator,
which leads to a matrix of residuals Ξ̂ = (𝜖1, 𝜖2,… , 𝜖L) which is a consistent estimate of the
errors of the equations,

• the covariance matrix of the errors of the system is then estimated: Σ̂ = Ξ̂⊤Ξ̂∕O
• the Cholesky decomposition of this matrix is computed: Ĉ ∣ ĈΣ̂Ĉ⊤ = I,
• the variables are transformed using this matrix: ỹ = (Ĉ ⊗ I)y, Z̃ = (Ĉ ⊗ I)Z and

L̃ = ((Ĉ−1)⊤ ⊗ I)L.
• and finally the instrumental variables estimator is applied to the transformed system.

The computation of the within or between 3sls estimators is straightforward, as it consists
in applying the 3sls to within or between transformed data.

6.4.2 The Error Components Three Stage Least Squares Estimator

Balestra and Varadharajan-Krishnakumar (1987) and Baltagi (1981) have proposed
3sls estimators that use the inter- and intra-individual variations of the data in an optimal way.

From now, three indexes must be considered, the individual n = 1…N and time indexes
t = 1…T as usual, but also the equation index l = 1… L.

𝜖lnt = 𝜂ln + 𝜈lnt

Denoting by 𝜖⊤ln = (𝜖ln1,… , 𝜖lnT ), the error vector for individual n and equation l, the error
vector for the system of equations is:

𝜖⊤ = ((𝜖⊤11, 𝜖
⊤
12,… , 𝜖⊤1N ), (𝜖

⊤
21, 𝜖

⊤
22,… , 𝜖⊤2N ),… , (𝜖⊤L1, 𝜖

⊤
L2,… , 𝜖⊤LN ))

The covariance matrix of the errors is then:

Ω = V(𝜖) = Σ𝜂 ⊗ (IN ⊗ JT ) + Σ𝜈 ⊗ (IN ⊗ IT )

The presence of individual effects makes this model specific compared to the standard
3sls estimator. Compared to the standard error component model, scalars 𝜎2

𝜂 and 𝜎2
𝜈 are

replaced by two covariance matrices Σ𝜂 and Σ𝜈 .

Ω = (TΣ𝜈 + Σ𝜂)⊗ (IN ⊗ J̄T ) + Σ𝜈 ⊗ (IN ⊗ (IT − J̄T ))
= (TΣ𝜈 + Σ𝜂)⊗ B + Σ𝜈 ⊗W
= Σ𝜄 ⊗ B + Σ𝜈 ⊗W

The 3sls estimator can then be computed the following way:

• firstly, the different equations are estimated using 2sls so that a consistent estimator of the
matrix of the errors of the different equations Ξ̂ may be computed;

• then, Σ𝜈 and Σ𝜄 are estimated by Σ̂𝜈 and Σ̂𝜄,
• covariates and responses are transformed by pre-multiplying them by: Ψ̂ = Ω̂−0.5 =

Ĉ𝜄 ⊗ B + Ĉ𝜈 ⊗W ,



Endogeneity 157

• instrumental variables are transformed by pre-multiplying them by: (Ĉ−1
𝜄 )⊤ ⊗ B +

(Ĉ−1
𝜈 )⊤ ⊗W ,

• the 2sls estimator is then applied to the transformed data.

As for the 2sls estimator, the difference between the estimators of Baltagi (1981) and
Balestra and Varadharajan-Krishnakumar (1987) is that the former uses the within and
the between transformations of the instruments, while the latter uses a quasi-difference
transformation.

Example 6.4 error components 3sls – ForeignTrade data set
Kinal and Lahiri (1993) estimate the system composed of the demand for imports and the
demand for exports by 3sls. To compute this estimator with plm, one has to use as first argu-
ment a list containing the description of the equations in the system.

eqimp <- imports ̃ pmcpi + gnp + lag(imports) +

lag(resimp) | lag(consump) + lag(cpi) + lag(income) +

lag(px) + lag(reserves) + lag(exports) | lag(gnp) + pm +

lag(invest) + lag(money) + gnpw + pw + trend + pgnp

eqexp <- exports ̃ pxpw + gnpw + lag(exports) |

lag(gnp) + pw + lag(consump) + pm + lag(px) + lag(cpi) |

lag(money) + gnpw + pgnp + pop + lag(invest) +

lag(income) + lag(reserves) + exrate

r12 <- plm(list(import.demand = eqimp,

export.demand = eqexp),

data = ForeignTrade, index = 31, model = "random",

inst.method = "baltagi", random.method = "nerlove",

random.dfcor = c(1, 1))

summary(r12)

Oneway (individual) effect Random Effect Model

(Nerlove's transformation)

Call:

plm.list(formula = list(import.demand = eqimp, export.demand = eqexp),

data = ForeignTrade, model = "random", random.method = "nerlove",

inst.method = "baltagi", index = 31, ... = pairlist(random.dfcor = c(1,

1)))

Balanced Panel: n = 31, T = 24, N = 744

Effects:

Estimated standard deviations of the error

import.demand export.demand

id 0.0619 0.0782

idios 0.1439 0.1200

Estimated correlation matrix of the individual effects

import.demand export.demand

import.demand 1.000 .

export.demand 0.138 1
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Estimated correlation matrix of the idiosyncratic effects

import.demand export.demand

import.demand 1.0000 .

export.demand 0.0975 1

- import.demand

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.39874 0.11899 3.35 0.00083 ***

pmcpi -0.05407 0.02170 -2.49 0.01282 *

gnp 0.01103 0.00531 2.08 0.03785 *

lag(imports) 0.95046 0.01187 80.05 < 2e-16 ***

lag(resimp) 0.03948 0.00634 6.22 6.3e-10 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- export.demand

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.1437 0.1395 1.03 0.3032

pxpw -0.0615 0.0195 -3.16 0.0016 **

gnpw 0.1144 0.0534 2.14 0.0322 *

lag(exports) 0.9465 0.0133 71.11 <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coefficients for the imports demand equation are very close to those we obtained using
the 2sls estimator. The correlation between the two components of the errors of the two
equations is about 10%. Taking into account this correlation slightly reduces the standard errors
of the coefficients, as illustrated below.

rbind(ec2sls = coef(summary(r1b))[-1, 2],

ec3sls = coef(summary(r12), "import.demand")[-1, 2])

pmcpi gnp lag(imports) lag(resimp) (Intercept)

ec2sls 0.0218 0.006999 0.01289 0.006709 0.0218

ec3sls 0.0217 0.005308 0.01187 0.006342 0.1395

pxpw gnpw lag(exports)

ec2sls 0.006999 0.01289 0.006709

ec3sls 0.019467 0.05336 0.013310

6.5 More Empirical Examples

Acconcia et al. (2014) seek to estimate the multiplier effect of public spending. This is a dif-
ficult task, as public spending can hardly be considered exogenous. They use a panel of 95
Italian administrative regions (provinces) for the years 1990-1999 and take advantage of the
implementation of anti-mafia laws, which resulted in the eviction of some elected officials who
were replaced by external commissioners. This replacement, which led to a drastic reduction
in local public spending, represents an exogenous source of variation in public spending that
can be usefully employed as instrument. Using a fixed effects 2sls estimator, they estimate the
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long-term public spending multiplier to be 1.95, a much larger value than the one obtained
using the within estimator. The Mafia dataset is available in the pder package.

Egger and Pfaffermayr (2004) studied the determinants of bilateral trade of two countries,
Germany and the United States, with their partners, bilateral trade being measured by imports
and exports on the one hand, and by foreign direct investment on the other. The authors suspect
that the individual effect, which indicates a propensity to trade with a given country for geo-
graphical and cultural reasons, is correlated with the distance. In this case, this variable, which
is the only time-invariant one, is certainly correlated with the individual effect. The authors use
the estimator of Hausman and Taylor (1981) for each equation and also for the system of two
equations. The data are provided as TradeFDI in the pder package.

Hutchison and Noy (2005) study the effects of twin crises, characterized by the simultane-
ous occurrence of a bank and a currency crisis, on the wealth of countries. The panel consists
of 24 developing countries for the 1975-1997 period. The response is the growth rate of the
gdp and the two main covariates are the lag of the growth rate and a dummy variable indicat-
ing the occurrence of a twin crisis. Employing the lag of the growth rate as a covariate induces
an endogeneity problem, which the authors tackle using an error component 2sls estimator.
The results indicate that the cost of a currency crisis is about 5-8% in terms of growth every year
for about 2-4 years, while for the bank crisis this is about 8-10%. The article doesn’t provide any
evidence of a specific effect of twin crises. The data are provided as TwinCrises in the pder
package.

Cornwell and Trumbull (1994) and Baltagi (2006) estimate a crime economics model for the
counties of North Carolina. The response is the criminality rate and, among the covariates, they
introduce the probability of being arrested and the number of policemen per inhabitant. These
two covariates induce an endogeneity problem: one actually wants to estimate the causal effect
of police on crime, but a reverse causality effect is also likely, because more crime will induce
the presence of more policemen. Two instrumental variables are used: the offense mix, which
is defined as the ratio of crimes involving face-to-face contact to those that do not, and the per
capita tax revenue. The first instrument is positively correlated with the probability of being
arrested (because the offender may be identified by the victim). The second variable is positively
correlated with the number of policemen, more tax income indicating a strong preference for
public services and particularly for security. The 2sls error component model indicates a much
stronger effect of the probability of being arrested than for the other estimators, especially the
within estimator. The data are provided as Crime in the plm package.

Baltagi and Khanti-Akom (1990) and Cornwell and Rupert (1988) estimate a wage function
using a panel of American individuals, with particular interest in the return to education. A
well-known problem of such studies is that unobserved characteristics of individuals, called
abilities, are part of the individual effects and may be correlated with education. Using the
within model, the education covariate disappears: the use of the estimator of Hausman and
Taylor (1981) is therefore very relevant in this context. Two time-invariant covariates (being
black and being a female) are assumed exogenous, while the level of education is endogenous.
Some other time-varying covariates are assumed exogenous and therefore provide two instru-
ments so that the model is identified. The coefficient of education from the Hausman and Taylor
(1981) estimator is larger than the one obtained using gls (0.14 vs 0.10). The data are provided
as Wages in the plm package.
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7

Estimation of a Dynamic Model

A model is said to be dynamic when one of the regressors is the lagged dependent variable.
The usefulness of panel data for estimating dynamic models is self-evident: it is impossible to
estimate a dynamic relationship on cross-sectional data while, in the case of time series data,
such model cannot be precisely estimated without drawing on long enough a sample. By con-
trast, with panel data a dynamic model can be estimated over a set of individuals observed
over a small number of time periods. The models presented in this chapter are well suited to
“micro-panels,” i.e., datasets where N >> T . For “macro-panels,” characterized by a temporal
dimension equivalent to, or bigger than, the cross-sectional one, the appropriate models will
be based on an adaptation of the methodology employed in unit roots tests and cointegration
estimators to the specific issues of panel data.1

Among the many applied examples from the literature, one can mention:

• the estimation of per capita income convergence by regressing the growth rate as a function
of the initial wealth level or, equivalently, regressing the level of per capita wealth as a function
of the lagged wealth level;

• the analysis of the speed of adjustment of the labor force, obtained by regressing employment
over different variables, including lagged employment;

• the dynamic analysis of consumption, based on a consumption function including lagged
consumption.

The seminal article regarding estimation of dynamic panel models is Balestra and Nerlove
(1966). The literature on the subject has become considerable since the 1990s and the papers by
Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991), who introduced the use
of the generalized method of moments for dynamic panels.2 This one has become the preferred
estimation method and the better part of this chapter will be dedicated to presenting it. It shall
nevertheless be noted that the field of application of this method to panel data is not limited to
dynamic panels and that it can be equally appropriate for static models.

Example 7.1 description of the data – DemocracyIncome data set
Along this whole chapter, we will use the paper by Acemoglu, Johnson, Robinson, and Yared
(2008) to illustrate results. This study addresses the causal relationship between the level of

1 See section 8.4.
2 Among the many reviews of this literature see in particular Harris et al. (2008), Bond (2002), Roodman (2009a).
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wealth and that of democracy in a country. The authors draw on different panel datasets, among
which we have considered two:

• the first, made of data observed every 5 years, with 11 observations over the period 1950-2000
for 211 countries;

• the second, corresponding to data observed every 25 years, with 7 observations over the
period 1850-2000 for 25 countries.

data("DemocracyIncome", package = "pder")

data("DemocracyIncome25", package = "pder")

In the cross section, the positive relationship between the degree of democracy and per capita
income is apparent and is illustrated in the Figure 7.1, which uses Acemoglu et al. (2008)’s data
for the year 2000. However, this contemporaneous correlation does not necessarily imply a
causal relationship between the two variables. Using panel data instead allows to investigate
causality by specifying a dynamic relationship.

library("plm")

pdim(DemocracyIncome)

Balanced Panel: n = 211, T = 11, N = 2321

head(DemocracyIncome, 4)

country year democracy income sample

1 Andorra 1950 NA NA 0

2 Andorra 1955 NA NA 0

3 Andorra 1960 NA NA 1

4 Andorra 1965 NA NA 1
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Figure 7.1 Relationship between income and democracy.
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The five-year data constitutes a balanced panel of 211 countries observed over 11 periods.
However, such balance is artificial because many observations are actually missing, in par-
ticular as regards democracy levels. The data comprise the two individual and time indexes
(country and year), the democracy index democracy, the log of per capita gross domestic
product income, and lastly, an indicator allowing to select the subset considered by the
authors sample.

7.1 Dynamic Model and Endogeneity

The simplest dynamic model is the first order auto-regressive model

ynt = 𝜌yn(t−1) + 𝜂n + 𝜈nt

The error of the model is the sum of an individual effect 𝜂n, which is time-invariant, and of
an idiosyncratic component 𝜈nt , which would be called the innovation.

Throughout this chapter, we’ll suppose that the innovations are mutually uncorrelated
E(𝜈nt𝜈ns) = 0 ∀s ≠ t, not correlated with the individual effect E(𝜂n𝜈nt) = 0, and that the process
is stationary (∣ 𝜌 ∣< 1).

For the previous period, the model can be written as: yn(t−1) = 𝜌yn(t−2) + 𝜂n + 𝜈n(t−1). The error
and the covariate yn(t−1) are then correlated because yn(t−1) is correlated with the individual
effect 𝜂n.

7.1.1 The Bias of the OLS Estimator

Because of this correlation, the ols estimator (and also the gls) is not consistent. This
estimator is:

�̂� =
∑N

n=1
∑T

t=2 yntyn(t−1)∑N
n=1

∑T
t=2 y2

n(t−1)

= 𝜌 +
∑N

n=1
∑T

t=2(𝜂n + 𝜈nt)yn(t−1)∑N
n=1

∑T−1
t=1 y2

nt

and the numerator of the second term does not converge to 0 because 𝜂n is positively correlated
with yn(t−1). The correlation being positive, the ols estimator is biased upward. In order to assess
its magnitude, ynt can be rewritten, by recursive substitution and denoting by −S the starting
date of the process and 1 that of the first observation:

ynt = 𝜌t+Syn(−S) +
1 − 𝜌t+s

1 − 𝜌
𝜂n

+ (𝜈nt + 𝜌𝜈n(t−1) + 𝜌2𝜈n(t−2) + … 𝜌t+s−1𝜈n(−S+1))
(7.1)

Supposing that the initial values of y be fixed, for the denominator of the ols estimator, one
has then the following limits, first with respect to N and then to T :

lim
N→+∞

1
N

N∑
n=1

y2
nt =

(
1 − 𝜌t+S

1 − 𝜌

)2

𝜎2
𝜂 +

1 − 𝜌2(t+S)

1 − 𝜌2 𝜎2
𝜈

lim
T→+∞

lim
N→+∞

1
NT

N∑
n=1

T∑
t=1

y2
nt =

𝜎2
𝜂

(1 − 𝜌)2 +
𝜎2
𝜈

1 − 𝜌2 (7.2)

For the numerator, by the hypothesis of no correlation between the individual effect and the
innovations, one has:

lim
N→+∞

1
N

∑
n
(𝜂n + 𝜈nt)yn(t−1) =

1 − 𝜌t+S−1

1 − 𝜌
𝜎2
𝜂
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lim
N→+∞

lim
T→+∞

1
NT

∑
n

∑
t
(𝜂n + 𝜈nt)yn(t−1) =

𝜎2
𝜂

1 − 𝜌
(7.3)

The ols estimator converges then to:

plim �̂� = 𝜌 +

𝜎2
𝜂

1−𝜌
𝜎2
𝜂

(1−𝜌)2 +
𝜎2
𝜈

1−𝜌2

= 𝜌 +
(1 − 𝜌2)𝜎2

𝜂

(1 + 𝜌)𝜎2
𝜂 + (1 − 𝜌)𝜎2

𝜈

In view of this expression, the ols estimator is biased upward. The bias tends to 0 when
𝜎2
𝜂 does.

Example 7.2 time effects within model – DemocracyIncome data set
In the model of Acemoglu et al. (2008), the dependent variable is the democracy index, and the
regressors are the one-period lags of the democracy index itself and of the per capita income.
Yearly dummies are also introduced, and estimation is performed on the subsample defined by
the sample variable. ols estimation through the R function lm is distorted by the presence of
lagged values. In fact, the lagmethod used by the program will be the one appropriate for time
series, not the one for panel data.3 For this reason, the function plm in the plm package will
be used instead, setting the model argument to ’pooling’, thus keeping the untransformed
data. The -1 in the formula indicates that we do not want to estimate a general constant but
one coefficient for all instances of the year variable, which does not affect estimation.

ols <- plm(democracy ̃ lag(democracy) + lag(income) + year - 1,

DemocracyIncome, index = c("country", "year"),

model = "pooling", subset = sample == 1)

The same model may be estimated by setting the model to ’within’ and the effect to
’time’:

ols <- plm(democracy ̃ lag(democracy) + lag(income),

DemocracyIncome, index = c("country", "year"),

model = "within", effect = "time",

subset = sample == 1)

coef(summary(ols))

Estimate Std. Error t-value Pr(>|t|)

lag(democracy) 0.70637 0.024293 29.077 6.979e-133

lag(income) 0.07232 0.008343 8.668 1.915e-17

This first model highlights two results. On one hand, the democracy variable shows high
persistence, with a coefficient of 0.71. However, we know that the ols estimator suffers from a
positive bias. On the other hand, lagged income seems to exert a significantly positive influence
on the democracy index.

7.1.2 The within Estimator

The bias of ols is due to the correlation between the error term and the lagged endogenous
variable due to the presence of an individual effect; hence one may think to solve the problem

3 In particular, this means that the lagged value of the variable for the first observation of the second country will
incorrectly be made equal to the last observation of the first country.
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through a transformation that eliminates the individual effect. The most obvious choice is the
within estimator. One has then, denoting ȳn(−1) =

∑T−1
t=1 ynt∕(T − 1) and ȳn =

∑T
t=2 ynt∕(T − 1):

�̂� =
∑N

n=1
∑T

t=2(ynt − ȳn)(yn(t−1) − ȳn(−1))∑N
n=1

∑T
t=2 (ynt − ȳn(−1))2

= 𝜌 +
∑N

n=1
∑T

t=2(yn(t−1) − ȳn(−1))(𝜈nt − �̄�n)∑N
n=1

∑T
t=2 (ynt − ȳn(−1))2

The individual effects (and hence the bias) have disappeared from the ols estimator, but
a second source of bias has been introduced. In fact, yn(t−1) −

1
T−1

(yn1 +…+ yn(t−1)) and 𝜈t −
1

T−1
(𝜈n2 +…+ 𝜈nt) are correlated. For t > 2, one has a term in − 1

T−1
ynt × 𝜈nt , one in yn(t−1) ×

− 1
T−1

𝜈n(t−1), and T − 2 terms in 1
(T−1)2 ynt𝜈nt . Each term in 𝜈ntynt having an expectation of 𝜎2

𝜈 , one
finally has:

𝜎2
𝜈

(
− 1

T − 1
− 1

T − 1
+ T − 2

(T − 1)2

)
= 𝜎2

𝜈 ×
−T

(T − 1)2

so that the bias is negative.4 More precisely, one can show that:5

plim �̂� = 𝜌 − 1 + 𝜌
T − 1

1 − 1
T

1−𝜌T

1−𝜌

1 − 2𝜌
(1−𝜌)(T−1)

(
1 − 1−𝜌T

T(1−𝜌)

)
This bias differs from that of ols in two ways. Firstly, it is negative, and secondly, it tends to 0

as T tends to infinity. This bias cannot therefore be ignored in the case of micro-panels, where
the time dimension is short. For example, if t = 10 (a fairly long time span) and 𝜌 = 0.5, the bias
is −0.167.

Example 7.3 two-ways within Model – DemocracyIncome data set
The within model is obtained withplmfixing themodel andeffect arguments to’within’
and ’twoways’, since we want to introduce individual and time effects. The model can be
simply estimated by updating the previous ols model:

within <- update(ols, effect = "twoways")

coef(summary(within))

Estimate Std. Error t-value Pr(>|t|)

lag(democracy) 0.37863 0.03344 11.3212 1.252e-27

lag(income) 0.01041 0.02640 0.3945 6.933e-01

With respect to the ols model, the autoregressive coefficient is smaller (0.38 vs. 0.71), which
was to be expected as the within estimator is biased downward while ols is biased upward.
Notice also that after introducing individual effects, the coefficient of income is very close to 0
and not significant any more.

7.1.3 Consistent Estimation Methods for Dynamic Models

The most common estimation methods used for static models being inappropriate, various esti-
mation strategies can be adopted to attain consistency.

4 Nickel (1981).
5 See for example Hsiao (2003) p. 72.
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• the first is using the maximum likelihood method. However, it has a major shortcoming
of being extremely sensitive to hypotheses made on the starting values of the explanatory
variables. Depending on whether one considers the latter to be either fixed or random, and
whether it is correlated with the individual effects or not, one obtains rather different mod-
els, and the estimation bias can be severe in case of misspecification. For this reason, this
estimation method is scarcely used and will not be presented here;6

• the second consists in starting with a biased estimator and then correcting the bias. It is the
step taken by Kiviet (1995), who proposes a within estimator corrected for the previously
analyzed bias. However, the interest of this approach is limited by its applicability only to
balanced panels and by the fact that it does not consider the possible endogeneity of other
regressors;7

• the third possibility is using the instrumental variables method, the instruments being lagged
levels or differences of the dependent variable. The generalized method of moments, which
is an extension of the instrumental variables method, has become more and more popular to
this end.

The instrumental variables method is used on a model that was pre-transformed in order to
eliminate individual effects. Upon first consideration, the within transformation would seem
a natural choice; it turns out to be inappropriate instead. In fact, in absence of appropriate
external instruments, the only available instrumental variable is often the lagged dependent
one, here meaning the dependent variable lagged at least twice. Then, in the within model, the
error is: 𝜈nt −

1
T−1

∑T
t=2 𝜈nt . It contains all realizations of 𝜈nt and is therefore correlated with

every lagged value of ynt . Two alternative transformations can be successfully used here: first
differences and orthogonal deviations.

For first differences, one simply has Δznt = znt − zn(t−1), or else, in vector form, Δzn = Dzn
with:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 … 0 0
0 1 −1 … 0 0
0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … −1 0
0 0 0 … 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The advantage of such transformation is to be simple and intuitive. It has, nevertheless, three

drawbacks:

• firstly, one observation, the first one, is necessarily lost;
• secondly, if the original errors are not correlated to begin with, the transformed model’s ones

are. In fact, one has Δ𝜈tΔ𝜈t−1 = (𝜈t − 𝜈t−1)(𝜈t−1 − 𝜈t−2) and hence, if the 𝜈 are homoscedastic
and uncorrelated, the transformed errors are still homoscedastic E(Δ𝜈2

t ) = 2𝜎2
𝜈 , but corre-

lated across two successive errors E(Δ𝜈tΔ𝜈t−1) = −𝜎2
𝜈 ;

• lastly, for every time period t where one observation is missing, two are lost in differences: t
and t + 1.

6 For a detailed presentation of maximum likelihood estimation of dynamic panels, see Hsiao (2003), Chapter 4.
7 See Roodman (2009a), p. 103.
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The orthogonal deviations transformation does not suffer from the last two problems, although
it is less intuitive, consisting in calculating the difference between each observation and the
average of those posterior. Formally, one has:

z̃nt = cnt

(
znt −

1
Tnt

T∑
s>t

zns

)

where Tnt is the number of observations posterior to t for individual n and cnt is a scale factor
equal to

√
Tnt

Tnt+1
.

As for the first difference transformation, one observation is lost, but this is usually the
last one. In matrix form, for a balanced panel, the transformation is written z̃t = Oz, with
z = (z1, z2,… zt) and:

O =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
T−1

T
− 1√

T(T−1)
− 1√

T(T−1)
… − 1√

T(T−1)
− 1√

T(T−1)

0
√

T−2
T−1

− 1√
(T−1)(T−2)

… − 1√
(T−1)(T−2)

− 1√
(T−1)(T−2)

0 0
√

T−3
T−2

… − 1√
(T−2)(T−3)

− 1√
(T−2)(T−3)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 …
√

1
2

−
√

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Assuming that the original errors are homoscedastic and uncorrelated, one has, for the trans-

formed errors:

V(�̃�) = E(�̃��̃�⊤) = E(O𝜈𝜈⊤O⊤) = 𝜎2
𝜈OO⊤ = 𝜎2

𝜈 I

This last result is due to the fact that the rows of O are mutually orthogonal.
Moreover, in case of missing observations for one period, only that observation will be lost

for estimation, versus two of them for the model estimated in first differences.
The estimator proposed by Anderson and Hsiao (1982) uses the model written in first differ-

ence form in order to eliminate individual effects. The explanatory variable Δyn(t−1) = yn(t−1) −
yn(t−2) is then correlated with the differenced errorΔ𝜈nt = 𝜈nt − 𝜈n(t−1). If the innovations are not
serially correlated, Δyn(t−1) can be instrumented either by Δyn(t−2) = yn(t−2) − yn(t−3) or by yn(t−2).
In practice, yn(t−2) is often a much better instrument than Δyn(t−2).

Example 7.4 Anderson and Hsiao estimator – DemocracyIncome data set
To compute the Anderson and Hsiao (1982) estimator, one must specify that both the regres-
sand and regressors are differenced and that the lagged endogenous variable in differences is
instrumented with the endogenous in levels lagged two periods. Acemoglu et al. (2008) also
chose to instrument per capita income using a second lag. The model is simply described using a
two-part formula,8 the first part indicating the explanatory variables and the second the instru-
ments, the two parts being separated by the sign |.

8 The extended formulas provided in the Formula package (Zeileis and Croissant, 2010) are used.
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ahsiao <- plm(diff(democracy) ̃ lag(diff(democracy)) +

lag(diff(income)) + year - 1 |

lag(democracy, 2) + lag(income, 2) + year - 1,

DemocracyIncome, index = c("country", "year"),

model = "pooling", subset = sample == 1)

coef(summary(ahsiao))[1:2,]

Estimate Std. Error t-value Pr(>|t|)

lag(diff(democracy)) 0.4687 0.1182 3.9651 7.971e-05

lag(diff(income)) -0.1036 0.3049 -0.3398 7.341e-01

Anderson and Hsiao (1982)’s model being consistent, one expects the estimated autoregres-
sive coefficient to be comprised between that of the within model (biased downward) and that
of the ols model (biased upward). This is actually the case here, the obtained value of 0.47
falling between 0.38 and 0.71.

7.2 GMM Estimation of the Differenced Model

The instrumental variables estimator presented in the preceding section is inefficient for two
reasons:
• firstly, it does not account for the correlation induced into the errors by first-differencing,
• secondly, there are further valid instruments available.

7.2.1 Instrumental Variables and Generalized Method of Moments

This estimator considers the fact that the number of valid instruments is growing in t. The
dynamic character of the model renders the first observation unusable and first-differencing,
the second one. Consequently, the first usable observation is the third one, for which the model
can be written as:

yn3 − yn2 = 𝜌(yn2 − yn1) + (𝜈n3 − 𝜈n2)
For this observation, yn1 is the only valid instrument. For the fourth observation, the error is

𝜈n4 − 𝜈n3, yn2 and yn1 are valid instruments. Thus, a supplementary instrument is added as t is
incremented by 1. For the nth individual, the instruments matrix becomes:

Ln =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yn1 0 0 0 0 0 … 0 0 0 0
0 yn1 yn2 0 0 0 … 0 0 0 0
0 0 0 yn1 yn2 yn3 … 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 0 0 … … … yn1 yn2 … yn(T−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(7.4)

The moment conditions correspond to the vector 𝜇 = L⊤Δ𝜈. The instruments being by
hypothesis uncorrelated with the differenced errors, the expectation of this vector must be 0:
E(𝜇) = 0.

The generalized method of moments consists in writing the sample equivalent of this vec-
tor of theoretical moments, i.e., the arithmetic average of the above expression for the set of
individuals in the sample:

m = 1
N

N∑
n=1

mn = 1
N

N∑
n=1

L⊤n (Δyn − ΔXn𝛽) (7.5)
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where, in the simplest case of an autoregressive model, ΔXn is a column vector containing
the endogenous variable differenced and lagged by one period. How to obtain the estimator
depends now on the comparison between the number of moments J and that of estimands K . If
J = K , the method of moments estimator is obtained simply setting (7.5) to 0 and solving for 𝛽.
One has then:

𝛽 =

( N∑
n=1

L⊤nΔXn

)−1 ( N∑
n=1

L⊤nΔyn

)

If J < K , the system of linear equations defined by (7.5) is underidentified, and there are infi-
nite combinations of parameter values allowing to equate (7.5) to 0. In the case when J > K ,
the system is overidentified and, apart form very particular cases, there is no combination of
parameter values satisfying the equation. In this case, one will look for the parameter combi-
nation that minimizes the size of the moment conditions’ vector, defined as a quadratic form in
the vector of empirical moments:(

1
N

N∑
n=1

(Δy⊤n − 𝛽⊤ΔX⊤
n )Ln

)
A

(
1
N

N∑
n=1

L⊤n (Δyn − ΔXn𝛽)

)
(7.6)

where A is the weighting matrix of the moments. Setting to 0 the derivatives of (7.6) with respect
to 𝛽, and solving with respect to 𝛽, one obtains the generalized method of moments estimator:

𝛽 =
[(∑

n
ΔX⊤

n Ln

)
A
(∑

n
L⊤nΔXn

)]−1

×
[(∑

n
ΔX⊤

n Ln

)
A
(∑

n
L⊤nΔyn

)] (7.7)

7.2.2 One-step Estimator

In order to make this estimator computable, a weighting matrix has to be chosen. The simplest
choice for A is identity. In this case, the function to minimize is simply the sum of squares
of the elements in the vector. This solution is inefficient if the variances of these elements are
different. In this case, intuitively, it is more efficient to assign a correspondingly higher weight
to elements of the vector that have lower variance. The weighting matrix is then a diagonal one
containing the inverse of the variance of each element. Moreover, if any elements in the vector
are correlated, their joint weight will have to be reduced because they carry similar information.
In general, the optimal weighting matrix is the inverse of the variance-covariance matrix of the
vector of moments.9 One has therefore:

A−1 = V(m̄) = V

(
1
N

N∑
n=1

mn

)
= 1

N2

N∑
n=1

V(mn)

If the errors in levels are homoscedastic and uncorrelated, V(mn)has a very simple expression.
In fact, one has:

V(mn) = E(L⊤nΔ𝜈nΔ𝜈⊤n Ln) = L⊤n E(D𝜈n𝜈
⊤
n D⊤)Ln = 𝜎2

𝜈L⊤n hLn

with:

h = DD⊤ =

⎛⎜⎜⎜⎜⎜⎜⎝

2 −1 0 … 0
−1 2 −1 … 0
0 −1 2 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠

(7.8)

9 See Hansen (1982).



170 Panel Data Econometrics with R

In fact, the model errors are the differenced innovations 𝜈nt − 𝜈n(t−1). Supposing that these
errors are homoscedastic and uncorrelated, one has:
• E(Δ𝜈2

nt) = 2𝜎2
𝜈 ;

• E(Δ𝜈ntΔ𝜈n(t−1)) = −𝜎2
𝜈 ;

• E(Δ𝜈ntΔ𝜈ns) = 0 si ∣ t − s ∣> 1.
The inverse of the weighting matrix can then be written as:

A(1)−1 = V(m̄) = 1
N2

N∑
n=1

V(mn) =
𝜎2
𝜈

N2

N∑
n=1

L⊤n hLn (7.9)

𝜎2
𝜈 is an unknown scalar that does not play any role in estimation and which can therefore be

ignored. The estimator using this weighting matrix is called the one-step estimator. It can be
obtained simply by substituting

(∑N
n=1 L⊤n hLn

)−1
for A in the equation (7.7). To calculate its

variance, one starts with replacing Δyn in (7.7) by ΔXn𝛽 + Δ𝜈n. One then has:

𝛽(1) − 𝛽 =
[(∑

n
ΔX⊤

n Ln

)(∑
n
L⊤n hLn

)−1 (∑
n
L⊤nΔXn

)]−1

×
[(∑

n
ΔX⊤

n Ln

)(∑
n
L⊤n hLn

)−1 (∑
n
L⊤nΔ𝜈n

)] (7.10)

which allows to obtain the variance of 𝛽(1), denoted V(1):
V(1) = E((𝛽 − 𝛽)(𝛽 − 𝛽)⊤)

=
[(∑

n
ΔX⊤

n Ln

)(∑
n
L⊤n hLn

)−1 (∑
n
L⊤nΔXn

)]−1

×
[(∑

n
ΔX⊤

n Ln

)(∑
n
L⊤n hLn

)−1

× E
[(∑

n
L⊤nΔ𝜈n

)(∑
n
Δ𝜈⊤n Ln

)]

×
(∑

n
L⊤n hLn

)−1 (∑
n
L⊤nΔXn

)]

×
[(∑

n
ΔX⊤

n Ln

)(∑
n
L⊤n hLn

)−1 (∑
n
L⊤nΔXn

)]−1

(7.11)

If the hypotheses on errors are verified, one has:

E

[(∑
n

L⊤nΔ𝜈n

)(∑
n
Δ𝜈⊤n Ln

)]
= 𝜎2

𝜈

∑
n

L⊤n hLn

and the expression for the variance simplifies to:

V̂(1) = 𝜎2
𝜈

⎡⎢⎢⎣
(∑

n
ΔX⊤

n Ln

)(∑
n

L⊤n hLn

)−1 (∑
n

L⊤nΔXn

)⎤⎥⎥⎦

−1

(7.12)

The generalized moments estimator and its variance can be expressed more compactly using
the following matrix notation: ΔX⊤ = (ΔX⊤

1 ,ΔX⊤
2 ,… ,ΔX⊤

n ), Δy⊤ = (Δy⊤1 ,Δy⊤2 ,… ,Δy⊤n ), L⊤ =
(L⊤1 , L

⊤
2 ,… , L⊤n ) and H a block-diagonal matrix obtained by repeating h N times.
𝛽(1) = [(ΔX⊤L)(L⊤HL)−1(L⊤ΔX)]−1[(ΔX⊤L)(L⊤HL)−1(L⊤Δy)] (7.13)
V̂(1) = 𝜎2

𝜈 [(ΔX⊤L)(L⊤HL)−1(L⊤ΔX)]−1 (7.14)
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If, contrary to the assumptions made, the errors are actually heteroscedastic and/or autocor-
related, the one-step estimator remains consistent, but two classic problems arise:
• on the one hand, the weighting matrix employed isn’t a consistent estimate of the “true”

weighting matrix any more, which leads to an efficiency loss;
• on the other hand, equation (7.14) is an inconsistent estimator of the variance. As a conse-

quence, any test statistic based upon it will be biased.

7.2.3 Two-steps Estimator

In order to partly resolve the first problem, one can use a two-step estimator, consisting in recov-
ering the residuals from the one-step model Δ�̂�(1)n and estimating E

[(∑
nL⊤nΔ𝜈n

) (∑
nΔ𝜈⊤n Ln

)]
through

∑
nL⊤nΔ�̂�

(1)
n Δ�̂�(1)⊤n Ln, this estimator being robust to the presence of heteroscedasticity

and/or autocorrelation. In this case, the inverse of the weighting matrix of moments used is
written as:

A(2)−1 = V̂(m̄) = 1
N2

∑
n

V̂(mn)

= 1
N2

∑
n

L⊤nΔ�̂�
(1)
n Δ�̂�(1)⊤n Ln = 1

N2 L⊤Ω̂𝛽(1)L (7.15)

with Ω̂𝛽(1) a block diagonal matrix with blocks: Δ�̂�(1)n Δ�̂�(1)⊤n for n = 1…N . The two-step
gmm estimator is then obtained substituting (7.15) for A in equation (7.7):

𝛽(2) = [(ΔX⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤ΔX)]−1

× [(ΔX⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤Δy)] (7.16)
Regarding the estimator’s variance, by similar reasoning to that of equations (7.11 and 7.12),

one has:
V̂(2) = [(ΔX⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤ΔX)]−1 (7.17)

The problem of this estimator is that it contains Ω̂𝛽(1) , which depends on the residuals of the
one-step model and therefore on 𝛽(1) and on y. This estimator is therefore biased and the deriva-
tion of a robust estimator for the variance will be presented in section 7.2.3.

Example 7.5 difference gmm estimator – DemocracyIncome data set
gmm estimation of a panel model is performed through the pgmm function in the plm library,
The arguments of this function are the same as for the plm function, plus some specific ones:
• formula: the formula is peculiar, as it has three parts: the first, as usual, contains

the explanatory variables, the second the “gmm” instruments, the third the “normal”
instruments,

• model: the model to be estimated, either in one step: ’onestep’, or two: ’twosteps’,
• effect: the effects are either ’individual’ (they are then eliminated by differencing),

or ’twoways’, in which case indicator variables for each period are added as “normal”
instruments.
We first compute the one-step estimator:

diff1 <- pgmm(democracy ̃ lag(democracy) + lag(income) |

lag(democracy, 2:99)| lag(income, 2),

DemocracyIncome, index=c("country", "year"),

model="onestep", effect="twoways", subset = sample == 1)



172 Panel Data Econometrics with R

coef(summary(diff1))

Estimate Std. Error z-value Pr(>|z|)

lag(democracy) 0.50499 0.09049 5.581 2.396e-08

lag(income) -0.09011 0.08029 -1.122 2.617e-01

The two-step model is obtained by setting the model argument to ’twosteps’:

diff2 <- update(diff1, model = "twosteps")

coef(summary(diff2))

Estimate Std. Error z-value Pr(>|z|)

lag(democracy) 0.554007 0.10783 5.13777 2.780e-07

lag(income) 0.001844 0.06054 0.03045 9.757e-01

All available lags having been used, the number of instruments is sizable. One actually has:
0.5 × (11 − 1) × (11 − 2) = 45 gmm instruments; plus the 9 indicator variables for time periods
and the second lag of income, J = 55.

Notice also how the results are near those of the Anderson and Hsiao (1982) model.

7.2.4 The Proliferation of Instruments in the Generalized Method of Moments
Difference Estimator

For the generalized method of moments estimator, the number of instruments grows with
the time dimension of the sample. For the difference gmm model, considering only the lev-
els of y which instrument Δy, one has: an instrument y1 for the third observation (the first
usable one); two instruments y1, y2 for the fourth; and T − 2 instruments for the last obser-
vation y1, y2,… , yT−2, for a total J = 1 + 2 +…+ (T − 2) = 0.5(T − 1)(T − 2) instruments. For
example, if t = 10, one has 36 instruments. The number of instruments grows quadratically
with T . The weighting matrices of moments (7.9 and 7.15) are of dimension J × J . Because of
their symmetry, they contain J × (J + 1)∕2 unique elements. The number of estimands of the
matrix is therefore given by a polynomial in T whose dominant element is T4∕8. Every element
of this matrix having to be estimated through an empirical average calculated over the N indi-
viduals in the sample, the precision in estimating the matrix elements is not guaranteed unless
N is “big” with respect to J . Else, it can frequently happen that (7.9 et 7.15) be singular. The
generalized moments estimator cannot then be calculated through the formula (7.7) because
it uses the inverse of said matrix. One can then resort to generalized inversion methods, but
this is clearly the symptom of too many instruments for the given number of individuals in the
sample.

To understand the consequences of too many instruments, it is simplest to consider the case
of the instrumental variables estimator. This estimator can be obtained by applying least squares
twice: the first time regressing each column of the explanatory variables’ matrix X on that of
instrumental variables L, the second time regressing the dependent variable y on the predicted
values of the previous regression X̂. The bigger the number of instruments J , the better the first
stage fit, i.e., the closest X̂ will be to X. Should J become equal or greater than the number of
observations, one will have X̂ = X and the instrumental variables estimator will be identical to
the ordinary least squares one. This is referred to as the “overfitting” problem.10

Different solutions are possible in order to limit the number of instruments. The first one con-
sists in limiting the number of lags considered. For example, for t = 10, if limiting the number of

10 See Roodman (2009a), pp. 98-99.
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lags to 3 one gets 1 instrument for t = 3, 2 for t = 4 and 3 for t = 5… 10: a total of 21 instruments
versus 36 if using all lags.

The second possibility is to “collapse” the moment conditions.11 In this case, the matrix of
instruments (7.4) is replaced by the following one:

Ln =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yn1 0 0 0 … 0 0 0
yn2 yn1 0 0 … 0 0 0
yn3 yn2 yn1 0 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

yn(T−3) yn(T−4) yn(T−5) yn(T−6) … yn2 yn1 0
yn(T−2) yn(T−3) yn(T−4) yn(T−5) … yn3 yn2 yn1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(7.18)

The vector of (T − 2) empirical moments is then: m̄ = 1
N

∑
nL⊤nΔ𝜈n with:

(L⊤nΔ𝜈n)⊤ =

( T∑
t=3

yn(t−2)Δ𝜈nt ,

T∑
t=4

yn(t−3)Δ𝜈nt ,

T∑
t=5

yn(t−4)Δ𝜈nt ,… ,

T∑
t=T−1

yn(t−T+2)Δ𝜈nt , yn1Δ𝜈nt

)

Example 7.6 instruments proliferation – DemocracyIncome25 data set
To illustrate the problem of instrument proliferation, we consider the second dataset, where
the frequency is 25 years.

data("DemocracyIncome25", package = "pder")

pdim(DemocracyIncome25)

Balanced Panel: n = 25, T = 7, N = 175

We estimate the gmm model in differences, using the two variablesdemocracy andincome
as gmm instruments with all the available lags.

diff25 <- pgmm(democracy ̃ lag(democracy) + lag(income) |

lag(democracy, 2:99) + lag(income, 2:99),

DemocracyIncome25, model = "twosteps")

For each gmm instrument, there are 0.5 × 6 × 5 = 15 moment conditions and hence a total
of 30 gmm instruments plus the 5 time dummies, i.e. J = 35, when the number of individuals
is N = 25.

diff25lim <- pgmm(democracy ̃ lag(democracy) + lag(income) |

lag(democracy, 2:4)+ lag(income, 2:4),

DemocracyIncome, index=c("country", "year"),

model="twosteps", effect="twoways", subset = sample == 1)

diff25coll <- pgmm(democracy ̃ lag(democracy) + lag(income) |

lag(democracy, 2:99)+ lag(income, 2:99),

DemocracyIncome, index=c("country", "year"),

model="twosteps", effect="twoways", subset = sample == 1,

collapse = TRUE)

11 See Roodman (2009b), p. 148.
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sapply(list(diff25, diff25lim, diff25coll), function(x) coef(x)[1:2])

[,1] [,2] [,3]

lag(democracy) 0.4066 0.4678 0.50273

lag(income) -0.1713 -0.1258 -0.04221

As can be readily seen, the results of the three models are quite similar, which seems to indi-
cate that the proliferation of instruments is not an important issue in this particular context.

7.3 Generalized Method of Moments Estimator in Differences
and Levels

The main drawback of the difference gmm estimator is that lagged levels of the dependent
variable are often very weakly correlated with its lagged first difference. To solve this weak
instruments problem, one can add moment conditions on the model in levels.

7.3.1 Weak Instruments

One can clearly see the weakness of the correlation between the instruments of the difference
model and the regressor Δyt−1 in the case of a simple autoregressive model with T = 3.12 In this
case, the difference model for the third observation (the only usable one) can be written:

Δyn3 = 𝜌Δyn2 + Δ𝜈n3

The only available instrument for this observation is yn1. The gmm estimator reverts then
to the instrumental variables one, Δyn2 being instrumented by yn1. Applying two-stage least
squares, one first estimates Δyn2 as a function of yn1, then in a second step Δyn3 as a function of
Δŷn2. T

The structural model being ynt = 𝜌yn(t−1) + 𝜂n + 𝜈nt , the equation to be estimated in the first
step can equivalently be written:

Δyn2 = (𝜌 − 1)yn1 + 𝜂n + 𝜈n2

The ols estimator is then:

�̂� = (𝜌 − 1) +
1∕N

∑
nyn1(𝜂n + 𝜈n2)

1∕N
∑

ny2
n1

Supposing that the process began many periods ago, one can calculate the limit of �̂� observ-
ing that the numerator tends to 𝜎2

𝜂∕(1 − 𝜌) (see 7.3) and the denominator to 𝜎2
𝜂∕(1 − 𝜌)2 +

𝜎2
𝜈∕(1 − 𝜌2) (see 7.2). One has then, denoting k = (1 − 𝜌)2∕(1 − 𝜌2):

plim �̂� = (𝜌 − 1) k
𝜎2
𝜂∕𝜎2

𝜈 + k
(7.19)

Observing that lim𝜌=1k = 0, one can clearly see how, if the process is close to having a unit
root, �̂� will be close to 0. Figure 7.2, representing plim �̂� and 𝜌 − 1 as a function of 𝜌 illustrates
the fact that, even for values of 𝜌 well below 1, plim �̂� is very close to 0. The instruments are
therefore weak, and the quality of the second step in the two-stage least squares estimator will
be low (erratic estimate, high standard error).

The instruments will be equally weak if the variance of the individual effect is much larger
than that of the innovation.

12 See Blundell and Bond (1998) p. 120.
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Figure 7.2 First step coefficient as a function of 𝜌.

7.3.2 Moment Conditions on the Levels Model

Arellano and Bover (1995) and Blundell and Bond (1998) show that under weak hypotheses on
the data-generating process, another moment condition exists for the levels equation, which
can be written as:

ynt = 𝜌yn(t−1) + 𝜂n + 𝜈nt

The supplementary moment conditions can be written:

E(Δyn(t−s)(𝜂n + 𝜈nt)) = 0 s = 1… t − 1

These show how Δyn(t−s) are valid instruments for yn(t−1) in the levels equation. If one takes
into account the moment conditions for the differenced model too, only the condition corre-
sponding to s = 1 is appropriate, the others being redundant. For example, for T = 4 there are
3 moment conditions for the levels equation:13

(𝜂 + 𝜈3)Δy2 (7.20)
(𝜂 + 𝜈4)Δy3 (7.21)
(𝜂 + 𝜈4)Δy2 (7.22)

and 3 conditions for the differenced model:

(𝜈3 − 𝜈2)y1 (7.23)
(𝜈4 − 𝜈3)y2 (7.24)
(𝜈4 − 𝜈3)y1 (7.25)

Subtracting (7.20) from (7.22) or subtracting (7.25) from (7.24), one has in both cases:
(𝜈4 − 𝜈3)Δy2. Consequently, one moment condition is redundant. One can omit the

13 The individual index is temporarily omitted.
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condition (7.22) and, more generally, only consider moment conditions from the levels
model of the type: E(Δyn(t−1)(𝜂n + 𝜈nt)) = 0.

Replacing yn(t−1) with 𝜌yn(t−2) + 𝜂n + 𝜈n(t−1), one has:

E[(𝜂n + 𝜈nt)((𝜌 − 1)yn(t−2) + 𝜂n + 𝜈n(t−1))] = 0

As the 𝜈 are uncorrelated, one has:

E[𝜂n((𝜌 − 1)yn(t−2) + 𝜂n)] = 0

Or else, for period t:

E[𝜂n((𝜌 − 1)ynt + 𝜂n)] = 0

For ∣ 𝜌 ∣< 1 (stationarity hypothesis), such condition can be rewritten, dividing by 1 − 𝜌:

mnt = E
[
𝜂n

(
ynt −

𝜂n

1 − 𝜌

)]
= 0

Now, 𝜂n

1−𝜌
is the steady state of ynt in the pure autoregressive model. The moment condition

indicates therefore that, for period t, the difference between the actual value of the variable and
the steady state must be uncorrelated with the individual effect.

Replacing ynt with 𝜌yn(t−1) + 𝜂n + 𝜈nt , one has:

mnt = E
[
𝜂n

(
𝜌yn(t−1) + 𝜂n + 𝜈nt −

𝜂n

1 − 𝜌

)]

= E
[
𝜂n

(
𝜌yn(t−1) −

𝜌𝜂n

1 − 𝜌

)]
= 𝜌mn(t−1)

Therefore: mn(t−1) = 0 ⇒ mnt = 0. This equation indicates that the moment condition is
verified either for all periods or for none. This situation is illustrated in the first panel of
Figure 7.3.14

A more pragmatic interpretation of this equation is that mn decreases in time at a rate 𝜌. If
the process has begun a long time ago, y is near its steady state value and the moment condition
is acceptable, even if it is not exactly verified. This situation is illustrated in the second panel of
Figure 7.3.
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Figure 7.3 The supplementary condition of th system-GMM estimator.

14 This figure is inspired by Roodman (2009b) p. 145 et 147.
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7.3.3 The System GMM Estimator

The estimator adding moment conditions from the levels estimator to the difference model
is called generalized method of moments system estimator, or “sys-gmm”. This estimator is
obtained using the vector of errors in differences and in levels:

𝜖+n = (Δ𝜖n, 𝜖n) = (Δ𝜈n, 𝜖n)
and the corresponding matrix of moments:

L+
n =

⎛⎜⎜⎜⎜⎜⎝

Ln 0 0 … 0
0 Δyn2 0 … 0
0 0 Δyn3 … 0
0 0 0 … Δyn(t−1)

⎞⎟⎟⎟⎟⎟⎠
The moment conditions are then:(∑

n
L+⊤

n

(
Δ𝜈n(𝛽)
𝜖n(𝛾)

))⊤

=

(∑
n

yn1Δ𝜈n3,
∑

n
yn1Δ𝜈n4,

∑
n

yn2Δ𝜈n4,… ,

∑
n

yn1Δ𝜈nt ,
∑

n
yn2Δ𝜈nt ,… ,

∑
n

yn(T−2)Δ𝜈nt ,

∑
n
𝜖n3Δyn2,

∑
n
𝜖n4Δyn3,… ,

∑
n
𝜖ntΔyn(t−1)

)⊤

where, as usual, 𝛾⊤ = (𝛼, 𝛾⊤). There is an intercept to be estimated for the sys-gmm model,
which is not the case for the diff-gmm one.

The choice of an initial weighting matrix is less obvious than in the case of the difference
model. In fact, there, only the vector of differenced errors is used, and consequently the vari-
ance of said vector, under the hypotheses of homoscedasticity and no serial correlation of the
innovations, is proportional to a known matrix according to the coefficient 𝜎2

𝜈 : hence estimation
is unnecessary (see 7.8). By contrast, here the augmented vector of errors includes the errors in
levels and hence the individual effects. In this case, the variance matrix depends on 𝜎2

𝜈 and on 𝜎2
𝜂 .

To solve this problem and allow for a known starting matrix, one can assume 𝜎2
𝜂 = 0. In this case:

V(𝜖+n ) = E

((
Δ𝜈n

𝜈n

)
(Δ𝜈⊤n , 𝜈⊤n )

)
= E

(
D𝜈n𝜈

⊤
n D⊤ D𝜈n𝜈

⊤
n

𝜈n𝜈
⊤
n D⊤ 𝜈n𝜈

⊤
n

)
= 𝜎2

𝜈

(
h D

D⊤ I

)

Example 7.7 system gmm – DemocracyIncome data set
The system gmm model is obtained in a way similar to that in differences, the only change being
the argument transformation, which defaults to ’d’ for difference, must be set to ’ld’
(for level and difference).

sys2 <- pgmm(democracy ̃ lag(democracy) + lag(income) |

lag(democracy, 2:99)| lag(income, 2),

DemocracyIncome, index = c("country", "year"),

model = "twosteps", effect = "twoways",

transformation = "ld")

coef(summary(sys2))

Estimate Std. Error z-value Pr(>|z|)

lag(democracy) 0.6176 0.05714 10.809 3.134e-27

lag(income) 0.1200 0.01792 6.696 2.142e-11
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The autoregressive coefficient obtained with the difference and the system models are close.
The income coefficient is now significantly positive and much larger than previously.

7.4 Inference

Generalized method of moments estimation poses two types of problems in terms of inference:
• the first is that, even if the estimator is consistent, the same is not necessarily true for the

variance-covariance matrix of coefficients if applying the classical formula. One can then
use robust estimators of said matrix;

• the second is that estimation is consistent only under certain hypotheses: in particular those
of no error correlation and of moments’ validity.

7.4.1 Robust Estimation of the Coefficients’ Covariance

The variance of the one-step estimator is given by equation (7.11). If the innovations are het-
eroscedastic and/or correlated, L⊤HL is an inconsistent estimator of E

[(∑
nL⊤nΔ𝜈n

) (∑
nΔn𝜈

⊤
n Ln

)]
and the variance estimator given by (7.14) is not robust. By contrast, L⊤Ω̂𝛽(1)L is a consistent
estimator of the moments’ variance, which allows, plugging this expression into (7.11), to
obtain a robust estimator of the coefficients’ variance for the one-step estimator:

̂̂V
(1)

= [ΔX⊤L(L⊤HL)−1L⊤ΔX]−1

× ΔX⊤L(L⊤HL)−1(L⊤Ω̂𝛽(1)L)(L⊤HL)−1L⊤ΔX
× [ΔX⊤L(L⊤HL)−1L⊤ΔX]−1

(7.26)

The expression of the two-step estimator is given by (7.16). The problem is its dependence on
Ω̂𝛽(1) , in turn depending on 𝛽(1) and hence on Δy. Consequently, 𝛽(2) is a nonlinear function of
Δy and the usual variance formula is inappropriate.

Estimation of the variance Ω̂𝛽(1) of the J moments’ vector is typically very imprecise for two
reasons. The first is that the number of parameters is large (J × (J + 1)∕2). The second is that
these parameters are second-order moments of second-order moments, hence fourth-order
moments of the original data.15

The solution proposed by Windmeijer (2005) allows to obtain a consistent estimator of the
two-step estimators’ variance. To begin with, one replaces in (7.16) Δy by ΔX𝛽 + Δ𝜈. One has
then:

𝛽(2) − 𝛽 = [(ΔX⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤ΔX)]−1

× [(ΔX⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤Δ𝜈)]
(7.27)

In general, define:
g(Δy, Ω̂) = [(ΔX⊤L)(L⊤Ω̂L)−1(L⊤ΔX)]−1

× [(ΔX⊤L)(L⊤Ω̂L)−1(L⊤Δ𝜈)]
(7.28)

implying that 𝛽(2) − 𝛽 = g(Δy, Ω̂𝛽(1) ). The variance of 𝛽(2) is then that of g(Δy, Ω̂𝛽(1) ). One subse-
quently approximates g around the true value of parameters 𝛽. Denote by D the gradient of g
evaluated at the true parameter values:

D = 𝜕

𝜕𝛽
g(Δy, Ω̂𝛽)∣𝛽=𝛽

15 See Roodman (2009b) p. 140.
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The first-order approximation can then be written:

g(Δy, Ω̂𝛽(1) ) ≈ g(Δy, Ω̂𝛽) + D(𝛽(1) − 𝛽)

Or, (𝛽(1) − 𝛽) = g(Δy,H). Consequently, the approximation becomes:

g(Δy, Ω̂𝛽(1) ) ≈ g(Δy, Ω̂𝛽) + Dg(Δy,H)

The variance of 𝛽(2) is then approximated by:

̂̂V
(2)

≈ [g(Δy, Ω̂𝛽) + Dg(Δy,H)][g(Δy, Ω̂𝛽) + Dg(Δy,H)]⊤

or:
̂̂V
(2)

≈ g(Δy, Ω̂𝛽)g(Δy,H)⊤D⊤

+ Dg(Δy,H)g(Δy, Ω̂𝛽)⊤

+ g(Δy, Ω̂𝛽)g(Δy, Ω̂𝛽)⊤

+ Dg(Δy,H)g(Δy,H)⊤D⊤

(7.29)

Replacing Δ𝜈 by Δ�̂�(1) and Ω̂𝛽 by Ω̂𝛽(1) , g(Δy, Ω̂𝛽)g(Δy, Ω̂𝛽)⊤ and g(Δy, Ω̂𝛽)g(Δy,H)⊤ are
both approximated by V̂(2) = [ΔX⊤L(L⊤Ω̂𝛽(1)L)−1L⊤ΔX]−1. Moreover, g(Δy,H)g(Δy,H)⊤ =
[ΔX⊤L(L⊤HL)−1L⊤ΔX]−1 = V̂(1). One has then, finally, the expression for the robust covariance
of the two-step estimator:

̂̂V
(2)

= V̂(2)D⊤ + DV̂(1)D⊤ + V̂(2) + DV̂(2)

The expression of D is to be found in Windmeijer (2005).

Example 7.8 robust estimation of the covariance matrix – DemocracyIncome
data set
The function vcov computes the “classical” (and inconsistent) version of the variance, and
vcovHC the robust version (equations 7.26 for the one-step model, and 7.29 for the two-step
one). Below we extract the standard errors of the first two coefficients for the two-step difference
model.

sqrt(diag(vcov(diff2)))[1:2]

lag(democracy) lag(income)

0.04795 0.04646

sqrt(diag(vcovHC(diff2)))[1:2]

lag(democracy) lag(income)

0.10783 0.06054

One can actually see that in this example the classical variance formula seems to be biased
downward. In fact, “robust” standard errors are clearly superior.

7.4.2 Overidentification Tests

If the moment conditions are valid, the empirical moments’ vector m̄ = 1
N

∑
nL⊤nΔ𝜈n has expec-

tation zero. If this hypothesis is verified, the Wald statistic:

m̄⊤V(m̄)−1m̄
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is distributed as a 𝜒2 with J − K degrees of freedom. This test has been proposed by Sargan
(1958) and applied to gmm models by Hansen (1982). Various versions of this test can be
obtained, depending on whether:

• the one-step or the two-step residuals are used to approximate m̄;
• the simple estimator ( 𝜎

2
𝜈

N2 L⊤HL) or the robust one ( 1
N2 L⊤Ω̂𝛽(1)L) is used for the moments’ vari-

ance matrix.

For example, the test on the two-step model using the robust estimator of the moments’
matrix is based on the following statistic:( 1

N
Δ�̂�(2)⊤L

)( 1
N2 L⊤Ω̂𝛽(1)L

)−1 ( 1
N

L⊤Δ�̂�(2)
)

= (Δ�̂�(2)⊤L)(L⊤Ω̂𝛽(1)L)−1(L⊤Δ�̂�(2))

which is the value of the objective function of the two-step gmm model evaluated in 𝛽(2).
It is recommended, in the case of “sys-gmm” models, to perform a Sargan-Hansen test on

the subset of moment conditions concerning the levels model, in order to separately test the
validity of the supplementary hypotheses imposed by that model.

Example 7.9 Sargan-Hansen test – DemocracyIncome data set
The Sargan-Hansen test can be performed through function sargan. For example, for the
one-step difference model, one has:

sargan(diff2)

Sargan test

data: democracy ̃ lag(democracy) + lag(income) | lag(democracy, 2:99) | …
chisq = 50, df = 44, p-value = 0.3

sargan(sys2)

Sargan test

data: democracy ̃ lag(democracy) + lag(income) | lag(democracy, 2:99) | …
chisq = 56, df = 54, p-value = 0.4

For the difference model, one has J = 55 (the 45 “gmm” instruments, the income variable and
nine time dummies) and K = 11 (the lagged endogenous variable, income and the nine time
dummies). The number of degrees of freedom is then J − K = 44. In this case, the hypothesis
of moments’ validity is not rejected.

For the system model, the number of periods used is 10 (one more than in the difference
model). There are therefore one more coefficient and one more instrument (the coefficient
associated to the added time dummy) and 10 supplementary instruments corresponding to
the 10 moment conditions for the 10 observations of the model in levels. One therefore has
J = 55 + 1 + 10 = 66 and K = 11 + 1 = 12. Hence, the number of degrees of freedom is J − K =
66 − 12 = 54, and again, the hypothesis of validity of the moment conditions for the system
gmm model is not rejected.

The Hansen-Sargan test is particularly sensitive to the problem of instrument proliferation.
Roodman (2009b), using the studies by Levine et al. (2000) and Forbes (2000), shows that the
p-value of this test tends to be very high, leading to non-rejecting the validity of moment
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conditions, when the same test performed on models more parsimonious in terms of instru-
ments may lead to the opposite conclusions. To illustrate this result, we compute Sargan’s test
on the model previously estimated on the dataset with 7 observations of 25 countries.

sapply(list(diff25, diff25lim, diff25coll),

function(x) sargan(x)[["p.value"]])

chisq chisq chisq

0.91890 0.07105 0.21531

The p-value for the model using all moment conditions is near 1, while those of the other mod-
els are much lower; in particular, for the model limiting the number of lags to 3, the hypothesis
of instruments validity is rejected at the 10% significance level.

7.4.3 Error Serial Correlation Test

The generalized method of moments is not consistent unless the moment conditions are ver-
ified, which, in particular, implies that the innovations are serially uncorrelated. Arellano and
Bond (1991) proposed an appropriate test, based on the following statistic:

al =
1√
N
Δ�̂�⊤Δ�̂�−l

where Δ𝜈−l is the l-th lag of Δ𝜈. Using the expression of the theoretical model and of the esti-
mated one: Δy = ΔX𝛽 + Δ𝜈 = ΔX𝛽 + Δ�̂�, one gets:

Δ�̂� = Δ𝜈 − ΔX(𝛽 − 𝛽)

Inserting this expression into the test statistic, one obtains:

al =
1√
N
(Δ𝜈⊤ − (𝛽 − 𝛽)⊤ΔX⊤)(Δ𝜈−l − ΔX−l(𝛽 − 𝛽))

= 1√
N
Δ𝜈⊤Δ𝜈−l

− 1
N
Δ𝜈⊤ΔX−l

√
N(𝛽 − 𝛽)

−
√

N(𝛽 − 𝛽)⊤ 1
N
ΔX⊤Δ𝜈−l

+
√

N(𝛽 − 𝛽)⊤ 1√
N

1
N
ΔX⊤ΔX−l

√
N(𝛽 − 𝛽)

This expression simplifies if N → +∞ observing that:

• 𝛽 converges at a rate
√

N ,
√

N(𝛽 − 𝛽) does neither diverge nor converge to 0;
• if the explanatory variables are not post-determined, they are not correlated with posterior

values of 𝜈. One has then: 1
N
𝜈⊤ΔX−l → 0;

• 1
N
ΔX⊤ΔX−l does not diverge.

which implies that the second and fourth terms converge to 0. A consistent estimator of the
variance of al can therefore be based on:

bl =
1√
N
(Δ𝜈⊤Δ𝜈−l − (𝛽 − 𝛽)⊤ΔX⊤Δ𝜈−l)
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A consistent estimator of bl (and hence of al) is:
1
N
(Δ�̂�−l⊤V̂(Δ�̂�)Δ�̂�−l + Δ�̂�−l⊤ΔXV̂(𝛽)ΔX⊤�̂�−l

− 2Δ�̂�−l⊤ΔX(ΔX⊤LAL⊤ΔX)−1ΔXLAL⊤V̂(Δ�̂�)Δ�̂�−l)

The test statistic is thus obtained by dividing al by the square root of the above expression
and it is normally distributed under the hypothesis of no serial correlation. The model being
expressed in first differences, the first-order serial correlation test is inappropriate because
Δ𝜈nt = 𝜈nt − 𝜈n(t−1) is correlated with Δ𝜈n(t−1) = 𝜈n(t−1) − 𝜈n(t−2) because of the presence of 𝜈n(t−1)
in the two successive differences. On the converse, the second-order serial correlation test
is appropriate, as it consists in testing correlation between Δ𝜈nt = 𝜈nt − 𝜈n(t−1) and Δ𝜈n(t−2) =
𝜈n(t−2) − 𝜈n(t−3), which will be only present if 𝜈n(t−1) is correlated with 𝜈n(t−2), i.e., if the innovations
in levels are serially correlated of order 1.

Example 7.10 autocorrelation test – DemocracyIncome data set
The error serial correlation test of Arellano and Bond (1991) is obtained through the function
mtest. The argument order is here set to 2 according to the preceding remark.

mtest(diff2, order = 2)

Autocorrelation test of degree 2

data: democracy ̃ lag(democracy) + lag(income) | lag(democracy, 2:99) | …
normal = 0.88, p-value = 0.4

The hypothesis of no serial correlation is not rejected.

7.5 More Empirical Examples

There are many articles using gmm on panel data. We will here limit ourselves to a short descrip-
tion of those for whose the data are available in the plm and pder packages.

The study by Levine et al. (2000) tests for a causal relationship between the quality of the
financial system (which limits information asymmetries and facilitates transactions) and eco-
nomic growth. To this end, they estimate a model where economic growth is a function of
a number of control variables and of exogenous characteristics of the financial system. They
draw on a panel of 74 countries with 7 observations of 5-year periods from 1960 to 1995. The
log of the growth rate is regressed on the log of initial wealth and of three indicators of financial
system quality: the degree of liquidity of the financial system, the ratio of commercial banks’
to central bank deposits, and the ratio of outstanding credit to gdp. The two gmm models -
difference and system - are estimated, and the three indicators turn out having a positive and
significant influence on growth, especially in the system case. Roodman (2009b) returns on
this study elaborating on the instruments proliferation problem, potentially leading to incor-
rect acceptance of the validity of moment conditions. In particular, in the original study the
p-value of the Hansen test of overidentifying restrictions is 0.97. Different specifications, more
parsimonious as far as the number of instruments is concerned, used by Roodman (2009b) yield
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much different results. In fact, the p-value is now 0.001 and the validity of the supplementary
restrictions of the system model is rejected. The data allowing to reproduce these results are
available as FinanceGrowth in the pder package.

Forbes (2000) is concerned with the effect of income inequality on economic growth. To this
end, a panel of 45 countries over 6 5-year periods from 1960 to 1995 is analyzed. Growth is esti-
mated as a function of the log of income per capita lagged by one period, of the Gini coefficient
lagged by one period, of the education level of male and female, and of the price level of invest-
ments. Various estimation methods are used, in particular the difference gmm of Arellano and
Bond (1991). The main result of the study is that the sign of the Gini coefficient is positive and
significant at the 5% level. This result is against those of many cross-sectional studies suggesting
a negative relationship between inequality and economic growth. This study has been recon-
sidered by Roodman (2009b) in order to illustrate the pitfalls of using many weak instruments.
In fact, the autoregressive coefficient is near 1, and the number of instruments is very high (89,
against only 138 observations). Roodman (2009b) employs various other specifications with a
limited number of instruments, and in these cases the Gini coefficient is not significant any
more. These data are provided as IneqGrowth in the pder package

Caselli et al. (1996) address the issue of countries’ economic growth, and in particular the phe-
nomenon of convergence. They start from the results obtained in many cross-sectional studies,
for the most part coming to the conclusion that countries converge tho their steady state at a
very low rate, generally in the region of 2-3%. Their point is that such studies suffer from two
specification problems: the first is neglecting the dynamic nature of the model, and the second
is not considering the possible endogeneity of explanatory variables. The authors apply the esti-
mator of Arellano and Bond (1991) to a panel of 93 countries and 6 5-year periods, 1965 to 1985.
They find a much higher convergence rate, in the order of 10%. Bond et al. (2001) indicate that
these results must be taken with caution in so far as the dependent variable is close to having a
unit root, and hence the instruments used are weak. They reestimate the same model using the
Blundell and Bond (1998) estimator and thus obtain a much lower convergence rate of about
2-4%. These data are provided as Solow in the pder package

In their seminal paper, Arellano and Bond (1991) used data on 140 British firms from 1976 to
1984 in order to estimate a labor demand equation. The covariates are two lags of the dependent
variable and, also including two lags, the salary rate, the capital stock, and the production level.
These data have been used in many further articles, in particular Blundell and Bond (1998),
Windmeijer (2005) and Roodman (2009a). They are available as EmplUK in the plm package.

Alonso-Borrego and Arellano (1999) perform a study on similar data concerning 738 Spanish
firms over the period 1983-1990. A var model is used for employment and the salary rate. These
data are provided as Snmesp in the plm package.

Mairesse and Hall (1996), Blundell and Bond (2000) and Bond (2002) have estimated a
Cobb-Douglas production function over a panel of 509 American firms over the period
1982-1989. The explanatory variables, taken in logs, are the lagged dependent variable and the
two production factors (labor and capital) contemporaneous and lagged by one period. The
results by Mairesse and Hall (1996), obtained using the Arellano and Bond (1991) estimator,
are surprising: the hypothesis of constant returns to scale is rejected and the coefficient on
capital is small and not significant. Blundell and Bond (2000) show how these unsatisfactory
results are due to the variables used being near to having a unit root. In such cases, we know
that the difference gmm estimator yields bad results because the instruments are weak. The
system estimator instead yields more plausible results (hypothesis of constant returns to scale
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not rejected and significant coefficient on capital). These data are available as RDPerfComp in
the pder package.

Kessler et al. (2011) address the influence of inter-regional transfers within a federal State
on regional inequality. Their theoretical model predicts that, counterintuitively, such transfers
may aggravate inter-regional inequalities. They use data on 17 oecd countries over the period
1982-1999 and the Arellano and Bond (1991) estimator. The results actually point at an aggra-
vating effect of an increase in transfers on inter-regional inequality. These data are provided as
RegIneq in the pder package.
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8

Panel Time Series

8.1 Introduction

Panel time series methods were born to address the issues of “long” panels of possibly non-
stationary series, usually of macroeconomic nature. Such datasets, pooling together a sizable
number of time series from different countries (regions, firms) have become increasingly
common and are the main object of empirical research in many fields: development economics,
regional or political science to name a few; the most typical unit of observation being a country
or region within a reasonably large set of similar units and over at least two decades of either
yearly or quarterly data.

Unlike “large” panels, the emphasis is therefore not only on N-asymptotics but on both N and
T tending to infinity, either sequentially or jointly (a seminal paper in this respect is Phillips and
Moon, 1999). Specifying the order with which N and T diverge is essential for the properties
of estimators.

The dynamics holds a more important, often prominent place (see e.g. Pesaran and Smith,
1995; Eberhardt et al., 2013). Under cointegration, error correction specifications are often of
interest (see e.g. Holly et al., 2010). The assumption of parameter homogeneity is also often
questioned in this field, often leading to relaxing it in favor of heterogeneous specifications
where the coefficients of individual units are free to vary over the cross section. The parameter
of interest can then be either the whole population of individual ones or the cross-sectional
average thereof.

Lastly, the issue of cross-sectional correlation, which is assumed away in the case of dynamic
gmm estimators a la Arellano and Bond (1991), takes a central role in panel time series methods.
In fact, observations coming from countries of the world, or regions within one country or
continent, are more likely than not to be correlated in the cross section either by some spatial
process, whereby shocks spread to neighboring units because of proximity, or by the effect of
common factors.

For example, consider a dynamic error component model:

ynt = 𝜂n + 𝜌ynt−1 + 𝛽xnt + 𝜈nt

where 𝜂 is allowed to be correlated with x; for N → ∞ and fixed T , the ols estimator of (𝜌, 𝛽)
is inconsistent because of the presence of the unobserved correlated effects 𝜂. From Chapter 7,
we know that the within estimator for this model is in turn biased downward, the bias being
inversely proportional to T so that it becomes less severe as the available time dimension gets
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longer. If N and T both diverge, then for consistency T is needed to grow “fast enough” relative
to N , i.e., at a rate such that the limit of N∕T is finite.

From a different viewpoint, if each time series in the panel is considered separately, as
T → ∞, ols are a consistent estimator for the individual parameters (𝜌n, 𝛽n) so that sepa-
rately estimating, and then either averaging or pooling, the coefficients becomes a feasible
strategy.

More generally, the abundance of data along both dimensions in large N , large T panels opens
up possibilities and issues, other than the familiar ones of large, short panels: heterogeneity can
be considered, where coefficients are not fixed across individuals but are allowed to vary, either
freely or randomly around an average; nonstationarity, where the long time dimension allows to
address unit roots and cointegration; and cross-sectional dependence across individual units,
possibly due to common factors to which individual units react idiosyncratically.

8.2 Heterogeneous Coefficients

Long panels allow to estimate separate regressions for each unit. Hence it is natural to question
the assumption of parameter homogeneity (𝛽n = 𝛽 ∀n, also called the pooling assumption) as
opposed to various kinds of heterogeneous specifications. This is a vast subject, which we will
keep as simple as possible here; in general it can be said that imposing the pooling restriction
reduces the variance of the pooled estimator but may introduce bias if these restrictions are
false (Baltagi et al., 2008). Moreover, the heterogeneous model is usually a generalization of
the homogeneous one so that estimating it may allow to test for the validity of the pooling
restriction.

The panel data model with individual heterogeneity:

ynt = 𝛼 + 𝛽nxnt + 𝜂n + 𝜈nt

generalizes the familiar individual effects model: here, all parameters vary across units, while in
the former only the intercept did. The decision “to pool or not to pool” spans a vast literature; it
is analyzed thoroughly by Baltagi et al. (2000) (see also Baltagi and Griffin, 1997; Baltagi et al.,
2003a) in a forecasting perspective. Summing up the results of a number of studies, Baltagi
et al. (2008) conclude that for forecasting purposes, the simplicity and stability of the pooled
estimators dominate the flexibility of the heterogeneous ones, but seen from other perspectives,
conclusions may reverse. It can be safely stated that data rich environments favor the latter,
while the appeal of pooling restrictions becomes higher the smaller the dataset.

8.2.1 Fixed Coefficients

The heterogeneous panel model is:

ynt = 𝛼 + 𝛽nxnt + 𝜂n + 𝜈nt (8.1)

where 𝛽n are individual-specific parameters and xnt is a vector of K explanatory variables.
If the pooling assumption is relaxed and one does not want to make any other assumption

about how the 𝛽n are generated, and if the T dimension permits, one can simply estimate a
separate vector of coefficients for each regression.

Individual slope parameters 𝛽n can be estimated (T-consistently) by least squares as:

𝛽ols,n = (X⊤
n Xn)−1X⊤

n yn (8.2)
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This can be accomplished by subsetting the data and running ols; more efficient functionality
is provided in plm through the functionpvcm, leaving themodel argument at the default value
of ’within’.

8.2.2 Random Coefficients

Estimating separate regressions negates the advantages of panel datasets in that degrees of free-
dom are greatly reduced with respect to the pooled data. If 𝛽ns are treated as fixed, there will
be NK parameters to estimate with NT observations. Random coefficients specifications allow
instead for cross-sectional variability while still reaping the benefits of pooling.

8.2.2.1 The Swamy Estimator
Swamy (1970) proposed a model with all individual-specific coefficients. In this case, we have:

ynt = 𝛾⊤n znt + 𝜈nt

where homoscedasticity of 𝜈 is not assumed and 𝛾n ∼ N(𝛾,Δ), or 𝛿n = 𝛾n − 𝛾 ∼ N(0,Δ). The
model is then rewritten as:

ynt = 𝛾⊤znt + 𝜖nt

with 𝜖nt = 𝜈nt + 𝛿⊤n znt . The model errors can be heteroscedastic (in particular because we did
not impose homoscedasticity of 𝜈) and the errors of each individual are correlated as containing
the same parameter vector 𝛿n. For the n−th individual, the error covariance is then:

Ωn = E(𝜖n𝜖
⊤
n ) = E[(𝜈n + Zn𝛿n)(𝜈⊤n + 𝛿⊤n Z⊤

n )]

𝜈 and 𝛿 being uncorrelated by hypothesis, we have:

Ωn = E(𝜖n𝜖
⊤
n ) = 𝜎2

nIT + ZnΔZ⊤
n

For the whole sample, Ω = E(𝜖𝜖⊤) is a block diagonal matrix, each block being equal to Ωn.
ols estimation of this model is inefficient, not taking into account the heteroscedasticity and

the correlation of errors. The model can be efficiently estimated by generalized least squares
by computing Ω−0.5 and then applying ols to the variables transformed by pre-multiplying
them by Ω−0.5. Given that the latter is a block diagonal matrix, the same result is obtained by
pre-multiplying each individual’s data by the corresponding block Ω−0.5

n . The generalized least
squares method is clearly infeasible because Ωn is unknown, but it can be made operational by
employing an estimate thereof from a consistent model. This amounts to estimating N 𝜎2

n and
the elements of the Δ matrix, or in total N + K(K + 1)∕2 parameters.

To this end, we start by estimating each individual model by ols. We then have:

�̂�n = (Z⊤
n Zn)−1Z⊤

n yn = 𝛾n + (Z⊤
n Zn)−1Zn𝜈n

A natural estimator of 𝜎2
n is then:

�̂�2
n =

T∑
t
𝜖2

nt∕(T − K − 1)

The estimates are then averaged:

̄̂𝛾 = 1
N

N∑
n=1

�̂�n
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The estimation of Δ is based on the expression �̂�n − ̄̂𝛾 , which, developing and regrouping
terms, can be written:

�̂�n − ̄̂𝛾 = 𝛾n + (Z⊤
n Zn)−1Z⊤

n 𝜈n −
1
N

N∑
n=1

(𝛾n + (Z⊤
n Zn)−1Z⊤

n 𝜈n)

= N − 1
N

𝛾n +
N − 1

N
(Z⊤

n Zn)−1Z⊤
n 𝜈n −

1
N
∑
m≠n

𝛾m

− 1
N
∑
m≠n

(Z⊤
mZm)−1Z⊤

m𝜈m

The usefulness of this expression is in writing �̂�n − ̄̂𝛾 as a linear combination of uncorrelated
random variates, which considerably simplifies the computation of the variance of �̂�n as all
covariances are zero. We then have:

E((�̂�n − ̄̂𝛾)2) =
(N − 1

N

)2
Δ +

(N − 1
N

)2
𝜎2

n(Z⊤
n Zn)−1

+ N − 1
N2 Δ + 1

N2

∑
m≠n

𝜎2
m(Z⊤

mZm)−1

Finally, regrouping terms:

E((�̂�n − ̄̂𝛾)2) = N − 1
N

Δ + N − 2
N

𝜎2
n(Z⊤

n Zn)−1 + 1
N2

∑
n
𝜎2

n(Z⊤
n Zn)−1

We then have:

E

(∑
n
(�̂�n − ̄̂𝛾)2

)
= (N − 1)Δ + N − 2

N
∑

n
𝜎2

n(Z⊤
n Zn)−1 + 1

N
∑

n
𝜎2

n(Z⊤
n Zn)−1

= (N − 1)Δ + N − 1
N

∑
n
𝜎2

n(Z⊤
n Zn)−1

E

(
1

N − 1
∑

n
(�̂�n − ̄̂𝛾)2

)
= Δ + 1

N
∑

n
𝜎2

n(Z⊤
n Zn)−1

which gives the estimator of Δ:

Δ̂ = 1
N − 1

∑
n
(�̂�n − 𝛾)2 − 1

N
∑

n
𝜎2

n(Z⊤
n Zn)−1

Example 8.1 Random coefficient model – Dialysis data set
Caudill et al. (1995) examine the effect that certificate-of-need regulation by state health plan-
ning organizations has on the speed of diffusion of a medical technology, hemodialysis. More
specifically, they test the hypothesis that this regulation has slowed the rate of adoption of this
technology. They use a panel of 50 American states for 14 years (from 1977 to 1990). The degree
of adoption of the technology diffusion is measured as the ratio of the number of dialysis
machines in a particular state for a year divided by the number of machines for the last period
of observation. A logistic diffusion function is used for the response. Two covariates are used: a
time trend and a dummy variable that equals one for observations for which certificate-of-need
regulation is in effect, interacted with the time trend.

The Swamy (1970) model can be estimated with the pvcm function, setting the model argu-
ment to ’random’.
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data("Dialysis", package = "pder")

rndcoef <- pvcm(log(diffusion / (1 - diffusion)) ̃ trend + trend:regulation,

Dialysis, model="random")

summary(rndcoef)

Oneway (individual) effect Random coefficients model

Call:

pvcm(formula = log(diffusion/(1 - diffusion)) ̃ trend + trend:regulation,

data = Dialysis, model = "random")

Balanced Panel: n = 50, T = 14, N = 700

Residuals:

total sum of squares: 629.5

id time

0.4685 0.2659

Estimated mean of the coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) -1.4266 0.1284 -11.11 <2e-16 ***

trend 0.3416 0.0260 13.15 <2e-16 ***

trend:regulation -0.0581 0.0237 -2.45 0.014 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated variance of the coefficients:

(Intercept) trend trend:regulation

(Intercept) 0.6617 -0.0736 0.0398

trend -0.0736 0.0288 -0.0205

trend:regulation 0.0398 -0.0205 0.0179

Total Sum of Squares: 33900

Residual Sum of Squares: 642

Multiple R-Squared: 0.981

The results indicate that certificate-of-need regulation has slowed the diffusion of hemodi-
alyis technology, as the coefficient is significantly (at the 5% level) negative. The estimated
covariance matrix of the random coefficients is an element of the fitted model called "Delta";
the following command extracts the mean values of the three coefficients and their standard
deviations.

cbind(coef(rndcoef), stdev = sqrt(diag(rndcoef$Delta)))

y stdev

(Intercept) -1.42656 0.8135

trend 0.34161 0.1697

trend:regulation -0.05806 0.1339

The random coefficients have large standard deviations: about half the mean for the trend
coefficient and about two times the mean for the regulation coefficients. These large values
justify the use of the random coefficient model.
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8.2.2.2 The Mean Groups Estimator
Under less restrictive parametric assumptions than those of the Swamy model, assuming only
exogeneity of the regressors and independently sampled errors, the average 𝛾 can be estimated
by the simpler mean groups (mg) method

�̂�mg = 1
N

N∑
n=1

�̂�ols,n (8.3)

and its dispersion, in a nonparametric fashion, through the empirical covariance of the
individual �̂�n:

V(�̂�mg) =
1

N(N − 1)

N∑
n=1

(�̂�ols,n − �̂�mg)(�̂�ols,n − �̂�mg)⊤ (8.4)

which is in fact the simplified version of the Swamy covariance seen above. In the context
of the Swamy model, it is biased but T-consistent and, differently from the original, always
non-negative definite; as such, it has been suggested by Swamy (1970) himself as an alter-
native for cases when his parametric covariance is not. In general, it can be shown that the
mg estimator is a special case with equal gls weighting of the Swamy estimator, to which it
converges as T grows sufficiently large (Hsiao and Pesaran, 2008). The function pmg performs
mean groups estimation by default (model=’mg’).

Example 8.2 Heterogeneous coefficients – HousePricesUS data set
Holly et al. (2010) analyze the long-run relationship between house prices and economic
fundamentals (per capita income, net borrowing cost and population growth) in a sample
of 49 US states over 29 years. The hypothesis of interest is whether house prices have an
income elasticity of one. Their specification allows for variable coefficients in the random
sense, as discussed above. The core of their model is the relationship between the logs of
the nonstationary variables house prices price and income income. Their initial approach
is to estimate a static specification by mean groups (mg). In the following we compare the
coefficients from the asymptotically equivalent Swamy and mg estimators:

data("HousePricesUS", package = "pder")

swmod <- pvcm(log(price) ̃ log(income), data = HousePricesUS, model= "random")

mgmod <- pmg(log(price) ̃ log(income), data = HousePricesUS, model = "mg")

coefs <- cbind(coef(swmod), coef(mgmod))

dimnames(coefs)[[2]] <- c("Swamy", "MG")

coefs

Swamy MG

(Intercept) 3.8914 3.8498

log(income) 0.2867 0.3018

One can see that for T = 29, the efficient Swamy estimator and the simpler mg are already
very close; moreover, both are statistically very far from one.

Dynamic Mean Groups Importantly, Pesaran and Smith (1995) consider the mg estimator in
dynamic models of the type

ynt = 𝜌nynt−1 + 𝛾⊤n znt + 𝜈nt (8.5)

and show that, unlike aggregated or pooled regressions, it provides consistent estimates of
both coefficients and standard errors. Considering the full parameter vector 𝜃n = (𝜌n, 𝛾n),
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they observe that, while for fixed T the estimator �̂�n is biased of order 1∕T , the individual
regressions (8.2) become consistent estimators of 𝜃n as T diverges. Hence the mg estimator
of the average parameter vector �̄� is consistent for both N and T → ∞ (see the discussion in
Hsiao and Pesaran, 2008). Explicit calculation of the individual parameters’ covariance as in
(8.4) in turn provides a consistent estimate of V(�̂�).

Example 8.3 dynamic mg estimation – RDSpillovers data set
In their analysis of the returns of own vs general R&D, Eberhardt et al. (2013) consider both
static and dynamic heterogeneous specifications in the production function of European firms.
In doing so, every country-industry is allowed to follow its own production function; individual
parameters are then averaged for the purpose of general inference. Static and dynamic specifi-
cations alike are considered.

In the following, we estimate both the static mg model (see their Table 7) and the dynamic
mg. As in the original paper, we include individual trends by specifying trend =TRUE:

library("texreg")

data("RDSpillovers", package = "pder")

fm.rds <- lny ̃ lnl + lnk + lnrd

mg.rds <- pmg(fm.rds, RDSpillovers, trend = TRUE)

dmg.rds <- update(mg.rds, . ̃ lag(lny) + .)

screenreg(list('Static MG' = mg.rds, 'Dynamic MG'= dmg.rds), digits = 3)

=======================================

Static MG Dynamic MG

---------------------------------------

(Intercept) 4.550 *** 4.038 ***

(0.841) (0.778)

lnl 0.568 *** 0.507 ***

(0.086) (0.059)

lnk 0.117 0.020

(0.122) (0.085)

lnrd -0.058 -0.092

(0.079) (0.071)

trend 0.022 ** 0.023 ***

(0.008) (0.004)

lag(lny) 0.223 ***

(0.034)

---------------------------------------

Num. obs. 2637 2518

=======================================

*** p < 0.001, ** p < 0.01, * p < 0.05

The lagged dependent variable turns out significant, although the autoregressive parameter’s
magnitude is modest. On the basis of the dynamic model, the authors proceed to calculate the
long-run coefficients with or without common factor restrictions (see comment to their Table
8). Here we only reproduce the computation of the long- run elasticity of production to own
R&D (which is the ratio of the coefficient of R&D to one minus the autoregressive coefficient),
and the estimation of its standard error, through a Taylor approximation, by the delta method.
With reference to a vector of K random variates, the function deltamethod from package
msm (Jackson, 2011) requires: a formula describing the transformation (here, x5/(1-x2) as
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the coefficients on lag(lny) and lnrd are respectively 2nd and 5th); a vector of K estimates
for the means; and a K × K matrix of covariance estimates. For the latter two, here we provide
the coef.panelmodel and vcov.panelmodel of the dynamic model:

library("msm")

b.lr <- coef(dmg.rds)["lnrd"]/(1 - coef(dmg.rds)["lag(lny)"])

SEb.lr <- deltamethod(̃ x5 / (1 - x2),

mean = coef(dmg.rds), cov = vcov(dmg.rds))

z.lr <- b.lr / SEb.lr

pval.lr <- 2 * pnorm(abs(z.lr), lower.tail = FALSE)

lr.lnrd <- matrix(c(b.lr, SEb.lr, z.lr, pval.lr), nrow=1)

dimnames(lr.lnrd) <- list("lnrd (long run)", c("Est.", "SE", "z", "p.val"))

round(lr.lnrd, 3)

Est. SE z p.val

lnrd (long run) -0.118 0.091 -1.301 0.193

After obtaining the point estimate and standard error of the long-run coefficient, we compute
the t-statistic and the corresponding asymptotic p-value for the two-tailed test. The long-run
elasticity of production to own R&D from the dynamic mg model is not significant at any con-
ventional confidence level.1

8.2.3 Testing for Poolability

Heterogeneous estimators relax the assumption made in the error components model, which
imposes homogeneity of all model parameters (but the intercept) across individuals. Under
this assumption, one can estimate a single model for the whole sample, at most including
individual-specific constant terms. This restriction, which is usually called poolability, can be
tested by comparing the estimation results from the different approaches. Furthermore, one
can impose the further restriction of no individual-specific intercepts.

In the variable coefficients framework, unrestricted estimation consists in estimating by
ols one different model for each individual. The sum of squared residuals is then: 𝜖⊤np𝜖np. For
this model, degrees of freedom are: N(T − K − 1). The restricted model to compare to can be
either pooled ols (𝜖⊤ols𝜖ols with NT − K − 1 degrees of freedom) or the within model (𝜖⊤w𝜖w
with N(T − 1) − K degrees of freedom), depending on whether the absence of individual
effects is imposed or not. The test statistic is then (taking the within specification as the
restricted model):

𝜖⊤w𝜖w − 𝜖⊤np𝜖np

𝜖⊤np𝜖np

N(T − K − 1)
(N − 1)K

This takes the form of a well-known stability test (known as the Chow test) distributed under
H0 as an F with (N − 1)K and N(T − K − 1) degrees of freedom.

The function performing this kind of test is called pooltest. One possible usage is to
provide two models, one estimated separately for each individual, and either an ols or a
within model. In the first case, all parameters are supposed constant under H0, including the
constant terms. The unrestricted model is estimated by the function pvcm. As seen above,

1 The authors report instead the results from a common factor-restricted model, reaching qualitatively similar
conclusions.
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Figure 8.1 Individual coefficients, HousePriceUS.

this function allows to estimate two different models, depending on the parameter model;
here, the appropriate value for this argument is ’within’ (the other possible choice being
illustrated in the next section).

Example 8.4 Poolability test – HousePricesUS data set
Estimating the competing models for the HousePricesUS data, we have:

housep.np <- pvcm(log(price) ̃ log(income), data = HousePricesUS,

model = "within")

housep.pool <- plm(log(price) ̃ log(income), data = HousePricesUS,

model = "pooling")

housep.within <- plm(log(price) ̃ log(income), data = HousePricesUS,

model = "within")

As usual, the pvcm function provides a coef.pvcm method to retrieve individual coeffi-
cients. As a first assessment of their dispersion, in Figure 8.1 we display a histogram of the
distribution of either coefficient.

The summary.pvcm method instead returns, for each coefficient, the synthetic statistics
usually produced by summary for a generic numeric vector:

summary(housep.np)

Oneway (individual) effect No-pooling model

Call:

pvcm(formula = log(price) ̃ log(income), data = HousePricesUS,

model = "within")

Balanced Panel: n = 49, T = 29, N = 1421

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.2790 -0.0699 -0.0058 0.0000 0.0647 0.3524
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Coefficients:

(Intercept) log(income)

Min. :-0.295 Min. :-1.141

1st Qu.: 3.152 1st Qu.:-0.138

Median : 4.146 Median : 0.228

Mean : 3.850 Mean : 0.302

3rd Qu.: 4.777 3rd Qu.: 0.661

Max. : 6.911 Max. : 2.037

Total Sum of Squares: 3870

Residual Sum of Squares: 13.7

Multiple R-Squared: 0.996

The stability test can then be performed supplying housep.np and either housep.pool
or housep.within to the test function, depending on whether we want to assume absence
of individual effects or not. Notice the different degrees of freedom.

pooltest(housep.pool, housep.np)

F statistic

data: log(price) ̃ log(income)

F = 26, df1 = 96, df2 = 1300, p-value <2e-16

alternative hypothesis: unstability

pooltest(housep.within, housep.np)

F statistic

data: log(price) ̃ log(income)

F = 16, df1 = 48, df2 = 1300, p-value <2e-16

alternative hypothesis: unstability

Coefficient stability is very strongly rejected, even in its weakest form (specific constants).
The same tests can be performed using a formula-data syntax, specifying the nature of the
restricted model through the model argument.

8.3 Cross-sectional Dependence and Common Factors

Dependence across individual units, or cross-sectional dependence, can take two main forms.
Either it depends on the relative position of units in (some) space, so that – according to the
so-called Tobler law – nearby units are “more related” than far away ones; or it depends on being
observed at the same time and thus being subject to the same set of common, global factors that
affect each unit to an extent that does not depend on distance.

The former kind of dependence is called spatial and is more appropriate to describe phe-
nomena that spill over from one unit to nearby ones through vicinity, such as the diffusion of a
disease or of know-how in the labor force or the alteration in cigarette sales from cross-border
smuggling. In this case, one does therefore often speak of local dependence; although in many
spatial models, effects do actually carry over across all spatial units, they in fact always do



Panel Time Series 195

so in a distance-decaying fashion, whereby influence is strongest between the closest units.
In the characterization of Pesaran and Tosetti (2011), this kind of dependence is also dubbed
“cross-sectional weak dependence.”

The latter kind of dependence does instead not need units to be referenced in any space: the
relative position does not matter because correlation is assumed to stem from being exposed
to the same, cross-sectionally invariant common factors (the world interest rate, the price of
oil, the rate of technological progress, the stock market booms or busts, the price of homes in
some reference market). Common factors can well originate from one or more main locations
(think of a primary stock exchange, such as New York or London, setting prices that affect
all other peers worldwide) but the effect will not depend on distance. Because factor-related
dependence does typically not decrease with the distance between units, it is also called global
dependence. In the characterization of Pesaran and Tosetti (2011), it is named “cross-sectional
strong dependence.”

As can be seen from the examples, common factors can be observable or not: the case when
they are unobservable is of course the most interesting one. Most importantly, they can also be
correlated with the regressors included in the model so that if they are omitted because they are
unobservable, they will be a source of endogeneity and hence of inconsistency for estimators,
unless they are appropriately accounted for (for an assessment of the properties of panel time
series estimators under different omitted factors scenarios, see Coakley et al., 2006).

The first kind of dependence will be the subject of the chapter on spatial panels. In the follow-
ing, common factor induced correlation will be our primary concern; nevertheless, the methods
presented here are generally robust to spatial correlation as well.

8.3.1 The Common Factor Model

Consider the factor-augmented panel model

ynt = 𝛾⊤n znt + 𝛿⊤n ft + 𝜖nt

where n = 1,… ,N is the cross-sectional index and t = 1,… ,T the time index. znt is a K + 1
vector of observed, strictly exogenous regressors including a 1 and ft is a vector of unobserved,
cross-sectionally invariant common factors.

Such structure is capable of generating cross-sectional correlation in case of a similar, albeit
not identical, response across countries to modifications in the common factors, measured by
the factor loadings 𝛿n. The common factors are allowed to be correlated with the regressors, as
is most likely to be the case, so their effect comes both through factor loadings and through the
indirect effect on the observed regressors. The common factors are also allowed to be nonsta-
tionary. Moreover, the remainder error term 𝜖 is allowed to be spatially correlated as in

𝜖nt = 𝜌

N∑
m=1

𝑤nm𝜖mn + 𝜈nt

where 𝑤nm is the generic element of an N × N spatial weights matrix W in which nonzero ele-
ments correspond to pairs of spatially close observation units (e.g., regions sharing a common
border, or below a given distance threshold); so that each error is correlated with a weighted
average of the errors in close-by observations according to the parameter 𝜌.2

The two kinds of error dependence induced by omitted common factors and by spatial error
correlation have serious consequences on the properties of estimators if they are neglected.

2 This is known in the spatial econometrics literature as the spatial autoregressive model and will be covered in
Chapter 10.
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The former induces cross-sectional correlation of a pervasive type, not dying out with distance,
characterized by Pesaran and Tosetti (2011) as strong; moreover, if the omitted common fac-
tors are correlated with the regressors, the latter become endogenous and estimators become
inconsistent. The latter type of dependence, dubbed weak because it dies out with distance, has
less serious consequences on estimation but can still cause inefficiency (and hence inconsistent
standard errors and invalid inference); moreover, as discussed in the next section, it weakens
consistency in the particular case of spurious panel regression. Estimators able to control for the
strong kind of dependence, as it turns out, are consistent in the presence of weak dependence
as well.

In the special case of only one factor with uniform factor loadings 𝛿n = 𝛿 ∀n, the com-
mon factor model becomes a time fixed effects model, which can be estimated either by
ols with time dummies or by the appropriate within estimator, i.e., ols on cross-sectionally
demeaned data.

8.3.2 Common Correlated Effects Augmentation

The principle of common correlated effects (cce) augmentation of Pesaran (2006) is based on
the idea that, for large N , the factors ft can be approximated by cross-sectional averages of
the response and regressors. Following the original paper (see also Holly et al., 2010), consider
the model:

ynt = 𝛼n + 𝛽nznt + 𝜖nt (8.6)

where both the (composite) error 𝜖 and the regressors z are generated by linear combinations
of the unobserved, cross-sectionally invariant factors f :

𝜖nt = 𝛾⊤n ft + 𝜖nt (8.7)

znt = an + Γ⊤n ft + 𝑣nt (8.8)

Substituting (8.7) in (8.6) and combining the result with (8.8), we get:

znt = dn + C⊤
n ft + 𝜈nt (8.9)

where znt = (ynt, znt)⊤ and

𝜈nt =
⎛⎜⎜⎝
𝜖nt + 𝛽⊤n 𝑣nt

𝑣nt

⎞⎟⎟⎠

dn =
⎛⎜⎜⎝

1 𝛽⊤n

0 Ik

⎞⎟⎟⎠
(
𝛼n
an

)

Cn =
(
𝛾n Γn

)(
1 0
𝛽n Ik

)

Taking cross-section averages of (8.9),

z̄t = d̄ + C̄⊤ft + �̄�t

so that, if (C̄C̄⊤)−1 is invertible, the common factors can be written as:

ft = (C̄C̄⊤)−1C̄(z̄t − d̄ − �̄�t)
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If as N → inf �̄�t → 0 and C̄
p
→C, then

ft − (CC⊤)−1C(z̄t − d̄)
p
→ 0

Following this line of reasoning, Pesaran (2006) shows that the cross-sectional averages of
the response (ȳt) and regressors (X̄t) are N-consistent estimators of the unobserved common
factors and can therefore be used as observable proxies thereof. Augmenting the regression
with these averages is known as the common correlated effects (cce) principle. cce estimators
can be used to consistently estimate the individual slope parameters 𝛽n by applying least squares
to the augmented regression

ynt = 𝛼n + dnt + 𝛽⊤n Znt + g⊤n Wt + 𝜖nt

where Wt = (ȳt, X̄t)⊤.
The estimator for each individual slope coefficient can then be written compactly as

�̂�cce,n = (Z⊤
n M̄Zn)−1Z⊤

n M̄yn

with M̄ = IT − H̄(H̄⊤H̄)−1H̄⊤, H̄ contains: the T × (K + 1) matrix of cross-sectional averages
Wt , t = 1,…T ; and a deterministic component comprising individual intercept and time trend
(Pesaran, 2006, p. 974). The average is then estimated by the mg method,

�̂�ccemg = 1
N

N∑
n=1

�̂�cce,n

This estimator is known as ccemg, for “common correlated effects mean groups.”
The covariance matrix is estimated nonparametrically, on the basis of the empirical covari-

ance of the individual coefficients, just like in the mg case:

V(�̂�ccemg) =
1

N(N − 1)

N∑
n=1

(�̂�cce,n − �̂�ccemg)(�̂�cce,n − �̂�ccemg)⊤ (8.10)

Unlike other estimators, the cce is (N-) consistent for any fixed, unknown number of possibly
nonstationary common factors. Being robust to strong forms of cross-sectional dependence,
the cce estimator is also robust to weak ones such as spatial correlation (see Pesaran and
Tosetti, 2011). Moreover, the cce strategy has proved most effective in a number of simulation
studies, e.g., Coakley et al. (2006), Pesaran and Tosetti (2011), Kapetanios et al. (2011).

Example 8.5 Common correlated effects mg – HousePricesUS data set
The function pmg will perform cce augmentation in the context of the mg model, if the argu-
ment model is set to ’cmg’. In their article, Holly et al. (2010) augment their model with
the cross-section averages in order to obtain a consistent estimate of the income elasticity of
house prices in the presence of common factors. Below we reproduce and compare their mg and
ccemg results. The mg and ccemg coefficients are substantially different; with cce the income
elasticity turns out much higher and not significantly different from 1 any more, in line with
economic theory. summary.pmg explicitly outputs the coefficients and significance diagnos-
tics for the added cross-sectional averages, denoted with the suffix .bar. The coefficients on
the latter are not meaningful per se, but their joint significance can be seen as an informal test
for the presence of common factors.

library("texreg")

cmgmod <- pmg(log(price) ̃ log(income), data = HousePricesUS, model = "cmg")

screenreg(list(mg = mgmod, ccemg = cmgmod), digits = 3)
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===========================================

mg ccemg

-------------------------------------------

(Intercept) 3.850 *** -0.115

(0.204) (0.256)

log(income) 0.302 ** 1.135 ***

(0.093) (0.195)

y.bar 1.047 ***

(0.058)

log(income).bar -1.195 ***

(0.199)

-------------------------------------------

Num. obs. 1421 1421

===========================================

*** p < 0.001, ** p < 0.01, * p < 0.05

8.3.2.1 CCE Mean Groups vs. CCE Pooled
Estimation by the cce principle can be performed either leaving parameters 𝛽n free to vary,
as above, or imposing parameter homogeneity (but maintaining heterogeneity in intercepts,
factor loadings, and possibly time trends), which leads to the ccep (pooled) estimator

𝛽ccep =

( N∑
n=1

Z⊤
n M̄Zn

)−1 N∑
n=1

Z⊤
n M̄yn (8.11)

and is to be preferred on efficiency grounds when the underlying assumption that 𝛽n = 𝛽 is
reasonable. It must be observed that the ccep estimator, although imposing 𝛽n = 𝛽, still allows
individual factor loadings 𝛿n to differ.

The standard pooled or heterogeneous estimators can be seen an special cases of this more
general formulation where augmentation is eliminated or reduced: pooled ols as ccep with
M̄ = IT , individual fixed effects as ccep with H̄ containing only individual dummies. The mean
groups (mg) estimator can in turn be seen as ccemg where M̄ = IT .

Example 8.6 ccemg and ccep – HousePricesUS data set
The function pcce estimates cce models of either type by projection of the original regressors
on the matrix M̄; by default (model=’mg’) one gets the ccemg, ifmodel=’p’ the ccep. This
is the only way to perform ccep estimation, while ccemg results from pccewill be equivalent
to those obtained through explicit augmentation with pmg, the only difference being that here
one cannot see the significance diagnostics for the added cross-sectional averages:

ccemgmod <- pcce(log(price) ̃ log(income), data=HousePricesUS, model="mg")

summary(ccemgmod)

Common Correlated Effects model

Call:

pcce(formula = log(price) ̃ log(income), data = HousePricesUS,

model = "mg")

Balanced Panel: n = 49, T = 29, N = 1421

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.23744 -0.03549 0.00027 0.00000 0.03639 0.22423



Panel Time Series 199

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

log(income) 1.135 0.195 5.81 6.3e-09 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 47.2

Residual Sum of Squares: 5.66

HPY R-squared: 0.74

Holly et al. (2010) are interested in estimating the relationship between house prices and
income net of the influence of common factors under the pooled specification as well. To this
end, they estimate a homogeneous ccep version of the baseline model:

ccepmod <- pcce(log(price) ̃ log(income), data=HousePricesUS, model="p")

summary(ccepmod)

Common Correlated Effects model

Call:

pcce(formula = log(price) ̃ log(income), data = HousePricesUS,

model = "p")

Balanced Panel: n = 49, T = 29, N = 1421

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.27883 -0.03928 -0.00209 0.00000 0.03927 0.29993

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

log(income) 1.199 0.207 5.79 7.2e-09 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 47.2

Residual Sum of Squares: 6.89

HPY R-squared: 0.696

The results from the two specifications are very close, as regards both the coefficients and the
standard errors thereof, which speaks in favor of imposing the pooling restriction.

8.3.2.2 Computing the CCEP Variance
According to Pesaran (2006, 5.2), the variance of the ccep estimator can be computed in
two different ways, depending on whether the assumption of parameter homogeneity is
imposed here as well (homogeneous estimator) or not (heterogeneous, or nonparametric,
estimator).

The heterogeneous version (Pesaran, 2006, Th. 3) is based again on the nonparametric esti-
mate of the individual coefficients’ covariance. Defining

Ψ = 1
N

N∑
n=1

Z⊤
n M̄Zn

T
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and

R̂ = 1
N − 1

N∑
n=1

Z⊤
n M̄Zn

T
(�̂�cce,n − �̂�ccemg)(�̂�cce,n − �̂�ccemg)⊤

Z⊤
n M̄Zn

T
the estimator is

V(�̂�ccep) =
1
N
Ψ−1R̂Ψ−1 (8.12)

This estimator is consistent under quite general conditions as regards the rate of growth of
N vs T and the distribution of individual parameters; it is the one that fares best in the original
papers’ simulation study and the one the author recommends to use. It is therefore the default
method in the pcce function.

Nevertheless, strictly speaking, (8.12) is not appropriate under complete homogeneity.
Pesaran (2006, Th. 4) presents an alternative, which is appropriate for large panels (i.e., if
T∕N → 0 as (N ,T)

j
→∞). The latter, which is presented in detail in Pesaran (2006, p. 988), is

based on the nonparametric kernel-smoothed estimator of Newey and West (see 5.1.1.3) and
can be calculated using standard methods. Analogously, and again in large-N settings, the
familiar clustering estimator can be applied. In fact, M̄ being idempotent, the ccep estimator
in (8.11) can be seen as ols on the transformed variables M̄Z; hence methods for robust
covariances can be applied to pcce objects the same way they are to plm ones – e.g., those
representing a within model. From a software viewpoint, the pcce function is compliant with
both vcovNW and vcovHC.

Example 8.7 variance of the ccep estimator – RDSpillovers data set
The main point in Eberhardt et al. (2013) is to control for cross-sectional R&D spillovers in
estimating the productivity of own R&D of any observation unit. To this end, they employ
cce augmentation both in heterogeneous and in homogeneous flavors. Below we present the
ccep estimates from their Table 5 with three alternative estimators for the standard errors:

ccep.rds <- pcce(fm.rds, RDSpillovers, model="p")

library(lmtest)

ccep.tab <- cbind(coeftest(ccep.rds)[, 1:2],

coeftest(ccep.rds, vcov = vcovNW)[, 2],

coeftest(ccep.rds, vcov = vcovHC)[, 2])

dimnames(ccep.tab)[[2]][2:4] <- c("Nonparam.", "vcovNW", "vcovHC")

round(ccep.tab, 3)

Estimate Nonparam. vcovNW vcovHC

lnl 0.562 0.088 0.031 0.045

lnk 0.289 0.161 0.045 0.077

lnrd 0.084 0.068 0.020 0.033

A priori, homogeneous variance estimators are relatively well-suited to this comparatively
large and short dataset, provided that the homogeneity assumption holds. From the results we
can instead see that the nonparametric standard errors are much more conservative, hinting at
pooling assumptions being too restrictive.

8.4 Nonstationarity and Cointegration

The time series dimension of “long” panel datasets raises the issue of possible nonstationarity
and cointegration. From an econometric viewpoint, if two (single) nonstationary time series
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are cointegrated, then the least squares estimator of the regression parameter characterizing
the relationship is superconsistent and converges to the true value faster than its stationary
counterpart (Stock, 1987). If on the contrary they are nonstationary but not cointegrated, the
statistical relationship is spurious, and least squares estimates do not converge to their true val-
ues at all, while fit and significance diagnostics yield the false positive results famously discussed
by Granger and Newbold (1974).

In a panel time series context, there is one more dimension available for inference: the cross
section. Assuming cross-sectional independence, Phillips and Moon (1999) show that a spu-
rious panel data regression can still deliver a consistent estimate of long-run parameters. Yet
its convergence properties will be weaker than those of a cointegrating one: in particular, the
coefficients of a spurious panel regression will still converge to their true values, although at a
much slower rate

√
N than that of a cointegrating panel, which is T

√
N .

This result depends on an assumption of cross-sectional independence. It is weakened if the
errors are cross-sectionally weakly correlated, for example if they follow a spatial process, and
can be expected to fail in presence of strong cross-sectional dependence, as would arise when
omitting to control for common factors (Phillips and Moon, 1999, pages 1091–1092). Both
pooled ols (Phillips and Sul, 2003) and mean groups estimators (Coakley et al., 2006) lose
their advantage in precision from pooling when cross-sectional dependence is present.

8.4.1 Unit Root Testing: Generalities

Detecting unit roots has become a central subject in macroeconometrics. The techniques
employed are adaptations from the time series literature to the panel case. We will begin by
reviewing the main results regarding time series.

Consider a variable yt generated by an autoregressive process of order one:
yt = 𝜌yt−1 + z⊤t 𝛾 + 𝜖t

The vector of explanatory variables may contain an intercept, a linear trend, and different
explanatory variables. To keep things simple, in the following we will assume 𝛾 = 0, so that y fol-
lows a “pure” autoregressive process. As regards the error (which in this context is often called
the innovation), we will assume that it has mean zero and standard deviation 𝜎. By recursive
substitution, one has:

yt = 𝜌ty0 + 𝜌t−1𝜖1 + 𝜌t−2 +…+ 𝜌𝜖t−1 + 𝜖t

If y0 is deterministic and the 𝜖 are not correlated, the variance of y can be written:
V(yt) = (𝜌t−1 + 𝜌t−2 +…+ 𝜌 + 1)𝜎2

If 𝜌 ≠ 1, we have:

V(yt) =
1 − 𝜌t

1 − 𝜌
𝜎2 →

1
1 − 𝜌

𝜎2

On the other hand, if 𝜌 = 1, V(yt) = t𝜎2 so that the variance grows to infinity with t; the series
is then nonstationary and is said to have a unit root. The presence of unit roots poses various
problems, first and foremost that of spurious regressions. In the presence of a unit root, a series
presents a peculiar sort of trend that is not deterministic but stochastic, and the presence of such
trends in two series containing unit roots may induce an artificial correlation between them.
In Figure 8.2 we present two autoregressive series with respectively 𝜌 = 0.2 and 𝜌 = 1. We see
how in the former case the autoregressive process translates into correlation between successive
values of yt ; in particular, if yt−1 < 0 then yt is more likely to be negative than positive. However,
the curve representing the realization of the process crosses the horizontal axis frequently. On
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Figure 8.2 Autoregressive processes with different 𝜌 parameters.

the other hand, in the case of a unit root, one can clearly detect the presence of a stochastic trend
(in this case, on the rise): yt only changes sign once, and most of its realizations are positive.

To illustrate the importance of the spurious regression problem, we perform a short sim-
ulation exercise; we draw two autoregressive series independently, regress one on the other,
and recover the t-statistic corresponding to the null hypothesis H0 ∶ 𝛽 = 0. This hypothesis
is true by construction; therefore, in a normal context the t-statistic should not reject (i.e.,
be roughly less than 2) in 95% of cases. Let us begin by illustrating this result for 𝜌 = 0.2. To
this end, we employ two functions: code generates an autoregressive series, tstat performs
ols estimation, and recovers the t-statistic:

autoreg <- function(rho = 0.1, T = 100){

e <- rnorm(T)

for (t in 2:(T)) e[t] <- e[t] + rho *e[t-1]

e

}

tstat <- function(rho = 0.1, T = 100){

y <- autoreg(rho, T)

x <- autoreg(rho, T)

z <- lm(y ̃ x)

coef(z)[2] / sqrt(diag(vcov(z))[2])

}

result <- c()

R <- 1000

for (i in 1:R) result <- c(result, tstat(rho = 0.2, T = 40))

quantile(result, c(0.025, 0.975))

2.5% 97.5%

-2.114 1.990

prop.table(table(abs(result) > 2))

FALSE TRUE

0.943 0.057

We can see how the empirical quantiles are very close to their expected values and the share
of false positives is in the region of 5%. Let us now do the same with two series, each containing
a unit root:
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result <- c()

R <- 1000

for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))

quantile(result, c(0.025, 0.975))

2.5% 97.5%

-9.158 8.227

prop.table(table(abs(result) > 2))

FALSE TRUE

0.379 0.621

Judging by the usual t-statistic, in two thirds of cases one would conclude in favor of a signif-
icant relationship between our two independently generated variables.

It is therefore crucial to detect the presence of unit roots in time series data; otherwise, there
are considerable chances to obtain falsely significant results. To this end, it is simplest to write
the equation of the autoregressive process subtracting yt−1 to both sides. One has then:

Δyt = (𝜌 − 1)yt−1 + 𝜖t

The unit root test then becomes a zero restriction test for the coefficient associated to yt−1
in the model where the regressand is Δyt . One might want to use a classic t-statistic, obtained
dividing �̂� − 1 by its standard error. Setting H0 ∶ 𝜌 = 1 vs H1 ∶ 𝜌 < 1, one will then reject the
unit root hypothesis at the 5% level if the statistic is less than −1.64.

R <- 1000

T <- 100

result <- c()

for (i in 1:R){

y <- autoreg(rho=1, T=100)

Dy <- y[2:T] - y[1:(T-1)]

Ly <- y[1:(T-1)]

z <- lm(Dy ̃ Ly)

result <- c(result, coef(z)[2] / sqrt(diag(vcov(z))[2]))

}

In Figure 8.3 we depict a histogram of the realizations of the t-statistic, superposing a normal
density curve:

One can easily see that employing classic inference procedures to detect the presence of unit
roots is unwarranted, as the t-statistic follows a distribution that is very far from the normal.
Employing the usual critical value of −1.64, one has here:

prop.table(table(result < -1.64))

FALSE TRUE

0.542 0.458

which leads to reject the true hypothesis of a unit root one half of the times. To perform
the Dickey-Fuller test, one needs specific critical values that are not those of the normal (or
the t) distribution. The test can be performed augmenting the auxiliary model with a constant
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Figure 8.3 Histogram of the Student statistic in case of a unit root.

and/or a deterministic trend; lags of Δy can also be added in order to clean out any possible
autocorrelation of 𝜖.

The regression between two series both containing a unit root is only appropriate if they
present a long-term structural relationship. One speaks then of co-integration. More precisely,
we will say that two variables x and y are cointegrated if there exists 𝛽 such that:

y = 𝛼 + 𝛽x + 𝜖

where 𝜖 is stationary, i.e., it does not have unit roots. A simple cointegration test can then be
performed as follows:

1) verify whether y and x have unit roots with a Dickey-Fuller test,
2) if they both do, then estimate a model of y on x and recover the residuals 𝜖,
3) do a Dickey-Fuller test on 𝜖: if the unit root hypothesis is rejected, then x and y are cointe-

grated and the regression of y on x is meaningful; otherwise, x and y are integrated but not
cointegrated, and the regression of y on x will be spurious.

8.4.2 First Generation Unit Root Testing

The classical test for unit roots is usually called adf for “augmented Dickey-Fuller”. Many
extensions of this test have been proposed to adapt it to a panel data setting.

8.4.2.1 Preliminary Results
Some of these tests are obtained by applying separate adf tests to every individual in the sam-
ple. To perform these preliminary tests, one shall choose the number of lags and the relevant set
of deterministic variables dmt , which can be either d1t = ∅, d2t = 1 (an intercept), or d3t = 1, t
(an intercept and a time trend).

Δynt = (𝜌n − 1)yn(t−1) +
Ln∑

s=1
𝜃nsΔyn(t−s) + 𝛼⊤mndmt m = 1, 2, 3 (8.13)

This choice can be based on a number of criteria:

• the Schwarz information criterion (sic),
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• the Akaike information criterion (aic),
• the Hall method, consisting in adding as many lags as there are significant ones.

The regression is performed on T − Ln − 1 observations for each individual, which leads to
N × T̃ in total, with T̃ = T − (L̄ − 1), L̄ being the average number of lags. The variance of the
residuals for individual n is estimated by:

�̂�2
𝜖n
=

∑T
t=Ln+1 𝜖

2
nt

dfn
(8.14)

with dfn the degrees of freedom of the regression.

8.4.2.2 Levin-Lin-Chu Test
Levin et al. (2002) proposed the first panel unit root test. In order to perform it, one must run
two preliminary regressions: respectively, of Δynt and of ynt−1 as functions of Δynt−s s = 1,… Ln
and dmt , obtaining two residual vectors denoted respectively by znt and 𝑣n(t−1).

These two residuals are then normalized dividing them by the estimated standard error
(equation 8.14). The estimator of 𝜌 is obtained by regressing znt∕�̂�n on 𝑣nt∕�̂�n for the whole
sample. Its standard deviation and t-statistic are denoted respectively by �̂�(�̂�) and t�̂� = �̂�∕�̂�(�̂�).

The long-term variance of yn is estimated by:

�̂�2
yn
= 1

T − 1

T∑
t=2

Δy2
nt + 2

K̄∑
s=1

𝜔K̄s

[
1

t − 1

T∑
t=2+s

ΔyntΔynt−s

]

where K̄ is the truncation lag parameter and 𝜔K̄s are the sample covariance weights, which
depend on the choice of kernel.

Calling sn = �̂�yn

�̂�𝜖n
the ratio between the long-term and the short-term variance for the n-th

individual and s̄ = 1
N

∑
nsn the sample average thereof, Levin et al. (2002) show that the statistic:

t∗𝜌 =
t𝜌 − NT̃s̄�̂�−2

𝜖
�̂�(�̂�)𝜇∗

mT̃

𝜎∗
mT̃

is normally distributed under the null hypothesis of a unit root. 𝜇∗
mT̃

and 𝜎∗
mT̃

can be found in
the original paper.

8.4.2.3 Im, Pesaran and Shin Test
One of the drawbacks of the Levin et al. (2002) test is that the alternative hypothesis holds that
𝜌 ≠ 1, but at the same time it is the same for all individuals. The test proposed by Im et al.
(2003) (ips) overtakes this limitation: the null hypothesis is still 𝜌 = 1 for all individuals, but
the alternative is now that 𝜌 can be different across individuals, provided that 𝜌n < 1 at least
for some of them. The ips test takes the form of a simple average of the t-statistics for H0 ∶
(𝜌 − 1) = 0 from the individual adf regressions (8.13):

t̄ = 1
N

n∑
n=1

t𝜌n

The ips statistic follows a nonstandard distribution, and must be therefore compared with
values tabulated ad hoc. Alternatively, it can be standardized with mean and variance E(t̄) and
V(t̄) given in the Im et al. (2003) paper. The test statistic is then

√
N(t̄−E(t̄))√

V(t̄)
:

which, under the null of a unit root, is normally distributed.



206 Panel Data Econometrics with R

8.4.2.4 The Maddala and Wu Test
Maddala and Wu (1999) proposed a similar test, again not imposing homogeneity of 𝜌 under
the alternative. Instead of the t-statistics, it is based on combining the N critical values p-valuen
obtained from the individual adf tests. The test statistic is then simply:

P = −2
N∑

n=1
ln p-valuen

and, under the null of a unit root for all N individuals, it is distributed as a 𝜒2 with 2N degrees
of freedom.

Example 8.8 First generation unit root testing – HousePricesUS data set
The first-generation unit root tests can be computed using the purtest function. A
formula-data can be used to describe the variable for which the test has to be computed
and the deterministic covariates (0, 1 for an intercept, and trend for an intercept and a time
trend). The same description of the test to be computed can be performed using a pseries
and specifying the deterministic covariates using the exo argument.

We set below the lags argument to 2 for comparability across procedures, instead of leaving
the choice to one of the flexible procedures described above (e.g., by setting the lags argu-
ment to ’Hall’ to select the lags using Hall (1994)’s method). We apply the test to the price
variable of the HousePricesUS data set.

data("HousePricesUS", package = "pder")

price <- pdata.frame(HousePricesUS)$price

purtest(log(price), test = "levinlin", lags = 2, exo = "trend")

Levin-Lin-Chu Unit-Root Test (ex. var.: Individual

Intercepts and Trend)

data: log(price)

z = -1.3, p-value = 0.1

alternative hypothesis: stationarity

purtest(log(price), test = "madwu", lags = 2, exo = "trend")

Maddala-Wu Unit-Root Test (ex. var.: Individual

Intercepts and Trend)

data: log(price)

chisq = 100, df = 98, p-value = 0.4

alternative hypothesis: stationarity

purtest(log(price), test = "ips", lags = 2, exo = "trend")

Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual

Intercepts and Trend)

data: log(price)

z = 0.77, p-value = 0.8

alternative hypothesis: stationarity

The three tests strongly don’t reject the null hypothesis of unit root.



Panel Time Series 207

8.4.3 Second Generation Unit Root Testing

The above panel unit root tests do all rest on the hypothesis of absence of cross-sectional
correlation. When, after the turn of the millennium, the panel data literature started recog-
nizing how pervasive cross-sectional correlation is in applications and progressed toward the
development of consistent methods in its presence, the above assumption started to be seen as
too restrictive. The tests assuming no cross-sectional correlation became known under the col-
lective name of “first-generation” panel unit root tests, to distinguish them from the new breed
of testing procedures that was emerging. These new panel unit root tests, sharing the quality
of being consistent in the face of cross-sectional correlation, were dubbed “second generation”
to distinguish them from the former and are currently most often employed in applications.

The reference framework for cross-sectionally correlated panels is, as discussed above, the
common factor model. A number of cross-correlation-compliant panel unit root procedures
have been devised in this framework based on various defactoring procedures. One of the most
popular second-generation tests, due to Pesaran (2007), takes the approach of controlling for
the common factors, instead of trying to eliminate them; it does so in the cce framework,
by augmenting the auxiliary regressions through cross-sectional averages of the response and
regressors. The individual adf regressions are augmented with the cross-sectional averages of
lagged levels and differences of the individual series:

Δynt = (𝜌n − 1)yn(t−1) +
Ln∑

s=1
𝜃nsΔyn(t−s) + 𝜃(s+1)Δ̄yt + 𝜃(s+2)ȳ(t−1)

+
2Ln+2∑

s=Ln+3
𝜃sΔ̄y(t−s) + 𝛼⊤mndmt (m = 1, 2, 3) (8.15)

The individual adf regressions are therefore denoted “cross-sectionally augmented adf”
(cadf) regressions; the resulting individual cadf statistics can in principle be combined as
described above, forming the basis for either a “cross-sectionally augmented ips” (cips) or a
Maddala-Wu test. However, the limiting distributions for the latter do not apply anymore in the
absence of cross-sectional independence; for this reason, Pesaran (2007) tabulated critical val-
ues for the cips test for the three different cases where the auxiliary cadf regressions contain
an intercept, a deterministic trend, or none of the above.

Example 8.9 ips and cips tests – HousePricesUS data set
Holly et al. (2010) analyze the stationarity of their target variable, the house price index,
and of the regressors of their model using individual adf tests. They do so only in order to
demonstrate the strong cross-sectional correlation remaining in the residuals of the individual
adf regressions, which invalidates the use of the first-generation ips test, and thus to motivate
their resorting to the cadf-based cips test. In fact, they do not show the result of an ips test
but only the regression diagnostics.

As every unit root test, the results are sensitive to the order of time series augmentation:
the more lags we add, the more confident we are to have effectively filtered out residual serial
correlation, but the less degrees of freedom, and hence the less power, we allow to the testing
procedure. They consider the first four augmentation orders: following them, below we repro-
duce the cd statistics and the average pairwise correlation coefficients ̄̂𝜌 for the residuals of the
adf regressions.3

Below we explicitly estimate the individual adf regressions using the pmg function: the latter
outputs a pmg object from which the pcdtest function is able to retrieve the residuals as a

3 The results do not correspond exactly to the original paper: for an explanation see Millo (2015).
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pseries, so it can be directly applied specifying whether one wants the cd statistic (default)
or the pairwise correlation coefficients ̄̂𝜌 (then test has to be set to ’rho’).

tab5a <- matrix(NA, ncol = 4, nrow = 2)

tab5b <- matrix(NA, ncol = 4, nrow = 2)

for(i in 1:4) {

mymod <- pmg(diff(log(income)) ̃ lag(log(income)) +

lag(diff(log(income)), 1:i),

data = HousePricesUS,

model = "mg", trend = TRUE)

tab5a[1, i] <- pcdtest(mymod, test = "rho")$statistic

tab5b[1, i] <- pcdtest(mymod, test = "cd")$statistic

}

for(i in 1:4) {

mymod <- pmg(diff(log(price)) ̃ lag(log(price)) +

lag(diff(log(price)), 1:i),

data=HousePricesUS,

model="mg", trend = TRUE)

tab5a[2, i] <- pcdtest(mymod, test = "rho")$statistic

tab5b[2, i] <- pcdtest(mymod, test = "cd")$statistic

}

tab5a <- round(tab5a, 3)

tab5b <- round(tab5b, 2)

dimnames(tab5a) <- list(c("income", "price"),

paste("ADF(", 1:4, ")", sep=""))

dimnames(tab5b) <- dimnames(tab5a)

tab5a

ADF(1) ADF(2) ADF(3) ADF(4)

income 0.465 0.443 0.338 0.317

price 0.346 0.326 0.252 0.194

tab5b

ADF(1) ADF(2) ADF(3) ADF(4)

income 82.84 77.40 57.96 53.21

price 61.73 57.02 43.21 32.52

Residual cross-correlation is clearly apparent and motivates employing the cips test. In
the following we assess the order of integration of prices and income by testing the original
series and the differenced ones for unit roots. To do so, the dataset now contained in the
data.frame HousePricesUS has to be converted into a pdata.frame from which
the testing function cipstest will be able to retrieve the panel indices it needs. The
number of lags is left at the default value of 2. As for the deterministic component of
the cadf regressions, we allow for an intercept (type=’drift’) in the original series;
for the sake of consistency, we then exclude it from the differenced one (type=’none’).
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php <- pdata.frame(HousePricesUS)

cipstest(log(php$price), type = "drift")

Pesaran's CIPS test for unit roots

data: log(php$price)

CIPS test = -2, lag order = 2, p-value = 0.1

alternative hypothesis: Stationarity

cipstest(diff(log(php$price)), type = "none")

Pesaran's CIPS test for unit roots

data: diff(log(php$price))

CIPS test = -1.8, lag order = 2, p-value = 0.01

alternative hypothesis: Stationarity

The cips test does not reject a unit root for the original series, while it does for the dif-
ferenced one4. The conclusion is that the price index is integrated of order 1. The same (not
reported) happens for income, at which point the crucial issue is whether house prices and
income are cointegrated, or otherwise the regression of interest is spurious. A cips test of the
regression residuals will help shed light on the issue: currently the cipstest function only
accepts pseries objects as arguments; hence, we extract residuals as a pseries through the
usual resid.ccep extractor function prior to feeding them to the unit root test. Given that
individual trends have been controlled for at the modeling stage and that by the very nature of
regression residuals, the series is not expected to contain a drift (intercept), we eliminate any
deterministic component from the cadf regressions by specifying type=’none’:

cipstest(resid(ccemgmod), type="none")

Pesaran's CIPS test for unit roots

data: resid(ccemgmod)

CIPS test = -2.7, lag order = 2, p-value = 0.01

alternative hypothesis: Stationarity

cipstest(resid(ccepmod), type="none")

Pesaran's CIPS test for unit roots

data: resid(ccepmod)

CIPS test = -2.2, lag order = 2, p-value = 0.01

alternative hypothesis: Stationarity

The unit root hypothesis is rejected for both the residuals of the ccemg and the ccep models.
The conclusion is that both models represent cointegrating regressions.

4 An exact p-value is not available because the test distribution is nonstandard; test results are compared to
tabulated critical values from Pesaran (2007), and the nearest significance level is reported, together with a warning.
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9

Count Data and Limited Dependent Variables

It is often the case in economics that the dependent variable is not continuous so that
ols estimation is not appropriate. On the one hand, the response may be a count, i.e., it takes
only non-negative integer values. In this case, the most commonly used specifications are
the Poisson and the NegBin models. On the other hand, the response may exhibit limited
dependence. In this case, one can assume that there exists a continuous non-observable
variable called y∗. The value of y∗ is not observed for some part of the domain or not observed
at all. The different cases are depicted in Figure 9.1:

• Figure 9.1a presents the case of a binomial variable (y = 0, 1), which indicates the position of
y∗ relative to a threshold 𝜇,

• Figure 9.1b presents the case of an ordinal variable (y = 0, 1, 2), which indicates the position
of y∗ relative to two thresholds 𝜇1 and 𝜇2,

• Figure 9.1c presents the case of a left- truncated variable at 𝜇; on the right of 𝜇, we have
y = y∗, observations characterized by y∗ < 𝜇 are simply not available,

• Figure 9.1d presents the case of a left-censored variable at 𝜇; as for the truncated case, one
observes, on the right of 𝜇, y = y∗. The sample contains observations for which y∗ < 𝜇, but
the corresponding values of y∗ are unobserved.

Some of these models belong to a broad category called “generalized linear models”. More
specifically, this concerns:

• the binomial model and especially two particular cases, the logit and the probit models,
• the Poisson model.

The Negbin model is also a generalized linear model if its supplementary parameter is a fixed
parameter and is not estimated.

In a cross-section context, both base R and several packages provide the relevant estimators,
using the maximum likelihood method:

• probit, logit and Poisson models can be fitted using the glm function,
• the NegBin model can be estimated using the glm.nb function of the MASS package,
• the ordinal model can be fitted using the polr function of this same package,
• the censored model can be estimated using the tobit function of the AER package or the
censReg function of the censReg package,

• the truncated model can be fitted using the truncreg function of the truncreg package.

The pglm package provides similar estimators for panel data. It enables the estimation of
binomial and Poisson models and for convenience, also for Negbin and ordinal models, even if
strictly speaking these last two are not proper generalized linear models.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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Figure 9.1 Limited dependent variable.

The pldv function of the plm package provides panel estimators for the case where the
response is either truncated or censored.

These models are often estimated using the maximum likelihood method, which requires to
make strong hypotheses concerning the distribution of the response. When these hypotheses
are not valid, except for very special cases, the estimator is no longer consistent.

This last is a very general drawback of maximum likelihood estimators, but there is also
another drawback that is specific to panel data. In linear models, individual effects can be
removed using an appropriate transformation (within or first differences) or can be directly
estimated. This is not the case for most of the models presented in this chapter; the individual
effects cannot be removed, and their estimation leads to the incidental parameter problem.

When N → +∞ for fixed T , for the linear model, the estimation of individual effects is not
consistent, as the number of parameters to be estimated grows with N and the variance of the
estimators is constant. On the contrary, nevertheless, the estimator of the vector of parameters
of interest 𝛽 is consistent.

Differently from the linear case, for most of the models reviewed in this chapter, when the
individual effects are estimated, their inconsistency “contaminates” the estimation of 𝛽, which
becomes inconsistent as well1. This incidental parameter problem leads to abandoning the fixed
effects models where the fixed effects are estimated in favor of three alternatives2:

• the random effects model, which is always usable: one first writes the individual effects’ con-
ditional probabilities and then computes the unconditional probabilities by integrating out
the individual effects, making a hypothesis about their distribution,

• a fixed effects model, which uses the notion of sufficient statistic: for example, in a logit model,
the probability of being unemployed at period t depends on the individual effect, and so
does the number of spells of unemployment for every period. By contrast, the ratio of this
probability, which is the probability to be unemployed in period t knowing the total number
of periods for which the individual is unemployed, does not contain the individual effect.
This technique, which is not available for all the models reviewed, enables, like the within
transformation of the linear models, to get rid of the individual effects,

• for censored or truncated responses, the linear model can be consistently applied if some
observations are removed from the sample beforehand (one then speaks of a trimmed esti-
mator).

1 For an illustration of this phenomenon in the case of the logit estimator, see Hsiao (2003, pp. 194-195).
2 For a broad view of the estimation non-linear panel models, see Honoré (2002).
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In the next sections, we will present the three categories of models previously cited: binomial
and ordinal models, truncated and censored models, and count data models. For each of these
three sections, we will first briefly describe the estimators used with cross-sectional data. We
will then present the estimators appropriate for panel data. We will finally reproduce different
empirical examples of these models.

9.1 Binomial and Ordinal Models

9.1.1 Introduction

9.1.1.1 The Binomial Model
We consider a model for which the response is binomial, and we denote without loss of gener-
ality the two possible values 0 and 1. We then define a latent variable y∗ that is continuous on
the real line and is unobserved. The latent variable is linked to the observable binomial variable
y by the following rule of observation:

y∗ > 𝜇 ⇒ y = 1
y∗ ≤ 𝜇 ⇒ y = 0

The value of the latent variable is the sum of a linear combination of the covariates and an
error term. Without loss of generality, if 𝛾 includes an intercept, we set 𝜇 = 0.

y∗ = 𝛾⊤z + 𝜖
The variance of 𝜖 is not identified; it can therefore be set to 1 or to any other arbitrary value.

Probabilities for the two possible values of the response are then:
P(y = 0) = P(𝜖 ≤ −𝛾⊤z)
P(y = 1) = P(𝜖 > −𝛾⊤z)

Denoting by F the cumulative density of 𝜖, we then have:
P(y = 0) = F(−𝛾⊤z)
P(y = 1) = 1 − F(−𝛾⊤z)

= F(𝛾⊤z)
the last expression being valid if the density of 𝜖 is symmetric. Denoting q = 2y − 1, which
equals −1,+1 for y = (0, 1), the probability of the outcome can be expressed in a compact form:

P(y) = F(q𝛾⊤z) (9.1)
Two distributions are often used: the normal distribution:

F(𝜖) = Φ(𝜖) =
∫

𝜖

−∞

1√
2𝜋

e−
1
2

t2 dt

which leads to the probit model, and the logistic distribution:

F(𝜖) = Λ(𝜖) = e𝜖
1 + e𝜖

which leads to the logit model.
For a sample of size N , the log-likelihood function is obtained by summing the logs of (9.1)

for all the observations:

ln L =
N∑

n=1
ln F(qn𝛾

⊤z)
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9.1.1.2 Ordered Models
An ordered model is a model for which the response can take J distinct values (with J > 2). The
construction of the model is very similar to the one of the binomial model. We consider a latent
variable, like before equal to the sum of a linear combination of the covariates and an error:

y∗ = 𝛽⊤x + 𝜖

Denoting 𝜇 = (𝜇0, 𝜇1, 𝜇1,… , 𝜇J ) a vector of parameters, with 𝜇0 = −∞ and 𝜇J = +∞, the rule
of observation for the different values of y is then:

y = 1 ⇔ 𝜇0 ≤ 𝛽⊤x + 𝜖 ≤ 𝜇1

y = 2 ⇔ 𝜇1 ≤ 𝛽⊤x + 𝜖 ≤ 𝜇2

⋮ ⋮ ⋮ ⋮

y = J − 1 ⇔ 𝜇J−2 ≤ 𝛽⊤x + 𝜖 ≤ 𝜇J−1

y = J ⇔ 𝜇J−1 ≤ 𝛽⊤x + 𝜖 ≤ 𝜇J

Denoting by F the cumulative density of 𝜖, the probability for a given value j of y is:

P(yn = j) = F(𝜇j − 𝛽⊤xn) − F(𝜇j−1 − 𝛽⊤xn)

The probability of the outcome can be written:

P(yn) =
J∑

j=1
1(yn = j)[F(𝜇j − 𝛽⊤xn) − F(𝜇j−1 − 𝛽⊤xn)] (9.2)

For a sample of size N , the log-likelihood function is obtained by summing the logarithms of
(9.2) for all the observations:

ln L =
N∑

n=1

J∑
j=1

1(yn = j)[F(𝜇j − 𝛽⊤xn) − F(𝜇j−1 − 𝛽⊤xn)]

As for the binomial model, the most common choices for the distribution of 𝜖 are the normal
and the logistic distributions, which lead respectively to the ordered probit and logit models.

9.1.2 The Random Effects Model

For panel data, we now have repeated observations of y for the same individuals. The latent
variable is then defined by:

y∗nt = 𝛾⊤znt + 𝜂n + 𝜈nt

We assume as usual that the error can be written as the sum of an individual effect 𝜂n and an
idiosyncratic term 𝜈nt . Two observations for the same individual are then correlated because
of the common term 𝜂n. If the 𝛾 vector contains an intercept, we can suppose, without loss of
generality, that E(𝜂) = 0.

9.1.2.1 The Binomial Model
For a given value of 𝜂n, the probability of the outcome for individual n at period t is defined as
before:

P(ynt ∣ 𝜂n) = F(qnt(𝛾⊤znt + 𝜂n))
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Denoting yn = (yn1, yn2,… , ynT ), the joint probability for all the periods for individual n is:

P(yn ∣ 𝜂n) =
T∏

t=1
F(qnt(𝛾⊤znt + 𝜂n))

The unconditional probability is obtained by integrating out this expression for 𝜂. Assuming
that the distribution of 𝜂 is normal with a standard deviation of 𝜎𝜂 , we obtain:

P(yn) = ∫

+∞

−∞

T∏
t=1

F(qnt(𝛾⊤znt + 𝜂))
1√

2𝜋𝜎𝜂
e−0.5

(
𝜂

𝜎𝜂

)2

d𝜂

With the change of variable:

𝑣 = 𝜂√
2𝜎𝜂

⇒ d𝑣 = d𝜂√
2𝜎𝜂

we obtain

P(yn) =
1√
𝜋 ∫

+∞

−∞

T∏
t=1

F(qnt(𝛾⊤znt +
√

2𝜎𝜂𝑣))e−𝑣
2 d𝑣

There is no closed-form for this integrand, but it can be efficiently numerically approximated
using Gauss-Hermite quadrature. This method consists in evaluating the function for different
values of 𝑣 (denoted 𝑣r) and computing a linear combination of these evaluations, with weights
denoted by 𝑤r . For a fixed number of evaluations R, the values of (𝑣r, 𝑤r) are tabulated.

P(yn) ≈
1√
𝜋

R∑
r=1

𝑤r

T∏
t=1

F(qnt(𝛾⊤znt +
√

2𝜎𝑣r)) (9.3)

and the log-likelihood function is obtained by summing over all the individuals the logarithm
of (9.3).

Example 9.1 random effects logit model – Reelection data set
Brender and Drazen (2008) studied the influence of fiscal policy on the reelection of politicians.
It is often suggested that, just before elections, politicians implement more expansionary fiscal
policies, i.e., they reduce taxes or increase public spending. A panel of 75 countries is used, with
a number of observations varying from 1 to 16. A subsample of these data is also considered
when the incumbent is a candidate to the next election (for the other observations, reelection
means that the incumbent political party wins the election). This subsample can be selected
using the dummy variable narrow. The response is reelect: it equals 1 in case of reelection
and 0 otherwise. The two main covariates are ddefterm and ddefey. Both variables measure
the change in the ratio of government balance (budget surplus) and GDP. The first one is the
difference between the two years prior to the elections and the two previous years. For the
second, this is the difference between the election year and the previous year. Control variables
include the growth rate of GDP gdppc and dummies for developing countries dev, for new
democracies and for majoritarian electoral systems maj. TheReelection data set is available
in the pder package.

data("Reelection", package = "pder")

We first estimate the logit and probit models, with the glm function. This function uses
the same arguments as lm, and a supplementary one called family, which indicates the
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distribution of the response, in our case the binomial distribution. The link between the
parameter of the distribution and the linear predictor 𝛽⊤x is indicated with the link argu-
ment. The family argument can be either a character string (here ’binomial’), the name
of a function (here binomial) or a function call (here binomial()). The last possibility is
the only one that allows to use a link that is not the default one. The logit model is obtained
with link = ’logit’ (the default), the probit model with link=’probit’. The four
following commands all compute the logit model:

elect.l <- glm(reelect ̃ ddefterm + ddefey + gdppc + dev + nd + maj,

data = Reelection, family = "binomial", subset = narrow)

l2 <- update(elect.l, family = binomial)

l3 <- update(elect.l, family = binomial())

l4 <- update(elect.l, family = binomial(link = 'logit'))

while only the following command allows the estimation of the probit model:

elect.p <- update(elect.l, family = binomial(link = 'probit'))

The syntax of pglm is similar to glm. Like for plm, there are different ways of describing the
structure of the sample:

• by providing a pdata.frame to the data argument,
• by providing a data.frame and using the index argument,
• by only providing a data.frame if the first two columns of the data contain the individual

and the time indexes (which is the case for the Reelection data set).

The logit and probit random effects models are estimated below:

library("pglm")

elect.pl <- pglm(reelect ̃ ddefterm + ddefey + gdppc + dev + nd + maj,

Reelection, family = binomial(link = 'logit'),

subset = narrow)

elect.pp <- update(elect.pl, family = binomial(link = 'probit'))

Estimation results are presented using the screenreg function of the texreg package:

library("texreg")

screenreg(list(logit = elect.l, probit = elect.p,

plogit = elect.pl, pprobit = elect.pp),

digits = 3)

===================================================================

logit probit plogit pprobit

––––––––––––––––––––––––––––––––––––––––––––––––––––

(Intercept) -1.328 ** -0.822 *** -1.537 ** -0.942 **

(0.410) (0.248) (0.489) (0.294)

ddefterm 14.413 8.381 14.086 8.223

(7.746) (4.685) (8.211) (4.853)
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ddefey 14.171 * 8.555 * 13.793 * 8.339

(6.660) (4.039) (6.998) (4.257)

gdppc 17.017 * 10.652 * 19.380 * 12.076 **

(6.911) (4.198) (7.618) (4.602)

dev 0.822 * 0.504 * 0.893 * 0.541 *

(0.358) (0.218) (0.430) (0.258)

nd 0.683 0.425 0.810 0.495

(0.380) (0.232) (0.439) (0.264)

maj 0.768 * 0.472 * 0.847 * 0.515 *

(0.314) (0.192) (0.381) (0.230)

sigma 0.841 * -0.518 *

(0.346) (0.205)

––––––––––––––––––––––––––––––––––––––––––––––––––––

AIC 343.708 343.851

BIC 368.497 368.640

Log Likelihood -164.854 -164.926 -163.435 -163.434

Deviance 329.708 329.851

Num. obs. 255 255 255 255

===================================================================

*** p < 0.001, ** p < 0.01, * p < 0.05

The probability of being reelected is larger in developing and newly democratic countries
and for majoritarian electoral systems. The growth rate of gdp also has the predicted positive
effect on the probability of being reelected. The coefficients of the two fiscal policy covariates are
positive, which means that expansionary fiscal policies before elections do not have a systematic
positive effect on the probability of the incumbent being reelected. On the contrary, the results
indicate that voters tend to sanction such policies.

9.1.2.2 Ordered Models
The line of reasoning is very similar to that of binomial models. The joint probability for an
individual n for a given value of the individual effect is:

P(yn ∣ 𝜂n) =
T∏

t=1

J∑
j=1

1(ynt = j)[F(𝜇j − 𝛽⊤xnt − 𝜂n) − F(𝜇j−1 − 𝛽⊤xnt − 𝜂n)]

Assuming a normal distribution for the individual effects, the unconditional probability is:

P(yn) = ∫

+∞

−∞

T∏
t=1

J∑
j=1

1(ynt = j)[F(𝜇j − 𝛽⊤xnt − 𝜂) − F(𝜇j−1 − 𝛽⊤xnt − 𝜂)]

× 1√
2𝜋𝜎𝜂

e−0.5
(

𝜂

𝜎𝜂

)2

d𝜂

Using the same change of variable as previously, we obtain:

P(yn) =
1√
𝜋𝜎𝜂

∫

+∞

−∞

T∏
t=1

J∑
j=1

1(ynt = j)

× [F(𝜇j − 𝛽⊤xnt −
√

2𝜎𝜂𝑣) − F(𝜇j−1 − 𝛽⊤xnt −
√

2𝜎𝜂𝑣)]
× e−𝑣2 d𝑣
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which can be approximated using Gauss-Hermite quadrature:

P(yn) ≈
1√
𝜋𝜎𝜂

R∑
r=1

T∏
t=1

J∑
j=1

1(ynt = j)

× [F(𝜇j − 𝛽⊤xnt −
√

2𝜎𝜂𝑣r) − F(𝜇j−1 − 𝛽⊤xnt −
√

2𝜎𝜂𝑣r)]

× e−𝑣2
r d𝑣

Example 9.2 random effects ordered model – Fairness data set
Raux et al. (2009) analyze the perceived fairness of different methods of demand rationing using
a survey in which individuals had to indicate their opinion on an ordinal scale concerning dif-
ferent rationing modes for parking places and for fast train seats. The response is answer and
takes integer values from 0 (very unfair) to 3 (very fair). The main covariate is a factor indicat-
ing the rationing mode: peak-load pricingpeak, administrative ruleadmin, random allocation
lottery, additive supply addsupply, queuing queuing, moral rule moral, and compen-
sation rule compensation. The other covariates are dummies indicating that the rationing is
recurring or not recurring, that the individual has a diploma education and has a driving
license driving. The Fairness dataset is available in the pglm package.

data("Fairness", package = "pglm")

We first use the polr function from the MASS package to estimate the ordered probit and
logit models. We restrict our attention to the rationing of parking places.

library("MASS")

parking.ol <- polr(answer ̃ recurring + driving + education + rule,

data = Fairness, subset = good == "parking",

Hess = TRUE, method = "logistic")

parking.op <- update(parking.ol, method = "probit")

The “link” is indicated with the method argument and we set the Hess argument to TRUE
so that the Hessian, which is necessary to calculate the standard errors of the coefficients, is
computed.

We then estimate the random effects ordered models using pglm. The following details
should be remarked:

• the family argument is used, like for glm, and an ordinal function is added, which
allows, setting link to either ’probit’ or ’logit’, the estimation of the probit and
the logit ordered models,

• the number of evaluations for the Gauss-Hermite quadrature method is indicated with the
argument R,

• the index is here mandatory, as the second column of Fairness is not the time index.

parking.opp <- pglm(as.numeric(answer) ̃ recurring + driving + education + rule,

data = Fairness, subset = good == 'parking',

family = ordinal(link = 'probit'), R = 10, index = 'id',

model = "random")

parking.olp <- update(parking.opp, family = ordinal(link = 'probit'))
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Results of the four models are presented using the screenreg function:

library("texreg")

screenreg(list(ologit = parking.ol, oprobit = parking.op,

pologit = parking.olp, poprobit = parking.opp),

digits = 3)

============================================================================

ologit oprobit pologit poprobit

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

recurringyes -0.120 -0.070 -0.077 -0.077

(0.075) (0.044) (0.059) (0.059)

drivingno 0.413 *** 0.237 *** 0.255 ** 0.255 **

(0.101) (0.060) (0.080) (0.080)

educationno -0.480 *** -0.280 *** -0.309 ** -0.309 **

(0.138) (0.079) (0.105) (0.105)

ruleadmin -0.133 -0.061 -0.066 -0.066

(0.144) (0.086) (0.088) (0.088)

rulelottery 0.330 * 0.217 * 0.238 ** 0.238 **

(0.141) (0.085) (0.086) (0.086)

ruleaddsupply 1.892 *** 1.141 *** 1.221 *** 1.221 ***

(0.143) (0.083) (0.085) (0.085)

rulequeuing 2.973 *** 1.731 *** 1.848 *** 1.848 ***

(0.152) (0.086) (0.089) (0.089)

rulemoral 4.597 *** 2.656 *** 2.837 *** 2.837 ***

(0.166) (0.093) (0.098) (0.098)

rulecompensation 4.231 *** 2.458 *** 2.622 *** 2.622 ***

(0.162) (0.091) (0.096) (0.096)

(Intercept) -0.269 *** -0.269 ***

(0.072) (0.072)

mu_1 1.019 *** 1.019 ***

(0.038) (0.038)

mu_2 2.515 *** 2.515 ***

(0.059) (0.059)

sigma 0.529 *** 0.529 ***

(0.050) (0.050)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AIC 5482.722 5490.689

BIC 5553.360 5561.326

Log Likelihood -2729.361 -2733.344 -2705.814 -2705.814

Deviance 5458.722 5466.689

Num. obs. 2661 2661 2661 2661

============================================================================

*** p < 0.001, ** p < 0.01, * p < 0.05

9.1.3 The Conditional Logit Model

The random effects model is consistent only if the individual effects are uncorrelated with the
covariates. If it is not the case, the conditional logit model can be used. It is well known in the
statistic literature and has been introduced in panel data econometrics by Chamberlain (1980).
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The general presentation of this model is quite complex, but the intuition of it can be
perceived using the special case where T = 2. We denote Yn = yn1 + yn2. Only the individuals
for which Yn = 1 can be used to estimate the conditional logit model (more generally, only
individuals for which 0 < Yn < T may be used).

For a given period t, the probabilities for the two values of ynt are:

⎧⎪⎨⎪⎩
P(ynt = 0 ∣ 𝜂n) = 1

1+e𝛽⊤xnt+𝜂n

P(ynt = 1 ∣ 𝜂n) = e𝛽⊤xnt+𝜂n

1+e𝛽⊤xnt+𝜂n

or more generally:

P(ynt ∣ 𝜂n) =
eynt(𝛽⊤xnt+𝜂n)

1 + e𝛽⊤xnt+𝜂n

If the idiosyncratic components of the errors are i.i.d., the joint probability for two observa-
tions is simply the product of P(yn1 ∣ 𝜂n) and P(yn2 ∣ 𝜂n):

P(yn1, yn2 ∣ 𝜂n) =
eyn1(𝛽⊤xn1+𝜂n)eyn2(𝛽⊤xn2+𝜂n)

(1 + e𝛽⊤xn1+𝜂n)(1 + e𝛽⊤xn2+𝜂n)
or also, as one and only one of the two ynt equals 1:

P(yn1, yn2 ∣ 𝜂n) =
eyn1𝛽

⊤xn1+yn2𝛽
⊤xn2+𝜂n

(1 + e𝛽⊤xn2+𝜂n)(1 + e𝛽⊤xn2+𝜂n)

= e𝜂n
eyn1𝛽

⊤xn1+yn2𝛽
⊤xn2

(1 + e𝛽⊤xn1+𝜂n)(1 + e𝛽⊤xn2+𝜂n)
(9.4)

The probability that Yn = yn1 + yn2 = 1 is equal to the sum of the probabilities of:

• yn1 = 1 and yn2 = 0, which is e𝛽⊤xn1+𝜂n

1+e𝛽⊤xn1+𝜂n
× 1

1+e𝛽⊤xn2+𝜂n
,

• yn1 = 0 and yn2 = 1, which is 1
1+e𝛽⊤xn1+𝜂n

× e𝛽⊤xn2+𝜂n

1+e𝛽⊤xn2+𝜂n
.

which is therefore:

P(Yn = 1) = e𝛽⊤xn1+𝜂n + e𝛽⊤xn2+𝜂n

(1 + e𝛽⊤xn1+𝜂n)(1 + e𝛽⊤xn2+𝜂n)

= e𝜂n
e𝛽⊤xn1 + e𝛽⊤xn2

(1 + e𝛽⊤xn1+𝜂n)(1 + e𝛽⊤xn2+𝜂n )
(9.5)

Dividing (9.4) by (9.5), one finally obtains the joint probability of yn1 and yn2 given their sum:

P(yn1, yn2 ∣ Yn = 1) = eyn1𝛽
⊤xn1+yn2𝛽

⊤xn2

e𝛽⊤xn1 + e𝛽⊤xn2
(9.6)

This conditional probability is free of the individual effect and the likelihood that uses this
expression can therefore be considered as a fixed effects logit model. Note that there is no sim-
ilar estimator for the probit model.

Example 9.3 conditional logit model – MagazinePrices data set
Cecchetti (1986) analyzes price changes, with an application to magazines. His analysis is repli-
cated (and criticized) by Willis (2006). Price changes are costly for two reasons:

• changing prices induce administrative costs,
• in a monopolistic competition context, increasing prices will lead to a loss of customers.
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For these two reasons, there is a difference between the optimal price of a good for a given
period p∗

nt and the actual price pnt . A price change will occur only if the gap between the two
becomes greater than a given threshold. More formally, the price will change if:

ln
p∗

nt

pnt
> hc

nt

hc
nt is then the minimum relative gap between the optimal and the actual price that would

result in a price change. If the price changes, given the infrequency of price changes, the enter-
prise will set its new price above the optimal price, the relative difference being equal to ho

nt .
Denote t̃n the last period when the price of good n has changed. For this period, we have:

ln
p∗

nt̃n

pnt̃n

= ho
nt̃n

If the price doesn’t change in period t, we have pnt = pnt̃n
. Replacing in the previous equation,

we have:

ln
p∗

nt

p∗
nt̃n

≡ Δ ln P∗
ntt̃n

> hc
nt − ho

nt (9.7)

In the context of a simple monopolistic competition model, the demand function for the firm
and its cost function are:

⎧⎪⎨⎪⎩
Qnt =

(
pnt

p̄t

)a
Xb

t

Cnt = Ae𝛿tQ𝛼
nt𝑤t

where Xt is the demand faced by the whole industry,𝑤t the factor price index, and p̄t the average
price in the industry.

Substituting the expression of demand in the cost function, writing the profit function, and
setting to zero the first derivative of profit with respect to price, we obtain the following price
function:

ln p∗
nt = b0 + b1t + b2 ln p̄t + b3 ln Xt + b4 ln𝑤t

Writing the same price function for the period when the last price change occurred and sub-
tracting both equations, we get:

Δ ln p∗
ntt̃n

= a1(t − t̃n) + a2 ln
p̄t

p̄t̃n

+ a3 ln
Xt

Xt̃n

+ a4 ln
𝑤t

𝑤t̃n

Finally, denoting by Tnt = t − t̃nt the time since the last price change, assuming an identical
variation 𝜋nt of the average price of the industry and of the inputs and denoting by Ẋnt = ln Xt

Xt̃n

the demand variation for the whole industry since the last price change of enterprise n:

Δ ln p∗
ntt̃n

= a1Tnt + a2𝜋nt + a3Ẋnt

Adding an error term to this expression and inserting it in equation (9.7), we obtain:

a1Tnt + a2𝜋nt + a3Ẋnt + 𝜖nt > hc
nt − ho

nt

ant = hc
nt − ho

nt is a specific term for enterprise n at period t, which represents the price change
policy. The probability of a price change can then be written:

P(ynt = 1) = P(ant + a1Tnt + a2𝜋nt + a3Ẋnt + 𝜖nt) = F(ant + a1Tnt + a2𝜋nt + a3Ẋnt)

where F is the cumulative density of 𝜖, assumed to be logistic.
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Cecchetti (1986) assumes that ant can be supposed constant for 3 consecutive years. In this
case, the period of observation being of 27 years, there are 9 different effects for each magazine.
We present below the results of 3 estimations that replicate Table 1 of Willis (2006).

We successively estimate a simple logit, a logit with magazine fixed effects for which the
effects are estimated (and therefore suffering from the incidental parameter problem), and
a conditional logit model (using the clogit function of the survival) where three-year
magazine fixed effects are removed. The MagazinePrices data set is available in the
pder package.

data("MagazinePrices", package = "pder")

logitS <- glm(change ̃ length + cuminf + cumsales, data = MagazinePrices,

subset = included == 1, family = binomial(link = 'logit'))

logitD <- glm(change ̃ length + cuminf + cumsales + magazine,

data = MagazinePrices,

subset = included == 1, family = binomial(link = 'logit'))

library("survival")

logitC <- clogit(change ̃ length + cuminf + cumsales + strata(id),

data = MagazinePrices,

subset = included == 1)

library("texreg")

screenreg(list(logit = logitS, "FE logit" = logitD,

"cond. logit" = logitC), omit.coef = "magazine")

=====================================================

logit FE logit cond. logit

–––––––––––––––––––––––––––––––––––––––––

(Intercept) -1.90 *** -1.18 **

(0.14) (0.42)

length -0.10 ** -0.07 * 1.02 ***

(0.03) (0.03) (0.28)

cuminf 6.93 *** 8.83 *** 19.20 *

(1.12) (1.25) (7.51)

cumsales -0.36 -1.14 7.60 *

(0.98) (1.06) (3.46)

–––––––––––––––––––––––––––––––––––––––––

AIC 1008.90 1028.35 173.44

BIC 1028.63 1230.62

Log Likelihood -500.45 -473.18

Deviance 1000.90 946.35

Num. obs. 1026 1026 1026

R ̂ 2 0.20

Max. R ̂ 2 0.32

Num. events 213

Missings 0

=====================================================

*** p < 0.001, ** p < 0.01, * p < 0.05

Note that the coefficient of the length of the period since the last price change has the
expected positive sign and is significant only for the conditional logit model.
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9.2 Censored or Truncated Dependent Variable

9.2.1 Introduction

It’s often the case in economics that the response is only observed on a certain range of values;
we then say that the dependent variable is truncated. For example:

• if the response is a proportion, it is necessarily left- truncated on 0 and right-truncated on 1,
• consumption for a good is necessarily positive and therefore left-truncated on 0,
• the demand for a sports event is necessarily lower or equal to the number of seats in the

stadium and is therefore right- truncated to this capacity.

From now on, we will consider the most common case, which is a 0 left truncation, but the
models we will present easily extend to the case of left or/and right truncations at any value.

As usual, we will assume that the dependent variable can be represented by a latent variable
y∗ that equals the sum of a linear combination of different covariates and an error term.

y∗ = 𝛾⊤z + 𝜖∗

The observed response y equals y∗ if it is not in the truncated zone (i.e., here, if it’s strictly
positive) and equals the truncature (here, 0) otherwise.

y∗ ≤ 0 ⇒ y = 0
y∗ > 0 ⇒ y = y∗ (9.8)

Two kinds of samples can be used to estimate this model:

• a sample is truncated when only observations for which y > 0 are available (we therefore
don’t even know the values of the covariates x for observations for which y is in the truncation
zone),

• a sample is censored when it consists of observations for which y∗ is either inside or outside
the truncation zone.

This latter case is particularly important in econometrics and leads to a model which is called
the tobit model (Tobin, 1958). From now, we’ll refer to the truncated model when the first kind
of sample is used and to the censored model for the second kind of sample.

We’ll first analyze why applying a linear regression to a censored or a truncated model leads
to inconsistent estimators. We’ll then present a non-parametric method that leads, removing
some specific observations, to a consistent estimator while making minimal hypotheses on the
model errors. We’ll conclude this section with the maximum likelihood estimator, which relies
on the much stronger hypothesis of homoscedasticity and normal distribution.

9.2.2 The Ordinary Least Squares Estimator

Let f be the density of the distribution of 𝜖∗ which is supposed, without loss of generality as
long as the equation contains an intercept, to be of 0 expected value. We then have:

E(y∗ ∣ z) = 𝛾⊤z + E(𝜖∗ ∣ z) = 𝛾⊤z

If y∗ were observed, ols would be a consistent estimator for 𝛾 . This is not the case when we
only observe the truncated variable y. On the truncated sample, we have y∗ > 0, or 𝜖∗ > −𝛾⊤z.
The distribution of 𝜖 for the sample is then f (𝜖)∕P(𝜖∗ > −𝛾⊤z), depicted by the dotted line in
Figure 9.2.
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The distribution of 𝜖 is not symmetric around 0, and its expected value is positive, because
the left side of the distribution, corresponding to values of 𝜖∗ < −𝛾⊤z, is truncated. We there-
fore have:

E(y ∣ x, y > 0) = E(y∗ ∣ x, y∗ > 0)
= 𝛾⊤z + E(𝜖∗ ∣ 𝜖∗ > −𝛾⊤z)

= 𝛾⊤z +
∫

+∞
−𝛾⊤z 𝜖f (𝜖)d𝜖

P(𝜖∗ > −𝛾⊤z)
which is, for a normal distribution:

E(y ∣ x, y > 0) = 𝛾⊤z + 𝜙(𝛾⊤z)
Φ(𝛾⊤z)

or, subtracting 𝛾⊤z:

E(𝜖 ∣ z) = E(𝜖∗ ∣ z, 𝜖∗ > −𝛾⊤z) = 𝜙(𝛾⊤z)
Φ(𝛾⊤z)

𝜇(z) = 𝜙(z)∕Φ(z) is known as the inverse mills ratio and is a decreasing function of its argument.
Computing the derivative with respect to one covariate xk , we obtain:

𝜕E(𝜖 ∣ z)
𝜕xk

= −[𝛾⊤z + 𝜇(𝛾⊤z)](𝛾⊤z)𝛽k

which is negative if 𝛽k > 0, as𝜇(𝛾⊤z) is the average of 𝜖 for 𝜖 > −𝛾⊤z and is therefore greater than
−𝛾⊤z. The ols estimator computed on the truncated sample is therefore downward biased.

For the censored sample, we have y = 0 for censored observations. We then have:

E(y ∣ z) = P(𝜖∗ ≤ −𝛾⊤z) × 0 + P(𝜖∗ > −𝛾⊤z) ×

(
𝛾⊤z +

∫
+∞
−𝛾⊤z 𝜖f (𝜖)d𝜖

P(𝜖∗ > −𝛾⊤z)

)

= P(𝜖∗ > −𝛾⊤z)(𝛾⊤z) +
∫

+∞

−𝛾⊤z
𝜖f (𝜖)d𝜖

= (𝛾⊤z)Φ(𝛾⊤z) + 𝜙(𝛾⊤z)
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Figure 9.3 OLS bias for the censored and the truncated samples.

where the last expression holds for a normal distribution. Subtracting 𝛾⊤z, we obtain the
expected value of the error of the censored model:

E(𝜖 ∣ z) = −[1 − Φ(𝛾⊤z)](𝛾⊤z) + 𝜙(𝛾⊤z)

Computing once again the derivative with respect to a covariate xk , we have:

𝜕E(𝜖 ∣ z)
𝜕xk

= −[1 − 𝜙(𝛾⊤z)]𝛽k

which, as previously, has the opposite sign of 𝛽k , implying that the ols estimator on the cen-
sored sample is downward biased.

The bias of the ols estimator on censored and truncated samples is illustrated on Figure 9.3

9.2.3 The Symmetrical Trimmed Estimator

The ols estimator is inconsistent because the truncation leads to an asymmetric distribution
for the errors, for which the expected values depends on x. Powell (1986) proposes to restore
the symmetry by removing some observations.

9.2.3.1 Truncated Sample
In the case of the truncated sample, observations for which y∗ ≤ 0, or 𝜖∗ ≤ −𝛾⊤z, are missing.
The symmetry may be restored by removing from the right side of the distribution, the observa-
tions for which y∗ ≥ 2𝛾⊤z, or 𝜖∗ > 𝛾⊤z. The distributions of y∗ and 𝜖∗ are depicted by the dashed
line in Figure 9.2. In this case, we have:

E(y ∣ z, y > 0 & y < 2𝛾⊤z) = E(y∗ ∣ z, y∗ > 0 & y∗ < 2𝛾⊤z)
= 𝛾⊤z + E(𝜖∗ ∣ −𝛾⊤z < 𝜖∗ < 𝛾⊤z)

= 𝛾⊤z +
∫

+𝛾⊤z
−𝛾⊤z 𝜖f (𝜖)d𝜖

∫
+𝛾⊤z
−𝛾⊤z f (𝜖)d𝜖

= 𝛾⊤z

A consistent estimator may be obtained using the normal conditions and restricting the sam-
ple to observations for which y < 2𝛾⊤z. Denoting by 1(𝑣) the function that is equal to 1 if 𝑣 is
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true and 0 otherwise, we have:
N∑

n=1
1(yn < 2𝛾⊤z)(yn − 𝛾⊤zn)xn = 0 (9.9)

These first-order conditions may be obtained by minimizing the function:

RN (𝛾) =
N∑

n=1

(
yn − max

(1
2

yn, 𝛾
⊤zn

)2)
(9.10)

In this case, all the observations for which 𝛾⊤zn < 0 and those for which yn > 2𝛾⊤zn have a
weight equal to y2

4
in the objective function and a zero weight in the first-order conditions. The

weight in the objective function ensures that fallacious solutions of the first-order conditions
like 𝛾 = 0 are excluded.

9.2.3.2 Censored Sample
In the case of the censored sample, symmetry is restored by replacing yn by 2𝛾⊤zn when
yn > 2𝛾⊤zn (as y∗n is replaced by 0 when y∗n < −𝛾⊤zn). We then have:

N∑
n=1

1(𝛾⊤z > 0)(max(yn, 2𝛾⊤zn) − 𝛾⊤zn)xn = 0 (9.11)

These first-order conditions may be obtained by minimizing the following function:

SN (𝛾) =
N∑

n=1

(
yn − max

(1
2

yn, 𝛾
⊤zn

)2)

+
N∑

n=1
1(yn > 2𝛾⊤zn)

((1
2

yn

)2
− max(0, 𝛾⊤zn)2

)
(9.12)

Observations for which 𝛾⊤zn < 0 now have a weight equal to y2

2
in the objective function and

a zero weight in the first-order conditions.

9.2.4 The Maximum Likelihood Estimator

If we can assume that the errors are normal and homoscedastic, a more efficient estimator is
the maximum likelihood estimator.

9.2.4.1 Truncated Sample
The maximum likelihood estimator for a truncated sample has been proposed by Hansman and
Wise (1976). The density of the distribution of y∗ is normal, with expected value equal to 𝛾⊤z
and standard deviation 𝜎. We then have:

f (y∗) = 1
𝜎
𝜙

(
y∗ − 𝛾⊤z

𝜎

)

The probability of y∗ being negative is: Φ(−𝛾⊤z∕𝜎) = 1 − Φ(𝛾⊤z∕𝜎).
The density of the distribution of y, denoted f+, is the zero left-truncated distribution of y∗:

We then have:

f+(y) =
f (y)

P(y∗ > 0)
= 1
𝜎Φ(𝛾⊤z∕𝜎)

𝜙

(
y − 𝛾⊤z
𝜎

)
(9.13)
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The log-likelihood function is obtained by summing the logarithms of the density (9.13) for
the N observations in the sample:

ln L = −N
2

ln 2𝜋 − N ln 𝜎 −
N∑

n=1

[
lnΦ(𝛾⊤zn∕𝜎) +

1
2
(yn − 𝛾⊤zn)2

𝜎2

]
(9.14)

9.2.4.2 Censored Sample
When the sample is censored, the distribution of y is a mix of a discrete and a continuous dis-
tribution. An observation for which yn = 0 enters the log-likelihood function as:

P(y = 0) = Φ
(
−𝛾

⊤z
𝜎

)
= 1 − Φ

(
𝛾⊤z
𝜎

)

while for a positive observation, the contribution to the likelihood is the truncated normal
density:

f+(y) =
1

𝜎Φ(𝛾⊤z∕𝜎)
𝜙

(
y − 𝛾⊤z
𝜎

)

times the probability that y be positive: Φ(𝛾⊤z∕𝜎). We finally get the log-likelihood function
(9.15):

ln L =
N∑

n=1

[
1(yn = 0) ln

{
1 − Φ

(
𝛾⊤zn

𝜎𝜖

)}]

−
N∑

n=1

[
1(yn > 0)

(
1
2

ln(2𝜋𝜎2) + 1
2
(yn − 𝛾⊤zn)2

𝜎2

)]
(9.15)

9.2.5 Fixed Effects Model

Honoré (1992) proposed a symmetrical trimmed estimator that is an extension of Powell
(1986)’s estimator to panel data. For now, we consider a panel with only two observations for
every individual and one covariate.{

y∗n1 = 𝛼 + 𝛽⊤xn1 + 𝜂n + 𝜈n1

y∗n2 = 𝛼 + 𝛽⊤xn2 + 𝜂n + 𝜈n2

The only hypothesis made concerning the errors 𝜈n1 and 𝜈n2 is that they are identically dis-
tributed. The symmetry hypothesis, which was required for the Powell (1986) estimator to be
consistent, is not necessary here.

9.2.5.1 Truncated Sample
For the truncated model, only observations for which y∗nt > 0 are available. Figure 9.43 presents
the distribution of y∗n1 and y∗n2.

With the hypotheses we’ve made, these two distributions only differ by their position, y∗n1
being centered on 𝛽⊤xn1 + 𝜂n and y∗n2 on 𝛽⊤xn2 + 𝜂n. Because of the truncation, the two distri-
butions conditioned to the fact that the observation is in the sample (y∗nt > 0), to the values
of the covariates (xn) and to that of the individual effect (𝜂n) are more substantially differ-
ent. If 𝛽⊤Δxn = 𝛽⊤(xn2 − xn1) > 0 (Figure 9.4a), the truncated part of the distribution of y∗n1 is

3 Inspired by Hsiao (2003, pp. 246–247).
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larger than the one of y∗n2. However, identical distributions can be obtained by truncating y∗n2
not at 0 (which is the selection rule of the sample) but at 𝛽⊤Δxn. In the case where 𝛽⊤Δxn < 0
(Figure 9.4b), y∗n1 is similarly truncated at −𝛽⊤Δxn.

We then obtain two identical conditional distributions for:

• y∗n1 ∣ y∗n1 > 0, xn1, 𝜂n and y∗n2 ∣ y∗n2 > 𝛽
⊤Δxn, xn2, 𝜂n in the case when 𝛽⊤Δxn > 0,

• y∗n1 ∣ y∗n1 > −𝛽⊤Δxn, xn1, 𝜂n and y∗n2 ∣ y∗n2 > 0, xn2, 𝜂n in the case when 𝛽⊤Δxn < 0,

More generally, the observations that should be removed to restore symmetry are those for
which yn1 > −𝛽⊤Δxn or yn2 > 𝛽

⊤Δxn. This situation is depicted in Figure 9.5. When 𝛽⊤Δxn >

0 (9.5a), the joint distribution of (y∗n1, y
∗
n2) is symmetric around the LL′ line which is the 45o

line with intercept 𝛽⊤Δxn. Truncating at (y∗n1 > 0) and (y∗n2 > 𝛽
⊤Δxn), we obtain two symmetric

zones A1 and B1. The probability of having yn = (yn1, yn2) in zones A1 or B1 is the same. This
result leads to a first-moment condition:

E[{1(yn ∈ A1) − 1(yn ∈ B1)}Δxn] = 0 (9.16)

Moreover, by symmetry, in Figure 9.5a:

• the vertical distance between (yn1, yn2) in zone A1 on the LL′ line is Δyn − 𝛽⊤Δxn,
• the horizontal distance between (yn1, yn2) in B1 and the LL′ line is −(Δyn − 𝛽⊤Δxn),

which can be written as a second-moment condition:

E[{1(yn ∈ A1 ∪ B1)(Δyn − 𝛽⊤Δxn)}Δxn] = 0 (9.17)

For a sample of size N , truncated as previously described, the sample analogues of the two
moment conditions (9.16) and (9.17) are:

1
N

N∑
n=1

1(yn1 > −𝛽⊤Δxn & yn2 > 𝛽
⊤Δxn)sign(Δyn − 𝛽⊤Δxn)Δxn = 0 (9.18)

1
N

N∑
n=1

1(yn1 > −𝛽⊤Δxn & yn2 > 𝛽
⊤Δxn)(Δyn − 𝛽⊤Δxn)Δxn = 0 (9.19)
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(9.18 and 9.19) are respectively the first-order conditions of the lad and of the least squares
estimator. These first-order conditions may be obtained by maximizing:

Tf
n(𝛽) =

N∑
n=1

f (Δyn − 𝛽⊤Δxn)1(yn1 > −𝛽⊤Δxn, yn2 > 𝛽
⊤Δxn)

+ f (yn1)1(yn1 > −𝛽⊤Δxn, yn2 < 𝛽
⊤Δxn)

+ f (yn2)1(yn1 < −𝛽⊤Δxn, yn2 > 𝛽
⊤Δxn)

=
N∑

n=1
f (𝜓(yn1, yn2, 𝛽

⊤Δxn))

with:

𝜓(z1, z2, c) =
⎧⎪⎨⎪⎩

z1 for z2 < c
z2 − z1 − c for −z1 < c < z2

z2 for z1 < −c

If f (x) = x2, we obtain the trimmed least squares estimator; if f (x) =∣ x ∣, we obtain
the trimmed least absolute deviations estimator. Only the observations for which
1(yn1 > −𝛽⊤Δxn & yn2 > 𝛽

⊤Δxn) are included in the first-order conditions, the presence
of f (ynt) in the objective function excluding trivial solutions.

9.2.5.2 Censored Sample
For the censored sample, observations for which ynt = 0 are available, the observation rule for
ynt being:{

yn1 = max(y∗n1, 0)
yn2 = max(y∗n2, 0)

From Figure 9.5, we can see that not only A1 and B1 are symmetrical but also A2 defined by
(yn1 < −𝛽⊤Δxn, yn2 > 𝛽

⊤Δxn) and B2 defined by (yn1 > −𝛽⊤Δxn, yn2 < 𝛽
⊤Δxn).

Therefore, to restore symmetry for the censored sample, we have to get rid of the zone for
which yn1 < −𝛽⊤Δxn and yn2 < 𝛽

⊤Δxn (the dotted zone on Figure 9.5).
The symmetry between A2 and B2 leads to the following moment condition:

E[{1(yn ∈ A2) − 1(yn ∈ B2)}Δxn] = 0 (9.20)

Moreover, for:

• yn in A2, the vertical distance to the limit of the zone is yn2 − max(0, 𝛽⊤Δxn),

• yn in A1, the horizontal distance to the limit of the zone is yn2 − max(0, 𝛽⊤Δxn)

which translates into the following moment condition:

E[{1(yn ∈ A2)(yn2 − max(0, 𝛽⊤Δxn)
−1(yn ∈ B2)(yn1 − max(0,−𝛽⊤Δxn)}Δxn] = 0

(9.21)

Using (9.16 and 9.20), we obtain:

E[{1(yn ∈ A1 ∪ B1) − 1(yn ∈ A2 ∪ B2)}Δxn] = 0 (9.22)
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and using (9.17 et 9.21), we obtain:
E[{ 1(yn ∈ A1 ∪ B1)} (Δyn − 𝛽⊤Δxn)

+1(yn ∈ A2) (yn2 − max(0, 𝛽⊤Δxn))
−1(yn ∈ B2) (yn1 − max(0,−𝛽⊤Δxn))}
×Δxn] = 0

(9.23)

The sample analogues to (9.22) are the first-order conditions of the following function:

Tn =
N∑

n=1
[1 − {1(yn1 < max(0,−𝛽⊤Δxn) & 1(yn2 < max(0, 𝛽⊤Δxn)}]

× ∣ Δyn − 𝛽⊤Δxn ∣ (9.24)
which is the trimmed lad estimator on the censored sample.

Finally, the sample equivalent of (9.23) are the first- order conditions of the following
function:

Tn =
N∑

n=1
(max(yn2, 𝛽

⊤Δxn) − max(yn1,−𝛽⊤Δxn) − 𝛽⊤Δxn)2

− 2 × 1{yn1 < −𝛽⊤Δxn}(yn1 + 𝛽⊤Δxn)yn2

− 2 × 1{yn2 < 𝛽
⊤Δxn}(yn2 − 𝛽⊤Δxn)yn1 (9.25)

which is the trimmed least squares estimator for the censored sample. The trimmed lad
and least squares estimators have been extended to the case where the dependent variable is
two-sided censored or truncated by Alan et al. (2013).

Example 9.4 trimmed tobit model – LateBudgets data set
Andersen et al. (2012) study the late adoption of budgets. They use a panel of American states
for the 1988-2007 period, for which the date of budget adoption has been collected so that late
budget situations can be detected and, in this case, the number of days from the legal limit date
can be computed. Among the factors that may explain late budgets, the authors use:
• a shock to the fiscal climate, which is proxied by the annual change of unemployment rate
unempdiff,

• divided control over the state government: splitbranch is a dummy indicating that both
chambers are controlled by a different party than the governor’s and splitleg is a dummy
indicating that the two chambers are controlled by different parties.

• variables linked to the cost of a late budget: elcyear is a dummy for election years, dead-
line is a factor with levels ("none", "soft", "hard") that indicates if there is a legal date
for the end of legislative works,

• shutdown indicates whether the state law dictates a shutdown of state government activities
in the event of a late budget, supmaj that budget adoption requires a super-majority,

• different covariates indicating political and legislative context: the fact that the governor is
newly elected newgov, the number of years since the incumbent governor took office gov-
exp, a dummy for a democrat governor demgov, a dummy indicating that the governor is
subject to a binding term limit lameduck, a 1-to-5 scale for full- vs. part-time legislatures,
where 1 corresponds to a part-time “citizen” legislature, and 5 corresponds to a full-time
professional legislature fulltimeleg, a dummy that indicates that the state law does not
allow a budget deficit to be carried over to the next fiscal year nocarry,

• several social and demographic covariates: population pop, the percentage of African Amer-
icans black, of college graduates graduate, of people older than 65 years elderly, of
children between 5 and 17 years old kids, and the response rate in the 1990 US census
censusrep, which is used as a proxy for social capital.
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In order to investigate whether change of the unemployment rate has an asymmetric effect
on budget adoption, two variables are created, indicating positive values of unemployment rise
unemprise and fall unempfall.

data("LateBudgets", package = "pder")

LateBudgets$dayslatepos <- pmax(LateBudgets$dayslate, 0)

LateBudgets$divgov <- with(LateBudgets,

factor(splitbranch == "yes" |

splitleg == "yes",

labels = c("no", "yes")))

LateBudgets$unemprise <- pmax(LateBudgets$unempdiff, 0)

LateBudgets$unempfall <- - pmin(LateBudgets$unempdiff, 0)

form <- dayslatepos ̃ unemprise + unempfall + divgov + elecyear +

pop + fulltimeleg + shutdown + censusresp + endbalance + kids +

elderly + demgov + lameduck + newgov + govexp + nocarry +

supmaj + black + graduate

The model is estimated using the pldv function, which has a model argument with a default
value of ’fd’ (for first-difference), which in this context is the fixed effects model of Honoré
(1992). Two supplementary arguments can also be specified:
• objfun indicates whether one wants to minimize the sum of the least squares of the resid-

uals (’lsq’, the default value), or the sum of the absolute values of the residuals (’lad’),
• sample indicates if the sample is censored (’censored’, the default value) or truncated

(’truncated’).

FEtobit <- pldv(form, LateBudgets)

summary(FEtobit)

Oneway (individual) effect First-Difference Model

Call:

pldv(formula = form, data = LateBudgets)

Unbalanced Panel: n = 48, T = 2-20, N = 730

Observations used in estimation: 682

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-107.8 -15.1 5.2 7.6 26.4 168.5

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

unemprise 9.042 10.944 0.83 0.409

unempfall -31.641 6.887 -4.59 5.2e-06 ***

divgovyes 19.793 8.767 2.26 0.024 *

elecyear -24.505 10.190 -2.40 0.016 *

pop -0.683 2.512 -0.27 0.786

endbalance -3.856 62.829 -0.06 0.951

kids 0.774 4.547 0.17 0.865

elderly 60.880 2.669 22.81 < 2e-16 ***

demgovyes -6.371 6.770 -0.94 0.347
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lameduckyes -22.032 4.043 -5.45 7.1e-08 ***

newgovyes 5.606 10.532 0.53 0.595

govexp 3.395 38.894 0.09 0.930

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 328000

Residual Sum of Squares: 996000

R-Squared: 0.0255

Adj. R-Squared: 0.00953

F-statistic: -40.8339 on 11 and 670 DF, p-value: 1

As can be seen from the results, the economic situation influences the timing of budget adop-
tion. The effect is asymmetric, an increase of the unemployment rate having stronger impact
than a drop in the unemployment rate. Divided control over the government (measured by
divgov) has a significantly positive effect on late budget adoptions.

9.2.6 The Random Effects Model

The trimmed estimator has two useful features: it is robust to non-normality and heteroscedas-
ticity, on the one hand, and to correlation between the individual effects and the covariates, on
the other hand, the individual effects being wiped out by the first- difference transformation.
However, if the errors are normal and homoscedastic and if the individual effects are also nor-
mal and uncorrelated with the covariates, the maximum likelihood estimator is consistent and
more efficient.

For panel data with individual effects, the latent variable writes:

y∗nt = 𝛾⊤znt + 𝜂n + 𝜈nt

9.2.6.1 Truncated Sample
The density of ynt ∣ znt, 𝜂n is:

f+(ynt ∣ znt , 𝜂n) =
𝜙

(
ynt−𝛾⊤znt−𝜂n

𝜎𝜈

)

𝜎𝜈Φ
(
𝛽⊤xnt+𝜂n

𝜎𝜈

)

The joint density of yn = yn1 … ynt is, assuming the independence of the errors:

f+(yn ∣ zn, 𝜂n) =
T∏

t=1

𝜙

(
ynt−𝛾⊤znt−𝜂n

𝜎𝜈

)

𝜎𝜈Φ
(
𝛾⊤znt+𝜂n

𝜎𝜈

) (9.26)

Assuming that the distribution of individual effects is normal with a standard deviation equal
to 𝜎𝜂 , the unconditional joint density is obtained by integrating out (9.26) for the individual
effects:

f+(yn ∣ zn) =
1√

2𝜋𝜎𝜂
∫

+∞

−∞

T∏
t=1

𝜙

(
ynt−𝛾⊤znt−𝜂

𝜎𝜈

)

𝜎𝜈Φ
(
𝛾⊤znt+𝜂
𝜎𝜈

) e
− 1

2
𝜂2

𝜎2
𝜂 d𝜂 (9.27)
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Using the change of variable 𝑣 = 𝜂√
2𝜎𝜂

, we obtain:

f+(yn ∣ xn) =
1√
𝜋 ∫

+∞

−∞

T∏
t=1

𝜙

(
ynt−𝛾⊤znt−𝜎𝜂

√
2𝑣

𝜎𝜈

)

𝜎𝜈Φ
(
𝛾⊤znt+𝜎𝜂

√
2𝑣

𝜎𝜈

) e−𝑣2 d𝑣 (9.28)

which can be approximated by the Gauss-Hermite quadrature method:

f+(yn ∣ xn) ≈
1√
𝜋

R∑
r=1

𝑤r

T∏
t=1

𝜙

(
ynt−𝛾⊤znt−𝜎𝜂

√
2𝑣r

𝜎𝜈

)

𝜎𝜈Φ
(
𝛾⊤znt+𝜎𝜂

√
2𝑣r

𝜎𝜈

) (9.29)

The log-likelihood function for the truncated model is then simply obtained by summing the
logarithms of (9.29) for all individuals:

ln L =
N∑

n=1
ln f+(yn ∣ xn) (9.30)

9.2.6.2 Censored Sample
In this case, the conditional distribution of ynt is either given by a probability or by a density:

g(ynt ∣ znt, 𝜂n) =
1
𝜎𝜈
𝜙

(ynt − 𝛾⊤znt − 𝜂n

𝜎𝜈

)
1(ynt > 0)

+ Φ
(
−
𝛾⊤znt + 𝜂n

𝜎𝜈

)
1(ynt = 0)

Using a similar reasoning as for the truncated model, individual n contributes to the likeli-
hood with a product of probabilities and/or densities:

g(yn ∣ xn) ≈
1√
𝜋

R∑
r=1

𝑤r

T∏
t=1

{
1
𝜎𝜈
𝜙

(
ynt − 𝛾⊤znt − 𝜎𝜂

√
2𝑣r

𝜎𝜈

)
1(ynt > 0)

+ Φ

(
−
𝛾⊤znt + 𝜎𝜂

√
2𝑣r

𝜎𝜈

)
1(ynt = 0)

}
(9.31)

The log-likelihood function for the censored sample is obtained by summing over all the indi-
viduals the logarithm of (9.31):

ln L =
N∑

n=1
ln g(yn ∣ zn) (9.32)

Example 9.5 random effects censored model – Donor data set
Landry et al. (2012) study the dynamic of behaviors of donors to public utility organizations
and more specifically to the “Center for Natural Hazards Research at East Carolina University”
(ECU). A first door-to-door campaign was realized in 2004. During this campaign, two kinds of
treatment were used: a standard “simply ask for money” treatment, called vcm, and a treatment
with a lottery with which potential donors can receive a gift. The second campaign took place
in 2006. Some of the donors of the first campaign had been solicited, and three treatments were
used, described in the factor variable treatment with three levels: "vcm" for a “simply ask
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for money” treatment and "sgift" if a small gift (a bookmark) or "lgift" if a large gift (a
book) were given to the potential donors. The main objective of the article is to study whether
people who initially give to charities are more willing to give again than others. The response is
the amount of the gift; it is therefore left-censored at 0. In the article, the authors present results
of linear regressions with solicitors’ fixed effects. In the online appendix, the same equations
are estimated using a random effects tobit model. Two equations are estimated, both employing
treatment and a dummy for previous donors prcontr as explanatory variables, the second
adding an interaction term between the two.

data("Donor", package = "pder")

library("plm")

library("texreg")

T3.1 <- plm(donation ̃ treatment + prcontr, Donor, index = "id")

T3.2 <- plm(donation ̃ treatment * prcontr - prcontr, Donor, index = "id")

T5.A <- pldv(donation ̃ treatment + prcontr, Donor, index = "id",

model = "random", method = "bfgs")

T5.B <- pldv(donation ̃ treatment * prcontr - prcontr, Donor, index = "id",

model = "random", method = "bfgs")

screenreg(list(OLS = T3.1, Tobit = T5.A, OLS = T3.2, Tobit = T5.B),

reorder.coef = c(1:3, 7:9, 4:6))

=============================================================================

OLS Tobit OLS Tobit

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

treatmentsgift -0.41 2.36 0.06 3.53

(0.61) (1.86) (0.66) (2.04)

treatmentlgift 1.79 ** 6.36 *** 2.07 ** 7.66 ***

(0.64) (1.93) (0.68) (2.08)

prcontryes 1.29 * 5.74 **

(0.59) (1.79)

treatmentvcm:prcontryes 3.14 ** 10.78 **

(1.13) (3.41)

treatmentsgift:prcontryes 0.20 4.47

(0.95) (2.88)

treatmentlgift:prcontryes 1.05 3.23

(1.00) (3.01)

(Intercept) -15.16 *** -16.05 ***

(1.89) (1.97)

sd.nu 16.40 *** 16.36 ***

(0.80) (0.80)

sd.eta 4.05 *** 3.92 ***

(1.11) (1.10)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

R ̂ 2 0.02 0.02

Adj. R ̂ 2 -0.02 -0.01

Num. obs. 1039 1039 1039 1039

Log Likelihood -1498.38 -1496.84

=============================================================================

*** p < 0.001, ** p < 0.01, * p < 0.05
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The average gift (including censored observations) is 2.5$. The first column indicates that
previous donors give on average 1.3$ more. A large gift increases the donation by 1.8%, while
a small gift has no effect on donation. The third column distinguishes the treatment effect for
previous donors and the others. For the vcm treatment, the gift of previous donors is much
larger (about 3$). On the contrary, there is no difference between previous donors and other
people when a gift is proposed by solicitors. The random effects tobit models are presented in
columns 2 and 4. The results are very similar but more difficult to interpret, as the expected
value of the response for the tobit model is:

E(y ∣ z) = 𝛾⊤zΦ
(
𝛾⊤z
𝜎

)
+ 𝜎𝜙

(
𝛾⊤z
𝜎

)

For example, for someone who didn’t give previously and who received the vcm treatment,
𝛾⊤z = −15.13. With 𝜎 = 16.40, we obtain an expected donation of 1.57. For someone who made
a donation previously and who also received thevcm treatment, we have 𝛾⊤z = −15.16 + 5.74 =
−9.42, and the expected donation is 2.88. The effect for previous donors is therefore equal to
2.88 − 1.57 = 1.31, which is very close to the linear regression coefficient.

9.3 Count Data

We now consider the case where the response is a count. We will first briefly review the esti-
mation of count data models in a cross-sectional context, and then we will describe specific
estimators for panel data.

9.3.1 Introduction

The two most widely used models when the response is a count are the Poisson and the NegBin
models.

9.3.1.1 The Poisson Model
We first suppose that the response follows a Poisson distribution of parameter 𝜃n (which is the
mean and the variance of the variable). Under this distributional assumption, the probability of
observing a value yn is:

P(yn) =
e−𝜃n𝜃

yn
n

yn!
Using the logarithmic link, the Poisson parameter is the exponential of the linear predictor:

𝜃n = e𝛾⊤zn

which leads to the following probability for observation n:

P(yn ∣ xn) =
e−e𝛾⊤zn e𝛾⊤znyn

yn!
Taking the logarithm of this probability and summing over all individuals, we obtain the fol-

lowing log-likelihood function:

ln L = −
N∑

n=1
e𝛾⊤z +

N∑
n=1

𝛾⊤zyn −
N∑

n=1
ln yn!
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9.3.1.2 The NegBin Model
Count data often exhibit excess dispersion, i.e., the variance is greater than the mean. In this
case, the NegBin model is more appropriate than the Poisson model.

Suppose that yn is a random variable that follows a Poisson distribution of parameter
𝜃n = 𝛼n𝜆n (with 𝜆n = e𝛾⊤zn in the case of a logarithmic link), 𝛼n being a random variable.

The conditional probability of yn is:

P(yn ∣ xn, 𝛼n, 𝛽) =
e−𝜃n𝜃

yn
n

yn!
=

e−𝛼n𝜆n (𝛼n𝜆n)yn

yn!
Let now suppose that 𝛼n follows a gamma distribution. If 𝛽 contains an intercept, the mean

of 𝛼 is not identified and therefore a one-parameter distribution, which imposes a unit mean,
is chosen.

f (𝛼) = 𝛿𝛿

Γ(𝛿)
e−𝛿𝛼𝛼𝛿−1

Integrating out this conditional probability using the density of 𝛼, we obtain:

P(yn ∣ xn) = ∫

+∞

0

e−𝛼𝜆i(𝛼𝜆i)yi

yi!
𝛿𝛿

Γ(𝛿)
e−𝛿𝛼𝛼𝛿−1d𝛼

P(yn ∣ xn) =
(

𝛿n

𝜆n + 𝛿n

)𝛿n
(

𝜆n

𝜆n + 𝛿n

)yn Γ(yn + 𝛿n)
Γ(yn + 1)Γ(𝛿n)

To understand the meaning of 𝛿n, the first two moments of yn are computed. For a given value
of 𝛼n, we have, as for the Poisson model: E(yn ∣ 𝛼n) = V(yn ∣ 𝛼n) = 𝜃n = 𝛼n𝜆n. The unconditional
mean is E𝛼(𝛼𝜆n) = 𝜆n, because the expected value of 𝛼 equals 1.

To compute the unconditional variance, the variance decomposition formula is applied:

V(yn) = E𝛼(𝛼𝜆n) + V𝛼(𝛼𝜆n) = 𝜆n +
1
𝛿n
𝜆2

n

A general formula for 𝛿n is:

𝛿n =
𝜆2−k

n

𝜈

For k = 1, we get the Negbin1 model, with 𝛿n = 𝜆n∕𝜈 and V(yn) = 𝜆n(1 + 𝜈). In this case, the
variance is proportional to the mean.

For k = 2, we obtain the Negbin2 model, with 𝛿n = 1∕𝜈 and V(yn) = 𝜆n + 𝜈𝜆2
n; here, the vari-

ance is a quadratic function of the mean.

9.3.2 Fixed Effects Model

Fixed effects Poisson and NegBin models are proposed by Hausman et al. (1984).

9.3.2.1 The Poisson Model
The fixed effects Poisson model is very specific, as it doesn’t suffer from the incidental parameter
problem and can therefore be obtained either by estimating the individual effects or by using a
sufficient statistic4.

In a panel context, the Poisson parameter for individual n in period t is written:

𝜃nt = 𝜂n𝜆nt = 𝜂ne𝛽⊤xnt

4 See Cameron and Trivedi (1998, chap. 9).
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which means that the individual effect is multiplicative. For a given value of the individual effect,
the probability of observing ynt is:

P(ynt ∣ xnt, 𝜂n, 𝛽) =
e−𝜃nt𝜃

ynt
nt

ynt!
=

e−𝜂n𝜆nt (𝜂n𝜆nt)ynt

ynt!

Let Yn =
∑T

t=1 ynt be the sum of all the values of the response for individual n and
Λn =

∑T
t=1 𝜆nt the sum of the Poisson parameters. A sum of Poisson variables follows a Poisson

distribution with parameter equal to the sum of the parameters of the summed variables. We
therefore have:

P(Yn ∣ xn, 𝜂n, 𝛽) =
e−𝜂nΛn(𝜂nΛn)Yn

Yn!
(9.33)

Let yn = (yi1, yi2,… , ynt) be the vector of values of y for individual n. We then have:

P(yn ∣ xn, 𝜂n, 𝛽) =
e−𝜂n

∑T
t=1 𝜆nt

∏T
t=1 (𝜂n𝜆nt)ynt∏T

t=1 ynt!
=

e−𝜂nΛi𝜂
Yn
n
∏T

t=1 𝜆
ynt
nt∏T

t=1 ynt!
(9.34)

Applying Bayes’ theorem, we obtain:

P(yn ∣ xn, 𝜂n, 𝛽) = P(yn ∣ xn, 𝜂n, 𝛽,Yn)P(Yn ∣ xn, 𝜂n, 𝛽)

i.e., the joint probability of the components of yn is the product of the conditional probability
of yn given Yn and the marginal distribution of Yn. This conditional probability is:

P(yn ∣ xn, 𝜂n, 𝛽,Yn) =
P(yn ∣ xn, 𝜂n, 𝛽)
P(Yn ∣ xn, 𝜂n, 𝛽)

which implies:

P(yn ∣ xn, 𝛽,Yn) =
Yn!

ΛYn
n

T∏
t=1

𝜆
ynt
nt

ynt!
(9.35)

As for the logit model, Yn is a sufficient statistic, which means that it allows to get rid of the
individual effects. Taking the logarithm of this expression and summing over all individuals, we
obtain the within Poisson model:

ln L(y ∣ x, 𝛽,Y ) =
N∑

n=1

(
ln Yn! − Yn ln

T∑
t=1

𝜆nt +
T∑

t=1
(ynt ln 𝜆nt − ln ynt!)

)
(9.36)

or:

ln L(y ∣ x, 𝛽,Y ) =
N∑

n=1

(
ln Yn! −

T∑
t=1

ln ynt! +
T∑

t=1
ynt ln

𝜆nt∑T
t=1 𝜆nt

)

∝
N∑

n=1

( T∑
t=1

ynt ln
𝜆nt∑T

t=1 𝜆nt

)
(9.37)

As stated previously, the Poisson model is not affected by the incidental parameter prob-
lem, as the same estimator may be obtained by estimating the individual effects. To show this
result, we take the logarithm of the joint probability for the T observations of y for individual
n (equation 9.34), in order to obtain the log-likelihood function:

ln P(yn ∣ xn, 𝜂n, 𝛽) = −𝜂n

∑
t
𝜆nt +

∑
t

ynt ln(𝜂n𝜆nt) −
∑

t
ln ynt! (9.38)
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The first-order condition for 𝜂n to maximize the log- likelihood function is:

𝜕 ln Pn

𝜕𝜂n
= −

∑
t
𝜆nt +

1
𝜂n

∑
t

ynt = 0

which implies that: 𝜂n =
∑

t ynt∑
t𝜆nt

.
Introducing this expression in (9.38) and summing over all n, we obtain the concentrated

log-likelihood function:

ln Lconc(y ∣ x, 𝛽) =
∑

n

(
−Yn + Yn ln Yn +

∑
t

ynt
𝜆nt∑
t𝜆nt

−
∑

t
ln ynt!

)

∝
N∑

n=1

( T∑
t=1

ynt ln
𝜆nt∑T

t=1 𝜆nt

)
(9.39)

The two log-likelihood functions (9.37) and (9.39) are proportional, they therefore lead to
the same estimators of 𝛽. Moreover, if a logarithmic link is chosen, we have: 𝜆nt = e𝛽⊤x. The
likelihood is in this case proportional to:

ΠN
n=1Π

T
t=1

(
e𝛽⊤xnt∑
te𝛽

⊤xnt

)ynt

which is similar to the likelihood of a multinomial logit model for which N individuals must
choose one among L mutually exclusive alternatives. The difference is that in this latter model
ynt is either equal to 0 or to 1, and

∑
tynt = 1, as in our context each ynt is a natural integer.

9.3.2.2 Negbin Model
Hausman et al. (1984) also propose a fixed effects NegBin model. We just present below without
demonstration the joint probability for individual n:

P(yn ∣ xn, 𝛽,Yn) =

( T∏
t=1

Γ(𝜆nt + ynt)
Γ(𝜆nt)Γ(ynt + 1)

)
Γ(Λn)Γ(Yn + 1)
Γ(Λn + Yn)

(9.40)

9.3.3 Random Effects Models

9.3.3.1 The Poisson Model
Hausman et al. (1984) also proposed a between and a random effects Poisson model, integrating
out the relevant probabilities (9.33 et 9.34 respectively). A gamma distribution hypothesis is
made for the individual effects, with the following density:

f (x, a, b) = ab

Γ(b)
e−axxb−1

with

Γ(z) =
∫

+∞

0
tz−1e−tdt

the gamma function. The expected value and the variance of x are respectively:

E(x) = b
a

and V(x) = b
a2
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If the model contains an intercept, the expected value is not identified and we can then
suppose, without restriction, that it is equal to 1, which implies a = b. We then obtain a gamma
distribution with one parameter (denoted 𝛿):

f (𝛼) = 𝛿𝛿

Γ(𝛿)
e−𝛿𝛼𝛼𝛿−1

Integrating out the conditional probabilities (9.33 and 9.34), we obtain the unconditional
probabilities for the between and the random effects models:

P(Yn ∣ zn, 𝛽) = ∫

+∞

0
P(Yn, zn, 𝛼, 𝛾)f (𝛼)d𝛼 =

Λn
Yn

Yn!
𝛿𝛿

Γ(𝛿)
Γ(Yn + 𝛿)

(Λn + 𝛿)Yn+𝛿

P(yn, xn, 𝛽) = ∫

+∞

0
P(yn, xn, 𝛼, 𝛽)f (𝛼)d𝛼 =

T∏
t=1

𝜆
ynt
nt

ynt!
𝛿𝛿

Γ(𝛿)
Γ(Yn + 𝛿)

(Λn + 𝛿)Yn+𝛿

which leads to the following log-likelihood functions:

ln L(Y ∣ z, 𝛾) =
N∑

n=1

[
Yn ln

∑
t
𝜆nt − ln Yn! + 𝛿 ln 𝛿

− lnΓ(𝛿) + lnΓ(Yn + 𝛿)

− (Yn + 𝛿) ln

( T∑
t=1

𝜆nt + 𝛿

)]
(9.41)

ln L(y ∣ z, 𝛾) =
N∑

n=1

[∑
t
(ynt ln 𝜆nt − ln ynt!) + 𝛿 ln 𝛿

− lnΓ(𝛿) + lnΓ(Yn + 𝛿)

− (Yn + 𝛿) ln

( T∑
t=1

𝜆nt + 𝛿

)]
(9.42)

9.3.3.2 The NegBin Model
In addition to the Poisson model, Hausman et al. (1984) also proposed between and random
effects NegBin models. We just present below without demonstration the joint probability for
individual n.

P(Yn ∣ xn, 𝛾) =
Γ(Λn + Yn)

Γ(Λn)Γ(Yn + 1)
Γ(a + b)Γ(a + Λn)Γ(b + Yn)
Γ(a)Γ(b)Γ(a + b + Λn + Yn)

(9.43)

P(yn, xn, 𝛾) =
Γ(a + b)Γ(a + Λn)Γ(b + Yn)
Γ(a)Γ(b)Γ(a + b + Λn + Yn)

( T∏
t=1

Γ(𝜆nt + ynt)
Γ(𝜆nt) + Γ(ynt + 1)

)
(9.44)

Example 9.6 fixed effects NegBin model – GiantsShoulders data set
Furman and Stern (2011) assess the impact of a scientific institution, a biological resource cen-
ter, whose objective is to certify and disseminate knowledge, on knowledge accumulation. More
specifically, they are interested in the ACTT (American Type Culture Collection), which col-
lects, certifies, and distributes biological organisms. The authors are interested in the citations
of publications for which the results are hosted by the ACTT, and they try to estimate the causal
effect of ACTT hosting. There is an obvious selection problem, because it is natural to think
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that some of the best pieces of research will end up to be hosted by ACTT and that the same
would be heavily cited because of their quality even if they were not hosted by the ACTT.

In order to identify the causal effect of ACTT hosting on knowledge dissemination, the
authors use two strategies:
• the first is that there is often a long lag between publication and hosting, and this lag is mostly

exogenous,
• the second consists in matching every hosted article to a similar (same journal, date, and

subject) non-hosted article.
The GiantsShoulders data set is available in the pder package.

data("GiantsShoulders", package = "pder")

head(GiantsShoulders)

pair article brc pubyear brcyear year citations

1 184 1184 yes 1983 1994 1983 0

2 184 1184 yes 1983 1994 1984 31

3 184 1184 yes 1983 1994 1985 89

4 184 1184 yes 1983 1994 1986 105

5 184 1184 yes 1983 1994 1987 84

6 184 1184 yes 1983 1994 1988 75

The response is citations, the annual number of citations of the article. Each article is
identified by the variable article and by the pair of articles it belongs to pair. For each pair,
an article is hosted by the ATCC and the other is not, which is indicated by the variable brc.
Years of observation, publication, and hosting are indicated by the variables year, puyear,
and brcyear.

Figure 1 in Furman and Stern (2011), reproduced here in Figure 9.6, presents the average
number of citations for hosted and non-hosted articles as a function of publication age. It is
computed using the dplyr and the ggplot2 packages.

library("dplyr")

library("ggplot2")

GiantsShoulders <- mutate(GiantsShoulders, age = year - pubyear)

cityear <- summarise(group_by(GiantsShoulders, brc, age),

cit = mean(citations, na.rm = TRUE))

ggplot(cityear, aes(age, cit)) + geom_line(aes(lty = brc)) +

geom_point(aes(shape = brc)) + scale_x_continuous(limits = c(0, 20))

As can be seen, the number of citations increases the first year, to reach a maximum at about
the third or fourth year and then decreases. Figure 9.6 also shows that hosted articles are much
more cited that non-hosted articles.

To estimate the marginal causal effect of the hosting institution, two covariates are con-
structed for hosted articles:
• window is 1 around the hosting date, more precisely for a three-year period centered on the

hosting year,
• post_brc is 1 for articles hosted for more than a year.

To reproduce the results exactly, we use annual fixed effects for years after 1979 and 5-year
effects for the 1970-74 and 1975-79 periods. We also introduce fixed effects for the age of the
articles (omitting the 31 years age dummy).
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Figure 9.6 Average annual citations by age, BRC versus control articles.

GiantsShoulders <- mutate(GiantsShoulders,

window = as.numeric( (brc == "yes") &

abs(brcyear - year) <= 1),

post_brc = as.numeric( (brc == "yes") &

year - brcyear > 1),

age = year - pubyear)

GiantsShoulders$age[GiantsShoulders$age == 31] <- 0

GiantsShoulders$year[GiantsShoulders$year %in% 1970:1974] <- 1970

GiantsShoulders$year[GiantsShoulders$year %in% 1975:1979] <- 1975

In the two first columns, a linear model is estimated. The first model contains only age fixed
effects, and the second one add pairs and years fixed effects. The results are similar; the selection
effect of hosting is about 50% of more citations, and the marginal effect is 35% for the hosting
period and about 50% for latter years.

The other two columns present the results of the fixed effects NegBin model. Pair (column 3)
and article (column 4) fixed effects are alternatively used.

library("pglm")

t3c1 <- lm(log(1 + citations) ̃ brc + window + post_brc + factor(age),

data = GiantsShoulders)

t3c2 <- update(t3c1, . ̃ .+ factor(pair) + factor(year))

t3c3 <- pglm(citations ̃ brc + window + post_brc + factor(age) + factor(year),

data = GiantsShoulders, index = "pair",

effect = "individual", model = "within", family = negbin)

t3c4 <- pglm(citations ̃ window + post_brc + factor(age) + factor(year),

data = GiantsShoulders, index = "article",

effect = "individual", model = "within", family = negbin)

screenreg(list(t3c2, t3c3, t3c4),

custom.model.names = c("ols: age/year/pair-FE",

"NB:age/year/pair-FE",

"NB: age/year/article-FE"),

omit.coef="(factor)|(Intercept)", digits = 3)
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=================================================================================

ols: age/year/pair-FE NB:age/year/pair-FE NB: age/year/article-FE

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

brcyes 0.501 *** 0.752 ***

(0.057) (0.073)

window 0.385 *** 0.352 *** 0.565 ***

(0.074) (0.082) (0.065)

post_brc 0.535 *** 0.538 *** 0.810 ***

(0.063) (0.079) (0.056)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

R ̂ 2 0.538

Adj. R ̂ 2 0.522

Num. obs. 4857 4857 4857

RMSE 0.829

Log Likelihood -10759.180 -9632.404

=================================================================================

*** p < 0.001, ** p < 0.01, * p < 0.05

9.4 More Empirical Examples

Charness and Villeval (2009) investigate the difference in behavior between senior and junior
workers in terms of risk aversion, competition, and cooperation. They conduct an experiment
during which every participant can invest his or her initial endowment in a public good game,
which is the explanatory variable of their econometric analysis. This variable is left- (null con-
tribution) and right- (contribution of the full endowment) censored. As the participants are
observed during 16 periods, they use a random effects tobit model. The Seniors data set is
available in package pder.

Michalopoulos and Papaioannou (2016) explore the consequences of ethnic partitioning,
which is one aspect of the “scramble for Africa” during which European countries partitioned
Africa without caring much about the boundaries of ethnic groups. Their pseudo-panel consists
of 825 ethnic groups belonging to 49 countries. The authors estimate a Negbin model, where
the response is the number of conflicts in an ethnicity-country homeland, the major covariate
being a dummy for partitioned ethnic areas. They introduce country fixed effects and estimate a
specification where the fixed effects are estimated and not wiped out using a sufficient statistic.
Partitioned ethnicities experience an increase of 57% in political violence compared to other
areas. The data are available in package pder as ScrambleAfrica.

Bardhan and Mookherjee (2010) analyze the political determinants of land reform in West
Bengal, India. More specifically, they use yearly data on 89 villages for the 1978-1998 period.
The response is the percentage of land or of households affected by land reform; it is highly
censored, as it is 0 for more than 80% of the sample. The main covariate is the presence of a
left-wing coalition at the head of the local government. The authors use the trimmed least abso-
lute deviation estimator of Honoré (1992) and don’t find any significant effect of the left-wing
government variable on the strength of land reform. The LandReform data are available in
package pder

Brandts and Cooper (2006) analyze how financial incentives can be used to overcome a his-
tory of coordination failure. For this purpose, they conduce an experiment where “firms,” com-
posed of four “employees” have an output that is related to the lowest level of effort implemented
by the employees. The individual or the lowest firm level effort is the response and, as the same
employees/firms are observed during 30 different rounds, panel data techniques are used. The
level of effort being ordinal, the authors use ordered probit models, with firm random effects
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and nested random effects respectively when the analysis is at the firm or at the employee level.
Their dataset is available in the pder package as CoordFailure.

Farber et al. (2016) conducted an audit study to analyze the determinants of callbacks to job
applications. They sent four fake resumes for 1,118 job openings and the response is a dummy
indicating a callback, the covariates being the unemployment spell duration, the age, and the
fact that the worker has held a low level interim job. They estimate a random effects and a
conditional logit model with job opening effects. The Callbacks data are to be found in the
pder package.

Bazzi (2017) investigates the influence of income on migration. At the household and at the
village level, the response being in the first case a dummy that indicates whether a person in the
household migrated during the given year and in the second case the percentage of the pop-
ulation of the village that has migrated. The main covariates are rainfall, rice price shock, and
wealth at the household level and at the village level, indicators of the shape of wealth distribu-
tion. The author uses a conditional logit at the household level and the two-sided trimmed least
absolute deviations estimator (see Alan et al., 2013) at the village level. The IncomeMigra-
tionV (village level) and IncomeMigrationH (household level) datasets are also included
in the pder package.

Vella and Verbeek (1998) estimate the union premium for young men. In a first step, they esti-
mate a dynamic random effect probit model for union membership. The UnionWage dataset
is available in the pglm package.

Hausman et al. (1986) and Cincer (1997) study the dynamic relationship between patents
and R&D using yearly panels of firms. They fit different count data models, including condi-
tional Poisson and Negbin models. The data sets they used are available as PatentsRDUS and
PatentsRD in the pglm packages.
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10

Spatial Panels

10.1 Spatial Correlation

If the cross-sectional dimension of a dataset has any form of ordering, or if a distance is defined
over each pair of observations (here: spatial units), one can use spatial methods to account for
the possibility that correlation be stronger between “nearby” ones. The most commonly used
definitions of proximity are either distance- or neighborhood-related. Neighborhood depends
on the spatial units being arranged in a topological space on a regular or irregular grid, an
example of the latter being state or regional borders in geography.1 On the subject, see Anselin
(1988, Ch. 3).

This subject is most relevant in nonrandom samples such as countries within a geographi-
cal region, or regions within one country; but spatial methods can also be employed wherever
some kind of distance between observations is defined, be it in a geographic space or perhaps
in an economic, demographic, or psychological one. Hence spatial methods, although more
common in the former context, can be relevant in random samples too, such as, e.g., in house-
hold surveys.

10.1.1 Visual Assessment

Correlation in bidimensional space can be multifaceted, and in some ways more complicated
to assess than correlation in time, which has a single dimension and often an obvious direc-
tion. Therefore, preliminary data analysis based on visual assessments, while always important
and perhaps underutilized in econometric practice (Kleiber and Zeileis, 2008), is all the more
useful in a spatial context. In the first part of this section we present an example of visual assess-
ment of spatial correlation drawing on R’s map plotting facilities; next, we proceed to formal
statistical tests.

Example 10.1 Visual assessment of spatial correlation – HousePricesUS data set
Visualizing data on a choropleth map is often the first step toward assessing the correlation of
data in a geographical space. Plotting statistical maps is a complex subject that is out of the
scope of the present book and is made easier by a number of dedicated packages: below we
provide an example of plotting maps with ggplot2, adapting the example in package fiftystater

1 Contiguity/neighborhood is straightforward in irregular grids, while on regular ones (as in the literature on lattice
processes) different definitions can apply, e.g., in the now-standard chess-related terminology, “queen contiguity”
when units sharing either a border or a vertex are defined as neighbors; “rook” contiguity if considering only pairs
sharing a border; and so on.

Panel Data Econometrics with R, First Edition. Yves Croissant and Giovanni Millo.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/croissant/data-econometrics-with-R
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Figure 10.1 Growth of house prices indexes in the USA between 1980 and 2000.

(Murphy, 2016) for displaying the growth of house prices indices in the USA between 1980
(=100) and 2000 (darker is lower):

data("HousePricesUS", package="pder")

library("ggplot2")

data("fifty_states", package = "fiftystater")

houses00 <- subset(HousePricesUS, year == 2000)

houses00$name <- tolower(houses00$name)

p <- ggplot(houses00, aes(map_id = name)) +

geom_map(aes(fill = price), map = fifty_states) +

expand_limits(x = fifty_states$long, y = fifty_states$lat) +

coord_map() +

scale_x_continuous(breaks = NULL) +

scale_y_continuous(breaks = NULL) +

labs(x = "", y = "") +

theme(legend.position = "bottom",

panel.background = element_blank()) +

theme(legend.text = element_text(size = 6),

legend.title= element_text(size = 8),

axis.title = element_text(size = 8))

p <- p + scale_fill_gradient2(low = "grey30", high = "grey5")

p

Clusters of low-growth regions are evident by their darker color and the opposite
(Figure 10.1): in general, shades tend to distribute nonrandomly, nearby states tending to behave
similarly. Formal testing for spatial correlation is likely to corroborate this first impression.

10.1.2 Testing for Spatial Dependence

One first issue when confronted with spatially referenced data is to determine whether spatial
dependence exists, i.e., whether “nearby” units (according to the chosen metric) are more cor-
related than distant ones. The raw data are tested for spatial dependence in order to inform
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and justify the use of spatial estimation methods; then, after estimation, the residuals are tested
again to determine whether the model has been able to effectively account for the spatial fea-
tures of the process at hand.

10.1.2.1 CD p Tests for Local Cross-sectional Dependence
A very flexible way of assessing whether dependence in the cross-section of a panel dataset
is spatially related goes through a particularization of the cd test for general cross-sectional
dependence described in Chapter 4. The latter is in principle completely a-spatial, being based
on a scaled average of the pairwise correlation coefficients �̂�nm between observations (or resid-
uals). Still, the cd can be restricted to those pairs of observations satisfying one given criterion:
most frequently, a contiguity-based neighborhood one but also that distance be under a given
cutoff level.

The local variant of the cd test, called cd(p) test (Pesaran, 2004), takes into account an
appropriate subset of neighboring cross-sectional units to check the null of no cross-sectional
dependence against the alternative of local cross-sectional dependence, i.e., dependence
between neighbors only. To do so, the pairs of neighboring units are selected by means of
a binary proximity matrix, in which zeros correspond to pairs of observations that are not
neighbors. The latter is used for discarding the correlation coefficients relative to pairs of
observations that are not neighbors in computing the cd statistic. The test is then defined as:

cd =
√

1∑N−1
n=1

∑N
m=n+1 𝑤(p)nm

(N−1∑
n=1

N∑
m=n+1

[𝑤(p)]nm
√

Tnm�̂�nm

)

where [𝑤(p)]nm is the (n,m)-th element of the p-th order proximity matrix, so that if any pair
n,m are not neighbors, [𝑤(p)]nm = 0 and �̂�nm is eliminated from the summation; and Tnm is the
number of time series observations in common between individuals n and m (T if the panel is
balanced).2

The same procedure can be applied to the lm and sclm tests described in section 4.3.1. The
local version of either test can be computed supplying an n × n matrix (of any type coercible to
logical), providing information on whether any pair of observations are neighbors or not, to
the w argument of pcdtest. If w is supplied, only neighboring pairs will be used in computing
the test; else, w will default to NULL, and all observations will be used. The matrix needs not
really be binary, so commonly used “row-standardized” matrices can be employed as well: it is
enough that neighboring pairs correspond to nonzero elements in w3.

10.1.2.2 The Randomized W Test
The cd(p) test is flexible and well behaved in small samples; moreover it does not suffer

the biggest drawback of its global sibling, which does not have any power under zero-mean
dependence and therefore cannot be employed, for example, on cross-sectionally demeaned
data – or equivalently on the residuals of a model containing time fixed effects. Nevertheless,
it does not tolerate serial correlation and can be sensitive to non-spatial types of dependence.
In fact, if cross-sectional dependence of the non-spatial type is present and a cd(p) test is

2 This more general formula is easily seen to reduce to formula (14) in Pesaran (Pesaran, 2004) for the special case
considered in that paper, where a regular ordering of observations is assumed so that the n-th cross-sectional
observation is a neighbor to the (n − 1)-th and to the (n + 1)-th.
3 A row-standardized proximity matrix is one transformed so that all rows sum to 1. The very comprehensive package
spdep for spatial dependence analysis (see Bivand, 2008) contains features for creating, lagging, and manipulating
neighbor list objects of class nb, that can be readily converted to and from proximity matrices by means of the
nb2mat function. Higher orders of the cd(p) test can be obtained lagging the corresponding nbs through nblag.
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performed, it will be based on a subset of spatially related pairs from a population of correlated
ones; it is therefore likely to yield a false positive result (a type I error) favoring spatial
dependence.

The idea underlying the cd(p) test, that not all pairs of neighbors are correlated but only those
in a specific spatial relationship are and that the latter are identified through the W matrix,
gives rise to another testing procedure that is remarkably robust to all the above confounding
features. The rw test of Millo (2017a) employs a permutation procedure to produce a large
number of randomized neighborhood matrices and then compares the cd(p) statistic under
the true spatial ordering with the population of those under the randomized ones. If spatial
dependence is absent, the observations must be exchangeable in the cross-section: then, the true
cd(p)will not take an extreme value with respect to the randomization-based ones, and the null
hypothesis of no spatial dependence will hold. As usual, the share of randomized statistics more
extreme than the true one will be the pseudo-p-value of the test. In the majority of situations,
the alternative hypothesis is of positive spatial dependence. In this case a one-tailed test will be
appropriate. Given a panel-indexed vector x, call 𝜏∗h = cdp(W ∗

h |x) the randomized statistic from
the h-th draw, with h = 1…B; and 𝜏 = cdp(W |x) the one under the true W. If the alternative
is positive spatial dependence, the pseudo-p-value of the one-tailed rw+

p test is then

p-value∗(rw+
p ) =

∑B
h=1 1[𝜏∗h ≥ 𝜏]

B + 1
(10.1)

where 1[.] is the indicator function. The null of no spatial dependence in x would be rejected at,
say, 5% significance if p-value∗(rw) < 0.05, meaning that the actual cdp value is more extreme
than the 95th quantile of the distribution of randomized values.

Negative spatial autocorrelation is less common in empirical practice but can be relevant, e.g.,
in the description of competitive processes (see Griffith and Arbia, 2010; Elhorst and Zigova,
2014). In this case it may happen that the distribution of randomized statistics be shifted in the
opposite direction by positive global dependence so that the value of the true test statistic be
less extreme, and the one-tailed procedure would not work. A two-tailed test is then needed,
which is easily accomplished by taking absolute values and cross-sectionally demeaning the
data so that the average of the factors, and hence the average global correlation, is re-centered
on zero:

p-value∗(rwsymm
p ) =

∑B
h=1 1[|𝜏∗h | ≥ |𝜏|]

B + 1
. (10.2)

To take heed of possible asymmetries in the (re-centered) distribution of randomized statistics,
one can go the safest way employing the asymmetric version of the test:

p-value∗(rwp) = 2 × min

(∑B
h=1 1[𝜏∗h ≤ 𝜏]

B + 1
,

∑B
h=1 1[𝜏∗h > 𝜏]

B + 1

)
. (10.3)

Example 10.2 Spatial dependence – HousePricesUS data set
In their analysis of the income elasticity of house prices across continental US states, Holly et al.
(2010) employ cd tests to assess cross-sectional dependence in the raw data and in the residuals
from the various regression models they estimate. Below we present an assessment of spatial
dependence in the house prices index from their dataset employing a binary neighborhood
matrix. As was the case for the a-spatial cd test, if analyzing raw data, then the data.frame
must be pre-transformed into apdata.frame, so the testing function can find the appropriate
indices:



Spatial Panels 249

data("usaw49", package="pder")

library("plm")

php <- pdata.frame(HousePricesUS)

pcdtest(php$price, w = usaw49)

Pesaran CD test for local cross-sectional dependence

in panels

data: php$price

z = 37, p-value <2e-16

alternative hypothesis: cross-sectional dependence

The local cd(p) test finds a strong, statistically very significant average correlation between
neighboring pairs. There is little doubt that the original data are correlated in the cross section;
it remains to be ascertained whether said correlation is truly spatial or due to common factor
influence in the process originating the data. An rw test will determine whether there is any
spatial correlation proper left after controlling for cross-sectional correlation:

library("splm")

rwtest(php$price, w = usaw49, replications = 999)

Randomized W test for spatial correlation of order 1

data: formula

p-value = 0.002

alternative hypothesis: twosided

The spatial correlation according to the “true” neighborhood matrix is the most extreme in the
distribution of statistics obtained from drawing 999 more random orderings next to the original
one, leaving little doubt about the presence of a spatial component in the process generating
the data. The same is found when analyzing the explanatory variable, income. The question
becomes then, after estimating the model, whether there is any spatial correlation remaining
in the residuals after explaining house prices through income, or whether the spatial struc-
ture of income effectively explained away that in the dependent variable, house prices. Holly
et al. (2010) estimate a common correlated effects (cce) model of house prices vs income in
order to control for unobservable common factors perturbating the relationship of interest.
cce will effectively “defactor” the model residuals, so that any purely spatial process will now
be detectable without the confounding effect of the former so that a cd(p) test of the model
residuals will reveal it. The same goes for the rw test, but the latter will control for factor struc-
tures so that it can be applied without defactoring as well. Residuals from a pmg object are a
regular pseries so that pcdtest and rwtest can be directly applied:

mgmod <- pmg(log(price) ̃ log(income), data = HousePricesUS)

ccemgmod <- pmg(log(price) ̃ log(income), data = HousePricesUS, model = "cmg")

pcdtest(resid(ccemgmod), w = usaw49)

Pesaran CD test for local cross-sectional dependence

in panels
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data: resid(ccemgmod)

z = 28, p-value <2e-16

alternative hypothesis: cross-sectional dependence

rwtest(resid(mgmod), w = usaw49, replications = 999)

Randomized W test for spatial correlation of order 1

data: formula

p-value = 0.002

alternative hypothesis: twosided

Any way we look at it, substantial spatial dependence is still present in the model residuals
even after controlling for cross-sectional common factors.

10.2 Spatial Lags

The basic tool of spatial econometrics is the definition of a spatial lag. Given an observation
and a distance metric, the spatial lag of that observation is usually defined as some kind of
weighted average of the observations that are considered “near” to it according to the given
metric:

∑N
m=1 𝑤nmzmt . Either a distance or a neighborhood matrix is commonly employed to

provide the weights. In the neighborhood case, for each pair of observations n,m, the matrix
will have an element 𝑤n,m = 1 if the two are neighbors, i.e., if they share a common border like
Germany and Austria (first-order neighborhood) or if there are at most p other observations sep-
arating them (p-th order neighborhood), so that Italy and Germany are second-order neighbors.
In the distance-based case, the generic element will be dependent on some inverse function of
the distance d(n,m) between them, usually the reciprocal:𝑤n,m = 1∕d(n,m). It is customary to
set a cutoff point at some distance d̄ beyond which one does not expect any influence to be
present so that𝑤n,m = 0 if d(n,m) ≥ d̄4. In both cases, it is customary to standardize W so that
the rows sum to one:

∑N
n=1 𝑤n m = 1 ∀m. Then, for each zn, W zn will contain, respectively, the

simple average of values in neighboring locations or a distance-weighted average of all zm for
which 𝑤nm ≠ 0.

In all of the following, we will refer to the simpler neighborhood-based definition of proxim-
ity. All techniques illustrated in this chapter are nevertheless applicable as well in the case of
distance-based weights. The spatial weights matrix can be based on definitions of distance not
based on geographical position but defined instead in some other kind of space, like e.g., one
where dimensions are corresponding to some set of economic or demographic or psychological
characteristics. The technical aspects of estimation do not vary with respect to the case of geo-
graphical distance, or neighborhood, as long as the fundamental hypothesis of exogeneity of
W holds. One desirable feature of geographic space is that it is exogenous, unlike, e.g., bilateral
(contemporaneous) trade-based weights in a model of international commerce, which would
be generated inside the same economic system to be modeled.

It is important to recall that the hypothesis of exogenous and time-invariant W will be
maintained throughout this chapter. Spatial lags in a panel setting can be written compactly in

4 The choice of the contiguity matrix is one of the most controversial subjects in spatial econometrics (see Anselin,
1988, p. 19). Binary contiguity has the advantage of simplicity, of imposing a minimum of a priori structure and of
making the interpretation of a spatial lag straightforward as the average value of neighbors; therefore (Anselin, 1988,
p. 21) it is often preferred for spatial error structures and in general where the focus is on testing for spatial effects
rather than on precisely estimating a theoretically well-defined spatial process.
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vector form stacking observations by time first, in the now-standard notation, as (W ⊗ IN )z.
The concept of spatial lag has some analogies with the familiar time lag but also important
differences, the most important one being that while time is directed, space is generally not;
hence the idea of predeterminedness and the fact that usually (although not always) the past
is expected to influence the future but not vice versa do not apply. Dependence in space is
usually circular, and the influence from “nearby” observations gives rise to feedback effects
that importantly affect estimation. In particular, as will be clear in the following, a spatial lag
of the dependent variable is endogenous by construction, and a model including it will require
more sophisticated techniques than (ordinary or generalized) least squares in order to be
consistently estimated.

10.2.1 Spatially Lagged Regressors

Suppose that the need to account for space in the specification has been established either a
priori, in the economic model, or because spatial dependence has been detected in the data or
in the residuals of an estimated model.

One first way to consider the influence of neighboring spatial units is to take into account
spatial lags of the explanatory variables. The economic meaning of spatially lagged regressors
is to account for explicit spatial influences from relevant explanatory variables in nearby spatial
units. Spatial lags WX can easily be added to the specification and, provided X was exogenous
to begin with, pose no additional problem in estimation of this model.

As a first example of augmenting a model with a spatial lag, let us consider the case of a spa-
tially lagged regressor representing (if W is row-standardized) the average of X at neighboring
locations.

Example 10.3 Spatially lagged explanatory variables – Cigarette data set
Baltagi and Griffin (2001) consider demand for cigarettes across 46 US states over the
years 1963-1992 in the framework of the rational addiction model. Next to the original
dynamic model, static versions have become an ubiquitous example in papers and textbooks.
The demand for cigarettes (sales) is estimated as a function of real per capita income
(ndi/cpi), cigarette price in the given state (price), and minimum price in neighboring
states (pimin), this last term accounting for cross-border smuggling. The model is then
estimated by fixed effects through plm ; we use coeftest for a compact representation of
the estimation output.

library("plm")

library("splm")

data("Cigar", package = "plm")

fm <- log(sales) ̃ log(price) + log(pimin) + log(ndi / cpi)

femod <- plm(fm, Cigar)

library("lmtest")

coeftest(femod)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

log(price) -0.7513 0.0462 -16.3 <2e-16 ***

log(pimin) 0.4946 0.0456 10.8 <2e-16 ***

log(ndi/cpi) 0.6801 0.0368 18.5 <2e-16 ***
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---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A natural application of the spatial lag operator in this context is to substitute piminwith an
average of the prices in neighboring states, to account for the smuggling effect across all borders.
The spatial lag operator, when applied to price using a binary contiguity, row-standardized
matrix, produces exactly this average price. We read in the relevant W matrix, standardize it,
and check that the row sums are actually all 1:

data("usaw46", package = "pder")

wcig <- usaw46 / apply(usaw46, 1, sum)

summary(apply(wcig, 1, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

In a cross-sectional setting, spatial lags are very easy to construct as WX. In a panel setting,
every cross-section has to be premultiplied by W ; or, equivalently, a larger block-diagonal
neighborhood matrix WNT = IT ⊗W has to be employed. Let us construct a spatial (panel)
lag of the price variable. Remembering that panel data are usually ordered by state, year
with the first being the “slow” index, we can proceed by making a reordered copy of Cigar,
extracting the variable price and lagging it through premultiplication by IT ⊗W ; then
adding it to the dataset:

cig <- Cigar[order(Cigar$year, Cigar$state),]

wp <- kronecker(diag(1, 30), wcig) %*% cig$price

Cigar$wp <- wp[order(cig$state, cig$year)]

or, much faster although less intuitive, by reversing the Kronecker product:

Cigar$wp <- kronecker(wcig, diag(1,30)) %*% Cigar$price

Now wp is a regular regressor, which we can add to the specification in lieu of pimin, redoing
all the previous steps, estimating the alternative model to appreciate the difference:

fm2 <- update(fm,. ̃. - log(pimin) + log(wp))

femod2 <- plm(fm2, Cigar)

coeftest(femod2)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

log(price) -0.8292 0.0528 -15.7 <2e-16 ***

log(ndi/cpi) 0.6294 0.0371 17.0 <2e-16 ***

log(wp) 0.5874 0.0537 10.9 <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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To automate the tedious construction of spatial panel lags, a function slag is provided,
needing a pseries and either a proximity matrix or an equivalent listw object to represent
the spatial ordering of observations. The slag operator can be employed directly in formulae:

lwcig <- mat2listw(wcig)

fm3 <- update(fm,. ̃. - log(pimin) +

log(slag(price, listw=lwcig)))

The somewhat cumbersome syntax deriving from the need to specify W can be avoided, e.g.,
defining a small convenience function where the given W matrix is hardwired, as follows (the
output is the same):

wx <- function(x) slag(x, listw = lwcig)

fm3.alt <- update(fm,. ̃. - log(pimin) + log(wx(price)))

As it turns out, substituting the minimum price in neighboring states with the average price
of neighbors has little effect on the model results.

10.2.2 Spatially Lagged Dependent Variables

A more direct, although much more problematic, way of incorporating spatial structure in an
econometric model is through inclusion of spatial lags of the dependent variable. The model
is then:

y = 𝜆(IT ⊗WN )y + Z𝛾 + 𝜖

where WN is the N × N spatial weights matrix of known constants whose diagonal elements
are set to zero, and 𝜆 is the corresponding spatial parameter.

This is called the spatial lag model proper. From a theoretical viewpoint, it is appropriate
whenever one expects the outcome of one observation to influence the outcomes of neighboring
ones, such as, e.g., for the spreading of a disease, where one unit being positive has a direct effect
on the likelihood of neighboring units to be so too.

Another example is if (within-period) strategic interaction is expected to happen, e.g., each
country takes the tax rates of neighbors into account in setting its own and may react within
the same time period, as in Franzese and Hays (2006). In this case, one might expect positive
spatial correlation. In a microeconomic setting, the effect of a spatial lag term could be expected
to turn out positive is in copycatting behavior, when e.g., buying a product sparks imitation
hereby raising the propensity of neighbors to follow suit. A negative spatial lag can instead be
consistent with the idea of free riding: if one can reap advantage from the actions of neighbors
through some kind of externality, then this will lower his or her own effort: an example is labor
market training in the European Union, where trained labor can easily commute across borders
(Franzese and Hays, 2008).

Spatial-lag-type dependence has been evocatively termed “substantial” (Franzese and Hays,
2007) as opposed to spatial error dependence, which in the same context is described as
“nuisance,” to be controlled for the sake of precision in estimation but devoid of theoretical
meaning. This is not necessarily true, as spatial error dependence can have substantial meaning
too, for example in the context of economic shock diffusion (see e.g. Holly et al., 2010), and
can be a subject of the analysis in its own right.
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The spatial lag process, and by extension the model with a spatial lag plus regressors, is
universally known by the acronym sar, for “spatially autoregressive.” The Wy term is inherently
endogenous; in a reduced form, the model becomes nonlinear:

y = (IT ⊗ 𝜆W )−1[Z𝛾 + 𝜖]

so that maximum likelihood estimation (ml) is called for. Only as a very first approximation, it
can be of interest to estimate the so-called “spatial ols”.

10.2.2.1 Spatial OLS

Ordinary least squares estimation is consistent, under the usual exogeneity conditions on X, for
models with spatially lagged regressors, in which case it is also efficient provided that the stan-
dard hypotheses of homoscedasticity and incorrelation hold; in fact, adding WX may eliminate
the spatial correlation in error terms and effectively make ols the efficient estimator. Even in
the case of the spatial error model, ols remain consistent, although inefficient, for 𝛾 .

As a first approximation, and in cases where ml and gm are problematic (one for all,
dynamic panels), the so-called spatial-ols method has been advocated: adding the spatial lag
of the dependent variable Wy to the right-hand side regressors. This solution is in general not
advisable because Wy is endogenous by construction, and therefore the estimator is hopelessly
biased; yet simulation studies have shown how the magnitude of the bias can be limited in
real-world cases, to the point of making this computationally simple solution relatively viable
in some applied settings (see Franzese and Hays, 2007).

10.2.2.2 ML Estimation of the SAR Model
An appropriate way to estimate a sar model, provided the errors 𝜖 are i.i.d. normal, is by ml.
Let us start from the cross-sectional case where Z is N × (K + 1) and y is a vector of length N .
Denoting A = IN − 𝜆W , the model becomes Ay = Z𝛾 + 𝜖 so that 𝜖 = Ay − Z𝛾 . Expressing the
usual likelihood function of the linear model in terms of the transformed y requires adding the
Jacobian of the transformation, i.e., the determinant of A, therefore the log-likelihood becomes:

ln L = −N
2

ln(2𝜋) + ln|A| − 1
2
𝜖⊤𝜖

and this likelihood is to be optimized with respect to 𝛾 and 𝜆, efficient optimization strate-
gies having been outlined in the seminal book of Anselin (1988). The pure-sar panel case,
pooling the data without any individual feature, just substitutes NT for N , IT ⊗W for W and
A = INT − IT ⊗ 𝜆W so that it could be estimated with the lagsarlm function from package
spdep. Nevertheless, it is always preferable for computational reasons to resort to specific meth-
ods for spatial panels when available.

Example 10.4 Spatial lag model – HousePricesUS data set
In the house prices application of Holly et al. (2010), the authors estimate a sar model of defac-
tored residuals to assess the presence and the degree of spatial correlation net of the influence
of common factors. We replicate their analysis by estimating a pure-sar model (no regressors
but an intercept) of the residuals from the ccemg model.5 With respect to common-factor
robust testing (see previous example), this has the additional advantage of explicitly estimating
a spatially autoregressive coefficient measuring the intensity of the spatial effect.

5 The authors follow a slightly different procedure than we do here, explicitly estimating out common factors
through a principal components procedure: see the R replication in Millo (2015). The end result is nevertheless
remarkably similar.
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The cce residuals frompmg (or, equivalently,pcce) are a regularpseries; it is easy to make
a dataframe in plm-compliant format by stacking the individual and time indexes next to the
residuals themselves, stripped of their panel attributes through the as.numeric.pseries
converter function. The function spreml can then be used for estimation, specifying
lag=TRUE and errors=’ols’ for a pure sar model without any panel features:

e <- resid(ccemgmod)

edat <- data.frame(ind = attr(e, "index")[[1]],

tind = attr(e, "index")[[2]], e = as.numeric(e))

sarmod.e <- spreml(e ̃ 1, data = edat, w = usaw49, lag = TRUE, errors = "ols")

summary(sarmod.e)$ARCoefTable

Estimate Std. Error t-value Pr(>|t|)

lambda 0.6498 0.02037 31.9 2.685e-223

The spatial correlation in the (defactored) residuals is estimated at 65% and is statistically
significant at any confidence level. The simpler spatial-ols model can be easily estimated with
the help of the slag function:

library("lmtest")

coeftest(plm(e ̃ slag(e, listw = usaw49) - 1, data = edat, model = "p"))

t test of coefficients:

Estimate Std. Error t value

slag(e, listw = usaw49) 0.8831 0.0251 35.2

Pr(>|t|)

slag(e, listw = usaw49) <2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The bias in the sar coefficient is evident, yet this simple procedure can be enough for detect-
ing a problem or as a very first assessment.

10.2.3 Spatially Correlated Errors

The other main specification in the literature, the spatial error, is instead appropriate when one
expects the innovation relative to one observation to influence the outcomes of neighboring
ones, as would be the case for an economic shock of some kind to a given region (fully)
influencing the relevant dependent variable in that region and also propagating – with
distance-decaying intensity – toward nearby ones; or for a location-related measurement
error, by its nature affecting nearby observations in a similar way. Another reason for spatially
correlated errors is misspecification resulting from the omission of a spatially correlated
variable. This specification is called sem, for “spatial error model”.

The model is then the familiar linear model with regressors:
y = Z𝛾 + 𝜖

where 𝜖 is a vector of spatially autocorrelated idiosyncratic errors that follows a spatial autore-
gressive process of the form

𝜖 = 𝜌W𝜖 + 𝜈
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with 𝜌 as the spatial autoregressive parameter, WN the spatial weights matrix and 𝜈 ∼ IID(0, 𝜎2
𝜈 ).

As can be seen, the sem model is nothing but a linear model with a sar process in the errors
instead of in the response. The likelihood for the cross-sectional sem model is:

ln L = −N
2

ln(2𝜋) + ln ∣ B ∣ −1
2
𝜖⊤B⊤B𝜖

where B = IN − 𝜌W . As for the sar case, pooling the data is accomplished by substituting NT
to N , the extended proximity matrix IT ⊗W for W and B = INT − IT ⊗ 𝜌W .

It is typical in the literature to estimate either of the two specifications, sar or sem, although
in principle they can be combined. The subject of choosing between the spatial lag and the
spatial error models by means of diagnostic testing will be treated in the following; it should nev-
ertheless be borne in mind that the specification of one or the other spatial model should always
be informed by the a priori beliefs of the researcher and the economic model she postulates
for the phenomenon at hand. In fact, while some empirical cases happen to be sufficiently
clear-cut for an exclusively data-driven decision to be taken, most of the time model uncer-
tainty – regarding the specification of regressors, of the neighborhood structure (the W matrix),
or that of the spatial process in either response or error – is so pervasive that one can hardly
rely on statistical procedures alone in order to conduct a specification search.

Nevertheless, from a diagnostic rather than modeling viewpoint, a general result is that the
omission of a spatially correlated relevant regressor would show up as spatially correlated
errors, and the same would happen for the omission of a spatially lagged dependent variable;
much as would happen in time series data with omitted dynamics showing up in residual
autocorrelation. Generality stops here, though, because while the symptoms of either neglected
spatial lag or error processes are similar, the consequences on the properties of estimators are
different already. In fact, an omitted spatial lag renders the estimator inconsistent, while an
omitted spatial process in the error merely results in inefficiency and invalid inference.

Example 10.5 Spatial error – RiceFarms data set
TheRiceFarmsdataset contains observations from 171 rice farms in Indonesia, observed over
six growing seasons, three wet and three dry, between 1975 and 1983. The farms are located in
six different villages of the Chimanuk River basin in West Java. According to Druska and Hor-
race (2004), two villages are in flatlands on the north coast of the island, three in the highlands
(600-1100 m) in the central part of West Java, and the last is in the center of the island with an
average altitude of 375 meters. Roads and more in general proximity to big cities are extremely
heterogeneous.

In this geographical setting, one can expect both village-level heterogeneity and spatial cor-
relation between farms belonging to the same village. Spatial dependence is easier to justify
for the error terms, due to spillovers across neighboring farms in idiosyncratic factors and cli-
mate conditions; more difficult to find reasons for the inclusion of a spatial lag of the dependent
variable, as it seems less realistic for the outcome in one farm to influence those of neighbors.6

With respect to the original analysis, our production frontier equation will relate rice output
to three inputs only: seed, labor hours totlabor, and land size, all in logs.

A contiguity matrix riceww is provided, where for each farm all other farms from the same
village are defined as neighbors. The sem panel model is then explicitly augmented with village
fixed effects and time fixed effects to account for the influence of the different growing seasons.
It is estimated through the spreml function, setting the lag to FALSE and the errors to
’sem’:

6 A complete specification analysis of the original model is to be found in Millo (2014).
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data("RiceFarms", package = "splm")

data("riceww", package = "splm")

library("spdep")

ricelw <- mat2listw(riceww)

Rice <- pdata.frame(RiceFarms, index = "id")

riceprod <- log(goutput) ̃ log(seed) + log(totlabor) +

log(size) + region + time

rice.sem <- spreml(riceprod, data = Rice, w = riceww,

lag = FALSE, errors = "sem")

summary(rice.sem)

ML panel with, spatial error correlation

Call:

spreml(formula = riceprod, data = Rice, w = riceww, lag = FALSE,

errors = "sem")

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-1.06858 -0.23300 0.00581 0.23481 1.48962

Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

rho 0.5627 0.0518 10.9 <2e-16 ***

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 5.85413 0.19469 30.07 < 2e-16 ***

log(seed) 0.16626 0.02475 6.72 1.8e-11 ***

log(totlabor) 0.24822 0.02758 9.00 < 2e-16 ***

log(size) 0.59776 0.02800 21.35 < 2e-16 ***

regionlangan -0.09779 0.09137 -1.07 0.285

regiongunungwangi -0.14048 0.08422 -1.67 0.095.

regionmalausma -0.11865 0.08650 -1.37 0.170

regionsukaambit 0.00723 0.09372 0.08 0.938

regionciwangi -0.01381 0.08465 -0.16 0.870

time2 -0.04745 0.07885 -0.60 0.547

time3 -0.18551 0.07886 -2.35 0.019 *

time4 -0.34722 0.07883 -4.40 1.1e-05 ***

time5 0.15818 0.07886 2.01 0.045 *

time6 0.13805 0.07881 1.75 0.080.

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Somewhat surprisingly, the village fixed effects show up as all but unimportant. On the con-
verse, spatial error correlation between farms belonging to the same village (estimated by the 𝜌
coefficient) is substantial and highly significant.
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10.3 Individual Heterogeneity in Spatial Panels

Cross-sectional spatial specifications are readily extended to the case of a pooled panel dataset,
as above, but in the case of spatial panels, just as in the general case, it becomes of primary
interest to model heterogeneity and persistence at the individual level. Again, the most popular
device is the inclusion of individual, time-invariant effects in the model, and again the crucial
distinction is whether said effects can be assumed independent from the model regressors or
not. From a statistical viewpoint, the approach detailed in the previous chapters when speak-
ing of non-spatial panels is still valid, but there are also specific considerations to be made for
spatial applications. For example, as the random effects hypothesis is considered consistent with
sampling individuals from a potentially infinite population, some (Elhorst and Fréret (2009) for
example) have dismissed its plausibility in spatial econometric contexts, where sampling most
typically takes place over a fixed set of countries or regions.

Spatial methods are nevertheless of interest also in contexts much akin to random sampling.
For one, applications on survey data can be devised where individual units are located into
some non-geographic space, defined by their attributes and a distance function. Among the
geographically referenced data proper, the same random samples of firms or households can
be located and recorded as points in the landscape (Bell and Bockstael, 2000). In this sense, the
RiceFarms dataset is a good candidate for random effects: many locations with similar char-
acteristics, plausibly drawn from the same distribution, although lacking latitude and longitude
information, are grouped in a way that naturally defines a neighborhood. Another case, where
this time data are located as points in geographical space, are the ever more popular spatial
applications from experimental contexts in life sciences, of which we will see an example later
in the chapter.

Moreover, from a computational viewpoint random effects turn out to be a more general case
with respect to fixed effects.

10.3.1 Random versus Fixed Effects

As detailed in the previous chapters and recalled above, unobserved individual heterogeneity
is dealt with in different ways depending on the statistical properties of the individual effects,
the crucial distinction becoming whether one can assume them to be uncorrelated with the
regressors or not. If uncorrelated, then individual effects can be considered as a component of
the error term. If not, then the latter strategy leads to inconsistency; the individual effects will
have to be estimated or, more frequently, eliminated by first differencing or time-demeaning
the data. In the spatial setting, the standard solution to the fixed effects case has long been
time-demeaning: in the framework of Elhorst (2003), fixed effects estimation of spatial panel
models is accomplished as pooled ml estimation on time-demeaned data. Nevertheless,
Elhorst’s procedure has been questioned by Anselin et al. (2008) because time-demeaning
alters the properties of the joint distribution of errors, introducing serial dependence. As it
turns out, despite the misspecification of the likelihood, the only parameter affected is the
variance of the error term, the other estimators remaining consistent.7

To solve the problem, Lee and Yu (2010a, 3.2) suggest either a different orthonormal trans-
formation of the data, or an ex-post correction of the estimated variance (see also Lee and Yu,
2012). For all this, ml estimation of spatial panel models with individual fixed effects is encom-
passed by the ml estimator for the pooled case, after a suitable transformation of the data and,

7 See Lee and Yu (2010b, p. 257) for a discussion of the issue, and Millo and Piras (2012, p. 33) for an evaluation if its
practical significance through Monte Carlo simulation.
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in the case one uses the simpler within transformation, an appropriate ex-post correction of
the error variance estimate.

Example 10.6 Spatial fixed effects – RiceFarms data set
Spatial fixed effects panels can be estimated through the general wrapper function for maxi-
mum likelihood estimation,spml for “spatial panel by maximum likelihood”, leaving themodel
argument at the default value of ’within’ (in the case model is either of ’random’ or
’pooling’, the lower level function spreml seen in previous examples is called; while here
a special infrastructure is used). The spatial structure in the error can be ’none’ or either of
’b’ or ’kkp’, which makes a difference only in the random effects case. A spatial lag can be
included setting lag to TRUE. Village fixed effects must be omitted here because of collinear-
ity, while time ones can be implicitly added to estimation by specifying effect=’twoways’,
again consistently with the syntax of plm.

riceprod0 <- update(riceprod,. ̃. - region - time)

semfemod <- spml(riceprod0, Rice, listw = ricelw,

lag = FALSE, spatial.error = "b")

summary(semfemod)

Spatial panel fixed effects error model

Call:

spml(formula = riceprod0, data = Rice, listw = ricelw, lag = FALSE,

spatial.error = "b")

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-1.0195 -0.2105 0.0222 0.2127 1.3298

Spatial error parameter:

Estimate Std. Error t-value Pr(>|t|)

rho 0.7913 0.0249 31.8 <2e-16 ***

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

log(seed) 0.1342 0.0226 5.94 2.8e-09 ***

log(totlabor) 0.2505 0.0267 9.38 < 2e-16 ***

log(size) 0.5419 0.0273 19.84 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A Hausman-type test will determine whether the individual effects are to be treated as fixed
or can be assumed incorrelated with the regressors, employing a more efficient random effects
specification:

Rice <- pdata.frame(RiceFarms, index = "id")

sphtest(riceprod0, Rice, listw = ricelw)

Hausman test for spatial models
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data: x

chisq = 2.6, df = 3, p-value = 0.4

alternative hypothesis: one model is inconsistent

The random effects hypothesis being not rejected, random effects methods are in order.

10.3.2 Spatial Panel Models with Error Components

While fixed effects estimation of spatial panels can be performed in the framework of the pooled
spatial models, after transforming out the individual effects by a within transformation, treating
the individual effects as random introduces substantial complications in the specification of the
likelihood.

We consider a general static panel model that includes a spatial lag of the dependent variable
and spatial autoregressive disturbances:

y = 𝜆(IT ⊗WN )y + Z𝛾 + 𝜖

The disturbance vector is the sum of two terms:

𝜖 = (jT ⊗ IN )𝜂 + 𝜈

𝜂 being the individual effect and 𝜈 a vector of spatially autocorrelated idiosyncratic errors that
follow a spatial autoregressive process of the form

𝜈 = 𝜌(IT ⊗WN )𝜈 + 𝜁

with 𝜌 as the spatial autoregressive parameter, WN the spatial weights matrix and 𝜁 ∼ IID(0, 𝜎2
𝜁
).

The spatial weights matrices in the lag and the error term can differ (see the following).
IN − 𝜌WN is assumed non-singular.

10.3.2.1 Spatial Panels with Independent Random Effects
In a random effects specification, the unobserved individual effects are assumed uncorrelated
with the other explanatory variables in the model and can therefore be safely treated as com-
ponents of the error term.8 In this case, 𝜂 ∼ IID(0, 𝜎2

𝜂 ), and the error term can be rewritten as:

𝜈 = (IT ⊗ B−1
N )𝜁

where BN = (IN − 𝜌WN ). As a consequence, the composite error term becomes

𝜖 = (jT ⊗ IN )𝜂 + (IT ⊗ B−1
N )𝜁

and its variance-covariance matrix is:

Ω𝜖 = 𝜎2
𝜂 (JT ⊗ IN ) + 𝜎2

𝜁
[IT ⊗ (B⊤N BN )−1]. (10.4)

In deriving several Lagrange multiplier (lm) tests, Baltagi et al. (2003b) consider a panel data
regression model that is a special case of the model presented above in that it does not include
a spatial lag of the dependent variable. Elhorst (2003), Elhorst and Fréret (2009) define a tax-
onomy for spatial panel data models both under the fixed and the random effects assumptions.
Following the typical distinction made in cross-sectional models, they define the fixed as well
as the random effects panel data versions of the spatial error and spatial lag models. How-
ever, unlike Case (1991), they do not consider a model including both the spatial lag of the
dependent variable and a spatially autocorrelated error term. Therefore, the models reviewed

8 See, e.g., Assumption RE.1.b in Wooldridge (2010, 10.4.1).
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in Elhorst (2003), Elhorst and Fréret (2009) can also be seen as special cases of this more general
specification.

Following the treatment in Millo (2014), on which this part of the chapter is based, we label the
combined model containing both a spatial lag and a spatial error process sarem. (This is also
often called sarar, because of the two spatial autoregressive processes, one in the response
and one in the errors.) If a random individual effect is also part of the composite error term,
then we will add the suffix re. Although sar and sem, combined with either fe or re, are by
far the most popular specifications, the literature has also dealt with different types of spatial
diffusion processes in the errors other than the autoregressive one, most notably the spatial
moving average.9 We do not consider them here.

10.3.2.2 Spatially Correlated Random Effects
A different specification for the disturbances was considered in Kapoor et al. (2007). They
assume that spatial correlation applies to both the individual effects and the remainder
error components. Although the two data-generating processes look similar, they do imply
different spatial spillover mechanisms governed by a different structure of the implied
variance-covariance matrix. In this case, commonly referred to as kkp, the composite
disturbance term

𝜖 = (jT ⊗ IN )𝜂 + 𝜈

follows a first-order spatial autoregressive process of the form:

𝜖 = 𝜌(IT ⊗WN )𝜖 + 𝜁

It follows that the variance-covariance matrix of 𝜖 is:

Ω𝜖 = (IT ⊗ B−1
N )Ω𝜈(IT ⊗ (BN

⊤)−1) (10.5)

where Ω𝜈 = [𝜎2
𝜁
IT + 𝜎2

𝜂 JT ]⊗ IN is the typical variance-covariance matrix of a one-way error
component model. The variance matrix in (10.5) is simpler than the one in (10.4), and
therefore its inverse is easier to calculate, as will be discussed below. As Baltagi et al. (2013)
observe, the economic meaning of the two models is also different: in the first model only
the time-varying components diffuse spatially; in the second, spatial spillovers too have a
permanent component. Lee and Yu (2012, 2.4) illustrate the difference between this latter
specification and semre through the likelihood of the between model. We label this latter
alternative specification sem2re, and its extension to including a spatial lag (see Mutl and
Pfaffermayr, 2011) sarem2re.

10.3.3 Estimation

To review the theory of maximum likelihood estimation of spatial panel models with random
effects, we will start from models with a spatially lagged dependent variable, spatial error corre-
lation, and a general covariance structure for the error, as described by Anselin (1988), without
any panel structure (although it must be noted that in his book Anselin (1988) already con-
sidered a sem panel with random effects, deriving the model likelihood, as a special case).
Following Millo (2014), we will introduce random effects as just one particular type of error
covariance structure, thus comprising spatial panels in Anselin’s general framework.10

9 The spatial moving average process is 𝜈 = 𝜁 + 𝜌(IT ⊗WN )𝜁 , see e.g.Fingleton (2008)
10 This approach, with respect to the more common Elhorst (2003) one, based on the combination of partial
demeaning with a spectral decomposition of the error covariance matrix, lends itself more easily to generalization
and in particular facilitates considering random effects and serial correlation together with the spatial effects.
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10.3.3.1 Spatial Models with a General Error Covariance
Maximum Likelihood estimation with a general error covariance matrix has been outlined in
Magnus (1978) (see also Anselin et al., 2008). If the error 𝜖 is distributed as N(0,Ω) then the
log-likelihood is

ln L = −N
2

ln 2𝜋 − 1
2

ln ∣ Ω ∣ −1
2
𝜖⊤Ω−1𝜖.

Particularizing this likelihood w.r.t. the case at hand, and adding a spatial filter if needed,
provides a general framework for ml estimation of the models of interest. Anselin (1988),
the classic reference on spatial econometric model estimation by ml, outlines the general
procedure for a model with spatial lag, spatial errors, and possibly nonspherical residuals as
follows. Let us restrict the analysis, for the moment, to one cross-section and let our model be:

y = 𝜆W1y + Z𝛾 + 𝜖

𝜖 = 𝜌W2𝜖 + 𝜁
(10.6)

with 𝜁 ∼ N(0,Ω) and, in general, Ω ≠ 𝜎2I. Two special cases of this general model are often
found in applied literature: if 𝜌 = 0 one has the spatial autoregressive (sar) model, while if
𝜆 = 0, the spatial (autoregressive) error (sem) model. Both usually include the hypothesis of
spherical remainder errors: Ω = 𝜎2I. Introducing the now-standard simplifying notation A =
I − 𝜆W1, B = I − 𝜌W2 the model becomes:

Ay = Z𝛾 + 𝜖

B𝜖 = 𝜁

where W1,W2 are potentially different spatial weights matrices.11 If there exists Ω such that
𝜉 = Ω− 1

2 𝜁 and 𝜉 ∼ N(0, 𝜎2
𝜉
I), and B is invertible, then 𝜖 = B−1Ω

1
2 𝜉 and the model (10.6) can be

written as

Ay = Z𝛾 + B−1Ω
1
2 𝜉

or, equivalently,

Ω− 1
2 B(Ay − Z𝛾) = 𝜉

with 𝜉 a “well-behaved” error.
Still following Anselin, making the estimator operational requires the transformation from

the unobservable 𝜉 to observables. Expressing the likelihood function in terms of y requires
calculating the Jacobian of the transformation J = det

(
𝜕𝜉

𝜕y

)
= |Ω− 1

2 BA| = |Ω− 1
2 ||B||A|. These

determinants are to be added to the log-likelihood, which becomes

ln L = −N
2

ln(2𝜋) − 1
2

ln |Ω| + ln |B| + ln |A| − 1
2
𝜉⊤𝜉

where the difference w.r.t. the usual likelihood of the classic linear model is given by the terms
of the Jacobian.12 The likelihood is thus a function of 𝛾 , 𝜆, 𝜌, and parameters in Ω.

It will be convenient for our purposes, and without loss of generality, to scale the overall
errors’ covariance writing it as B⊤ΩB = 𝜎2

𝜁
Σ (the latter expression is in fact more general,

as it does not constrain the heteroscedastic error term 𝜁 to be spatially lagged, through
premultiplication by B, in its entirety. In our case, only the error covariance of the sem2

11 The above notation expressing a spatial lag model as Ay = Z𝛾 + 𝜖 or, equivalently provided A is invertible,
y = A−1(Z𝛾 + 𝜖) is well known in the literature as “spatial filtering” representation.
12 The Jacobian is simply J = 1 in the classical case, see Greene (2003), B.41).
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specification can be separated into a heteroscedastic error term and a spatial filter and
therefore straightforwardly written as B⊤ΩB, while the more common sem specification
cannot). This likelihood can be concentrated w.r.t.𝛾 and the error variance 𝜎2

𝜁
, by substituting

𝜁 = (�̂�2
𝜁
Σ)−

1
2 (Ay − Z�̂�)

ln L = −N
2

ln(2𝜋𝜎2
𝜁
) − 1

2
ln |Σ| + ln |A| − 1

2𝜎2
𝜁

(Ay − Z�̂�)′Σ−1(Ay − Z�̂�) (10.7)

and a closed-form gls solution for �̂� and �̂�2
𝜁

is available for any given set of spatial and other
covariance parameters

⎧⎪⎨⎪⎩

�̂� = (Z⊤Σ−1Z)−1Z⊤Σ−1Ay

�̂�2
𝜁
=

(Ay − Z�̂�)′Σ−1(Ay − Z�̂�)
N

(10.8)

so that a two-step procedure is possible that alternates optimization of the concentrated
likelihood and gls estimation. From here on, we explicitly consider the (balanced) panel
structure of the data: N individuals observed over T time periods.

10.3.3.2 General Maximum Likelihood Framework
Building on the framework from Anselin (1988) outlined above, explicitly particularizing and
operationalizing it with respect to a number of possible error covariance structures, all spec-
ifications outlined above can be estimated without the need to pre-transform the data as has
been customary in the literature since Elhorst (2003). Random effects will instead be consid-
ered as one feature of the errors’ covariance, just like spatial (or, later on in the chapter, serial)
correlation (see Millo, 2014). Considering the spatial dependence features together with all the
other sources of heteroscedasticity and correlation instead of separating it clearly, as done in
the original Anselin framework, has the advantage of keeping some components of the error
term (most notably, the random effects) out of the spatial dependence, which can remain a fea-
ture of the idiosyncratic error only, in accordance with most applications in the literature; but
also some clear computational disadvantages, as will be discussed below. We will also consider
the alternative specification where the individual effects are lagged together with the idiosyn-
cratic errors, as in Kapoor et al. (2007), which one can straightforwardly express in terms of
Anselin’s original expression E(𝜖𝜖⊤) = B⊤ΩB, also extending the structure of Ω to include serial
correlation. This latter will turn out to be easier to compute, especially on large examples.

First we will discuss the combination of a spatial lag with any error covariance structure;
then we will review the most significant among the latter; lastly we will give an example of
operationalization through the use of analytical expressions for the inverse and determinant of
the error covariance matrix Σ.

Optimization will generally be subject to box constraints according to the following rules:
the spatial lag and spatial errors coefficients 𝜆 and 𝜌 will be bounded between 1∕𝜔min and 1,
where 𝜔min is the smallest characteristic root of W ;13 the serial correlation coefficient will be
constrained to the usual stationarity condition |𝜓| < 1 and the variance ratio of the random
effects 𝜙 to be non-negative.

Spatial Lag Although both the sar and the sem specifications are popular in the literature,
estimation generally focuses on one effect only, and there are few applications allowing for both
of them to be present in the estimated model, one notable exception being the pioneering work

13 The standard conditions are reviewed in Elhorst (2008, Footnote 1).
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of Case (1991). It is nevertheless straightforward, at least as far as expressing the likelihood is
concerned, to combine a spatial lag with any error structure, including spatial dependence ones.

The general likelihood for the spatial lag panel model combined with any error covariance
structure Σ is a panel version of (10.7):

ln L = −NT
2

ln(2𝜋𝜎2
𝜁
) − 1

2
ln |Σ| + T ln |A|

− 1
2𝜎2

𝜁

[(IT ⊗ A)y − Z𝛾]′Σ−1[(IT ⊗ A)y − Z𝛾] (10.9)

The usual iterative procedure a la Oberhofer and Kmenta (1974) can be employed to obtain
the maximum likelihood estimates. Starting from an initial value for the spatial lag parameter
𝜆 and the error covariance parameters, we obtain estimates for 𝛾 and 𝜎2

𝜁
from the first-order

conditions:{
�̂� = (Z⊤Σ−1Z)−1Z⊤Σ−1(IT ⊗ A)y
𝜎2
𝜁
= [(IT ⊗ A)y − Z𝛾]⊤Σ−1[(IT ⊗ A)y − Z𝛾]∕NT

(10.10)

The likelihood can be concentrated and maximized with respect to the parameters in A and
Σ. The estimated values thereof are then used to update the expression for Σ−1. These steps
are then repeated until convergence. In other words, for a specific Σ the estimation can be
operationalized by a two-step iterative procedure that alternates between gls (for 𝛾 and 𝜎2

𝜁
)

and concentrated likelihood (for the remaining parameters) until convergence.
This general scheme can be applied to the random effects case, where it provides a simple and

effective equivalent to the usual partial time-demeaning procedure, as well as to all the more
complicated error covariance specifications discussed in the following.

For example, the spatial autoregressive model with random effects sarre can be written as a
combination of spatial filtering on the regressand and a random effects structure in the errors:

(IT ⊗ A)y = Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈

hence it can be estimated by “plugging into” the general likelihood (10.9) the particular scaled
error covariance Σre = 𝜙(JT ⊗ IN ) + INT characterized by one parameter: 𝜙 = 𝜎2

𝜂∕𝜎2
𝜈 , the ratio

of the variance of the individual effect over that of the idiosyncratic error.

Example 10.7 Spatial lag and RE – RiceFarms data set
In the following, a sarre version of the RiceFarms model is estimated, for the sake of illus-
tration and comparison. This specification has little economic underpinning, there not being
many reasons why the output of one farm should depend on the output of neighboring ones
(here, firms from the same village).

sarremod.ml <- spml(riceprod0, Rice, listw = ricelw,

model = "random", lag = TRUE, spatial.error = "none")

summary(sarremod.ml)

ML panel with spatial lag, random effects

Call:

spreml(formula = formula, data = data, index = index, w = listw2mat(listw),

w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl)
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Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.59 2.52 2.81 2.78 3.05 4.02

Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

phi 0.3690 0.0701 5.27 1.4e-07 ***

Spatial autoregressive coefficient:

Estimate Std. Error t-value Pr(>|t|)

lambda 0.4132 0.0268 15.4 <2e-16 ***

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.7731 0.1834 15.12 < 2e-16 ***

log(seed) 0.1415 0.0253 5.58 2.4e-08 ***

log(totlabor) 0.2740 0.0280 9.78 < 2e-16 ***

log(size) 0.5231 0.0295 17.72 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nevertheless, the sar parameter𝜆 turns out significant and relatively large in magnitude. This
will prove to be a feature of model specification, more precisely of neglecting the “true” source
of spatial dependence: the sem term. More on this in the next examples. Individual effects are
in turn detected, witness the significant variance ratio parameter 𝜙, although �̂�2

𝜂 is estimated at
little over one third of �̂�2

𝜈 .

Error Structures As already discussed, the spatial error, random effects model gives rise to two
possible specifications, depending on the interaction between the spatial autoregressive effect
and the individual error components: the semre specification first analyzed by Anselin (1988)
where only the idiosyncratic error is spatially correlated:

y = Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈
𝜈 = 𝜌(IT ⊗W )𝜈 + 𝜁

with the scaled errors’ covariance (denoting J̄T = JT∕T and ĪT = IT − J̄T ):

Σsemre = J̄T ⊗ (T𝜙IN + (B⊤B)−1) + ĪT ⊗ (B⊤B)−1

and that of Kapoor et al. (2007) where the same spatial process applies both to the individual
and the idiosyncratic error component:

y = Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈
𝜖 = 𝜌(IT ⊗W )𝜖 + 𝜁

where the scaled errors’ covariance is:

Σsem2re = (𝜙JT + IT )⊗ (B⊤B)−1.
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Example 10.8 Baltagi or KKP random effects sem – RiceFarms data set
In the following, both the semre and sem2re models are estimated, again, on theRiceFarms
dataset.

semremod.ml <- spml(riceprod0, Rice, listw = ricelw,

model = "random", lag = FALSE, spatial.error = "b")

summary(semremod.ml)

ML panel with, random effects, spatial error correlation

Call:

spreml(formula = formula, data = data, index = index, w = listw2mat(listw),

w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-1.1858 -0.2563 0.0119 0.2476 1.3683

Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

phi 0.2955 0.0565 5.23 1.7e-07 ***

rho 0.7748 0.0271 28.57 < 2e-16 ***

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 5.6983 0.1797 31.70 < 2e-16 ***

log(seed) 0.1520 0.0235 6.47 9.8e-11 ***

log(totlabor) 0.2562 0.0272 9.42 < 2e-16 ***

log(size) 0.5757 0.0275 20.96 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sem2remod.ml <- spml(riceprod0, Rice, listw = ricelw,

model = "random", lag = FALSE, spatial.error = "kkp")

summary(sem2remod.ml)

ML panel with, spatial RE (KKP), spatial error correlation

Call:

spreml(formula = formula, data = data, index = index, w = listw2mat(listw),

w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-1.1855 -0.2563 0.0119 0.2478 1.3703

Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

phi 0.2959 0.0569 5.2 2e-07 ***

rho 0.7686 0.0277 27.8 <2e-16 ***
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Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 5.6986 0.1864 30.57 < 2e-16 ***

log(seed) 0.1518 0.0236 6.44 1.2e-10 ***

log(totlabor) 0.2564 0.0273 9.41 < 2e-16 ***

log(size) 0.5763 0.0275 20.94 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The differences are minimal. Random effects are significant, albeit weak in magnitude; while
in accordance with the original work of Druska and Horrace (2004), very strong spatial error
correlation is detected. The limited importance of the re component makes the distinction
between the two specifications scarcely relevant.

10.3.3.3 Generalized Moments Estimation
The computational intensity of ml estimation, which in the simpler models is related mostly to
the need to recompute the determinants at each optimization step, has long been a limiting fac-
tor in practical applications. Samples of cross-sectional size in the hundreds were the practical
maximum for the simple sar or sem models at the end of the 20th century, both because of the
difficulty in obtaining a result at all and of the numerical unreliability of the latter if any because
of precision problems (Kelejian and Prucha, 1999, Bell and Bockstael, 2000). Today, much more
powerful computers have extended the scope of ml methods, but on the other hand the increas-
ing availability of gis data has brought forward a new generation of estimation problems of ever
increasing size (an early survey and examples in Bell and Bockstael, 2000).

This has prompted researchers to explore alternative estimation strategies. Kelejian and
Prucha (1999) proposed the generalized moments (gm) method, which, despite being asymp-
totically equivalent to ml under normality of the errors, is consistent irrespective of the latter;
computationally, moreover, it does not require the numerically cumbersome calculation of the
determinants.

The gm estimator for the cross-sectional sem model (see also Bell and Bockstael, 2000) is
based on the following three moments of the error term:

E
⎡⎢⎢⎢⎣

1
N
𝜖⊤𝜖

1
N
𝜖⊤W⊤W𝜖

1
N
𝜖⊤W𝜖

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

𝜎2

𝜎2 1
N

tr(W⊤W )
0

⎤⎥⎥⎥⎦
(10.11)

The estimation strategy is based on the idea of estimating the spatial autoregressive coefficient
𝜌 based on the residuals from a consistent estimator (here, ols) and then using it in a feasible
gls analysis. With respect to maximum likelihood, the gm estimator has the additional advan-
tage of not relying on a normality assumption for the errors. One drawback is that standard
errors are not available for the 𝜌 parameter.

The Kelejian and Prucha (1999) gm estimator has first been extended to the panel case by
Druska and Horrace (2004), then by Kapoor et al. (2007) who estimated the above described
sem2 model with re, a specification which, after them, is known as kkp. In order to perform
feasible gls, one does now need consistent estimates of the spatial autoregressive parameter 𝜌
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and the two variance components of the composite error, 𝜎2
𝜂 and 𝜎2

𝜈 . The sem2regm estimator
a la kkp estimates them based on six moment conditions, using the ols residuals 𝜖, which are
still consistent in this setting:

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N(T−1)

𝜈⊤Q0𝜈

1
N(T−1)

�̄�⊤Q0�̄�

1
N(T−1)

�̄�⊤Q0𝜈

1
N
𝜈⊤Q1𝜈

1
N
�̄�⊤Q1�̄�

1
N
�̄�⊤Q1𝜈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
𝜈

𝜎2
𝜈

1
N

tr(W⊤W )

0
𝜎2
𝜂

𝜎2
𝜂

1
N

tr(W⊤W )

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.12)

where 𝜈 = 𝜖 − 𝜌𝜖, �̄� = 𝜖 − 𝜌 ̄̄𝜖, 𝜖 = (IT ⊗WN )𝜖, and ̄̄𝜖 = (IT ⊗WN )𝜖; and Q0 = IT − JT

T
⊗ IN and

Q1 = JT

T
⊗ IN are, respectively, a time-demeaning and a time-averaging matrix.

The moment conditions are now redundant and can be employed in different ways. The sim-
plest is to consider only the first three moment conditions. The second way is to employ all six
moments in estimating the three unknown parameters, weighing them through a covariance
matrix calculated under the assumption of normally distributed errors. The third and last pro-
ceeds like the second, using all available moments but employs a simplified weighting matrix.

gm methods have been extended to the other relevant specifications in spatial econo-
metrics. Spatial fixed effects models can also be estimated in this framework, through a
modification of the kkp procedure suggested by Mutl and Pfaffermayr (2011) and consisting
in replacing the ols residuals, inconsistent under the fixed effects assumption, with spatial
sls within residuals; the spatial parameter 𝜌 is estimated by an adaptation of the simplified
KKP procedure (first three moment conditions only) and used in a spatial Cochrane-Orcutt
transformation of the within-transformed variables. The gm method has also been extended
to the sar and sarem models, so that now any combination of spatial lag and error, with
individual effects of either random or fixed type, can be estimated through this numerically
very efficient method (see Millo and Piras, 2012).

Example 10.9 Spatial GM – RiceFarms data set
The functionspgm (for “spatial panel by gm”) is the general wrapper for gm estimation in splm,
and the counterpart to spml. The model is specified as either ’within’ or ’random’, as
usual; analogously, a sar term is added by settinglag toTRUE; differently fromspml, whether
to include a sem term is a binary choice because only kkp-type random effects are available:
hence the spatial.error argument can only be TRUE or FALSE.

semremod.gm <- spgm(riceprod0, Rice, listw = ricelw,

lag = FALSE, spatial.error = TRUE)

summary(semremod.gm)

Spatial panel fixed effects GM model

Call:

spgm(formula = riceprod0, data = Rice, listw = ricelw, lag = FALSE,

spatial.error = TRUE)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-0.841575 -0.163147 0.000527 0.167523 1.355049
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Estimated spatial coefficient, variance components and theta:

Estimate

rho 0.7807

sigma ̂ 2_v 0.0801

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

log(seed) 0.1346 0.0227 5.94 2.9e-09 ***

log(totlabor) 0.2508 0.0268 9.36 < 2e-16 ***

log(size) 0.5418 0.0274 19.77 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparing the result of the semfe model by gm below with the previous ml example one
can see that there is no substantial difference between the estimated coefficients, despite the
moderate size of the sample; lastly, as observed, the gm method does not provide an estimate
of dispersion for 𝜌; hence no significance testing is possible.

10.3.4 Testing

10.3.4.1 LM Tests for Random Effects and Spatial Errors
Requiring only the estimation of the restricted specification, Lagrange multiplier (lm) tests
in the tradition of Breusch and Pagan (1980) are particularly appealing in a spatial random
effects setting because of the computational difficulties related to ml estimation of encompass-
ing models.

Baltagi et al. (2003b) derived joint, marginal and conditional tests for all combinations of
random effects and spatial correlation. Starting from the random effects model with sem errors
(semre), the error term can be written as:

𝜖 = (jT ⊗ IN )𝜂 + (IT ⊗ B−1)𝜈 (10.13)

and the (unscaled) variance covariance matrix of the errors as:

Ω = 𝜎2
𝜂 (JT ⊗ IN ) + 𝜎2

𝜈 (IT ⊗ (B′B)−1). (10.14)

The hypotheses under consideration are:

1) Ha
0 ∶ 𝜆 = 𝜎2

𝜂 = 0 under the alternative that at least one component is not zero
2) Hb

0 ∶ 𝜎2
𝜂 = 0 assuming no spatial correlation, under the one-sided alternative that the vari-

ance component is greater than zero
3) Hc

0 ∶ 𝜆 = 0 assuming no random effects, under the two-sided alternative that the spatial
autocorrelation coefficients is different from zero

4) Hd
0 ∶ 𝜆 = 0 assuming the possible existence of random effects, under the two-sided alterna-

tive that the spatial autocorrelation coefficient is different from zero
5) He

0 ∶ 𝜎2
𝜂 = 0 assuming the possible existence of spatial autocorrelation and the one-sided

alternative that the variance component is greater than zero

The joint lm test for the first hypothesis of no random effects and no spatial autocorrelation
(Ha

0) is given by:

LM𝜆,𝜂 =
NT

2(T − 1)
G2 + N2T

b
H2 (10.15)
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where G = 𝜖⊤(JT ⊗ IN )𝜖∕𝜖⊤𝜖 − 1, H = 𝜖⊤(IT ⊗ (W + W⊤)∕2)𝜖∕𝜖⊤𝜖, b = tr(W + W⊤)2∕2 and 𝜖
denotes ols residuals. The marginal lm test for random effects assuming no spatial correlation
is given by:

LM1 =
√

NT
2(T − 1)

G. (10.16)

An alternative standardized version with better finite sample properties can be obtained by
centering and scaling the one-sided lm statistic:

SLM1 =
LM1 − E(LM1)√

V(LM1)
(10.17)

Analogously, the marginal lm test of no spatial autocorrelation assuming no random effects
is given by:

LM2 =
√

N2T
b

H. (10.18)

which also admits a standardized form with better properties:

SLM2 =
LM2 − E(LM2)√

V(LM2)
. (10.19)

SLM1 and SLM2 are asymptotically normally distributed as N → ∞ for fixed T , under Hb
0 and

Hc
0 respectively. Based on the latter, a one-sided joint test statistic for Ha

0 ∶ 𝜆 = 𝜎2
𝜂 = 0 can be

derived as:

LMH = (LM1 + LM2)∕
√

2 (10.20)

which is asymptotically distributed as a standard normal. In practical applications LM1 can
turn out negative, especially when the random effects variance is small, and the same applies
to LM2 when the spatial autocorrelation coefficient is small. A test for the joint null hypothesis
can therefore be based on the following decision rule:

𝜒2
m =

⎧⎪⎪⎨⎪⎪⎩

LM2
1 + LM2

2 if LM1 > 0,LM2 > 0
LM2

1 if LM1 > 0,LM2 ≤ 0
LM2

2 if LM1 ≤ 0,LM2 > 0
0 if LM1 ≤ 0,LM2 ≤ 0

Under the null the test statistic 𝜒2
m has a mixed 𝜒2-distribution given by:

𝜒2
m = (1∕4)𝜒2(0) + (1∕2)𝜒2(1) + (1∕4)𝜒2(2) (10.21)

When using LM2, one is assuming that random regional effects do not exist. However, espe-
cially when the random effect variance is actually large, this may lead to incorrect inference.
For this reason Baltagi et al. (2003b) derived a conditional lm test for spatial autocorrelation
allowing for the random effects variance to be non-zero. The expression for the test assumes
the following form:

LM𝜆|𝜌 =
D̂(𝜆)2

[(T − 1) + �̂�𝜈4∕�̂�4
𝜄 ]b

(10.22)

where D̂(𝜆)2 = 1
2
𝜖⊤

[
�̂�4
𝜈

�̂�4
𝜄

(J̄T ⊗ (W⊤ + W )) + 1
�̂�4𝜈

(ET ⊗ (W⊤ + W ))
]
𝜖. Also, �̂�4

𝜄 = 𝜖⊤(J̄T ⊗ IN )𝜖∕N ,
�̂�4𝜈 = 𝜖⊤(ET ⊗ IN )𝜖∕N(T − 1) and ET = IT − J̄T .



Spatial Panels 271

Contrarily to previous tests that use ols residuals, the residuals 𝜖 come from the
ml estimation of a one-way error component model. This last point, on the converse, makes
the implementation slightly more complicated. A one-sided test is simply obtained by taking
the square root of 10.22. The resulting test statistics are asymptotically distributed as a
standard normal. Similarly, when using LM1, one is assuming no spatial error correlation. This
assumption may lead to incorrect inference particularly when it is not the case that 𝜆 is close
to zero. A conditional lm test allowing for spatial error correlation can be derived as:

LM𝜂|𝜌 = (D̂𝜂)2

×
(

2�̂�𝜈4

T

)
(TN �̂�𝜈4ec − N �̂�𝜈4d2 − T �̂�𝜈4g2e + 2�̂�𝜈4ghd − �̂�𝜈4h2c)−1

× (N �̂�𝜈4c − �̂�𝜈4g2) (10.23)

where g = tr[(W⊤B̂ + B̂⊤W )(B̂⊤B̂)−1], h = tr[B̂⊤B̂], d = tr[(W⊤B̂ + B̂⊤W )], c = tr[((W⊤B̂ +
B̂⊤W )(B̂⊤B̂)−1)2] and e = tr[(B̂⊤B̂)2]. A one-sided test can be defined by taking the square
root of 10.23 based on ml residuals. The test statistic is again asymptotically normally
distributed.

Example 10.10 bsk tests – RiceFarms data set
In the RiceFarms case, it is easy to assume the presence of farm individual effects, perhaps
representing parcel quality, farmer’s ability, or other time-invarying idiosyncrasies. In the fol-
lowing we test for either random farm effects or spatial correlation in the remainder errors,
drawing on the specification from the previous examples (i.e., controlling for village and time
fixed effects).

The main function to perform the joint, marginal, and conditional tests for random effects
and spatial error correlation is bsktest. It will take a pair of formula, data arguments, plus
a listw object representing the spatial ordering and the test to be performed.

The joint test (test = ’LMH’) is of little use, because it will reject in the presence of either
effect, giving no further directions:

bsktest(riceprod, data = Rice, listw = ricelw, test = "LMH")

Baltagi, Song and Koh LM-H one-sided joint test

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size) + region + time

LM-H = 310, p-value <2e-16

alternative hypothesis: Random Regional Effects and Spatial autocorrelation

More interestingly, the conditional test for random farm effects allowing for spatial error
correlation (test = ’CLMmu’) does in turn reject:

bsktest(riceprod, data = Rice, listw = ricelw, test = "CLMmu")

Baltagi, Song and Koh LM*- mu conditional LM test

(assuming lambda may or may not be = 0)

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size) + region + time

LM*-mu = 11, p-value <2e-16

alternative hypothesis: Random regional effects



272 Panel Data Econometrics with R

as does the conditional spatial test, allowing for random effects:

bsktest(riceprod, data = Rice, listw = ricelw, test = "CLMlambda")

Baltagi, Song and Koh LM*-lambda conditional LM test

(assuming sigma ̂ 2_mu >= 0)

data: log(goutput) ̃ log(seed) + log(totlabor) + log(size) + region + time

LM*-lambda = 21, p-value <2e-16

alternative hypothesis: Spatial autocorrelation

A comprehensive semre specification is appropriate.

10.3.4.2 Testing for Spatial Lag vs Error
If a researcher has a strong reason to expect a spatial-data- generating process to be of the
sar (or, respectively, sem) kind, then her only problem is to determine whether said spatial
effect is present. Then she can either proceed general to specific, estimating the sar (sem)
model and assessing the significance of the spatial coefficient, or specific to general, testing from
the non-spatial model toward the spatial alternative. In a ml framework, the optimal lm tests
for one effect assuming the other out are called marginal. They are dependent on the above
hypothesis and will be inconsistent if it is violated; in case only the “other” effect is actually
present, they will usually yield a type I error.

As outlined above, although empirical practice has mostly concentrated on either the sar or
the sem model, estimation of sarem models containing both a spatial lag and a spatial error is
possible. Therefore, if the researcher does not have a strong prior in favor of either, an empirical
strategy can be to start from the most general sarem specification, together with the appropri-
ate kind of individual heterogeneity, and let the data tell us which of the two spatial processes – if
any and if not both – did actually generate the observed sample, by looking at the significance
diagnostic for either spatial coefficient.

One drawback of this strategy is its computational demands and lesser stability than
estimating the simpler models; another is that it does not allow the inclusion of a full set of
spatially lagged regressors, a specification approach that has become increasingly popular in
recent years.

Lagrange multiplier tests for sar (sem) can be either of the conditional type, allowing for the
presence of sem (sar) tout court, or of the locally robust type, allowing for a limited deviation
from zero of the sem (sar) coefficient. The former are optimal under the standard assumptions
of the ml framework detailed above, and provided the general sarem model holds; and they
require residuals from the restricted sem (sar) model. The second kind have suboptimal statis-
tical properties with respect to the optimal conditional tests, and under the above hypotheses
on the data-generating process, they are not guaranteed to hold if misspecification is “too far
away,” i.e., if the sar (sem) coefficient is of sizable magnitude (and how far is far, i.e., whether
0.1 or 0.4 is tolerable, is an empirical question); moreover the currently available robust lm tests
have been developed in a cross-sectional framework and do not explicitly incorporate panel fea-
tures. On the other hand, they are computationally simpler being based on the residuals of the
non-spatial model, and they allow including spatially lagged regressors; hence their remarkable
success in applied practice.

Marginal vs Locally Robust LM Tests The original lm tests for either spatial lag or error (Burridge,
1980; Anselin, 1988) were derived in a cross-sectional context, as tests for, respectively, H0 ∶
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𝜌 = 0 vs HA ∶ 𝜌 ≠ 0 assuming 𝜆 = 0 (henceforth LM𝜌); and H0 ∶ 𝜆 = 0 vs HA ∶ 𝜆 ≠ 0 assuming
𝜌 = 0 (henceforth LM𝜆). i.e., both can only be employed assuming that the “other” effect is not
present. Otherwise, each test has power against the “wrong” alternative as well; therefore, these
procedures are of limited value in the model selection process.

Based on the general local robustness framework of Bera and Yoon (1993), in a cross sectional
context, Anselin et al. (1996) derived robust lm statistics for H0 ∶ 𝜌 = 0 allowing for 𝜆 ≠ 0
(henceforth RLM𝜌) and, respectively, for H0 ∶ 𝜆 = 0 allowing for 𝜌 ≠ 0 (henceforth RLM𝜆).
These procedures have since been successfully employed in specification searches to discrimi-
nate between sar and sem models, as formalized in Florax et al. (2003).

Marginal Spatial LM Tests In the context of pooled cross sections, without allowing for any
correlation feature across either time or cross section (i.e., setting 𝜂 = 0 and 𝜓 = 0 in
equation 10.4.1.1), any cross- sectional test can be straightforwardly applied to the pooled
dataset. The lm tests of Anselin et al. (1996) (lm) are simply rewritten for the pooled dataset,
stacked by cross section, and drawing on an enlarged version of the weights matrix obtained
by replicating the cross-sectional WN over the main diagonal so that WNT = IT ⊗WN (see
Anselin et al., 2008). The pooled LM𝜌 test becomes:

LM𝜌 =
(𝜖⊤(IT ⊗W )y∕𝜎𝜖

2)2

J
(10.24)

where 𝜖 are the ols residuals and

J = 1
�̂�2
𝜖

(((IT ⊗W )Z�̂�)⊤(INT − X(X⊤X)−1X(IT ⊗W )Z�̂�)⊤ + TTW �̂�
2
𝜖 )

and

TW = tr(WW + W⊤W )

(Elhorst, 2010, Formulae 11 to 13). In turn, the pooled LM𝜆 test is:

LM𝜆 =
(𝜖⊤(IT ⊗W )𝜖∕�̂�2

𝜖 )2

TTW
(10.25)

Locally Robust Spatial LM Tests The robust lm tests of Anselin et al. (1996) can in turn be straight-
forwardly adapted to the (pooled) panel case, as per Elhorst (2014, Ch. 2.3):

RLM𝜌|𝜆 =
(𝜖⊤(IT ⊗W )y∕�̂�2

𝜖 )2 − 𝜖⊤(IT ⊗W )𝜖∕�̂�2
𝜖 )2

J − TTW

RLM𝜆|𝜌 =
(𝜖⊤(IT ⊗W )𝜖∕�̂�2

𝜖 )2 − TTW∕J𝜖⊤(IT ⊗W )y∕�̂�2
𝜖 )2

TTW (1 − TTW∕J)
using, again, the ols residuals 𝜖 (Elhorst, 2010, Formulae 14-15).

Moreover, according to Bera et al. (2009), the lm test for the joint null hypothesis H0 ∶ 𝜌 =
𝜆 = 0 versus HA ∶ 𝜌 ≠ 0 or 𝜆 ≠ 0 is equal to the sum of the marginal test for one effect and the
locally robust test for the other:

LM𝜌𝜆 = LM𝜌 + RLM𝜆|𝜌 = LM𝜆 + RLM𝜌|𝜆
so that the rlm tests can also be obtained indirectly by subtracting the marginal test for the
“other” effect from the joint test.

The slmtest function, specifying test= ’lml’ (’lme’) will perform either the marginal
test for sar (sem) assuming no sem (sar) component in the data-generating process or the
locally robust version if specifying test = ’rlml’ (’rlme’).
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Example 10.11 Robust lm tests for sar or sem – RiceFarms data set
As we have seen, in the rice farms example there are reasons for assuming out a spatial lag model
from the beginning. Nevertheless, it is sensible to check this assumption. The standard versions
of the (pooled) lm test for sar (sem), as observed, is not robust to the presence of a sem (sar)
term, i.e., of the “other” effect. Robust lm tests instead allow for “local” deviations from zero of
the “other” parameter. Of course, the extent of the tolerated deviation is uncertain; still, from
this example the difference between the false positive given by the non-robust sar test (test
= ’lml’) and the locally robust counterpart (test = ’rlml’) clearly stands out:

local.rob.LM <- matrix(ncol = 4, nrow = 2)

tests <- c("lml", "lme", "rlml", "rlme")

dimnames(local.rob.LM) <- list(c("LM test", "p-value"),

tests)

for(i in tests) {

local.rob.LM[1, i] <- slmtest(riceprod, data = Rice,

listw=ricelw, test = i)$statistic

local.rob.LM[2, i] <- slmtest(riceprod, data = Rice,

listw=ricelw, test = i)$p. value

}

round(local.rob.LM, 4)

lml lme rlml rlme

LM test 39.28 244.8 0.1654 205.7

p-value 0.00 0.0 0.6842 0.0

The robust test favors the sem model over the sar.
It shall be kept in mind, moreover, that none of the above procedures allow for individual

effects; one approximate solution is to demean the data. The Within function – which can be
used directly in the model formula – will subtract time means, thus eliminating any individual
effect, of either random or fixed type:

local.rob.LMw <- matrix(ncol = 4, nrow = 2)

wriceprod <- Within(log(goutput)) ̃ Within(log(seed)) +

Within(log(totlabor)) + Within(log(size)) +

region + time

dimnames(local.rob.LMw) <- list(c("LM test", "p-value"),

c("lml", "lme", "rlml", "rlme"))

for(i in c("lml", "lme", "rlml", "rlme")) {

local.rob.LMw[1, i] <- slmtest(wriceprod, data = Rice,

listw=ricelw, test = i)$statistic

local.rob.LMw[2, i] <- slmtest(wriceprod, data = Rice,

listw=ricelw, test = i)$p. value

}

round(local.rob.LMw, 4)

lml lme rlml rlme

LM test 125.2 604.3 1.538 480.6

p-value 0.0 0.0 0.215 0.0

The result is unchanged, but now we are more confident in it because we have controlled,
although in an ad hoc way, for individual effects.
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Likelihood-Based Tests Given that estimation of the full sarem model is possible (see the
extensive discussion in Millo, 2014), one could directly employ the encompassing model as a
specification device, relying on the Wald restriction tests from the general model as an alter-
native specification strategy instead of looking at the rlm tests. This strategy has the drawback
of being computationally more intensive but also some important advantages: the Wald z-tests
for significance of 𝜌 and 𝜆 are optimal; there is no need for robustification, as the “other” spatial
effect is explicitly accounted for in the model, as can be random individual effects; lastly,
estimation of the encompassing model also provides the magnitudes of the spatial coefficients
together with the significance level of the zero-restriction tests so that their substantial
importance can be assessed.

As usual, two kinds of tests are possible from the estimated encompassing model: Wald-type
tests, requiring only an estimate of the latter, and likelihood ratio tests, requiring both the
encompassing and the restricted.

Wald Tests Wald-type tests are z-tests for significance of the relevant parameter in the encom-
passing model. Thus, from ml estimates of the general sarem-re model,

Wald𝜌|𝜆 =
�̂�√
V̂(�̂�)

∼ N(0, 1)

and symmetrically for Wald𝜆|𝜌. Importantly, the test can be made conditional to (i.e., valid in
the presence of) individual random effects by including them in the specification. As observed,
fixed individual effects can be eliminated through data transformation in two ways, both famil-
iar from the spatial panel literature: either through time-demeaning (within transformation)
(Elhorst, 2003) or by forward orthogonal deviations (Lee and Yu, 2010a). The former induces
residual serial correlation, which can nevertheless be considered (i.e., estimated out) in the
encompassing model; while the latter preserves the features of the original errors covariance
matrix (Debarsy and Ertur, 2010, p. 7).

Example 10.12 Wald tests for sem vs sar – RiceFarms data set
In the following we estimate the full saremre model in order to test whether it is possible to
simplify it, in a general-to-specific fashion. The spml function is the highest-level wrapper for
spatial panel estimation by maximum likelihood, allowing for either fixed, random, or no effects
(in the random or none cases, it calls spreml internally). Its syntax is mostly consistent with
that of plm. We select model=’random’ and spatial.error=’b’ for “Baltagi,” which
selects the semre specification (’kkp’ would estimate the sem2re).

saremremod <- spml(riceprod, data = Rice, listw = ricelw, lag = TRUE,

model = "random", spatial.error = "b")

summary(saremremod)

ML panel with spatial lag, random effects, spatial error correlation

Call:

spreml(formula = formula, data = data, index = index, w = listw2mat(listw),

w2 = listw2mat(listw2), lag = lag, errors = errors, cl = cl)

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.154 -0.321 -0.076 -0.090 0.149 1.351
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Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

phi 0.2967 0.0568 5.23 1.7e-07 ***

rho 0.6281 0.0790 7.96 1.8e-15 ***

Spatial autoregressive coefficient:

Estimate Std. Error t-value Pr(>|t|)

lambda -0.0134 0.1755 -0.08 0.94

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 5.9684 0.1957 30.50 < 2e-16 ***

log(seed) 0.1531 0.0235 6.51 7.6e-11 ***

log(totlabor) 0.2492 0.0271 9.19 < 2e-16 ***

log(size) 0.5784 0.0274 21.08 < 2e-16 ***

regionlangan -0.0926 0.1051 -0.88 0.378

regiongunungwangi -0.1567 0.0969 -1.62 0.106

regionmalausma -0.1572 0.0995 -1.58 0.114

regionsukaambit -0.0243 0.1078 -0.23 0.822

regionciwangi -0.0267 0.0973 -0.27 0.784

time2 -0.0612 0.0813 -0.75 0.452

time3 -0.1911 0.0813 -2.35 0.019 *

time4 -0.3650 0.0813 -4.49 7.1e-06 ***

time5 0.1626 0.0813 2.00 0.045 *

time6 0.1325 0.0813 1.63 0.103

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the estimation results, we gather that the semre is the better specification: the esti-
mated sar term �̂� is not significant, while the sem coefficient �̂� is of considerable magnitude
and highly significant.

LR Tests Likelihood ratio tests are based on the likelihoods from the general and the restricted
model. The test statistic is a simple transform of the difference in likelihoods:

2[ln L(�̂�) − ln L(𝜃)] ∼ 𝜒2
m

where �̂� is the full vector of ml parameter estimates from the unrestricted model and 𝜃 from
the restricted one, and m the number of restrictions. Thus,

LR𝜌|𝜆 = 2[ln L(�̂�, �̂�, 𝛽) − ln L(�̃�, 𝛽)] ∼ 𝜒2
1

and symmetrically for LR𝜆|𝜌. Again, including random effects in the estimated models makes
the test conditional to these effects, while fixed effects can be transformed out as detailed in the
previous paragraph but always keeping in mind the effects of the transformation on the error
properties.

Example 10.13 lr tests for sem vs sar – RiceFarms data set
The restriction test for the sar term is performed as:
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ll1 <- saremremod$logLik

ll0 <- spml(riceprod, data = Rice, listw = ricelw, lag = FALSE,

model = "random", spatial.error = "b")$logLik

LR <- 2 * (ll1 - ll0)

pLR <- pchisq(LR, df = 1, lower.tail = FALSE)

pLR

[1] 0.9121

The p-value from the lr spatial lag test is very high, and not unlike the (asymptotically equiv-
alent) result from the Wald restriction test in the previous example.

10.4 Serial and Spatial Correlation

It is possible to generalize the structure of the errors further by introducing serial correlation
in the remainder of the error term, together with spatial correlation and random effects. Bal-
tagi et al. (2007) do so in the context of the Anselin semre, specifying the model errors as
the sum of an individual, time-invariant component and an idiosyncratic one that is spatially
autocorrelated, as above, but also has serial correlation in the remainder:

𝜈 = 𝜌(IT ⊗WN )𝜈 + 𝜁
𝜁t = 𝜓𝜁t−1 + 𝜉t

(10.26)

where 𝜉 is i.i.d.. The combination of this more general error structure, termed semsrre because
of the addition of Serially autoRegressive errors, with a spatially lagged dependent variable and
the estimation of the most general model saremsrre can still be dealt with in the general
ml framework outlined above.

10.4.1 Maximum Likelihood Estimation

The model combining spatial and serial correlation with individual effects can be estimated by
maximum likelihood, through an extension of the framework outlined in the previous sections
of this chapter.

10.4.1.1 Serial and Spatial Correlation in the Random Effects Model
Generalizing the structure of the errors further by introducing serial correlation in the remain-
der of the error term, together with spatial correlation and random effects, Baltagi et al. (2007)
derived a number of conditional and marginal LM tests for the different effects, possibly allow-
ing for the presence of the other ones. Based on their work, Millo (2014) extended the model to
include a sar term. The errors of the sarem model are specified as in the previous paragraph,
so that the full model is:

y = 𝜆(IT ⊗W )y + Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈
𝜈 = 𝜌(IT ⊗W )𝜈 + 𝜁
𝜁t = 𝜓𝜁t−1 + 𝜉t

To derive the likelihood, Baltagi et al. (2007) suggest a Prais-Winsten transformation of the
model with random effects and spatial autocorrelation. Following their simplifying notation,
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define: V𝜓 = 1
1−𝜓2 V1 with:

V1 =

⎡⎢⎢⎢⎢⎣

1 𝜓 𝜓2 … 𝜓T−1

𝜓 1 𝜓 … 𝜓T−2

⋮ ⋮ ⋮ ⋱ ⋮

𝜓T−1 𝜓T−2 𝜓T−3 … 1

⎤⎥⎥⎥⎥⎦
;

(10.27)

then the expression for the scaled error covariance matrix Σ can be written as

Σsemsrre = 𝜙(JT ⊗ IN ) + V𝜓 ⊗ (B⊤B)−1.

While in principle the inverse and determinant of Σ can be calculated by brute force, in prac-
tice it is convenient, and often necessary, to rely on simplified analytical expressions to reduce
the computational burden and extend the range of feasible sample sizes. Baltagi et al. (2007)
derived expressions for the inverse and determinant of the error covariance matrix:

Σ−1
semsrre = V−1

𝜓 ⊗ (B⊤B) + 1
d2(1 − 𝜓)2 (V

−1
𝜓 JT V−1

𝜓 )

⊗ ([d2(1 − 𝜓)2𝜙IN + (B⊤B)−1]−1 − B⊤B)
|Σsemsrre| = |d2(1 − 𝜓)2𝜙IN + (B⊤B)−1| ⋅ |(B⊤B)−1|T−1∕(1 − 𝜓2)N ,

where 𝛼 =
√

1+𝜓
1−𝜓

and d2 = 𝛼2 + (T − 1). They can be plugged in the general likelihood (10.9)
to estimate the saremsrre model.

10.4.1.2 Serial and Spatial Correlation with KKP-Type Effects
As an alternative to the saremsrre specification, Millo (2014) presents an extension of the
sem2re errors a la Kapoor et al. (2007) to serial correlation in the remainder errors. As in the
sem2re case, the random effects are spatially lagged together with the idiosyncratic ones, while
the remainder errors 𝜉 in turn are serially correlated:

y = 𝜆(IT ⊗W )y + Z𝛾 + 𝜖
𝜖 = (jT ⊗ 𝜂) + 𝜈
𝜖 = 𝜌(IT ⊗W )𝜖 + 𝜁
𝜁t = 𝜓𝜁t−1 + 𝜉t

This alternative specification assumes that individual effects follow the same spatial diffusion
process as the idiosyncratic errors do. By analogy, it is termed sarem2srre. Just as in the
sem2re case, the error covariance is then again of the B⊤ΩB form (see Section 10.3.3.1), which
simplifies computations considerably. In fact, the (scaled) error covariance for this model is:

Σsem2srre = (𝜙JT + V𝜓 )⊗ (B⊤B)−1

and, by the properties of Kronecker products, its inverse is

Σ−1
sem2srre = (𝜙JT + V𝜓 )−1 ⊗ (B⊤B)

so that there is no need for the numerically demanding and unstable inversion of B⊤B.14

14 Models with serial and spatial correlation are often computationally cumbersome to estimate and can be
challenging even for modern computers on moderate sample sizes. For an assessment of the practical computational
limits of different specifications, see Millo (2014, Table 2).
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Example 10.14 Serial and spatial correlation – EvapoTransp data set
Mountains are a crucial source of water for public, agricultural and hydropower use. Obojes
et al. (2015) explore the effect of vegetation composition and structure on water balance on
some high- elevation grasslands in the Alps, in order to infer the potential to influence the water
balance of mountain areas through land management. In particular, they evaluate the conse-
quences of the abandonment of mountain areas: leading to the proliferation of tall grasses and
dwarf shrubs and therefore affecting the water balance. Of the different components of the
water balance, evapotranspiration (ET) is the one most influenced by vegetation. They repeat-
edly measure the water balance of soil monoliths in deep seepage collectors in four experimental
sites over three study areas, two in the French Alps, one in Switzerland, and one in Austria.

Persistence in both time and space is apparent in the data and attributed to small-scale
features of the particular observation context. In order to account for these, they estimate a
panel model with both spatial and serial correlation, using a distance-based, row-standardized
weights matrix.

We replicate the results from the Austrian site, based on the original data, available as
EvapoTransp, and weights matrix etw. There are 5 repeated measurements over 86
observation units.

data("EvapoTransp", package = "pder")

data("etw", package = "pder")

evapo <- et ̃ prec + meansmd + potet + infil + biomass + plantcover +

softforbs + tallgrass + diversity + matgram + dwarfshrubs + legumes

semsr.evapo <- spreml(evapo, data=EvapoTransp, w=etw,

lag=FALSE, errors="semsr")

summary(semsr.evapo)

ML panel with, AR(1) serial correlation, spatial error correlation

Call:

spreml(formula = evapo, data = EvapoTransp, w = etw, lag = FALSE,

errors = "semsr")

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.260 -0.500 0.021 -0.047 0.420 2.373

Error variance parameters:

Estimate Std. Error t-value Pr(>|t|)

psi 0.1665 0.0482 3.45 0.00056 ***

rho 0.8665 0.0246 35.29 < 2e-16 ***

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.866041 0.562326 1.54 0.1235

prec -0.129636 0.154338 -0.84 0.4009

meansmd 0.018968 0.004452 4.26 2.0e-05 ***

potet 0.551144 0.335828 1.64 0.1008

infil 0.023513 0.021876 1.07 0.2824

biomass 0.002335 0.000305 7.65 1.9e-14 ***

plantcover 0.019174 0.110332 0.17 0.8620

softforbs 0.132359 0.041463 3.19 0.0014 **

tallgrass 0.174540 0.054099 3.23 0.0013 **
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diversity 0.040775 0.035790 1.14 0.2546

matgram -0.029814 0.033040 -0.90 0.3669

dwarfshrubs 0.098405 0.054127 1.82 0.0691.

legumes -0.016304 0.005591 -2.92 0.0035 **

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Although simple ols would be consistent in this setting, the spatially and serially correlated
ml model improves the precision of the estimates and leads to substantially different results.
For example, in the spatial-serial error model, the coefficient on precipitation (Prec) is halved
and not significant any more, with respect to what would result from ols (reported below);
analogously for potential evapotranspiration potET).

library("lmtest")

coeftest(plm(evapo, EvapoTransp, model="pooling"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.076993 0.168586 6.39 4.5e-10 ***

prec -0.207954 0.037563 -5.54 5.5e-08 ***

meansmd 0.022749 0.006489 3.51 0.0005 ***

potet 0.767941 0.088380 8.69 < 2e-16 ***

infil 0.055648 0.031030 1.79 0.0736.

biomass 0.000104 0.000389 0.27 0.7900

plantcover 0.044657 0.157801 0.28 0.7773

softforbs 0.104305 0.058300 1.79 0.0743.

tallgrass 0.173013 0.078668 2.20 0.0284 *

diversity 0.016214 0.051333 0.32 0.7523

matgram -0.069537 0.049001 -1.42 0.1566

dwarfshrubs 0.071451 0.077135 0.93 0.3548

legumes -0.019447 0.008115 -2.40 0.0170 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The same happens for any specification omitting the spatial error term, like random effects or
the serially correlated errors model, which can be obtained setting errors to ’sr’ (output
not reported).

Controlling for spatial error correlation seems the key feature here, witness the large �̂�; never-
theless, despite the low magnitude of the serial correlation coefficient, omitting time persistence
would still lead to substantially different results, namely to a false positive for the significance
test on DwarfShrubs:

coeftest(spreml(evapo, EvapoTransp, w=etw, errors="sem"))

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.062540 0.566049 1.88 0.06050.
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prec -0.155642 0.153350 -1.01 0.31013

meansmd 0.017929 0.003962 4.52 6.0e-06 ***

potet 0.532574 0.327493 1.63 0.10390

infil 0.022110 0.019396 1.14 0.25430

biomass 0.002312 0.000286 8.08 6.3e-16 ***

plantcover 0.016307 0.097288 0.17 0.86689

softforbs 0.131949 0.036543 3.61 0.00031 ***

tallgrass 0.176606 0.047692 3.70 0.00021 ***

diversity 0.038389 0.031549 1.22 0.22369

matgram -0.031006 0.029147 -1.06 0.28743

dwarfshrubs 0.104405 0.047821 2.18 0.02902 *

legumes -0.016654 0.004929 -3.38 0.00073 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10.4.2 Testing

Testing for either effect in the context of the spatially and serially correlated model with indi-
vidual heterogeneity is performed within the same maximum likelihood framework used for
estimation.

10.4.2.1 Tests for Random Effects, Spatial, and Serial Error Correlation
Baltagi et al. (2007) derive the joint, marginal, and conditional lm tests for the model with serial
correlation.

They consider all possible combinations of joint, marginal and conditional tests:

• the joint test for 𝜌 = 𝜓 = 𝜎2
𝜂 = 0, (J)

• the marginal tests for 𝜌, 𝜓, and 𝜎2
𝜂 assuming in turn that the other two are zero (M.1-3)

• the joint tests for any combination of two of the parameters assuming the third one is zero
(M.4-6)

• the marginal tests for 𝜌, 𝜓, and 𝜎2
𝜂 assuming in turn that the other two may or may not be

zero (C.1-3)
• the joint tests for any combination of two of the parameters assuming the third one may or

may not be zero (C.4-6)

M.1-3 are well-established testing procedures in the literature (as observed in Baltagi et al.,
2007). M.1 (test for 𝜌 = 0) is the LM test for spatial error correlation derived by Anselin (1988) in
the context of a pooled model with no serial correlation or individual effects. On the other hand,
M.2 (test for𝜓 = 0) is analogous, for large T , to the well-known Breusch (1978), Godfrey (1978)
serial correlation test. Finally, M.3 is simply the Breusch and Pagan (1980) random effects test.

Baltagi et al. (2007, Appendix A.3) show that the test statistic for the joint hypothesis M.4
(𝜌 = 𝜓 = 0) assuming no random effects is simply the sum of the marginal tests M.1 (𝜌 = 0)
and M.2 (𝜓 = 0). Additionally, M.5 is the Baltagi et al. joint test outlined in section 10.3.4.1;
and M.6 is the joint test for random individual effects and serial correlation derived in Baltagi
and Li (1995) (see section 4.3.2).

As a result of the previous discussion, we only consider the three-way joint test J and the
one-way conditional tests C.1-3.
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The corresponding null hypotheses are:

1) Ha
0 ∶ 𝜌 = 𝜓 = 𝜎2

𝜂 = 0 under the alternative that at least one component is not zero (J)
2) Hh

0 ∶ 𝜌 = 0, assuming 𝜓 ≠ 0, 𝜎2
𝜂 > 0: test for spatial correlation, allowing for serial correla-

tion and random individual effects (C.1)
3) Hi

0 ∶ 𝜓 = 0, assuming 𝜌 ≠ 0, 𝜎2
𝜂 > 0: test for serial correlation, allowing for spatial correla-

tion and random individual effects (C.2)
4) Hj

0 ∶ 𝜎2
𝜂 = 0, assuming 𝜌 ≠ 0, 𝜓 ≠ 0: test for random individual effects, allowing for spatial

and serial correlation (C.3)

The joint lm test for Ha
0 is given by:

LMj =
NT2

2(T − 1)(T − 2)
[A2 − 4AF + 2TF2] + N2T

b
H2 (10.28)

where, A = 𝜖⊤(JT ⊗ IN )𝜖∕𝜖⊤𝜖 − 1, F = 𝜖⊤(GT ⊗ IN )𝜖∕2𝜖⊤𝜖, H = 𝜖⊤(IT ⊗ (W⊤ + W ))𝜖∕2𝜖⊤𝜖,
b = tr(W + W⊤)2∕2, G is a matrix with bidiagonal elements equal to one and 𝜖 denotes
ols residuals. Under Ha

0, LMJ is distributed as 𝜒2
3 .

The conditional C.1 test for Hh
o gives rise to the following statistic, asymptotically distributed

as 𝜒2
1 under Hh

0:

LM𝜌∕𝜓𝜂 =
D̂(𝜌)2

b(T − 2cg + c2g29)
(10.29)

where

D̂(𝜌) = 1
2
𝜖⊤[V−1 − 2cV−1JT TV−1 + c2[V−1JT ]2V−1]⊗ (W⊤ + W )𝜖

is the score vector (evaluated at the null), 𝜖 a vector of ml residuals obtained from the estimation
of the model with individual error components and serial correlation, g = 1

𝜎2
e
(1 − 𝜓)2 + (T − 2)

(1 − 𝜓), and b has been defined above.
The conditional C.2 test for Hi

0 is based on the following statistic, asymptotically distributed
as 𝜒2

1 under the null:

LM𝜓∕𝜌𝜂 = D̂(𝜓)2J−1
33 (10.30)

where J−1
33 is the corresponding element of the information matrix,15

D̂(𝜓) = −T − 1
T

(�̂�2
e tr(Z(B⊤B)−1) − N)

+
�̂�2

e

2
𝜖⊤[ 1

𝜎4
e
(ET GET )⊗ (B⊤B) + 1

𝜎2
𝜁

(J̄T GET )⊗ Z

+ 1
𝜎2
𝜁

(ET GJ̄T )⊗ Z + (J̄T GJ̄T )⊗ Z(B⊤B)−1Z]𝜖 (10.31)

with Z = [T𝜎2
𝜂 IN + 𝜎2

e (B⊤B)−1] the score evaluated at the null and 𝜖 the vector of ml residuals
from the estimation of a panel model with individual error components and serial correlation.
Both g and b assume the same expression as before, while as usual ET = IT − J̄T .

The conditional C.3 test for Hj
o is based on the following statistic:

LM𝜂∕𝜌𝜓 = D̂(𝜎2
𝜂 )J−1

22 (10.32)

15 For the expression of the information matrix see Baltagi et al. (2007, Eq. 3.10)
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where

D̂(𝜎2
𝜂 ) = −

tr(V−1JT )
2

tr(B⊤B) + 1
2𝜎4

e
𝜖⊤[V−1

𝜓 JT V−1
𝜓 ⊗ (B⊤B)2]𝜖

is the score evaluated at the null, J−1
22 is the corresponding element of the information matrix16

and 𝜖 is the vector of estimated residuals from the ml estimation of a panel model with spatially
and serially correlated errors but no individual error components. The LM𝜂∕𝜌𝜓 test statistic is
asymptotically distributed as 𝜒2

1 under Hj
0:

Example 10.15 Conditional BSJK tests – RiceFarms data set
We now address the issue of serial correlation in the remainder errors of the RiceFarms
model. In other words, we check whether persistence characteristics in the output of an indi-
vidual farm have effectively been accounted for by the individual effects, which in previous
examples have proved significant, statistical evidence favoring the random hypothesis. On the
spatial side, there has been ample evidence of spatial effects of the SEM type. For all this, on
one hand a joint test is guaranteed to reject; on the other, tests for each single “effect” (spatial
or serial correlation, or individual effects) will have to account for the possible presence of one
or both of the others.

The tests are performed specifying a formula and a data.frame, the spatial weights
listw to be employed and the test. Although we are here particularly interested in the
’C.2’ test, for the sake of comparison we perform both the joint test ’J’ and all three condi-
tional tests. As observed, the joint test will use the ols residuals, while the others those from
the appropriate restricted specification, e.g, the C.2 those from a semre model.

bsjk.LM <- matrix(ncol = 4, nrow = 2)

tests <- c("J", paste("C", 1:3, sep = "."))

dimnames(bsjk.LM) <- list(c("LM test", "p-value"),

tests)

for(i in tests) {

mytest <- bsjktest(riceprod, data = RiceFarms, index = "id",

listw = ricelw, test = i)

bsjk.LM[1, i] <- mytest$statistic

bsjk.LM[2, i] <- mytest$p. value

}

round(bsjk.LM, 6)

J C.1 C.2 C.3

LM test 319.5 371.5 11.894431 75.8

p-value 0.0 0.0 0.000563 0.0

All tests reject the respective null hypotheses: the joint and the C.1 (spatial effects) most
forcefully and then the C.3 (random effects). The C.2 test rejects less forcefully; still it provides
evidence for some serial correlation in the remainder errors of the rice production equation
after controlling for spatial and individual random effects.

Example 10.16 Spatial and serial correlation – RiceFarms data set
The result from the C.2 test, although not very sharp, warrants an investigation into the serial
correlation issue. To this end, we estimate the full SEMSRRE model, visualizing only the sig-
nificance table for the error components. t-statistics are expected to mimic the results of the

16 See Baltagi et al. (2007, Section 3.4)
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asymptotically equivalent LM tests closely: still there is more information to be extracted from
the encompassing model, i.e., the magnitudes, and hence the substantial importance, of the
estimated parameters.

semsrre.rice <- spreml(riceprod, data = Rice,

w=riceww, lag = FALSE, errors = "semsrre")

round(summary(semsrre.rice)$ErrCompTable, 6)

Estimate Std. Error t-value Pr(>|t|)

phi 0.2500 0.05904 4.234 0.000023

psi 0.1250 0.04092 3.054 0.002259

rho 0.6136 0.04617 13.291 0.000000

Spatial error correlation is confirmed as the statistically strongest effect, with the now familiar
large coefficient. Both individual effects and serial correlation play minor roles: the variance
ratio of the random effects over the idiosyncratic errors 𝜙 is about one fourth; the estimated
serial correlation coefficient is but 0.13.

10.4.2.2 Spatial Lag vs Error in the Serially Correlated Model
Testing for spatial lag vs spatial error in a model allowing for random effects and/or serially
correlated errors can be done via the Wald approach, from the encompassing specification.17

Example 10.17 Spatial and serial correlation – EvapoTransp data set
In the evapotranspiration example, spatial correlation in the errors comes as a consequence of
the particular experimental environment: in other words, it is imposed over the alternative of
spatial lag dependence as a theoretical a priori of the researchers. In fact, it seems difficult to
come up with reasons why the outcome, actual evapotranspiration, at one site should influence
that of neighboring sites, while it is quite natural to expect that measurement errors at nearby
sites be correlated. As a statistical check, we estimate the encompassing specification with sar,
sem, and serial error correlation, reporting only the relevant coefficient tables for the error
variance parameters and the spatial lag coefficient:

saremsrre.evapo <- spreml(evapo, data = EvapoTransp,

w = etw, lag = TRUE, errors = "semsr")

summary(saremsrre.evapo)$ARCoefTable

Estimate Std. Error t-value Pr(>|t|)

lambda -0.322 0.2804 -1.148 0.2508

round(summary(saremsrre.evapo)$ErrCompTable, 6)

Estimate Std. Error t-value Pr(>|t|)

psi 0.1679 0.04820 3.483 0.000496

rho 0.9000 0.02902 31.006 0.000000

The statistical evidence from estimation backs the a priori considerations: unlike the spatial
error coefficient �̂�, the estimate �̂� of the spatial lag is not significant.

17 The encompassing specification has many parameters; therefore, it is quite complicated to estimate and prone to
numerical problems. See Millo (2014, 5.1.5). Likelihood optimization may yield corner solutions; or the numerical
evaluation of the Hessian matrix, which produces the standard errors, can fail for some parameters. This is common
when the model is overspecified, most often when the “problematic” parameters are close to 0, i.e., not significant.
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